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Summary: Vaccines based on outer membrane vesicles (OMV) were developed 

more than 20 years ago against Neisseria meningitidis serogroup B. These nano-

sized structures exhibit remarkable potential for immunomodulation of immune 

responses and delivery of “self” meningococcal antigens or unrelated antigens 

incorporated into the vesicle structure. This paper reviews different applications in 

OMV Research and Development (R&D) and provides examples of OMV developed 

and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP) 

process was developed at the Finlay Institute to produce OMV from N. meningitidis 

serogroup B (dOMVB) using detergent extraction. Subsequently, OMV from N. 

meningitidis, serogroup A (dOMVA), serogroup W (dOMVW) and serogroup X 

(dOMVX) were obtained using this process. More recently, the extraction process 

has also been applied effectively for obtaining OMV on a research scale from Vibrio 

cholerae (dOMVC), Bordetella pertussis (dOMVBP), Mycobacterium smegmatis 

(dOMVSM) and BCG (dOMVBCG). The immunogenicity of the OMV have been 

evaluated for specific antibody induction, and together with functional bactericidal 

and challenge assays in mice have shown their protective potential. dOMVB has 

been evaluated with non-self neisserial antigens, including with a herpes virus type 2 

glycoprotein, ovalbumin and allergens. In conclusion, OMV are proving to be more 

versatile than first conceived and remain an important technology for development of 

vaccine candidates. 
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Introduction  

Vesicles derived from pathogens have been used for a long time, in the development 

of immunogenic vaccine candidates against the respective organisms from which the 

vesicles have been obtained. Proteoliposomes, outer membrane vesicles (OMV), 

proteosomes (1) and very small size proteoliposomes (2) are examples of the 

different approaches of vesicle formulations obtained from microorganisms. 

Currently licensed vaccines based on OMV, use detergent extraction to obtain 

dOMV from gram negative bacteria (3). In addition, it is possible to obtain OMV by 

inducing the release of “blebs” or native OMV (nOMV) from bacteria (3). A drawback 

of this latter method is that the resulting vesicles contain a high amount of 

lipopolysaccharide (LPS), which is very toxic (4). Therefore, several strategies are 

under evaluation to produce nOMV from mutant strains containing detoxified LPS 

(5). 

 

Various infectious diseases (such as tuberculosis and meningitis) and including 

enteric diseases (such as cholera, salmonellosis and shigellosis) remain a health 

problem in children and young adults (6). No vaccines have been developed against 

the responsible pathogens and the OMV strategy represents a feasible opportunity 

to address this. OMV are at the interface between traditional and new methods of 

vaccine production. Antigens and immune stimulator molecules from OMV are 

extracted from the pathogen and purified in proteolipidic vesicles, a reason for also 

calling OMV proteoliposomes. Another approach is to use purified molecules from 

bacteria and inserting them into lipidic nanovesicles or adding any other components 

to the formulation. Therefore, several research groups have developed structures 

like proteosomes which combine N. meningitidis protein aggregates with LPS from 

Shigella flexneri (1) or very small size proteoliposomes which combines OMV, also 

from N. meningitidis, with the ganglioside GM3 more frequently associated with 

tumour cells (2). The main goal of these nanoparticles or vesicles is to present or 



deliver their load to competent cells of the immune system (7). This mini-review 

examines the main developments in various OMV technology. 

 

OMV vaccines against Neisseria meningitidis 

Meningococcal disease can occur rapidly following even mild symptoms and can 

result in fatality and disability. Thus, vaccination is seen as an essential strategy to 

prevent the rapid onset of infection. Current vaccines against N. meningitidis have 

been developed using the capsular polysaccharide of the pathogen and have been 

in use since the 1960s against serogroup A and C and since the 1980s against 

serogroups A, C, Y and W (8). These structures are highly immunogenic and can be 

conjugated to carrier proteins to induce memory immune responses and 

immunogenicity in children younger than two years of age (9). However, 

polysaccharides from the N. meningitidis serogroup B (MenB) are low in 

immunogenicity and safety concerns have arisen due to potential risks of 

autoimmunity (3). Therefore, novel strategies, based on protein vaccines, have been 

developed to overcome this hurdle. The use of wild type OMV vaccines against 

MenB have been explored since the 1970s and public health interventions in 

countries such as Cuba, Norway and New Zealand have proven the concept of their 

efficacy, with high effectiveness estimated in young and adults in the region where 

the circulating strain was the same as the vaccine strain (8). The Cuban VA-

MENGOC-BC showed 83% effectiveness (over 16 months) in young and adults 

(10), the Norwegian MenBVac showed 87% effectiveness (over 10 months) in 

young and adults (11) and MeNZB, administered in New Zealand, showed 73% 

effectiveness in the young and adults (12). In general, estimates of vaccine efficacy 

in children and infants are over 70%, although the number of doses required may 

differ between each vaccine in order to keep protective immunity for a longer period 

of time e.g the Cuban vaccine is administered in 2 doses, whereas MenBVac is 

given in 3 doses and MeNZB in 4 doses (12). These vaccines are examples of 

parenteral licensed vaccines against meningococcal B disease (details summarised 

in Table 1). 

 

The examples given above are wild type OMV vaccines, obtained using 

deoxycholate detergent extraction of the bacterial membranes. This method 



detoxifies and reduces the LPS content in vesicles to amounts proven to be safe by 

several millions of doses of OMV vaccines administered to humans (10-13). All 

theses OMV vaccines have been demonstrated to be effective against the epidemic 

strain, although a small or no effect has been found when measuring effectiveness 

against heterologous strains (3), thus questioning their broad applicability against a 

range of circulating MenB strains. The immunodominant antigens in N. meningitidis 

OMV are porins PorA and PorB (13); there is a high variability between these 

proteins in strains of the same serogroup, therefore, the immune response to OMV is 

strain specific and some authors have proposed the concept of developing “tailor 

made” vaccines against the circulating strain (3, 12). On the other hand, minor 

proteins in OMV, non-porins, are also responsible for the low cross-protection level 

found in different clinical trials (3) and different strategies, such as the recent 

Novartis (Switzerland) Bexsero® vaccine (15) uses these minor proteins to construct 

a more universal vaccine. Several proteomic techniques have been developed to 

characterise protein antigens to aid the selection of appropriate strains and antigens 

to improve the extraction protocol (14). It is also known that detergent extraction 

protocols may not be effective in extracting some important protein antigens such as 

Fhbp, whereas other protocols (no detergents) allowpermit extraction and inclusion 

extraction of this antigen in the vesicles. Overall, it is very beneficial to remove 

endotoxins and allow inclusion of immunogenic antigens in OMV. Theis advantages 

of free detergent technologies or inclusion of recombinant proteins to dOMV are 

under evaluation in new candidates and licensed vaccines, respectively (15, 16). 

The Bexsero® vaccine combines OMV that have been classically extracted by 

detergent and inclusion of recombinant antigens designed by reverse vaccinology 

(15). The recombinant antigens induce immune responses to a high number of 

serogroup B strains and the OMV potentiate the immune response to them. Novel 

strategies are envisaged to obtain OMV from recombinant N. meningitidis strains, 

where LPS has been genetically de-toxified (lpx1-mutants), avoiding the need for 

detergent extraction. Furthermore, mutant strains with over-expressed protein 

vaccine antigens naturally folded inserted into the membrane like Por A and Fhbp 

have been constructed (16). Certainly, a high number of vaccine candidates with 

these characteristics will be seen in the next few years. 

 



More recently, the Finlay Institute (Cuba) and the Norwegian Institute of Public 

Health (NIPH, Norway) have been working together to develop multivalent OMV 

vaccines against serogroups A (dOMVA), W (dOMVW) and X (dOMVX) (17, 18). 

These serogroups represent the main cause of meningococcal disease in Africa 

(19). A Phase I clinical trial commenced at the end of 2013 to evaluate the safety of 

a bivalent candidate against serogroups A and W and the results are currently being 

examined {,  #612}. These dOMV were obtained using epidemic strains isolated in 

countries from the African “meningitis belt”: dOMVA were developed from strain 

MK499/03, sequence type (ST) 5 clonal complex (cc) and dOMVW were developed 

from strain MK222/02, ST11 cc (21). All the strains belong to clonal complexes of 

serogroups that caused epidemics and outbreaks several years ago (22). On the 

other hand, new cases of meningococcal disease are produced by serogroup X in 

countries from the African meningitis belt  (23). Based on previous experience with a 

combination of dOMVA and dOMVW, both teams have begun research in a new 

combination including dOMV from meningococcal serogroup X strain BF 2/97 

(cc.181) (17). 

 

Other applications 

Since MenB OMV have had significant exposure to humans in clinical trials, it is 

reasonable to assume that the safety and tolerability profile would encourage 

development of other applications. Thus, taking advantage of the immune stimulating 

molecules present in OMV. Since few adjuvants are licensed for human use, it was a 

reasonable concept to examine the potential of OMV for adjuvant activity. The 

adjuvant potential of MenB OMV (OMVB) have therefore been demonstrated with 

non-self neisserial antigens (24), including with a herpes virus type 2 glycoprotein 

(gD2) (25), ovalbumin (24) and with allergens (17). With the latter application, a 

formulation of dOMVB containing mite allergens from Dermatophagoides siboney 

have been shown to be effective in a preclinical trial in controlling allergic reaction 

(26) and is currently undergoing a Phase I clinical trial {,  #597}. Another formulation, 

ProtollinTM (Glaxo Smith Kline, GSK) has been developed that combines N. 

meningitidis outer membrane proteins (OMP) and LPS from Shigella flexneri. This 

formulation has been used as an intranasal adjuvant (28) and Phase I and II clinical 

trials have established that these vesicles are safe and well tolerated (29). 



Additionally, a clinical trial of N. meningitidis OMP mixed only with influenza antigens 

(Proteosome-based influenza vaccine, GSK) demonstrated that the intranasal 

formulation was immunogenic and well tolerated (30).  

 

Overall, OMV developed from N. meningitidis have been successfully licensed or are 

undergoing clinical trial. Table 1 shows a summary of the most successful dOMV 

evaluated against meningitis. Other uses are also being found for these OMV and 

the following sections highlight the advances in R&D of OMV derived from other 

bacteria that demonstrate the versatility of these structures. 

 

OMV vaccines against Bordetella pertussis  

Whooping cough or pertussis is a highly contagious respiratory disease caused by 

Bordetella pertussis. Despite high vaccination coverage with whole cell or acellular 

vaccines, pertussis has re-emerged not only in children, but also in adults, which can 

also be a source of infection for infants (31, 32). Among the reasons offered to 

explain this resurgence is the waning of vaccine-induced immunity and the 

presumed low vaccine efficacy of acellular vaccines, which support the introduction 

of new vaccine candidates to confer a protective long-lasting immunity (33).  

 

Pertussis proteoliposomes or OMV (dOMVBP) have been constructed from 

inactivated whole cells of B. pertussis strain 165. Characterization studies have 

shown that these vesicles are composed of several immunogenic antigens including, 

pertussis toxin, fimbriae 3 and pertactin (34) . Additionally, the dOMVBP vaccine was 

highly protective against the WHO strain 18323 in intracerebral and intranasal 

challenge models (34) . Similarly, a group of researchers in Argentina, have obtained 

nOMVBP using a detergent-free process with wild and mutant strains (35, 36); these 

candidate formulations were also protective when evaluated using an intranasal 

challenge model. 

 

OMV vaccines against enteric pathogens 



Enteric infections induced by pathogens are one of the main causes of death all over 

the world (6). The main bacterial agents are Vibrio cholerae, Salmonella spp, 

Shigella spp and Escherichia coli. V. cholearae O1 proteoliposomes were the first 

vesicles (OMVC) obtained at the Finlay Institute from enteric pathogens. Figure 1 

shows a micrograph of OMVC from Perez et al. (2009) which demonstrated that 

these vesicles induced an antibody response with vibriocidal activity when 

administered via the nasal route (37). An OMVC extraction process was developed 

with sodium dodecyl sulphate (SDS) detergent to achieve maximum recovery of LPS 

from the bacteria. Protein antigens with vaccine potential, such as OmpU and 

MSHA, were also found in OMVC (37). In an alternative approach, Schild et al. 

(2009) obtained nOMVC using a detergent-free method and demonstrated that 

intranasal and oral administration of these vesicles were immunogenic and 

protective in a model where the offspring of immunized female mice were infection 

challenged (38). 

 

Selection of the detergent can be a critical step for extracting immunogenic OMV. 

LPS is the main antigen of enteric pathogens, but it is also a potent toxin with 

differing potency in Gram negative pathogens (39); therefore, detergent and 

purification steps, may differ according to the antigen that needs to be expressed or 

removed from the vesicles. Recently, the production of OMV obtained by detergent-

free protocols has gained interest, because the generation of mutant strains, hyper 

expressing important protein antigens and detoxified molecules may improve the 

yield, immunogenicity and safety profile of the OMV (5, 16).  

 

Several OMV extracts from different enteric pathogens have been evaluated at the 

Finlay Institute. A multivalent formulation that contained dOMV from V. cholerae, S. 

Enteritidis, S. Typhimurium, Shigella sonnei and S. flexneri elicited high IgG (serum) 

and IgA (saliva) levels in mice and rats immunized orally (40). Additionally, OMV 

from enteropathogenic (EPEC) and enterotoxigenic (ETEC) strains of E. coli were 

evaluated in mice showing high specific antibody responses and heterologous cross-

reactivity between them (41). Camacho et al. (2011) also demonstrated the potential 

of a mucosal candidate vaccine based on nOMV from S. flexneri (42). 



 

Acevedo et al. (2013) demonstrated that a combination of dOMVC with 

polysaccharide Vi (PsVi) from S. Typhi, administrated via the nasal route, can induce 

immune responses at mucosal level, but also results in systemic specific IgG anti-

PsVi responses as high as the parenteral PsVi vaccine vax-TyVi®  (Finlay Institute) 

(43). The potential use of combinations of different OMV or their capacity to be 

combined with antigens may have important impact in the future in the development 

of vaccines against enteric pathogens. 

 

OMV vaccines against tuberculosis (TB) 

Mycobacterial extracts have been widely used in vaccine developments, including 

the use of Freund’s Complete Adjuvant (FCA), which contains fragments from the 

mycobacteria. In particular, the mycobacterial cell wall contains a variety of antigenic 

and immunostimulatory molecules, such as peptidoglycan, arabinogalactan, mycolic 

acids, proteins, phosphatidylinositolmanosides, tiocerol, lipomanann and 

lipoarabinomann which activate dendritic cells via Mannose and NOD2 receptors, 

among others (44, 45). All these components are important molecular effectors 

involved in the infection process and have been reported to induce protective 

responses in mice against TB (46, 47).  

 

New formulations, which are safer than FCA, but still immunogenic, are also under 

evaluation. For example, RUTI consists of a Mycobacterium tuberculosis (MTB) 

protein extract and lipids, which are delivered in liposomes (48). Preclinical 

experiments show that RUTI is able to induce marked accumulation of antigen 

specific IFN-γ-producing CD4+ and CD8+ T cells, whereas BCG increases only the 

recruitment of CD4+ T cells. A short treatment regimen with chemotherapy 

(isoniazid) and RUTI is under evaluation in clinical trials. The reduction time in 

treatment as well as increased efficacy in chemotherapy will impact on the 

regression of the disease as well as the reduction of drug resistant MTB strains (48). 

Another, mycobacterial derivative with adjuvant and vaccine potential is the CAF01 

formulation (49). The mycobacterium cord factor trehalose-6,6-dimycolate and its 

synthetic analogue trehalose-6,6-dibehenate (TDB) are potent glycolipid immune 



stimulators that are recognized by a C-type lectin Mincle receptor (50). This signal 

activates dendritic cells, leading to cytokine production and up-regulation of co-

stimulatory molecules (50). Incorporation of TDB in cationic liposomes (CAF01) 

together with the recombinant fusion protein Ag85B/ESAT-6 is a promising strategy 

against TB, developed by the Staten Serum Institute (Copenhagen, Denmark) (51).  

dOMV derived from non-pathogenic mycobacteria have also been obtained. M. 

smegmatis and BCG have high levels of genomic and antigenic homology with MTB 

(52). Therefore, it is not surprising that proteoliposomes (dOMV) derived from both 

mycobacteria have induced cross-reactive immune responses against MTB antigens 

at cellular and humoral levels in mice (52, 53). Recent results have demonstrated 

that these candidates are as protective as BCG in challenge experiments conducted 

in mice (54). 

 

Conclusions 

OMV are very complex supramolecular structures. They contain immune stimulators 

(e.g. LPS, proteins and DNA) and antigenic molecules that can be delivered to 

immune competent cells of the immune system to trigger maturation as well as 

activation signals. Therefore, OMV have an intrinsic adjuvant effect over loaded 

antigens from bacteria, but also over heterologous antigens that can be incorporated 

or combined in a single formulation. Altogether, the versatility to enable 

administration via the mucosal or parenteral route offers significant choice. The 

adjuvant potential and increased knowledge in the design of OMV over the last few 

decades will also enable the future development of the next generation of novel 

vaccine formulations. 



Table 1: OMV vaccines from N. meningitidis serogroup B. The only OMV vaccines licensed to date.  

Vaccine Name Developmental history Comments 
Key 

reference 

VA-MENGOC-

BC
®
 

Developed at the Finlay 

Institute, Cuba, to address an 

epidemic and tested between 

1987-1989. It was used the 

strain type B:4:P1.19,15 

Applied in the National 

Immunisation Program of Cuba 

for more than 20 years  

(3, 10) 

MenBvac
®
 

 

Developed at the Norwegian 

Institute of Public Health 

(NIPH) to address an epidemic 

and tested between 1988-1991. 

The production strain was the 

44/76-SL, type B:15:P1.7,16 

Applied in a region of Normandy, 

France. This technology was used 

to enable development of 

MeNZB
®
 and Bexsero

®
 vaccines 

(3, 11) 

MeNZB
®
 

 

Developed against strain NZ 

98/254 (strain type B:4:P1.7-2) 

 and used between 2004-2008. 

The project was a partnership 

between the WHO, the New 

Zealand government, the 

University of Auckland, NIPH 

and Chiron 

Applied  during epidemics in New 

Zealand. Significant partnership 

development enabled a high 

number of clinical trials to be 

carried out.  

(8, 12) 

Bexsero
®
 

Developed by Novartis, and 

designed to provide broad-

based protection. Recently 

licensed by the European 

Medicines Agency 

(www.ema.europa.eu) 

Combination of wild OMV from 

strain NZ 98/254 with 3, 

recombinant antigens 2 of which 

are fusion proteins (targeting 5 

meningococcal proteins total: the 

factor H-binding protein, 

Neisserial adhesin A and 

Neisserial heparin-binding 

antigen). 

(15) 

 



Figure 1. Schematic representation of the dOMV extraction process and two 

micrographs of OMV obtained using this technology with two different detergents: 

OMV from N. meningitidis serogroup B extracted with deoxycholate (10) and OMV 

from V. cholerae O1 extracted with sodium dodecyl sulphate (37). OMV have a 

similar size and vesicle like structure. Differences observed between micrographs 

are mainly by changes in magnification and stains used. 
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