
Tail Asymptotics of Random Sum and Maximum of Log-Normal Risks

Enkelejd Hashorva1 and Dominik Kortschak2

Abstract: In this paper we derive the asymptotic behaviour of the survival function of both random sum and

random maximum of log-normal risks. As for the case of finite sum and maximum investigated in Asmussen and

Rojas-Nandaypa (2008) also for the more general setup of random sums and random maximum the principle of

a single big jump holds. We investigate both the log-normal sequences and some related dependence structures

motivated by stationary Gaussian sequences.
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1. Introduction

Let Yi, i ≥ 1 be positive random variables (rv’s) which model claim sizes of an insurance portfolio for a given

observation period. Denote by N the total number of claims reported during the observation period, thus

N is a discrete rv, which we assume to be independent of claim sizes Yi, i ≥ 1. The classical risk model

SN =
∑N
i=1 Yi for the total loss amount assumes that Yi’s are independent and identically distributed (iid) rv’s.

If the assumption of independence of claim sizes is dropped, one faces the problem how to choose a meaningful

dependence structure. Further this dependence structure should be tractable from a theoretical point of view.

For example Constantinescu et al. (2011) consider a model where the survival copula of claim sizes is assumed

to be Archimedean. Such a model has the interpretation that for some positive rv V and iid unit exponential

rv’s Ei, i ≥ 1 independent of V , then Yi = V Ei, i ≥ 1 form a dependent sequence of claim sizes derived by

randomly scaling of iid claim sizes Ei, i ≥ 1.

In this paper we use dependent Gaussian sequences and related dependence structures to model claim sizes.

Specifically, if Xi, i ≥ 1 are dependent Gaussian rv’s with N(0, 1) distribution, then Yi = eXi , i ≥ 1 is the

corresponding sequence of dependent log-normal rv’s that can be used for modeling claim sizes. For instance,

if Xi, i ≥ 1 is a centered stationary Gaussian sequence of N(0, 1) components and constant correlation ρ =

E (X1Xi) ∈ (0, 1), i > 1, then Yi = eXi is a sequence of dependent log-normal rv’s. Since we have (see e.g.,

Berman (1992))

Xi = ρZ0 +
√

1− ρ2Zi, (1.1)
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with Zi, i ≥ 0 iid N(0, 1) rv’s, then Yi = eρZ0e
√

1−ρ2Zi , i ≥ 1. For such Yi’s, by Asmussen and Rojas-Nandaypa

(2008)

P (Sn > u) ∼ nP (X1 > log u) , u→∞ (1.2)

holds for any n ≥ 2, where ∼ stands for asymptotic equivalence of two functions when the argument tends to

infinity. In view of Asmussen et al. (2011) (see also Hashorva (2013)) Sn is asymptotically tail equivalent with

the maximum Yn:n = max1≤i≤n Yi, i.e., P (Sn > u) ∼ P (Yn:n > u) as u→∞.

Our analysis in this paper is concerned with the probability of observing large values for the random sum SN ,

thus we shall investigate P (SN > u) when u is large. Additionally, we shall consider also the tail asymptotics

of the maximum claim YN :N among the claim sizes Y1, . . . , YN ; we set Y0:0 = 0 if N = 0. For the case that N

is non-random see for recent results on max-sum equivalence Jiang et al. (2014) and the references therein.

For our investigations of the tail behaviours of SN and YN :N we shall follow two objectives:

A) We shall exploit the tractable dependence structure implied by (1.1) choosing general Zi’s such that eZi has

survival function similar to that of a log-normal rv;

B) We consider a log-normal dependence structure induced by a general Gaussian sequence Xi, i ≥ 1 where

Xi, Xn can have a correlation ρin which is allowed to converge to 1 as n→∞.

For both cases of dependent Yi’s we show that the principle of a single big jump (see Foss et al. (2013) for

details in iid setup) holds if for the discrete rv N we require that

E
(
(1 + δ)N

)
<∞ (1.3)

is valid for some δ > 0; a large class of discrete rv’s satisfies condition (1.3).

Brief organisation of the rest of the paper: We present our main results in Section 2 followed by the proofs in

Section 3.

2. Main Results

We consider first Xi’s which are in general not Gaussian. So for a given fixed ρ ∈ [0, 1) let Zi, i ≥ 0 be

independent rv’s which define Xi’s via the dependence structure (1.1). We shall assume that

P
(
eZ0 > u

)
∼ L(u)Ψ(log(u)), u→∞, (2.1)

with Ψ the survival function of an N(0, 1) rv and L(·) a regularly varying function at ∞ with index β ∈ R, see

Bingham et al. (1987) or Mikosch (2009) for details on regularly varying functions. Clearly, (2.1) is satisfied if

Z0 is an N(0, 1) rv. Considering Z0 as a base risk, we shall further assume that with ci ∈ [0,∞) uniformly in i

P (Zi > u) ∼ ciP (Z0 > u) , u→∞. (2.2)
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For such models the claim sizes Yi = eXi , i ≥ 1 have marginal distributions which are in general neither

log-normal nor with tails which are proportional to those of log-normal rv’s.

We state next our first result for YN :N the maximal claim size among Y1 = eX1 , . . . , YN = eXN and the random

sum SN =
∑N
i=1 Yi; we set Y0:0 = 0 and S0 := 0.

Theorem 2.1. Let N be an integer-valued rv satisfying E
(
(1 + δ)N

)
< ∞ for some δ > 0. Let Xi, i ≥ 1 be a

sequence of rv’s given by (1.1) with Zi, i ≥ 0 iid rv’s and ρ ∈ [0, 1) some given constant. Suppose that (2.1) and

(2.2) hold with maxi≥1 ci <∞. If further N is independent of Xi, i ≥ 1, then

P (SN > u) ∼ P (YN :N > u) ∼ E

(
N∑
i=1

ci

)
L(uρ

2

)L(u1−ρ
2

)√
2π log u

exp
(
− (log u)2

2

)
, u→∞. (2.3)

Remarks: a) Clearly, if Y = eZ with Z an N(0, 1) rv (thus Y is a log-normal rv with LN(0, 1) distribution),

then (2.1) holds with L(u) = 1, u > 0.

b) If L(·) in Theorem 2.1 is constant, then the tail asymptotic behaviour of SN and YN :N is not influenced

by the value of the dependence parameter ρ, and hence as expected the principle of a single big jump holds.

However, for non-constant L(·) the dependence parameter ρ plays a crucial role in the tail asymptotics derived

in (2.3). The reason for this is that by Lemma 3.1

P (Yi > u) ∼ ci
L(uρ

2

)L(u1−ρ
2

)√
2π log u

exp
(
− (log u)2

2

)
, u→∞. (2.4)

Hence also in this case the principle of a single big jump applies.

c) In the proof of Theorem 2.1 we can show SN
d
= eρZ0e

√
1−ρ2Z? for some Z∗ independent of Z0 and then

we apply Lemma 3.1. Here we want to mention that after proving (2.4) we can also apply Proposition 2.2 of

Foss and Richards (2010) to determine the asymptotic of P (Sn > u) as u→∞. If we condition on Z0 and set

F (x) = P(Y1 > x), Bi(x) = {x : eρZ0 ≤ xγ} for some γ ∈ (ρ, 1) and define h(x) = xξ with

1− 1

2

(
1− γ√
1− ρ2

)
< ξ2 < 1,

then it is straightforward to show that the conditions of Proposition 2.2 of Foss and Richards (2010) are met.

Our second result is for log-normal rv’s where we remove the assumptions of equi-correlations. Specifically, we

consider for each n claim sizes Y1,n = eX1,n , . . . , Yn,n = eXn,n , where (X1,n, . . . , Xn,n) is a normal random vector

with mean zero and covariance matrix Σ(n) which is a correlation matrix with entries σ
(n)
i,j . We shall assume

that ρni,j := σ
(n)
i,j is bounded by some sequence ρn and some ρ ∈ (0, 1), i.e.,

ρni,j ≤ max(ρn, ρ), n ≥ 1 (2.5)
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for all i 6= j. Further, we suppose that the sequence ρn, n ≥ 1 satisfies for some c∗ > 8 and some η > 0

ρn(u) ≤ 1− c∗ log(log(u))

log(u)
, with n(u) =

⌊
(1 + η)

(log(u))2

2 log(1 + δ)

⌋
. (2.6)

If for instance all ρni,j are bounded, then clearly condition (2.6) is valid; it holds also if for some c large enough

ρn ≤ 1− c log(n)/
√
n.

We present next our final result.

Theorem 2.2. Let Y1,n, . . . , Yn,n, n ≥ 1 be claim sizes as above being further independent of some integer-valued

rv N which satisfies (1.3) for some δ > 0. If further (2.5) holds with ρn satisfying (2.6), then

P
(

max
1≤i≤N

Yi,N > u

)
∼ P(SN > u) ∼ E (N)√

2π log u
exp
(
− (log u)2

2

)
, u→∞. (2.7)

Remarks: a) Our second result in Theorem 2.2 shows that the principle of a single big jump still holds even

if we allow for a more general dependence structure.

b) Kortschak (2012) derives second order asymptotic results for subexponential risks. Similar ideas as therein

are utilised to derive second order asymptotic results for the aggregation of log-normal random vectors in

Kortschak and Hashorva (2013,2014). In the setup of randomly weighted sums it is also possible to derive such

results.

3. Proofs

We give next two lemmas needed in the proofs below. The first lemma is of some interest on its own, in

particular it implies Lemma 2.3 in Farkas and Hashorva (2013) (see also Lemma 8.6 in Piterbarg (1996)).

Lemma 3.1. Let Li(·), i = 1, 2 be some regularly varying functions at infinity with index βi. If Z1, Z2 are two

independent rv such that P
(
eZi > u

)
∼ Li(u)Ψ(log(u)), i = 1, 2, then for any σ1, σ2 two positive constants

P
(
eσ1Z1+σ2Z2 > u

)
∼ σ2e

σ21σ
2
2

2σ2
(β1−β2)

2

L1(uγ)L2(u1−γ)Ψ((log u)/σ) (3.1)

holds as u→∞, where γ = σ2
1/(σ

2
1 + σ2

2) and σ =
√
σ2
1 + σ2

2.

Proof of Lemma 3.1 Choose an α > 0 such that

σ2
1

σ2
2

<
1 + α

1− α
.

Then for any a > 0 we have

P
(
eσ1Z1+σ2Z2 > u, eσ2Z2 ≤ a

)
P (eσ1Z1+σ2Z2 > u, eσ2Z2 > a)

≤
P
(
eσ1Z1 > u/a

)
P (eσ1Z1 > uα)P (eσ2Z2 > u1−α)

∼
L1((u/a)1/σ1)Ψ( 1

σ1
log(u/a))

L1(uα/σ1)L2(u(1−α)/σ1)Ψ( ασ1
log(u))Ψ( 1−α

σ2
log(u))
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→ 0, u→∞, (3.2)

with Ψ the survival function of an N(0, 1) rv. With the same argument we get that for any a > 0 we have

P
(
eσ1Z1+σ2Z2 > u, eσ1Z1 ≤ a

)
P (eσ1Z1+σ2Z2 > u, eσ1Z1 > a)

→ 0, u→∞,

and hence

P
(
eσ1Z1+σ2Z2 > u

)
=P
(
eσ1Z1+σ2Z2 > u, eσ1Z1 > a, eσ2Z2 > a

)
+ P

(
eσ1Z1+σ2Z2 > u, eσ1Z1 ≤ a

)
+ P

(
eσ1Z1+σ2Z2 > u, eσ2Z2 ≤ a

)
∼P
(
eσ1Z1+σ2Z2 > u, eσ1Z1 > a, eσ2Z2 > a

)
, u→∞. (3.3)

In view of (3.3) we have

P
(
eσ1Z1+σ2Z2 > u

)
∼ P

(
eσ1Z1+σ2Z2 > u, eσ1Z1 > ξ, eσ2Z2 > ξ

)
, u→∞.

Assume next without loss of generalty that σ1 ≥ σ2. If H denotes the distribution of eσ1Z1 , then for any ξ > 0

with u > 2ξ

P
(
eσ1Z1+σ2Z2 > u, eσ1Z1 > ξ, eσ2Z2 > ξ

)
= P

(
eσ1Z1+σ2Z2 > u, u/ξ ≥ eσ1Z1 > ξ, eσ2Z2 > ξ

)
+ P

(
eσ1Z1+σ2Z2 > u, eσ1Z1 > u/ξ, eσ2Z2 > ξ

)
= P

(
eσ1Z1+σ2Z2 > u, u/ξ ≥ eσ1Z1 > ξ

)
+ P

(
eσ1Z1 > u/ξ, eσ2Z2 > ξ

)
=

∫ u/ξ

ξ

P
(
eσ2Z2 > u/s

)
dH(s) + P

(
eσ1Z1 > u/ξ, eσ2Z2 > ξ

)
.

For all u and ξ large enough∫ u/ξ

ξ

P
(
eσ2Z2 > u/s

)
dH(s) ≥ 1

2
P
(
eσ2Z2 > u/ξ

)
≥ P

(
eσ1Z1 > u/ξ, eσ2Z2 > ξ

)
implying as u→∞∫ u/ξ

ξ

P
(
eσ2Z2 > u/s

)
dH(s) + P

(
eσ1Z1 > u/ξ, eσ2Z2 > ξ

)
∼

∫ u/ξ

ξ

P
(
eσ2Z2 > u/s

)
dH(s).

Further, since again the constant ξ can be chosen arbitrary large we get for γ = σ2
1/(σ

2
1 + σ2

2)∫ u/ξ

ξ

P
(
eσ2Z2 > u/s

)
dH(s)

∼
∫ u/ξ

ξ

σ2
2L2(u/s)√

2πσ2
2 log(u/s)

exp

(
− (log(u/s))2

2σ2
2

)
dH(s)

=
σ2
2L2

(
u1−γ

)√
2πσ2

2 log(u1−γ)

∫ 1
ξu

1−γ

ξu−γ

L2

(
u1−γ

s

)
L2 (u1−γ)

log
(
u1−γ

)
log
(
u1−γ

s

) exp

(
−

(
log
(
u1−γ

s

))2
2σ2

2

)
dH(uγs)
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=
(σ2

1 + σ2
2)L2

(
u1−γ

)√
2πσ2

2 log(u)

∫ 1
ξu

1−γ

ξu−γ
q(u, γ, s) exp

(
−

(
log
(
u1−γ

s

))2
2σ2

2

)
dH(uγs),

with q(u, γ, s) =
L2

(
u1−γ
s

)
L2(u1−γ)

log(u1−γ)
log
(
u1−γ
s

) . For some c > 0, by the uniform convergence theorem for regularly varying

functions (see Theorem A3.2 in Embrechts et al. (1997)) we get uniformly in 1/c < s < c

lim
u→∞

q(u, γ, s) = s−β2 .

Further note that in the light of Potter’s bound (see Bingham et al. (1987)) for every ε > 0 and A > 1 we can

find a positive constant ξ such that for all ξu−γ < s < 1
ξu

1−γ

1

A
s−β2 min(sε, s−ε) ≤ q(u, γ, s) ≤ As−β2 max(sε, s−ε).

Consequently, for different values of 0 < a < b (that might depend on u) and β we want to find the asymptotics

of

∫ b

a

sβ exp

(
−

(
log
(
u1−γ

s

))2
2σ2

2

)
dH(uγs)

= −sβ exp

(
−

(
log
(
u1−γ

s

))2
2σ2

2

)
P
(
eσ1Z1 > uγs

) ∣∣∣∣∣
b

s=a

+

∫ b

a

sβ−1

β +
log
(
u1−γ

s

)
σ2
2

 exp

(
−

(
log
(
u1−γ

s

))2
2σ2

2

)
P
(
eσ1Z1 > uγs

)
ds.

Since we can choose ξ arbitrary large we can replace P
(
eσ1Z1 > uγs

)
by its asymptotic form and hence we can

use the approximation (set σ∗ := σ1σ2/
√
σ2
1 + σ2

2)

exp

(
−

(
log
(
u1−γ

s

))2
2σ2

2

)
P
(
eσ1Z1 > uγs

)

≈ σ2
1

L1(uγs)√
2πσ2

1 log(uγs)
exp

(
−

(
log
(
u1−γ

s

))2
2σ2

2

− (log (uγs))
2

2σ2
1

)

= σ2
1

L1(uγs)√
2πσ2

1 log(uγs)
exp

(
−
(
σ2
1(1− γ)2 + σ2

2γ
2
)

(log(u))2 + 2
(
σ2
1(γ − 1) + σ2

2γ
)

log(u) log(s) + (σ2
1 + σ2

2)(log(s))2

2σ2
1σ

2
2

)

= σ2
1

L1(uγs)√
2πσ2

1 log(uγs)
exp

(
− (log(u))2

2(σ2
1 + σ2

2)

)
exp

(
− (log(s))2

2σ2
∗

)
.

Since σ2
1(γ − 1) + σ2

2γ = 0, using again Potter’s bounds (see Bingham et al. (1987)) and the fact that L1(·) is

regularly varying at infinity, the above derivations imply

P(eσ1Z1+σ2Z2 > u)

∼ σ2
1(σ2

1 + σ2
2)L1(uγ)L2(u1−γ)

σ2
2

√
2πσ2

2σ
2
1 log(u)

1− γ
γ
√

2π
exp

(
− (log(u))2

2(σ2
1 + σ2

2)

)∫ ∞
0

sβ1−β2−1 exp

(
− (log(s))2

2σ2
∗

)
ds
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=

√
σ2
1 + σ2

2L1(uγ)L2(u1−γ)√
2π log(u)

exp

(
− (log(u))2

2(σ2
1 + σ2

2)

)∫ ∞
0

1√
2πσ2

∗
sβ1−β2−1 exp

(
− (log(s))2

2σ2
∗

)
ds

=
√
σ2
1 + σ2

2e
σ2∗
2 (β1−β2)

2 L1(uγ)L2(u1−γ)√
2π log(u)

exp

(
− (log(u))2

2(σ2
1 + σ2

2)

)
,

hence the proof is complete. �

Lemma 3.2. Assume that n ≤ n(u) with n(u) defined in (2.6) and set ε(u) = 4 log(log(u))/ log(u). If Y1 is an

LN(0, 1) rv and Xi,n, i ≤ n are as in Theorem 2.2, then as u→∞

P(Y1 > u− nu1−ε(u)) ∼ P(Y1 > u)

and for i 6= j

P(Yi,n > u1−ε(u), Yj,n > u1−ε(u)) = o(P(Y1 > u)).

Proof of Lemma 3.2 By the assumptions on n and n(u) as u→∞ we have

P(Y1 > u) ≤ P(Y1 > u− nu1−ε(u)) ≤ P(Y1 > u− n(u)u1−ε(u))

= P
(
Y1 > u− u

(log(u))4
(1 + η)

(log(u))2

2 log(1 + δ)

)
= P

(
Y1 > u− (1 + η)

2 log(1 + δ)

u

(log(u))2

)
∼ P(Y1 > u).

Next, denote by f the probability density function of Y1. Let further W1 and W2 be two independent N(0, 1)

rv’s, and write ρ∗ for the correlation between log Yi,n and log Yj,n. We may write for u > 0

P(Yi,n > u1−ε(u), Yj,n > u1−ε(u)) = P(eW1 > u1−ε(u), eρ∗W1+
√

1−ρ2∗W2 > u1−ε(u))

= P
(
eW1 >

u

(log(u))4
, eρ∗W1e

√
1−ρ2∗W2 >

u

(log(u))4

)
≤ P

(
u

(log(u))4
< eW1 < 2u, eρ∗W1e

√
1−ρ2∗W2 >

u

(log(u))4

)
+ P(eW1 > 2u)

=

∫ 2u

u
(log(u))4

P

eW2 >

(
u

(log(u))4xρ∗

)1/
√

1−ρ2∗
 f(x)dx+ P(eW1 > 2u)

≤
∫ 2u

u
(log(u))4

P

eW2 >

(
u1−ρ∗

(log(u))42ρ∗

)1/
√

1−ρ2∗
 f(x)dx+ P(eW1 > 2u)

≤ P

Y1 > u

√
1−ρ∗
1+ρ∗

2ρ∗(log(u))4

P
(
Y1 >

u

(log(u))4

)
+ P(eW1 > 2u)

= o(P(Y1 > u)), u→∞
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since (
1 +

1− ρ∗
1 + ρ∗

)
log(u) =

2

1 + ρ∗
log(u)

≥ 2

1 + ρn(u)
log(u)

≥ 2

2− c∗ log(log(u))
log(u)

log(u)

= log(u) +
2

2− c∗ log(log(u))
log(u)

c∗ log(log(u))

∼ log(u) + c∗ log(log(u)).

Consequently, the assumption c∗ > 8 entails

2 log

P

Y1 > u

√
1−ρ∗
1+ρ∗

2ρ∗(log(u))4

P
(
Y1 >

u

(log(u))4

)

∼ log

 u

√
1−ρ∗
1+ρ∗

2ρ∗(log(u))4

2

+ log

(
u

(log(u))4

)2

∼
(

1 +
1− ρ∗
1 + ρ∗

)
log(u)2 − 8 log(u) log(log(u))− 8

√
1− ρ∗
1 + ρ∗

log(u) log(log(u))

. log(u)2 + (c∗ − 8) log(log(u))

establishing the proof. �

Proof of Theorem 2.1 For any u > 0 we have

P (SN > u) = P

(
eρZ0

N∑
i=1

e
√

1−ρ2Zi > u

)
=: P

(
eρZ0WN > u

)
.

Since e
√

1−ρ2Zi , i ≥ 1 are subexponential risks, then along the lines of the proof of Theorem 3.37 in Foss et al.

(2013) (see also for similar result Theorem 1.3.9 in Embrechts et al. (1997))

P (WN > u) ∼ ΘP
(
e
√

1−ρ2Z∗
> u

)
, Θ := E

(
N∑
i=1

ci

)

as u → ∞, with Z∗ an independent copy of Z0. It can be easily checked that Z0 and log(WN )/(1 − ρ2) fulfill

the conditions of Lemma 3.1, hence the asymptotic of P(SN > u) follows. Similarly,

YN :N = max
1≤i≤N

eρZ0+
√

1−ρ2Zi = eρZ0 max
1≤i≤N

e
√

1−ρ2Zi =: eρZ0W ∗N .

Since we have

P (W ∗N > u) ∼ P (WN > u) ∼ ΘP
(

exp(
√

1− ρ2Z∗) > u
)
, u→∞

the proof follows by applying once again Lemma 3.1. �
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Proof of Theorem 2.2 Denote next Y1 an LN(0, 1) rv and let I{·} denote the indicator function. Since for

all fixed n ≥ 1 we get by interchanging limit and finite sum that

P(SN > u) = P(SN > u,N ≤ n) + P(SN > u,N > n)

∼ E
(
NI{N≤n}

)
P(Y1 > u) + P(SN > u,N > n)

we can assume w.l.o.g. that ρni,j ≤ ρn. From (1.3) it follows that there exist C1, C2 > 0 such that

pn := P(N = n) ≤ C1(1 + δ)−n and P(N > n) ≤ C2(1 + δ)−n.

By the independence of N and the claim sizes

P(SN > u) =

∞∑
n=1

pnP(Sn > u)

and for n(u) defined in (2.6)

∞∑
n=n(u)

pnP(Sn > u) ≤ P(N > n(u))

≤ C2(1 + δ)−n(u)

≤ C2 exp

(
−1 + η

2
(log(u))2

)
= o(P(Y1 > u)).

Since

P(Sn > u) ≥ nP(Y1 > u)−
∑
i 6=j

P(Yi > u, Yj > u)

and by Lemma 3.2

P(Yi > u, Yj > u) = o(P(Y1 > u)), u→∞

it follows that

n(u)∑
n=0

pnP(Sn > u) ≥ P(Y1 > u)

n(u)∑
n=0

npn − o(1)

n(u)∑
n=0

n2pn


∼ E (N)P(Y1 > u), u→∞.

So we are left with finding an asymptotic upper bound. For n ≤ n(u) we use the following decomposition (c.f.

Asmussen and Rojas-Nandaypa (2008))

P(Sn > u) =

n∑
i=1

P
(
Sn > u, Yi,n ≥ Yj,n,max

j 6=i
Yj,n > u1−ε(u)

)
+ P

(
Sn > u, Yi,n ≥ Yj,n,max

j 6=i
Yj,n ≤ u1−ε(u)

)
,

where ε(u) = 4 log(log(u))/ log(u). By Lemma 3.2 we have

n∑
i=1

P
(
Sn > u, Yi,n ≥ Yj,n,max

j 6=i
Yj,n > u1−ε(u)

)
≤

n∑
i=1

∑
j 6=i

P
(
Sn > u, Yi,n ≥ Yj,n, Yj,n > u1−ε(u)

)
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≤
n∑
i=1

∑
j 6=i

P
(
Yi,n > u1−ε(u), Yj,n > u1−ε(u)

)
= n(n− 1)o(P(Y1 > u)).

Further

P
(
Sn > u, Yi,n ≥ Yj,n,max

j 6=i
Yj,n ≤ u1−ε(u)

)
≤ P

(
Yi,n > u−

n∑
i=1

Yj,n,max
j 6=i

Yj,n ≤ u1−ε(u)
)

≤ P
(
Yi,n > u− nu1−ε(u),max

j 6=i
Yj,n ≤ u1−ε(u)

)
≤ P

(
Yi,n > u− nu1−ε(u)

)
∼ P(Y1 > u)

as u→∞, hence the proof for the tail asymptotics of SN follows by applying (3.2). Since for any u > 0

nP(Y1 > u)−
∑
i 6=j

P(Yi > u, Yj > u) ≤ P
(

max
1≤i≤n

Yi,n > u

)
≤ P(Sn > u)

the tail asymptotics of max1≤i≤N Yi,N can be easily established, and thus the proof is complete. �
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