KFK-197

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Februar 1964

KFK 197

Institut für Radiochemie

Über ternäre Oxide des 3- bis 7-wertigen

Technetiums mit Alkalien

Basil Kanellakopulos

Geseus aft für Kernforschung m.b. H. Zenireibücherei

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

Februar 1964

KFK 197

Institut für Radiochemie

ÜBER TERNÄRE OXIDE DES 3 - BIS 7-WERTIGEN TECHNETIUMS MIT ALKALIEN

> Gesellschaft für Kernforschung m.b.H. Zentralbücherei

7. Apr 1964

von

Basil Kanellakopulos

Gesellschaft für Kernforschung m.b.H., Karlsruhe

Inhaltsverzeichnis

l.

2.

3.

			Seite
ALLGI	EMEINE BETRACH	TUNGEN ÜBER DAS ELEMENT TECHNETIUM	l
1.1.	Geschichte, ren Mengen	Entdeckung, Herstellung von Technetium in größe-	l
1.2.	Vorsichtsmaß	nahmen beim präparativen Arbeiten mit Technetium	3
EINFÜ	İHRUNG		5
2.1.	Vergleich de	s Technetiums mit Mangan und Rhenium	5
2.2.	Problemstell	ung	8
2.3.	Arbeitsmetho	dik	8
EXPER	IMENTELLER TE	IL UND DISKUSSION	11
3.1.	Ternäre Oxid	e des siebenwertigen Technetiums	11
	3.1.1.	Ternäre Oxide des Typs Me ^I TcO ₄	11
	3.1.1.1.	Darstellung und analytische Untersuchungen	11
	3.1.1.1.1.	NH4TCO4, LITCO4, NATCO4, KTCO4	11
	3.1.1.1.2.	RbTcO ₄ , CsTcO ₄ , AgTcO ₄ , TlTcO ₄	12
	3.1.1.1.3.	Pertechnetiumsäure (HTcO ₄)	12
	3.1.1.2.	Eigenschaften	12
	3.1.1.2.1.	Löslichkeitsuntersuchungen	12
	3.1.1.2.2.	Röntgenografische Untersuchungen	15
	3.1.1.2.2.1.	Pertechnetate mit Scheelitstruktur	15
	3.1.1.2.2.2.	Pertechnetate mit orthorhombischer Struktur	16
	3.1.1.2.2.3.	LiTcO ₄	19
	3.1.2.	Ternäre Oxide des Typs $Me_3^{I}TcO_5$ und $Me_5^{I}TcO_6$	19
	3.1.2.1.	$\text{Li}_5\text{Tc0}_6$ und Versuche zur Darstellung von $\text{Li}_3\text{Tc0}_5$	19
	3.1.2.1.1.	Die Reaktion von LiTcO ₄ mit Li $_2$ CO $_3$	19
	3.1.2.1.2.	Die Reaktion von LiTcO4 mit Li20	21

			Seite
	3.1.2.2.	Darstellung und Untersuchung von $Na_{3}TcO_{5}$ und $Na_{5}TcO_{6}$	23
	3.1.2.2.1.	Die Reaktion von NaTcO ₄ mit Na_2O_2	23
	3.1.2.2.2.	Die Reaktion von NaTcO4 mit Na20	24
	3.1.2.3.	$\frac{100}{5}$ und Versuche zur Darstellung von $\frac{100}{5}$	25
3.2.	Ternäre Oxid	e des sechswertigen Technetiums	26
	3.2.1.	Das System TcO ₃ -Li ₂ O	26
	3.2.1.1.	Li6Tc06	26
	3.2.1.1.1.	Darstellung und analytische Untersuchungen	26
	3.2.1.1.2.	Eigenschaften	27
	3.2.1.1.3.	Röntgenografische Untersuchungen	27
	3.2.1.2.	Li4 ^{TcO} 5	29
	3.2.1.2.1.	Darstellung und analytische Untersuchungen	29
	3.2.1.2.2.	Eigenschaften	30
	3.2.1.2.3.	Röntgenografische Untersuchungen	31
	3.2.1.3.	Versuche zur Darstellung von Li_2TcO_4	33
	3.2.2.	Das System TcO ₃ -Na ₂ O	34
3.3.	Ternäre Oxid	e des fünfwertigen Technetiums	36
	3.3.1.	Das System Tc ₂ 0 ₅ -Li ₂ 0	36
	3.3.1.1.	Versuche zur Darstellung von LiTcO3	36
	3.3.1.2.	Li ₃ TcO ₄	36
	3.3.1.2.1.	Darstellung und analytische Untersuchungen	36
	3.3.1.2.2.	Eigenschaften	37
	3.3.1.2.3.	Röntgenografische Untersuchungen	37
	3.3.1.3.	Versuche zur Darstellung von $\text{Li}_5\text{Tc0}_5$ und $\text{Li}_7\text{Tc0}_6$	39
	3.3.2.	Das System Tc ₂ 05-Na ₂ 0	40
	3.3.2.1.	NaTcO3	40
	3.3.2.2.	Versuche zur Darstellung von Na ₃ TcO ₄	40

			Seite
3.4.	Ternäre Oxid	e des vierwertigen Technetiums	42
	3.4.1.	Darstellung von TcO2	42
	3.4.1.1.	Darstellung durch Hydrolyse von K ₂ TcCl ₆	42
	3.4.1.2.	Darstellung durch thermische Zersetzung von $NH_{4}TcO_{4}$	42
	3.4.1.3.	Eigenschaften und röntgenografische Untersuchungen	44
	3.4.2.	Das System TcO2-Li20	44
	3.4.2.1.	Li2TcO3	44
	3.4.2.1.1.	Darstellung und analytische Untersuchungen	44
	3.4.2.1.2.	Eigenschaften	44
	3.4.2.1.3.	Röntgenografische Untersuchungen	45
	3.4.2.2.	Versuche zur Darstellung von ${\tt Li_4TcO_4}$ und ${\tt Li_8TcO_6}$	46
	3.4.3.	Das System TcO2-Na20	46
	3.4.3.1.	Na2TcO3	46
	3.4.3.1.1.	Darstellung und analytische Untersuchungen	46
	3.4.3.1.1.1.	Symproportionierung von Tc(VII) und Tc(0)	46
	3.4.3.1.1.2.	Die Reaktion $TcO_2 + Na_2O$	47
	3.4.3.1.2.	Eigenschaften	47
	3.4.3.1.3.	Röntgenografische Untersuchungen	47
	3.4.3.2.	$Na_{\mu}TcO_{\mu}$	48
	3.4.3.2.1.	Darstellung und analytische Untersuchungen	48
	3.4.3.2.1.1.	Symproportionierung von Tc(VII) und Tc(0)	48
	3.4.3.2.1.2.	Die Reaktion $TcO_2 + Na_2O$	48
	3.4.3.2.2.	Eigenschaften	49
	3.4.3.2.3.	Röntgenografische Untersuchungen	49
	3.4.3.3.	Versuche zur Darstellung von NagTcO6	50
3.5.	Ternäre Oxid	e des dreiwertigen Technetiums	51
	3.5.1.	Das System Tc203-Li20	51
	3.5.1.1.	Versuche zur Darstellung von LiTcO2	51

	3.5.2. Das System $Tc_2^0_3$ -Na $_2^0$	Seite 51
	3.5.2.1. NaTeO2	51
4.	VERGLEICHE ZWISCHEN DEN TERNÄREN OXIDEN DER ELEMENTE DER 7.NEBEN- GRUPPE DES PERIODENSYSTEMS	53
5.	AUSGANGSSUBSTANZEN	57
6.	ANALYTISCHER TEIL	58
	6.1. Bestimmung des Technetiums	58
	6.1.1. Bestimmung des Technetiums mit Nitron	59
	6.1.2. Bestimmung des Technetiums mit Thioglykolsäure	59
	6.2. Bestimmung des Oxydationswertes $_{\mathrm{V}}^{\mathrm{0}}$ des Technetiums	61
7.	ZUSAMMENFASSUNG	62
8.	LITERATURVERZEICHNIS	65

1.1. Geschichte, Entdeckung, Herstellung von Technetium in größeren Mengen

Das Element 43, Technetium aus dem Griechischen τεχνητός = künstlich (1) , kommt nicht in der Natur vor. Nach der Mattauchschen Isobarenregel (2) schließt die Existenz von stabilen Isotopen des Molybdäns und Ruthens mit den Massenzahlen 94 bis 102 die Existenz eines stabilen Technetiumisotops aus.

Obwohl mehrere Angaben über die Isolierung des Elements 43 aus verschiedenen Mineralien in der Literatur zu finden sind (Tabelle 1), konnten diese nie eindeutig bestätigt werden. Die erste exakte Identifizierung des Technetiums gelang Perrier und Segrè (3-5). Sie erhielten bei der Bestrahlung von Molybdän mit Deuteronen des Zyklotrons von Berkeley /U.S.A. eine neue ß-Strahlung, deren Untersuchung auf das Element 43 hinwies :

$$\begin{array}{rcl}
94\\ 42^{Mo} + d & \longrightarrow & \begin{array}{rcl}
95\\ 43^{Tc} + n & (60 d) \\
95\\ 42^{Mo} + d & \longrightarrow & \begin{array}{rcl}
96\\ 43^{Tc} + n & (90 d) \\
\end{array}$$

Mit dem auf diese Weise hergestellten Technetium, dessen Menge 10⁻¹²g nicht überstieg, wurden die ersten Untersuchungen über die Eigenschaften des neuen Elementes unter Verwendung radiochemischer Methoden durchgeführt.

Mendelejeff sagte schon im Jahre 1869, als er sein Periodensystem veröffentlichte, die Existenz der Elemente 43 (Ekamangan) und 75 (Dwimangan) mit Atomgewichten von ca. 100 und ca. 187 voraus.

Aufgrund der großen Ähnlichkeiten der chemischen Eigenschaften von Zirkonium und Hafnium, Niob und Tantal, Molybdän und Wolfram vermutete man eben falls eine große Ähnlichkeit der Eigenschaften von Eka- und Dwimangan. Nur so kann man verstehen, daß W. Noddack und I. Tacke (7) behaupteten, auch das Element 43 entdecktzu haben, als sie im Jahre 1925 die Entdeckung des Rheniums bekannt gaben.

Auch in den letzten Jahren wollen verschiedene Autoren (8-10) Technetium aus Mineralien isoliert haben. Nachdem aber Boyd und Larson (11) fanden, daß die Halbwertszeit von ⁹⁸Tc nur 1,5·10⁶a beträgt, konnte die Existenz von ⁹⁸Tc

	2	

vorgeschlagener Name Autor Jahr 1828 Polinium Osann 1846 Illmenium Hermann 1847 Pelopium Rose 1877 Davyum Kern 1896 Lucium Barriere 1897 Boucher 1908 Nipponium Ogawa Neomolybdenum Gerber 1917 Basanquet 1924 Moseleyum und Keely Noddack Masurium 1925 und Tacke Perrier 1937 Technetium (1947) und Segrè

als primär vorhandenem Element in Erdmineralien sicher ausgeschlossen werden.

Tabelle 1

Geschichtlicher Überblick der Entdeckung des Elementes 43 (6)

Die Existenz von sehr geringen Mengen Technetium in Uranmineralien ist auf die Bildung bei der Spontanspaltung des Urans zurückzuführen.

Das wichtigste Technetiumisotop ist ⁹⁹Tc, das in zwei Isomeren existiert. Der Grundzustand des ⁹⁹Tc ist ein ß-Strahler mit einer Halbwertszeit von 2,12 x $10^{5}a$ (12), während 99^{m} Tc (13) unter Aussendung von γ -Strahlung mit einer Halbwertszeit von 6 h in den Grundzustand übergeht.

Technetium wird heute aus alten Spaltproduktlösungen in größeren Mengen isoliert (die Spaltausbeute y $_{\rm QQ}$ besitzt einen Wert von etwa 6 %), was die Untersuchung seiner Eigenschaften mit Hilfe klassischchemischer Methoden erlaubt. So wurden z.B. nach Angaben von Boyd (14) in den USA (ORNL) schon 1959 ca. 1,2 kg Technetium-99 pro Jahr bei der Aufarbeitung der Spaltprodukte der dort vorhandenen Reaktoren gewonnen.

⁹⁹Tc ist heute in den USA relativ billig zu erhalten (Preis: ca. 90 Dollar/g). Es ist technisch interessant infolge seiner korrosionshemmenden Wirkung und seiner Supraleitfähigkeit bei relativ hohen Temperaturen.

In den letzten Jahren wurden infolge der Entwicklung neuer Methoden zur

Trennung von Uranspaltprodukten mittels moderner, schneller Trennverfahren mehr als 20 Technetiumisotope isoliert und identifiziert (Tabelle 2).

Isotop	HWZ	Zerfallsschema	Herstellungsmethode
92_{Tc} 93_{Tc} 93_{Tc} 94_{Tc} 95_{Tc} 95_{Tc} 96_{Tc} 96_{Tc} 97_{Tc} 97_{Tc} 97_{Tc} 98_{Tc} 99_{Tc} 100_{Tc} 101_{Tc} 102_{Tc} 103_{Tc} 104_{Tc} 105_{Tc}	4,3 m 43,5 m 2,75 h 53,0 m 60,0 d 20,0 h 51,5 m 4,2 d 91,0 d 2,6 x $10^{6}a$ 1,5 x $10^{6}a$ 1,5 x $10^{6}a$ 1,5 x $10^{5}a$ 1,5 x $10^{5}a$ 15,8 S 14,0 m 5,0 S 1,2 m 18,0 m 10,0 m	<pre> ß⁺, EC IT ca.80%, EC ca.20% ß⁺ ca.12%, EC ca.88% ß⁺ ca.75%, EC ca.25% ß⁺ ca.0,4%, EC ca.96%, IT ca. 3% EC IT EC EC EC B⁻ IT B⁻, kein γ B⁻ B⁻ B⁻ B⁻ B⁻ B⁻ B⁻ B⁻</pre>	<pre>92 Mo (p,n) 92 Mo (d,n) 92 Mo (d,n) 94 Mo (d,n) 95 Mo (p,n) 95 Mo (p,n) 96 Mo (p,n) 96 Mo (p,n) 70 chter 97 Ru,Tochter 97 m Tochter 97 Mo 70 Mo (p,n) 70 chter 99 Mo Tochter 99 Mo Tochter 99 Mo Tochter 99 Mo Tochter 99 Mo Tochter 99 Mo Spaltprodukt " " "</pre>

Tabelle 2 Technetiumisotope (15)

1.2. Vorsichtsmaßnahmen beim präparativen Arbeiten mit Technetium

 ^{99}Tc geht unter ß⁻-Emission mit einer relativ langen Halbwertszeit (t_{1/2} = 2,12 x 10⁵a) nach ^{99}Ru über. Seine spezifische Aktivität beträgt 17,7 $\mu\text{C/mg}$ = 3,9 x 10⁷ Zerfälle/min.mg .

Im Tierversuch konnte nachgewiesen werden, daß inkorporiertes Technetium wieder innerhalb kürzerer Zeiten aus dem Körper ausgeschieden wird (16). Neue-

re Arbeiten zeigten aber, daß das inkorporierte Technetium selektiv vom Blut aufgenommen wird und sich in der Schilddrüse sammelt (17). Die Affinität der Schilddrüse für Jod, Ruthen und Technetium ist größenordnungsgemäß etwa die gleiche.

Die unvollständigen Kenntnisse über die biologischen Effekte des Technetiums erfordern, abgesehen von der radioaktiven Strahlung, besondere Vorsichtsmaßnahmen beim Arbeiten mit Technetium, besonders mit festen Präparaten.

Tabelle 3 zeigt die zulässige ⁹⁹Tc-Konzentration in Wasser und Luft sowie die Freigrenze nach der ersten Strahlenschutzverordnung vom 24. Juni 1960.

<u>Tabelle</u> <u>3</u> Maximal zulässige Konzentration und Freigrenze für ⁹⁹Tc

Nuklid	in Was	ser	in Lu	ft	Fnoignongo		
	μC/cm ³	mg/cm ³	$\mu C/cm^3$	mg/cm ³	μ	mg	
99 ^m Tc 43 ^{Tc} 99 _{Tc} 43 ^{Tc}	3 x 10 ⁻² 2 x 10 ⁻³	5,5 x 10 ⁻¹² 1,13x 10 ⁻³	5 x 10 ⁻⁶ 2 x 10 ⁻⁸	9,2 x 10 ⁻¹⁵ 1,13x 10 ⁻⁹	100 10	1,8 x 10 ⁻¹⁰ 0,565	

Infolge der Gefahr einer Kontamination mit radioaktivem Material müssen die Versuche mit ⁹⁹Tc-Präparaten in fester Form in Glove-Boxen durchgeführt werden.

Reine trockene Technetium-Verbindungen zeigen eine Dosisleistung von etwa 10 Röntgen/h · 100 mg an ihrer Oberfläche (18), die auf die emittierten ß-Teilchen zurückzuführen ist. Da die ß-Maximalenergie von 99Tc nur etwa 300 KeV beträgt, wird die ß-Strahlung von Glas vollkommen absorbiert, so daß das Arbeiten mit Technetium in Lösung in vieler Hinsicht einfach ist.

2. EINFÜHRUNG

2.1. Vergleich des Technetiums mit Mangan und Rhenium

Im Periodensystem der Elemente steht das Technetium in der 7. Nebengruppe zwischen Mangan und Rhenium. Seinen physikalischen und chemischen Eigen schaften zufolge ist es ein Homologes dieser beiden Elemente. Obwohl es in vieler Hinsicht eine Zwischenstellung zwischen den genannten Elementen einnimmt, so ist es doch dem Rhenium chemisch näher verwandt als dem Mangan. So ist z.B. Mn_2O_7 eine leicht flüchtige Verbindung, die sich schon unterhalb 15° C zersetzt, während Tc_2O_7 erst bei $119,5^{\circ}$ C und Re_2O_7 bei 300° C schmelzen. Die Schmelzpunkte der Metalle liegen bei 1260° C (Mn), ca. 2140° C (Tc) und 3150° - 3180° C (Re). MnO_2 verliert beim Erhitzen Sauerstoff unter Bildung von Mn_2O_3 , Mn_3O_4 und MnO, ReO₂ disproportioniert in Re_2O_7 und metallisches Rhenium, während TcO₂ sich im Vakuum ohne Zersetzung sublimieren 1äßt.

Abbildung 1 zeigt die Redox-Potentiale der drei Elemente.

Abbildung 1

Redox - Potentiale der Elemente der 7. Nebengruppe Tabelle 4 zeigt die Elektronenkonfiguration der drei Elemente.

Tabelle 4 Elektronenkonfiguration der Elemente der 7.Nebengruppe

Flomont	Elektr	к]			М				N	I				С)	
ETement	Z	s	s	р	S	р	d		3	р	d	f		5	p	d	f
Mn	25	2	2	6	2	6	5	:	5				•				
Тс	43	2	2	6	2	6	10	1	2	6	5	2					
Re	75	2	2	6	2	6	10		2	6	10	14	:	2	6	5	2

Aus dieser Anordnung ist zu erwarten, daß das Technetium analog dem Mangan und Rhenium in mehreren Wertigkeitsstufen auftreten kann. Tatsächlich sind in der Literatur Technetiumverbindungen beschrieben worden, in denen das Technetium Wertigkeit von 0 bis +7 aufweist (19).

Als Anhaltspunkt kann man sagen, daß die Chemie des Technetiums der des Rheniums ähnlich ist. Trotzdem findet man gewisse Besonderheiten für jedes der beiden Elemente.

In den letzten Jahren untersuchten besonders Scholder (20-24) und Ward (25-27) die Oxometallate des Rheniums und Mangans sehr ausführlich. Tabelle 5 zeigt einen Literaturüberblick über die Alkalioxometallate des Mangans und Rheniums.

Über die Alkalioxometallate des Technetiums findet man nur wenige Literaturangaben und zwar über die Pertechnetate des Typs Me^ITcO₄ (28-30). Da gegen gibt es zahlreiche Veröffentlichungen über verschiedene Komplexe des Technetiums in Lösung und in festem Zustand, in denen das Technetium die Wertigkeitsstufen VII bis I besitzt.

Tabelle	5
	-

Alkalioxometallate des Mangans und Rheniums (20-24)

Wertig- keits-	Verbindung		х	X Wertig-		X		
stufe		Mn	Re	stufe	verbindung	Mn	Re	
	Lix04	+	+		Li2X03	+	neg.	
	NaXO ₄	+	+		Na2X03	-	+	
VII	KX04	+	+	IV	Li, XO,	_	neg.	
	RDX04	+	+		-4	+	neg.	
	Li _z XO ₅	-	neg.		4 4			
]	Na ₃ XO ₅	-	+		Li ₆ X05	-	neg.	
	K ₃ XO ₅	-	+		Na6 ^{X0} 5	-	neg.	
	Li_XO	_	+		Li ₈ X0 ₆	-	neg.	
	-5-6 Na _r XO _c	_	•		Na ₈ X0 ₆	-	neg.	
	бо К _Б ХО _С	-	neg.					
			_		Lixo	+	+	
	Li_XO,	_	neg.		NaXO ₂	÷	-	
	Na ₂ XO ₁	+	neg.	III	<u>د</u>			
υT	24				Li ₃ X0 ₃	-	-	
VI	Li ₄ X05	-	+		Na 3 ^{XO} 3	-	-	
	Na4X05	-	neg.	LL	L			
	Li6X06	-	+					
	Na6X06	-	neg.					
	LiXO ₋₃	neg.	neg.					
	NaX03	neg.	neg.					
v	Li _z XO)	+	+					
	Na ₃ XO ₄	+	neg.					
	Li ₅ X05	-	neg.					
	Na5X05	+	neg.					
	Li ₇ X06	-	neg.					
	Na7X06	-	neg.					

bzw.keine Angaben vorhanden

2.2. Problemstellung

Ziel der vorliegenden Arbeit war die Darstellung und Untersuchung der ternären Oxide des Technetiums mit Alkalien, um auch in der Chemie der Oxide der Elemente der 7. Nebengruppe Vergleichsmöglichkeiten zu besitzen. Ferner sollten die experimentellen Bedingungen für das Arbeiten mit radio – aktiven Elementen in fester Form im Mikromaßstab untersucht und eventuell eine neue Arbeitsmethodik entwickelt werden.

2.3. Arbeitsmethodik

Die in der vorliegenden Arbeit beschriebenen Oxometallate des Technetiums mit Alkalien wurden fast ausschließlich durch Reaktion im festen Zustand dargestellt.

Die erforderlichen Ausgangssubstanzen wurden mit einer Genauigkeit von \pm 0,1 bis \pm 0,2 % eingewogen. Die Ausgangsmenge pro Versuch lag zwischen 10 und 50 mg.

Die eingewogenen Substanzen wurden in einer Achatschale innig gemischt. Die Mischung erfolgte stets in einer Trockenbox unter Ausschluß von CO_2 und Feuchtigkeit. Dabei wurden Silikagel, P_2O_5 und Natronasbest als Trockenmittel verwendet unter ständiger Zufuhr von gut getrocknetem Stickstoff.

Die jeweils erforderliche Reaktionstemperatur wurde durch Vorversuche mit entsprechenden Rheniumverbindungen bestimmt. Die Reaktionen wurden in elektrischen Röhrenöfen durchgeführt. Die bei der Reaktion verwendeten Gase (O_2, H_2, Ar) waren hochgereinigt und gut getrocknet (H_2SO_4 , Silikagel, P_2O_5 / Bimskies).

Als Tiegelmaterial für die Aufnahme der Reaktionsmischungen dienten Schiffchen aus Sinterkorund (Degussit Al-23) Gold und Platin. Die Temperaturmessung erfolgte mit Pt/Pt,Rh Thermoelementen.

Um eine Kontamination des Laborraumes zu vermeiden, wurden sämtliche festkörperchemischen Untersuchungen in Glove-Boxen durchgeführt und nur Arbeiten in Lösung (z.B. Analysen) außerhalb der Boxen in einem gut ziehenden Abzug (ca. 50-facher Luftwechsel pro Stunde) unter Berücksichtigung der in der Radiochemie üblichen besonderen Vorsichtsmaßnahmen beim Umgang mit Radionukliden vorgenommen. Das Einbringen von Substanzen und Geräten in die Box geschah durch eine Schleuse. Pulverförmige Substanzen wurden immer in Doppelwägegläschen transportiert. Abbildung 2 zeigt eine Reihe von typischen Glove-Boxen, wie sie im Institut für Radiochemie in der Abteilung "Synthetische Elemente" benutzt werden.

Abbildung 2 Typische Glove-Boxen

Bei Ampullenversuchen mußten die erforderlichen Ampullen auch in der Box mit den Ausgangssubstanzen gefüllt werden. Nach mehrstündigem Evakuieren auf 10^{-4} bis 10^{-5} Torr wurden die Ampullen unter Vakuum abgeschmolzen. Die Ampullen wurden in einem Tiegelofen erhitzt und nach dem Abkühlen in der Box geöffnet.

Die für die Röntgenuntersuchungen benötigten Kapillaren wurden ebenfalls innerhalb der Glove-Boxen gefüllt. Es wurde dabei besonders Sorge getragen, daß keine äußere Kontamination der Kapillare stattfand. Dies gelang durch Einbringen der Kapillare in ein weiteres Glasrohr (Schmelzpunktbestimmungsrohr) und Abdichtung mittels eines Klebstoffes.

In den erhaltenen Reaktionsprodukten wurde nur das Technetium und des sen Wertigkeit quantitativ bestimmt, während die Alkalien stets als Differenz zu 100 % bestimmt wurden. Wie schon erwähnt, waren die verwendeten Substanzmengen sehr gering, so daß eine vollständige Analyse nur außerordentlich schwierig exakt durchzuführen ist. Daher wurde auf eine Bestimmung der Alkalien verzichtet.

Die Röntgenuntersuchungen der Reaktionsprodukte wurden nach der Methode von Debeye-Scherrer mit $Cu_{K\alpha}$ -Strahlung (25 KV, 35 mA, Bestrahlungszeit 8-16h) in einer 114,6 mm Röntgenkamera (Fa. Siemens u. Halske) durchgeführt. Die Identifizierung der kristallchemisch definierten, ternären Oxide erfolgte durch Kombination von Röntgenanalyse und chemischer Analyse. 3. EXPERIMENTELLER TEIL UND DISKUSSION

3.1. Ternare Oxide des siebenwertigen Technetiums

3.1.1. Ternäre Oxide des Typs Me^ITcO₁

3.1.1.1. Darstellung und analytische Untersuchungen

3.1.1.1.1. $NH_{4}TcO_{4}$, $LiTcO_{4}$, $NaTcO_{4}$, $KTcO_{4}$

Die Darstellung von NH_4TcO_4 , $LiTcO_4$, $NaTcO_4$ und $KTcO_4$ erfolgte durch Neutralisation der Pertechnetiumsäure (HTcO₄) mit der berechneten Menge der entsprechenden Base.

Die auf diese Weise erhaltenen, verdünnten wässrigen Lösungen der Alkalipertechnetate wurden weitgehend eingedampft und die entsprechenden Salze durch langsames Eindunsten der Restlösungen über P_2O_5 im Vakuum zur Kristallisa – tion gebracht. NH₄TcO₄, LiTcO₄, NaTcO₄ und KTcO₄ werden hierbei als farblose kristalline Substanzen erhalten, deren Analyse nach Trocknung bei 110 – 120[°]C die in Tabelle 6 aufgeführten Werte ergab.

Tabelle	6	Analysendaten von	NH,,TcO,,,	LiTcO _n ,	NaTcO,	und K	$\mathbf{TcO}_{\mathbf{h}}$
		-	21 21	21 ·			

Substanz	% Technetium					
DUDSCALIZ	gefunden	berechnet				
NH4TcO4	54,6	54,68				
LiTc04	58,2	58,26				
NaTcO ₄	53,3	53,23				
кте0 ₄	48,9	48,98				

Kaliumpertechnetat besitzt einen Schmelzpunkt von 540[°]C (31), der durch eigene Untersuchungen bestätigt werden konnte (540-550[°]C). Im Hochvakuum sublimiert es ohne Zersetzung.

Lithiumpertechnetat schmilzt zwischen 400° und 430°C ohne Zersetzung.

3.1.1.1.2. $RbTcO_{\mu}$, $CsTcO_{\mu}$, $AgTcO_{\mu}$, $TlTcO_{\mu}$

Die Pertechnetate $Me^{I}TcO_{4}$ ($Me^{I} = Rb, Cs, Ag, Tl$) sind wie die entsprechenden Perrhenate in Wasser schwer löslich und wurden daher zweckmäßigerweise durch Fällung von Pertechnetiumsäure mit MeNO₃ oder $Me_{2}CO_{3}$ erhalten. Die Substanzen wurden durch Umkristallisation gereinigt und weisen die in Tabelle 7 angegebenen Analysenwerte auf.

<u>Tabelle 7</u> Analysenwerte von $Me^{T} TcO_{4}$ (Me = Rb,Cs,Ag,Tl)

Substanz	% Technetium		
Subs tall2	gefunden	berechnet	
RbTcO ₄	39,8	39,84	
CsTcO4	38,0	38,09	
AgTcO4	36,2	36 , 54	
TITCO4	26,9	26,95	

Mit Ausnahme von AgTcO₄ (schwach gelb gefärbt) sind sämtliche Pertechnetate farblos. AgTcO₄ wird durch Licht langsam photochemisch zersetzt. Zu seiner Darstellung mußte deshalb weitgehend unter Lichtausschluß gearbeitet werden.

3.1.1.1.3. Pertechnetiumsäure $(HTcO_{h})$

Die Pertechnetiumsäure wurde in Form einer verdünnten wässrigen Lösung durch Auflösen von Tc₂O₇ in einem Überschuß Wasser erhalten. Das benötigte Tc₂O₇ wurde dabei durch Oxydation von Tc-Metall mit Sauerstoff bei 450-600[°]C erhalten. Es sublimierte hierbei in die kälteren Teile der Apparatur ($F_p = 119,5^{\circ}C$; $K_p = 311^{\circ}C$).

3.1.1.2. Eigenschaften

3.1.1.2.1. Löslichkeitsuntersuchungen

Die Löslichkeit von MeTcO_{μ} (Me = Ag,Cs,Tl) wurde bei verschiedenen

Temperaturen bestimmt. Zu diesem Zwecke wurden die analytisch reinen Pertechnetate 2-5 Tage mit bidestilliertem Wasser bei den angegebenen Temperaturen ($\pm 0,1^{\circ}$ C) unter häufigem Schütteln behandelt. Es wurde jeweils eine Doppelbestimmung durchgeführt. Die zeitliche Abhängigkeit und die Einstellung des Gleichgewichtsgrenzwertes zeigt Abbildung 3 am Beispiel des CsTcO₄ bei 30°C.

Abbildung <u>3</u> Zeitliche Abhängigkeit der Löslichkeit von CsTcO₄ bei 30[°]C

Die experimentell erhaltenen Werte der Löslichkeit der untersuchten Pertechnetate zeigt Tabelle 8. In Tabelle 9 sind zum Vergleich Löslichkeitswerte der entsprechenden Perrhenate aufgeführt.

Tabelle	8	Temperaturabhängigkeit	der	Löslichkeit	einiger	Pertechnetate
---------	---	------------------------	-----	-------------	---------	---------------

Substanz		Löslichk	eit (g	/100 ml I	jösung)		Literatur
Substallz	150	200	250	300	350	400	
AgTcO4	0,42	0,563	0,712	0,93 ₇	1,22	1,63	
CsTcO4	0,34	0,412	0,48 ₅	0,605	0,72 ₁	0,879	
TITCO4		0,0727	0,08 ₇	0,117	0,13 ₈	0,171	
RbTc04		1,16					
KTcO4			2,13				32

Substanz	Lös 19 ⁰	lichkeit (g/l 20 ⁰	00 ml) 24.6°	300	Literatur
AgReO),	-	_	-	1,39	33
CsReO ₄	0 , 78	-		_ 1,1	34 35
\mathtt{TlReO}_4	-	0,16	0,29	0,298	34 33
KRe04	0,95(18 ⁰) -	1,07(21,5 [°]) -	- -	_ 1,47	34 33
$RbReO_4$	1,05 -	-	1,46 -	1,57	34 35

 Tabelle
 9
 Temperaturabhängigkeit der Löslichkeit einiger Perrhenate

Aus dem Vergleich der Löslichkeiten ergibt sich, daß die Pertechnetate schwerer löslich sind als die entsprechenden Perrhenate (mit Ausnahme der K-Verbindung).

Die Löslichkeit der Pertechnetate nimmt linear mit 1/T ab (Abbildung 4).

4

Die Löslichkeit von ${\rm AgTcO}_4$, ${\rm CsTcO}_4$ und ${\rm TlTcO}_4$ als Funktion der Temperatur

Aus der Neigung der erhaltenen Geraden lassen sich gemäß

$$\frac{d \ln L}{dt} = \frac{\Delta H}{RT^2}$$

die Lösungswärmen ∆H am Sättigungspunkt berechnen (Tabelle 10).

Tabelle 10 Lösungswärmen einiger Pertechnetate

Substanz	Δ H (kcal/Mol)
CsTcO4	6,69
TLTCO4	8,04
AgTcO ₄	9,63

Tabelle 11 Lösungswärmen einiger Perrhenate

Substanz	Δ H (kcal/Mol)	Literatur
CsReO ₄	7,69	35
\mathtt{TlReO}_{4}	6,44	33
AgTcO ₄	6,57	33

3.1.1.2.2. Röntgenografische Untersuchungen

3.1.1.2.2.1. Pertechnetate mit Scheelitstruktur

Die Scheelit-CaWO₄-Struktur bildet ein tetragonales, raumzentriertes Gitter (Raumgitter $I4_1/a$) mit vier Molekülen pro Elementarzelle und den Punktlagen

4 Ca in [(0, 0, 1/2); (1/2, 0, 1/4)] + (1/2, 1/2, 1/2)4 W in [(0, 0, 0); (0, 1/2, 1/4)] + (1/2, 1/2, 1/2)16 0 in $[(x, y, z); (\overline{x}, \overline{y}, z); (\overline{y}, x, \overline{z}); (y, \overline{x}, \overline{z});$ $x, y+1/2, 1/4-z); (\overline{x}, 1/2-y, 1/4-z); (\overline{y}, x+1/2, z+1/4); (y, 1/2-x, z+1/4)]$ + (1/2, 1/2, 1/2). Die X04-Tetraeder sind in der Scheelitstruktur leicht verzerrt.

 $NaTcO_4$, $KTcO_4$, $RbTcO_4$ und $AgTcO_4$ besitzen Scheelitstruktur mit den in Tabelle 12 angegebenen Gitterkonstanten.

Gitterkonstanten der Pertechnetate mit Scheelitstruktur

- 16 -

Substanz	Gitterkon a	stanten (Å) c	- Literatur
NaTcO ₄	5,337 ± 0,002	11,88 ± 0,02	30
	5,339 ± 0,001	11,869 ± 0,005	. 29
ктео4	5,630 ± 0,002	12,87 ± 0,02	30
	5,654	13,030	28
RbTcO4	5,758 + 0,002	13,54 ± 0,02	30
AgTcO ₄	5,317 ± 0,002	11,87 ± 0,02	30
	5,319 ± 0,001	11,875 ± 0,001	29

Die Gitterkonstanten zeigen mit Ausnahme von ${\rm KTcO}_4$ mit den übrigen Literaturangaben, die zur annähernd gleichen Zeit veröffentlicht wurden, gute Übereinstimmung. Die Abweichung von den Werten nach Mc Donald und Tyson liegt

außerhalb der Fehlergrenze und kann nicht durch Verunreinigung der eigenen Präparate bedingt sein. Das für die KTcO1-Präparate benötigte Technetium wurde mehrmals über das flüchtige Tc207 gereinigt. Auch konnte bei ver schiedenen Präparaten keine Abweichung der Gitterkonstanten beobachtet werden.

3.1.1.2.2.2. Pertechnetate mit orthorhombischer Struktur

 $CsTcO_4$ und $TlTcO_4$ besitzen bei Zimmertemperatur orthorhombisch ver zerrte Scheelitstruktur mit den in Tabelle 13 angegebenen Gitterkonstanten.

Tabelle	13	Gitterkons Struktur	tanten der Perte	chnetate mit o	orthorhombischer
Substanz		Gitter a	konstant b	en (Å) c	- Lit e ratur
CsTcO4	G / G /	5,726 <u>+</u> 0,002 5,718	5,922±0,002 5,918	14,36 ±0,01 14,304	30 28
TITCO4	5	5,501±0,002	5,747±0,002	13,45 ±0,01	30

Tabelle

12

Es besteht Isotypie mit den entsprechenden Perrhenaten. Die Pseudo-Scheelitstruktur des TlReO₄ wandelt sich oberhalb $123^{\circ}C$ (36) in die wahre Scheelitstruktur mit den Gitterkonstanten a = 5,761 Å und c = 13,33 Å um. Diese Modifikation konnte trotz Abschreckens von verschiedenen Temperaturen bei TlTcO₄ nicht erhalten werden, was durch kinetische Effekte der Modifikationsänderung bedingt sein dürfte.

Bei den Pertechnetaten ist a stets kleiner und c stets größer als bei den entsprechenden Perrhenaten, deren Gitterkonstanten zum Vergleich in Tabelle 14 angegeben sind.

Tabelle 14

Gitterkonstanten der Perrhenate mit tetragonaler und orthorhombisch verzerrter Scheelitstruktur

Substanz	Struktur	Gitterk	onstanten	(Å)	Literatur
Substanz		а	b	С	
NH ₄ ReO ₄	tetragonal	5,880 5,883 5,883		12,975 12,968 12,979	diese Arbeit 36 <i>3</i> 7
KRe04	11	5,673 5,626 5,675 5,680		12,690 12,53 12,70 12,703	diese Arbeit 38 39 40
NaReO ₄	11	5,632		11,718	36
RbReO4	11	5 , 803		13 , 167	36
AgReO ₄	"	5,360 5,378		11,940 11,805	41 39
CsReO ₄	orthorhomb.	5 , 7 <i>3</i> 7	5,698	12,241	36
TlReO4	11	5,635 5,623	5,804 5,791	13,32 13,295	diese Arbeit 36

Abbildung 5 zeigt die Strichdiagramme von KTcO_4 (tetragonal) und TlTcO_4 (orthorhombisch) als Vertreter der beiden Kristalltypen.

Abbildung 5 Strichdiagramme von KTcO_h und TlTcO_h

Die Dichten von NaTcO₄ und $AgTcO_4$ wurden von Schwochau (29) nach folgender Methode bestimmt : ca. 10 mg der Proben wurden mit etwa 20 Gew.% Stärke (p = 1,50 g·cm⁻³) als Bindemittel innig gemischt und die Mischung bei einem Druck von etwa 6000 kp·cm⁻² zu Presslingen von 1,6 mm Durchmesser und 0,6 bis 0,8 mm Dicke gepreßt. Durchmesser und Dichte der Presslinge ließen sich mikroskopisch ausmessen und ihre Masse durch Auswägen fest stellen. Unter Berücksichtigung des Stärkegehaltes wurden folgende Werte berechnet :

reconnet: NaTcO₄ = $(3,4 \pm 0,2)$ g·cm⁻³; AgTcO₄ = $(5,1 \pm 0,2)$ g·cm⁻³ Für die Pertechnetate lassen sich aus den Gitterkonstanten die in Tabelle 15 angegebenen röntgenografischen Dichten berechnen.

Tabelle 15

Röntgenografische Dichten einiger Pertechnetate

Substanz	Volumen der Elementarzelle (Å) ³	rönt. (g·cm ⁻³)
NH ₁ TcO4	446,1	2,69
NatcO ₄	338,4	3,65
KTcO4	407,9	3,29
RbTcO _h	448,9	3,57
AgTcO ₄	335,5	5,36
CsTcO ₄ TlTcO ₄	486,9 425,2	3,50 5,73

3.1.1.2.2.3. LiTcO_h

 $LiTcO_4$ zeigt Isotypie mit $LiReO_4$ (Abbildung 6). Seine Struktur ist noch nicht aufgeklärt.

3.1.2.1.1. Die Reaktion von LiTco₄ mit Li₂CO₃

Ziel dieser Versuche war es, festzustellen, ob sich durch kinetische Messungen im System LiTco₄-Li₂Co₃ (Bestimmung der Co₂-Abspaltung als Funktion der Zeit bei konstanter Temperatur) die Existenz eines ternären Oxids mit Tc:Li = l: l nachweisen läßt. Es gelingt mit dieser Methode nicht in allen Fällen, sämtliche in einem System $Me_x O_y - Me_2^i O$ existierenden Oxometallate nachzuweisen, doch geben diese Versuchsergebnisse häufig ein gutes Bild über mögliche ternäre Oxide.

In einem Vorversuch wurde eine Temperatur von $620-650^{\circ}$ C als günstigste Arbeitstemperatur ermittelt. Eine Mischung von 72,60 mg LiTcO₄ und 94,70 mg

Li₂CO₃ (Molverhältnis LiTcO₄:Li₂CO₃ = 1:3,00) wurde im Sauerstoffstrom solange erhitzt, bis die abgespaltene CO2-Menge pro Zeiteinheit der zuvor in einem Blindversuch entsprechenden Menge des reinen Li₂CO₃ entsprach. Die abgegebene Menge CO, wurde in mit Natronasbest gefüllten Mikroabsorptions röhrchen aufgefangen und durch Wägung bestimmt. Besonderer Wert mußte auf eine konstante Sauerstoffgeschwindigkeit gelegt werden.

Die erhaltenen Versuchsergebnisse sind in Tabelle 16 und in Abbildung 7 dargestellt.

Tabelle	16
---------	----

Zeitliche Abhängigkeitder CO2-Abspaltung im System LiTcO4-Li2CO3 (1:3) bei 650°C.

I	abgesp	alten	LiTcO)
Zeit (h)	mg CO ₂	Summe mg CO ₂	Verhältnis $(\overline{\text{Li}_2^{\text{CO}_3}})$ reagiert
2,0 2,5 3,5 6,0 8,5 12,0 15,0 17,0 20,0 24,0 27,0 30,0 40,0 50,0	0,5 0,2 0,5 1,6 2,6 6,5 6,5 4,5 4,4 3,0 1,8 1,4 2,6 0,8	0,5 0,7 1,2 2,8 5,4 11,9 18,4 23,2 27,6 30,6 37,4 33,8 36,4 37,2	1 : 0,02 1 : 0,03 1 : 0,15 1 : 0,29 1 : 0,63 1 : 1,23 1 : 1,45 1 : 1,63 1 : 1,72 1 : 1,80 1 : 1,94 1 : 1,98
61,0	0,3	37,5	1:1,99

Aus diesen Werten ergibt sich eine bevorzugte Abspaltung von CO_2 aus Li₂CO₃ bis zu einem Verhältnis LiTcO₄:Li₂O = 1:2 (experimenteller Wert 1:1,99). Dies läßt auf die Bildung von Li₅TcO₆ schließen.

Die Röntgenaufnahmen des Reaktionsproduktes zeigten neben den Reflexen des $\text{Li}_2^{\text{CO}_3}$ nur Reflexe eines ternären Oxids, das mit $\text{Li}_5^{\text{ReO}_6}$ zumindest isotyp ist.

3.1.2.1.2. Die Reaktion von LiTcO4 mit Lip0

Zur weiteren Klärung der Verhältnisse im System $LiTcO_4$ -Li₂O wurden weitere Versuche mit Li₂O anstelle Li₂CO₃ durchgeführt.

Erhitzt man Reaktionsmischungen $LiTcO_4: Li_2O = 1:2$ im Sauerstoffstrom, so zeigt die Farbänderung (Li_5TcO_6 ist dunkelbraun) einen Reaktionsbeginn bei ca. $300^{\circ}C$ an. Zum quantitativen Umsatz wird zweckmäßigerweise eine Tempera – tur von $400-440^{\circ}C$ gewählt bei Reaktionszeiten von 2 x 18h. Die Analyse eines Reaktionspräparates ergab :

> gefunden 43,0 % Tc, berechnet 43,10 % Tc. für Li₅TcO₆ 43,10 % Tc.

Das Röntgendiagramm des Reaktionspräparates zeigt nur neue Reflexe und weiterhin das gleiche Linienmuster wie die Diagramme von $\text{Li}_5 \text{JO}_6$, $\text{Li}_5 \text{OsO}_6$ und $\text{Li}_5 \text{ReO}_6$, so daß eine Zusammensetzung $\text{Li}_5 \text{TcO}_6$ angenommen werden kann.

Die Indizierung der Reflexe des Li₅TcO₆ (Abbildung 10) erfolgte nach Angaben von Scholder und Huppert (22). Die daraus berechneten Gitterkon stanten betragen (für eine hexagonale Elementarzelle) :

 $a = 5,04 \pm 0,01 \text{ Å}$ $c = 14,10 \pm 0,02 \text{ Å}$ c/a = 2,80 $c/a = 3,69 \text{ g} \cdot \text{cm}^{-3}$

Als Vergleich dazu dienen die Werte für Li₅ReO₆

a = 5,051
$$\pm$$
 0,002 Å
c = 14,22 \pm 0,01 Å
 $m c/a$ = 2,81
 $m c_ront.$ = 5,06 g·cm⁻³

Eine endgültige Strukturaufklärung für $\text{Li}_5 XO_6$ (X = Re,Tc etc.) steht allerdings noch aus, da auch die Indizierung von $\text{Li}_5 \text{ReO}_6$ noch unvollkommen ist. In Tabelle 17 sind die berechneten und gefundenen $\sin^2\theta$ -Werte nebst Intensitäten für Li₅TcO₆ aufgeführt.

Linien		т	 העו	$\frac{1}{\sin^2\theta}$	
Nr.	gef.	⁻ rel.		gefunden	berechnet
1	9,41	5	003	0,0267	0,0267
2	10,14	3	010	0,0310	0,0311
3	10,71	2	011	0,0345	0,0342
4	11,71	5	012	0,0412	0,0422
5	13,91	3	013	0,0580	0,0578
6	16,33	2	014	0,0790	0,0790
7	18,09	4	111	0,0965	0,0964
8	18,90	1	015	0,1050	0,1040
9	18,96	1	112	0,1055	0,1056
10	19,10	1	006	0,1075	0,1071
11	20,67	1	020	0,1246	0,1248
12	21,22	1	022	0,1310	0,1367
13	22,08	5	114	0,1413	0,1411
14	24,17	2	115	0,1676	0,1676
15	26,69	1	116	0,2017	0,2014
16	27,90	1	120	0,2189	0,2174
17	29,27	1	026	0 ,23 87	0,2324
18	31,80	1	215	0 , 2776	0,2720
19	32,02	5	030	0,2808	0,2810
20	33,62	2	033	0,3066	0, <i>3</i> 075

Tabelle17Gefundene und berechnete $\sin^2 \theta$ -Werte sowie abgeschätz-te Intensitäten für $\text{Li}_5 \text{TcO}_6$

Li₅TcO₆ erleidet im Sauerstoffstrom bis 650°C keine Veränderung, darüber tritt Zersetzung ein. Beim Liegen an der Luft erfolgt Hydrolyse zu LiTcO₄, LiOH bzw. Li₂CO₃. In Wasser löst sich Li₅TcO₆ zu einer klaren Lösung.

Thermische Versuche mit $LiTcO_4: Li_2O = 1: 2$ brachten stets nur die Bildung von Li_5TcO_6 (Temperaturbereich 400°-600°C), so daß auf die Nichtexistenz von Verbindungen wie "Li₇TcO₇" und "Li₉TcO₈" geschlossen wegeden darf.

Erhitzt man eine Reaktionsmischung $\text{LiTcO}_4: \text{Li}_2\text{O} = 1:1$ auf eine Temperatur von etwa 500°C, so zeigt das Röntgendiagramm dieses Präparates nur die Reflexe des LiTcO_4 und Li_5TcO_6 . Oberhalb 550°C tritt Sauerstoffabgabe d.h. Zersetzung ein. Es bildet sich hierbei nach längerem Erhitzen quantitativ

gefunden = 41,8 % Tc (gesamt) " = 41,8 % Tc (VI) berechnet für $\text{Li}_6\text{Tc}0_6$ = 41,83 % Tc .

Während der Reaktion ist eine Verflüchtigung von Technetium (als Tc₂0₇) eingetreten.

Versuche im Sauerstoffstrom und in evakuierten Ampullen (10^{-4} Torr) brachten dasselbe Ergebnis, so daß – analog dem System LiReO₄-Li₂O – auf die Nichtexistenz von Li₃TcO₅ geschlossen werden muß.

3.1.2.2. Darstellung und Untersuchung von Na_TCO_ und Na_TcO_

3.1.2.2.1. Die Reaktion von NaTcO4 mit Na202

Erhitzt man ein Gemisch NaTcO₄ mit Na₂O₂ = 1:1 im Argonstrom, so zeigen die Farbänderung (Na₃TcO₅ ist dunkelbraun) und das Röntgendiagramm einen Reaktionsbeginn von ca. 250°C. Zur vollständigen Zersetzung des Na₂O₂ wurde zweckmäßigerweise eine Darstellungstemperatur von 300-320°C gewählt (2x8 h). Die Analyse des Reaktionspräparates zeigt das Vorliegen einer reinen Sub stanz :

gefunden =
$$39,9$$
 % Tc
berechnet = $39,92$ % Tc
für Na₃TcO₅ = $39,92$ % Tc

 $Na_{3}TcO_{5}$ ist isotyp mit $Na_{3}ReO_{5}$. $Na_{3}TcO_{5}$ ist in Sauerstoffatmosphäre bis 650°C stabil, hydrolisiert jedoch sehr rasch beim Liegen an der Luft unter Bildung von $NaTcO_{4}$, NaOH bzw. $Na_{2}CO_{5}$.

Erhitzt man eine feinst pulverisierte Mischung $NaTcO_4:Na_2O_2 = 1:2$ auf 280-450°C, so zeigt das Röntgendiagramm des Reaktionspräparates nur die Reflexe des Na_5TcO_5 , obwohl das Präparat laut Analyse kein Peroxid enthielt. Es wurde daher vermutet, daß eventuell gebildetes Na_5TcO_6 einer extrem raschen Hydrolyse unterliegt.

Weitere Versuche wurden daher mit Na20 anstelle von Na20, durchgeführt.

3.1.2.2.2. Die Reaktion von NaTcO_h mit Na₂O

Bei der Reaktion NaTcO₄:Na₂O = 1:2 im Argonstrom oder vorteilhafter in der evakuierten Ampulle (8 h, 300-400[°]C) erhält man eine tiefbraune Substanz, deren Röntgendiagramm bis auf die zu erwartenden Linienverschiebungen und schwachen Intensitätsänderungen derjenigen von Na₅ReO₆ gleicht, d.h. es bildete sich Na₅TcO₆.

Na₅TcO₆ hydrolisiert beim Liegen an der Luft in wenigen Sekunden über Na₅TcO₅ nach NaTcO₄, selbst in einer peinlichst getrockneten Glove-Box. Es ist dabei jedoch zu bedenken, daß es sich jeweils nur um Substanzmengen von wenigen Milligrammen handelte.

Analysendaten für Na5TcO6 :

gefunden	=	31,9 %	Тс
berechnet für Na ₅ TcO ₆	=	31,94 %	Tc .

Die Reaktion von $NaTcO_4$ mit Na_2CO_5 führt im günstigsten Temperaturbe reich für die Untersuchungen im System $NaTcO_4$ - Na_2O nur zu einem äußerst langsamen Umsatz, so daß keine weiteren Versuche durchgeführt werden.

3.1.2.3. K₃TcO₅ und Versuche zur Darstellung von K₅TcO₆

Sämtliche Versuche wurden mit einem Kaliumperoxid der Zusammensetzung KO_{1.97} (im folgenden stets als KO₂ bezeichnet) durchgeführt.

Erhitzt man ein Gemisch $\text{KTcO}_4: \text{KO}_2 = 1:2$ im Argonstrom 12 Stunden auf 280° C und nach erneutem Pulverisieren weitere 12 Stunden auf 350° C, so erhält man das rostbraune K_3TcO_5 , wie auch folgende Analyse ergibt :

gefunden	=	33,4 %	Tc
berechnet für K ₃ TcO ₅	=	33,41 %	Tc .

 $K_{2}TcO_{5}$ ist isotyp mit $K_{2}JO_{5}$ und $K_{2}ReO_{5}$ (22); es hydrolisiert beim Liegen an der Luft noch schneller als $Na_{3}TcO_{5}$. Oberhalb $500^{\circ}C$ tritt Zersetzung ein, d.h. die thermische Stabilität ist auch hier - wie bei allen ternären Oxiden des Tc(VII) mit Alkalien - geringer als bei den entsprechenden ternären Oxiden des Rheniums.

Bei Reaktionen $\text{KTcO}_4:\text{KO}_2 = 1:2$ bildet sich stets nur K_3TcO_5 . Im System $\text{Re}_2\text{O}_7-\text{K}_2\text{O}$ existiert neben KReO_4 ebenfalls nur K_3ReO_5 . Scholder und Huppert (22) untersuchten die Wasserabspaltung im System KReO_4-KOH . Sie konnten ebenfalls nur K_3ReO_5 nachweisen und schlossen daraus, daß die freie Energie der Reaktion

$$K_{\mathcal{J}}ReO_5 + 2 KOH \longrightarrow K_5ReO_6 + H_2O$$

zur Bildung von K₅ReO₆ nicht ausreicht.

3.2. Ternäre Oxide des sechswertigen Technetiums

3.2.1. Das System Tc0_-Li_20

3.2.1.1. Li6Tc06-

3.2.1.1.1. Darstellung und analytische Untersuchungen

 ${\rm Li}_{6}{\rm TcO}_{6}$ wurde durch Symproportionierung gemäß folgender Reaktion erhalten :

 $6 \operatorname{LiTeO}_{4} + \operatorname{Te} + 18 \operatorname{Li}_{2} 0 \longrightarrow 7 \operatorname{Li}_{6} \operatorname{TeO}_{6} \cdot$

Das Ausgangsgemisch wurde in evakuierten Ampullen 40-100 Stunden auf 260-540°C erhitzt. Es resultierte dabei stets ein blauschwarzes bzw. ein dunkelgrünes Produkt. Die Analyse eines Präparates (Nr. 1, Tabelle 6) ergab folgende Werte :

	gefunden	berechnet für Li ₆ TcO ₆
% Тс	41,8	41,83
Tc(VII) : O _v	1:0,50	1:0,50

 ${\rm Li}_6{\rm TcO}_6$ existiert analog ${\rm Li}_6{\rm ReO}_6$ in zwei Modifikationen. Bei Versuchstemperaturen unterhalb 320°C erhält man die ß-Modifikation, bei höheren Temperaturen die α -Modifikation. Beide Modifikationen sind mit den entsprechenden ternären Oxiden des Rheniums isotyp. ß-Li_6{\rm TcO}_6 ist dunkelgrün gefärbt, α -Li_6{\rm TcO}_6 dagegen blauschwarz. α -Li_6{\rm TcO}_6 wird ebenfalls durch thermischen Abbau von Li_5{\rm TcO}_6 erhalten (siehe

s. 22).

Tabelle 18

Darstellungsbedingungen von α - und β -Li₆TcO₆

Nr.	Temp. C	Erhitzdauer h	erhaltene	Substanz	% Tc gefunden	Tc(VII):0 _v
1	540	2 x 25	a-Li6TcO6		41,8	1:0,50
2	400	40	α-Li ₆ TcO ₆		41,8	1:0,50
3	350	40	α-Li ₆ TcO ₆		41,8	
4	260	2 x 50	B-Li6TcO6		41,8	1:0,49
5	310	24	B-LiGTCO6			
6	320	50	B-Li6TcO6+a-	Li ₆ Tc0 ₆ (schwa	ch)	

3.2.1.1.2. Eigenschaften

 $\text{Li}_6 \text{TcO}_6$ löst sich in verdünnter Natronlauge bzw. Essigsäure mit einer schwach rosa Farbe. Infolge Disproportionierung von Tc(VI) nach

 $3 (\text{TcO}_4)^- + 2 \text{H}_2 0 \longrightarrow \text{TcO}_2 + 2 \text{TcO}_4^- + 4 0\text{H}^$ entfärbt sich die Lösung nach einiger Zeit, wobei TcO₂ ausfällt. Die Disproportionierung ist eine Folge der Unbeständigkeit der freien Tc(VI)-Säure H_2TcO_4 bzw. H_6TcO_6 (analog Mn(VI)). Der Zerfall wird begünstigt durch die Unlöslichkeit des sich bildenden TcO₂.

Die Disproportionierung erfolgt stöchiometrisch, wie folgender Versuch zeigt :

Eine eingewogene Menge Li_6TcO_6 wurde zwei Stunden mit Wasser in N₂-Atmosphäre geschüttelt, der gebildete Niederschlag abzentrifugiert und die Lösung abdekantiert. Danach wurden das Tc(IV) (im Niederschlag) und das Tc(VII) (in Lösung) bestimmt. Dabei ergab sich für das Verhältnis Tc(IV) : Tc(VII) ein Wert von l : 2,01 (theoretisch l : 2,00).

Eine spektrometrische Untersuchung der instabilen rosa gefärbten Lösung von Li_6TcO_6 direkt nach dem Auflösen ergab ein Absorptionsspektrum ohne diskrete Absorptionsbanden. α -Li $_6\text{TcO}_6$ ist thermisch bis ca. 700°C stabil, bei höheren Temperaturen wird es zu Li $_4\text{TcO}_5$ abgebaut.

Die Umwandlungstemperatur von $B-\text{Li}_6\text{TcO}_6$ zu $\alpha-\text{Li}_6\text{TcO}_6$ liegt bei etwa 310-320°C. Sie liegt damit wesentlich tiefer als die entsprechende Umwandlungstemperatur von Li_6ReO_6 (620-630°C,(24)). Beim Liegen an der Luft tritt bei $B-\text{Li}_6\text{TcO}_6$ raschere Hydrolyse ein als bei $\alpha-\text{Li}_6\text{TcO}_6$.

3.2.1.1.3. Röntgenografische Untersuchungen

 $B-Li_6TcO_6$ (Abbildung 10) ist isotyp mit $B-Li_6ReO_6$. Die Pulveraufnahme von $B-Li_6TcO_6$ zeigt die gleiche Linienfolge wie Li₅TcO₆. Die beiden Verbindungen sind demnach isotyp, obgleich sie nicht dem gleichen Formeltyp angehören. Das gleiche gilt auch für $B-Li_6TcO_6$ und Li_5ReO_6 (21) sowie auch für verschiedene ternäre Oxide der Typen Li₇ XO₆ und Li₈ XO₆ (20). Wahrscheinlich besitzt das Gitter im Falle des Li₅TcO₆ Kationenfehlstellen.

Das Diagramm des β -Li₆TcO₆ wurde nach Angaben von Scholder und Huppert (22) hexagonal indiziert. Die damit berechneten Gitterkonstanten sind : (als Vergleich sind die Werte für β -Li₆ReO₆ angegeben)

<u>Abbildung 10</u> Strichdiagramme von Li_5TcO_6 , β - und α -Li $_6\text{TcO}_6$

Für die Indizierung von β -Li $_6$ TcO $_6$ gelten ebenfalls die bei Li $_5$ TcO $_6$ (S.21) gemachten Einschränkungen.

Т	ab	el	le	19

Gefundene	und	berechnete	$\sin^2 \theta$	-Werte	neben	abgeschätz-
ten Intens	sität	ten fürß-Li	STCO6			

		ble]	sin ² θ-	Werte
gef.	¹ rel.	IIK.L	berechnet	gefunden
9,35	5	003	0,0265	0,0265
10,13	4	010	0,0310	0,0310
10,66	3	011	0,0346	0,0342
11,85	3	012	0,0428	0,0421
13,89	4	013	0,0576	0,0576
16,84	4	014	0,0793	0,0839
18,06	2	111	0,0961	0,0961
18,85	2	015	0,1047	0,1044
20,70	l	020	0,1244	0,1249
21,93	5	016	0,1381	0,1394
22,87	l	023	0,1509	0,1510
24,30	l	024	0,1704	0,1693
24,46	l	017	0,1751	0,1714
27,87	l	120	0,2176	0,2185
28,70	2	122	0,2299	0,2306
29,30	l	026	0,2303	0,2395
30,98	l	027	0 , 2686	0,2650
31,88	5	030	0,2795	0,2789

3.2.1.2. Li4Tc05-

3.2.1.2.1. Darstellung und analytische Untersuchungen

Wie Li_6TcO_6 konnte ebenfalls durch Symproportionierung aus Techne - tium(VII) und Technetium(0) das Li_4TcO_5 erhalten werden gemäß

$$6 \text{ LiTcO}_4 + \text{Tc} + 11 \text{ Li}_2 0 \longrightarrow 7 \text{ Li}_4 \text{TcO}_5$$

Die Ergebnisse der bei verschiedenen Temperaturen durchgeführten Ver suche sind in Tabelle 20 angegeben, wobei die Versuche stets in einer evakuierten Ampulle durchgeführt wurden.

Tabe.	lle	20
100		the second se

Darstellung von Li_hTcO₅

Nr•	Temp. °C	Erhitzdauer (h)	erhaltene Substanz (aus Röntgenuntersuchung)	% Tc gefunden	Tc(VII):O _v
1	320	60	B-Li6Tc06+a-Li6Tc06+LiTc04		
2	400	50	α-Li ₆ TcO ₆ +LiTcO ₄ +Tc		
3	500	25	α-Li ₆ TcO ₆ +LiTcO ₄ +Tc		
4	550	40	α -Li ₆ TcO ₆ +LiTcO ₄ (schwach)		
5	640	44	α-Li ₆ TcO ₆ +β-Li ₄ TcO ₅		
6	740	40	B-Li ₄ TcO ₅ (rein)	47,83	1:0,50

Unterhalb 650°C verläuft die Reaktion also nach

 $6 \operatorname{LiTcO}_4 + \operatorname{Tc} + 11 \operatorname{Li}_2 \longrightarrow 3,5 \operatorname{Li}_6 \operatorname{TcO}_6 + 3 \operatorname{LiTcO}_4 + 0,5 \operatorname{Tc} + 2 \operatorname{Li}_2 0.$ Erst oberhalb 650° C tritt weiter Reaktion unter Bildung von $\operatorname{Li}_4 \operatorname{TcO}_5$ ein. Aus den Ergebnissen der Tabelle 20 ist zu ersehen, daß $\text{B-Li}_4 \operatorname{TcO}_5$ eine we sentlich höhere Darstellungstemperatur als $\text{B-Li}_4 \operatorname{ReO}_5$ benötigt (500° C, (24)). Das Röntgendiagramm des Versuches Nr. 6 zeigt, daß $\text{B-Li}_4 \operatorname{TcO}_5$ mit $\text{B-Li}_4 \operatorname{ReO}_5$ isotyp ist.

Nachdem die Darstellungstemperatur festgestellt wurde, wurde eine Mischung von LiTcO₄:Tc:Li₂O = 6:1:11 2x50h in evakuierter Ampulle auf 700[°]C erhitzt. Dabei entstand eine blauschwarze Substanz, die sich in verdünnter Natronlauge bzw. Essigsäure partiell mit einer rosa Farbe löst. Nach Zugabe von H_2O_2 bzw. Ce(IV) tritt vollständige Auflösung ein. Die Analyse ergab :

	gefunden	berechnet für Li ₄ TcO ₅
% Тс	47,8	47,88
Tc(VII) : O _v	1:0,50	1:0,50

3.2.1.2.2. Eigenschaften

In Wasser disproportioniert Tc(VI) in Tc(IV) und Tc(VII). Durch analytische Bestimmung des TcO_2 und Tc(VII) nach Disproportionierung des Li_4TcO_5
(wie bei Li₆TcO₆, Seite 27) ergab ein Verhältnis Tc(IV):Tc(VII) = 1:2,08 (theoretisch 1:2,00).

Erhitzt man β -Li₄TcO₅ längere Zeit auf 800° C, so wandelt es sich in die α -Modifikation um, die thermisch stabiler ist (bis ca. 900° C). α -Li₄TcO₅ ist schwarz gefärbt.

3.2.1.2.3. Röntgenografische Untersuchungen

 α -Li₄TcO₅ gibt ein Röntgendiagramm, das mit dem Diagramm von α -Li₄ReO₅ (24) und Li₄WO₅ isotyp ist. Das linienreiche Diagramm konnte nicht indiziert werden.

 $B-Li_4TcO_5$ zeigte eine analoge Linienfolge wie $B-Li_4TcO_5$ (24) und ist damit ebenfalls isotyp mit der Verbindungsklasse A_2BO_3 nach Lang. Lang (42) veröffentlichte 1954 eine Arbeit über die Kristallstruktur einiger Vertreter der Verbindungsklasse A_2BO_3 ($A = Me^I$, $B = Me^{IV}$). Er konnte eine ganze Reihe von isotypen Verbindungen erhalten, die sich monoklin indizieren lassen. Diese Struktur läßt sich auch durch eine orthorhombische Zelle mit dreifachem Zellvolumen beschreiben. Aus dem Verhältnis a-Achse : b-Achse = $1:\sqrt{3}$ läßt sich der pseudohexagonale Charakter des Gitters erkennen. Sauerstoffatome einerseits und Kationen andererseits bilden eine kubisch-dichteste Kugelpackung. Sie treten im Kristall als Schichten auf. Abbildung 11 zeigt die monokline Elementarzelle des Li₀SnO₃.

Abbildung 11

Aus der Isotypie von β -Li₄TcO₅ mit A₂BO₃ ergibt sich folgende Formu - lierung analog β -Li₄ReO₅ (24) :

d.h. die Li-Atome des $B-\text{Li}_4\text{TcO}_5$ besitzen im Kristallgitter des Li $_2\text{XO}_3$ -Typs verschiedene Gitterplätze. 1/6 der Li-Atome und die Tc-Atome in $B-\text{Li}_4\text{TcO}_5$ besitzen die Punktlagen von X in Li $_2\text{XO}_3$. Voraussetzung für einen solchen Ersatz sind annähernd übereinstimmende Ionenradien der beiden Kationensorten.

Das Röntgendiagramm von Li₄TcO₅ wurde orthorhombisch indiziert und seine Gitterkonstanten berechnet. Diese betragen :

$$\frac{B-Li_{4}TcO_{5}}{a_{rh}} = 5,055 \pm 0,002 \text{ Å} \qquad a_{rh} = 5,059 \pm 0,002 \text{ Å} \qquad a_{rh} = 5,059 \pm 0,002 \text{ Å} \qquad b_{rh} = 8,755 \pm 0,002 \text{ Å} \qquad b_{rh} = 8,747 \pm 0,002 \text{ Å} \qquad b_{rh} = 8,747 \pm 0,002 \text{ Å} \qquad c_{rh} = 28,59 \pm 0,02 \text{ Å} \qquad c_{rh} = 28,32 \pm 0,02 \text{ Å} \qquad c_{rh} = 28,32 \pm 0,02 \text{ Å} \qquad c_{mon} = 9,67 \pm 0,02 \text{ Å} \qquad c_{mon} = 9,59 \pm 0,01 \text{ Å} \qquad B = 99,8^{\circ} \qquad B = 96,7^{\circ} \qquad P_{ront} = 3,90 \text{ g}\cdot\text{cm}^{-3} (Z=24) \qquad P_{ront} = 5,61 \text{ g}\cdot\text{cm}^{-3}$$

Ziel dieser Versuche war die Darstellung von ${\rm Li_2TcO_4}$ durch Symproportionierung :

6 $\text{LiTeO}_4 + \text{Tc} + 4 \text{Li}_2 \text{O} \longrightarrow 7 \text{Li}_2 \text{TcO}_4$.

Feingepulverte Mischungen wurden in evakuierten Ampullen je 2 x 24h bei 400°, 500° und 600°C erhitzt. Es entstanden dabei immer homogene, dunkelgraue Reaktionsprodukte. In Wasser waren die Endprodukte nur teilweise löslich, die überstehende Lösung reagierte stark alkalisch, keinesfalls aber war irgendeine Rosa-Färbung zu beobachten, die charakteristisch für das Tc(VI) ist.

Aus den Röntgenuntersuchungen (Abbildung 13) konnte festgestellt werden, daß die entsprechenden Reaktionsprodukte eine Mischung aus LiTcO₄ und von der später erhaltenen und untersuchten Verbindung Li₃TcO₄ mit fünfwertigem Technetium darstellten.

Das $\text{Li}_{3}\text{TcO}_{4}$ ist gegen Wasser in Abwesenheit von Oxydationsmitteln stabil, daher war es möglich, dieses von LiTcO_{4} zu trennen. Eine Menge von 14,30 mg "Li $_{2}\text{TcO}_{4}$ " wurde 20 Minuten mit Wasser unter Stick - stoffatmosphäre geschüttelt. Der Rückstand wurde abfiltriert, mit Wasser und Methanol gewaschen und nach 24-stündigem Trocknen über $P_{2}O_{5}$ gewogen. Seine Menge betrug 7,1 mg (berechnet 7,43 mg). Farbe, chemische Analyse und Röntgenaufnahme wiesen darauf hin, daß reines $\text{Li}_{3}\text{TcO}_{4}$ vorlag. Im Filtrat wurde das als siebenwertigevorliegende Technetium bestimmt. Seine Gesamtmenge betrug 4,10 mg (berechnet 4,02 mg). Daraus ergab sich das Verhältnis Tc(VII) : Tc(V) = 1:0,92 (theoretisch 1:1).

Die Reaktion zur Darstellung von "Li $_2$ TcO $_4$ " verläuft also nach fol - gender Gleichung :

6 LiTcO₄ + Tc + 4 Li₂O \longrightarrow 3,5 Li₃TcO₄ + 3,5 LiTcO₄.

Aus diesen Ergebnissen ist zu schließen, daß sich Li₂TcO₄ durch Symproportionierung nicht darstellen läßt. In diesem Falle verhielt sich das Tech netium analog dem Rhenium.

Es kann jedoch nicht festgestellt werden, ob eine intermediäre Bildung von Li₂TcO₁ erfolgt, welches dann sofort disproportioniert.

Abbildung 13 Strichdiagramm von "Li2Tc04" neben Li3Tc04 und LiTc04

3.2.2. Das System TcOz-Na20

Alle Versuche zur Darstellung von Na-Verbindungen des sechswertigen Technetiums schlugen fehl. Gemäß den Ansätzen

(1) $6 \operatorname{NaTcO}_4 + \operatorname{Te} + 4 \operatorname{Na}_2 0 \longrightarrow 7 \operatorname{Na}_2 \operatorname{TcO}_4$, (2) $6 \operatorname{NaTcO}_4 + \operatorname{Te} + 11 \operatorname{Na}_2 0 \longrightarrow 7 \operatorname{Na}_4 \operatorname{TcO}_5$, (3) $6 \operatorname{NaTcO}_4 + \operatorname{Te} + 18 \operatorname{Na}_2 0 \longrightarrow 7 \operatorname{Na}_6 \operatorname{TcO}_6$

wurden fein gepulverte Mischungen in evakuierten Ampullen auf 290 bzw. 450° C erhitzt. Dabei entstanden stets homogene, dunkelbraune bis braungrüne Substanzen, die stark hygroskopisch waren. In Wasser waren sie partiell löslich mit einer schwach grünen Farbe, die sich nach kurzer Zeit nach grau änderte. Aus den Röntgenuntersuchungen ergab sich, daß sämtliche Reaktionsprodukte aus Mischungen von Na₄TcO₄ und Natriumoxotechnetaten(VII) (NaTcO₄, Na₃TcO₅ bzw. Na₅TcO₆) bestanden. Unterhalb 300°C bildete sich NaTcO₄, oberhalb 300°C dagegen Na₃TcO₅ bzw. Na₅TcO₆.

Nach den Ergebnissen der Röntgenuntersuchungen liefen die zuvor genannten Reaktionen wie folgend :

(1')	6 NaTcO ₄ + Tc + 4 Na ₂ O	\rightarrow $7_{3}Na_{4}TcO_{4} + \frac{14}{3}NaTcO_{4}$,
(2 ')	6 NaTcO ₄ + Tc + 11 Na ₂ O	$\frac{300^{\circ}\text{C}}{3}$ $\frac{7}{3}$ Na ₄ TcO ₄ + $\frac{7}{3}$ Na ₃ TcO ₅ + $\frac{7}{3}$ Na ₅ TcO ₆
(3¹)	6 NaTcO ₄ + Tc + 18 Na ₂ 0	$\xrightarrow{300^{\circ}C} 7_{3}Na_{4}TcO_{4} + \frac{14}{3}Na_{5}TcO_{6} + \frac{14}{3}Na_{2}O$

Ob es sich dabei um eine augenblickliche Disproportionierung von intermediär gebildeten Natriumoxotechnetaten(VI) handelt, oder ob tatsächlich keine Na-Tc(VI) – Verbindungen existieren, läßt sich durch diese Versuche nicht feststellen.

3.3.1. Das System Tc205-Li20

3.3.1.1. Versuche zur Darstellung von LiTcO3-

Alle Versuche zur Darstellung von LiTcO₃ durch Symproportionierung gemäß der Gleichung

5 LiTcO_4 + 2 Tc + Li_2 0 \longrightarrow 7 LiTcO_3

schlugen fehl. In einem Temperaturbereich zwischen 300° und 800°C wurden homogene, dunkle Reaktionsprodukte erhalten. Aus den Röntgenuntersuchungen konnte festgestellt werden, daß diese eine Mischung aus Li₃TcO₄ und TcO₂ waren. Oberhalb 800°C lag nur TcO₂ vor, das oberhalb 900°C sublimierte und sich an den kälteren Stellen der Ampulle niederschlug.

Ein quantitativer Reaktionsverlauf kann aus diesen Beobachtungen nicht abgeleitet werden, es scheint aber als sehr wahrscheinlich, daß die Reaktion unter Sauerstoffverlust verläuft.

3.3.1.2. Li_TcO4

3.3.1.2.1. Darstellung und analytische Untersuchungen

Nach der Gleichung

5 LiTcO₄ + 2 Tc + 8 Li₂O
$$\longrightarrow$$
 7 Li₃TcO₄

wurde ein fein pulverisiertes Gemisch der Ausgangssubstanzen 40 Stunden bei 380°C erhitzt. Die Röntgenaufnahme lieferte ein Diagramm, das noch die stärksten LiTcO₄-Linien enthielt. Die schwarze Substanz wurde erneut pulverisiert und weitere 30 Stunden auf 540°C erhitzt. Die Substanz blieb dabei pulver förmig und behielt ihre Farbe.

Die Analyse ergab :

	gefunden	für LizTcO4		
% Tc	53,8	53,85		
Tc(VII) : O _v	1:1,01	1:1,00		

3.3.1.2.2. Eigenschaften

Behandelt man das erhaltene Reaktionsprodukt mit Wasser so tritt keine schnelle Hydrolyse ein. $\text{Li}_{7}\text{TcO}_{4}$ läßt sich in N₂-Atmosphäre ca. 1/2 Stunde schütteln, ohne daß ß-Aktivität im Wasser nachgewiesen werden kann.

Nach längerer Zeit ist jedoch eine Hydrolysenreaktion zu bemerken. Dabei fällt TcO_2 aus und die überstehende Lösung wird rosa gefärbt (Tc(VI)). Nach Zugabe von H_2O_2 löst sich Li_7TcO_4 glatt auf. Beim Liegen an der Luft zersetzt es sich langsam auch unter Disproportionierung :

(1) $2 \operatorname{Tc}(V) \longrightarrow \operatorname{Tc}(VI) + \operatorname{Tc}(IV)$, (2) $3 \operatorname{Tc}(VI) \longrightarrow 2 \operatorname{Tc}(VII) + \operatorname{Tc}(IV)$.

Oberhalb 950°C wandelt sich $\text{Li}_{3}\text{TcO}_{4}$ in eine zweite Modifikation um. $\text{Li}_{3}\text{ReO}_{4}$ existiert in zwei Modifikationen. Scholder und Pfeiffer (24) konnten die α -Modifikation des $\text{Li}_{3}\text{ReO}_{4}$ (NaCl-Typ) bei 1000°C erhalten, nachdem sie die Temperatur- und Zeitabhängigkeit der Umwandlung untersucht hatten. Es wurde daher versucht, auch von $\text{Li}_{3}\text{TcO}_{4}$ die α -Modifikation zu erhalten. Bei einer Reaktionszeit von 10 Minuten blieb das β -Li₃TcO₄ bis 900°C unverändert. Zwischen 950 und 980°C konnten die entsprechenden Linien der α -Modifikation beobachtet werden. Eine reine Substanz konnte jedoch nicht er - halten werden.

3.3.1.2.3. Röntgenografische Untersuchungen

 $B-Li_{3}TcO_{4}$ ergab ein charakteristisches Röntgendiagramm (Abbildung 14), das eine Isotypie mit Li₄TcO₅ und $B-Li_{3}ReO_{4}$ (24) zeigt . Das Diagramm läßt sich nach Lang (42) orthorhombisch indizieren. Seine Gitterkonstanten be sitzen folgende Werte :

(zum Vergleich sind auch die Gitterkonstanten des B-Li_ReO₄ angegeben)

B-Li ₃ TcO4	$\frac{\text{B-Li}_{ReO_4}}{2}$ (24)
$a_{rh} = 5,038 \pm 0,002 \text{ Å}$	$a_{rh} = 5,013 \pm 0,002 \text{ Å}$
$b_{rh} = 8,726 \pm 0,002 \text{ Å}$	$b_{rh} = 8,673 \pm 0,002 \text{ Å}$
$c_{rh} = 29,02 \pm 0,02 \text{ Å}$	$c_{rh} = 29,22 \pm 0,01 \text{ Å}$
$c_{mon} = 9,817 \pm 0,01 \text{ Å}$	$c_{mon} = 9,88 \pm 0,01 \text{ Å}$
$\beta = 99,8^{\circ}$	$\beta = 96,4^{\circ}$
$right right = 4,31 \text{ g} \cdot \text{cm}^{-3}$	$P_{\text{rönt}} = 6,37 \text{ g} \cdot \text{cm}^{-3}$.

B-Li_zTcO_{μ} kann, der Indizierung nach, wie folgt formuliert werden :

$$Li_2 (Tc_{0,75} Li_{0,25}) \circ_3 = 0,75 Li_3 Tc_4$$

Aus der Auswertung des Röntgendiagramms der α -Modifikation ergab sich für die Elementarzelle :

$$a = 4,17 \pm 0,02 \text{ A}$$
 ($a_{\text{Re}} = 4,138 \text{ A}$)

Die exakte Schreibweise für α -Li₃TcO₄ lautet daher

$$(\text{Li}_{0,75}\text{Tc}_{0,25}) \circ = 0,25 \text{Li}_{3}\text{Tc}_{4}$$

mit statistischer Verteilung von Li und Tc auf die Gitterplätze des Na im NaCl-Gitter.

Erhitzt man Li₃TcO₄ längere Zeit auf 1030-1050°C, so erhält man laut Ausweis der röntgenografischen Untersuchung α -Li₄TcO₅, wobei auch die stärksten Linien vom metallischen Technetium erkennbar sind. An den kälteren Stellen der Ampulle setzt sich ein weißgrauer Niederschlag ab, der aus LiTcO₄ besteht. Nach diesen qualitativen Beobachtungen verläuft die Disproportionierung von Li₃TcO₄ wie folgt :

portionierung von $\text{Li}_{3}\text{TcO}_{4}$ wie folgt : ll $\text{Li}_{3}\text{TcO}_{4}$ $\xrightarrow{1030^{\circ}\text{C}}$ 8 $\text{Li}_{4}\text{TcO}_{5}$ + 2Tc + LiTcO₄.

In diesem Falle verhält sich das Technetium analog dem Rhenium.

3.3.1.3. Versuche zur Darstellung von Li_Tc0_ und Li_Tc0_

Nach der Reaktionsgleichung

5 LiTcO₄ + 2 Tc + 22 Li₂0
$$\longrightarrow$$
 7 Li₇TcO₆

wurde versucht, Li7Tc06 durch Symproportionierung zu erhalten.

Das fein gepulverte Ausgangsgemisch wurde je 48 Stunden auf 350, 480, 600 und 700°C erhitzt. Die dabei erhaltenen homogenen blauschwarzen Sub stanzen lösen sich in verdünnter Essigsäure unter Zugabe von H_2O_2 glatt auf.

Aus den Röntgenaufnahmen der Reaktionsprodukte konnte festgestellt werden, daß die Produkte Mischungen von $\text{Li}_{3}\text{TcO}_{4}$ und Li_{2} O waren (Tabelle 21).

<u>Tabelle 21</u> θ -Werte von "Li₇TcO₆" neben Li₃TcO₄ und Li₂O

"Li7	Ic06"	Li-	3TcO4	Li	2 ⁰
θ	I _{rel.}	9	I _{rel} .	θ	I _{rel.}
9,28	5	9,18	5		
16,84	4			16,78	5
18,03	4	18,09	5		
18,84	3	18,87	2		
19,69	1	19,71	l		
21,88	5	21,89	5		
23,92	3	23 , 91	4		
28,22	4			28,14	5
28,90	3	28,83	4		
31,80	5	31,61	4		
33,40	2	33,58	3	33,54	4
33,70	1				
37,69	1	37,84	3		
38,20	2	38,25	2		
40,25	3	40,34	1		

3.3.2. Das System Tc 05-Na 0

3.3.2.1. NaTcO3-

Nach den Reaktionsgleichungen

(1) $5 \text{ NaTcO}_4 + 2 \text{ Tc} + \text{Na}_2^0$ $\xrightarrow{500^{\circ}\text{C}}$ 7 NaTcO_3 (2) $2 \text{ TcO}_2 + \text{Na}_2^0 + \text{NaTcO}_4$ $\xrightarrow{500-800^{\circ}\text{C}}$ 3 NaTcO_3

wurde die Darstellung von NaTcO₃ versucht. Bis zu einer Reaktionstemperatur von 450°C wurden Röntgendiagramme erhalten, die stets die Reflexe des NaTcO₄ enthielten. Oberhalb 500°C wurde eine schwarze Substanz erhalten, deren Diagramm von den Diagrammen aller bekannten Na-Tc-O Verbindungen verschieden war. Bei der Reaktion (2) wurde ein Diagramm erhalten, das mit dem Diagramm der Reaktion gemäß Gleichung (1) identisch ist.

Die Substanz war schwarz gefärbt. Im Wasser war sie unlöslich, ging jedoch nach Zugabe von H_2O_2 in Lösung. Obwohl der Gesamt-Technetiumgehalt mit dem berechneten Wert gut übereinstimmte, konnte keine genaue O_v -Wertbestimmung durchgeführt werden, da sich die Substanz in Ce(IV)-Lösung selbst beim Kochen nicht vollständig löste. Die erhaltenen O_v -Werte betrugen Tc(VII) : $O_v = 1 : 0.80$ bis 1 : 0.91 (theoretisch 1 : 1.00).

Die Substanz zeigte keine Änderung der Reflexe bis zu einer Temperatur von 800°C. Eine Vergleichsmöglichkeit für NaTcO₃ gibt es nicht, da keine isotypen Verbindungen erhalten werden konnten.

3.3.2.2. Versuche zur Darstellung von Na₃TcO₄

Diese Versuche waren ohne Ergebnis. Erhitzt man eine Mischung gemäß den Gleichungen (1) $5 \operatorname{NaTcO}_4 + 2 \operatorname{Tc} + 8 \operatorname{Na}_2 0 \longrightarrow 7 \operatorname{"Na}_3 \operatorname{TcO}_4$ " (2) $2 \operatorname{TcO}_2 + \operatorname{NaTcO}_4 + 4 \operatorname{Na}_2 0 \longrightarrow 3 \operatorname{"Na}_3 \operatorname{TcO}_4$ "

in evakuierten Ampullen 10 bis 40 Stunden im Temperaturbereich von 300° C-550°C, so erhält man stets eine Mischung aus Na₄TcO₄ und NaTcO₄.

Eine Umsetzung von NaTcO₃ mit Na₂O nach
NaTcO₃ + Na₂O
$$\xrightarrow{400-800^{\circ}C}$$
 "Na₃TcO₄"

führte ebenfalls zu Na_4TcO_4 und $NaTcO_4$.

Es ergibt sich hieraus, daß Na₃TcO₄ sowohl durch Symproportionierung als auch durch "Basen"-Aufbau nicht zu erhalten ist.

3.4.1. Die Darstellung von TcO

In der Literatur sind mehrere TcO₂-Darstellungsmöglichkeiten angegeben. So kann z.B. TcO₂·2 H₂O durch Reduktion von Pertechnetat in Salzsäure durch metallisches Zink (43) oder durch Elektrolyse von neutralen bzw. alkalischen Pertechnetatlösungen zwischen Platinelektroden (44, 45) erhalten werden.

Durch Hydrolyse von $K_2 TcO_6$ im neutralen Medium (erhalten durch Reduktion von $NH_4 TcO_4$ mit KJ oder von $KTcO_4$ mit Hypophosphorsäure in konz. HCl) (43) wird ein reines TcO_2 erhalten.

Weiterhin kann man wasserfreies TcO_2 durch thermische Zersetzung von NH_hTcO_h im Vakuum erhalten (46).

Das in dieser Arbeit verwendete TcO₂ wurde unter Verwendung der beiden zuletzt genannten Methoden hergestellt.

3.4.1.1. Darstellung von TcO, durch Hydrolyse von K, TcCl6-

 $2 \text{ NH}_4 \text{TcO}_4 + 6 \text{ KJ} + 16 \text{ HCl} \longrightarrow 2 \text{ K}_2 \text{TcCl}_6 + 2 \text{ KCl} + 2 \text{ NH}_4 \text{Cl} + 3 \text{ J}_2 + 8 \text{H}_2 \text{O}$ $365 \text{ mg} \text{ NH}_4 \text{TcO}_4$ wurden mit 25 ml konz. HCl und l,15 g KJ 24 Stunden unter Rückfluß erhitzt. Das freie Jod wurde mit Thiosulfat zersetzt und die Lösung nach Verdünnung mit KOH neutralisiert. Dabei fiel schwarzes $\text{TcO}_2 \cdot \text{xH}_2 \text{O}$ aus, das abfiltriert und chlorfrei gewaschen wurde. Nach 10-stündigem Erhitzen im Vakuum (4 x 10⁻⁵ Torr) auf 250°C lag ein rei nes TcO_2 vor, wie aus der Analyse zu ersehen ist :

	gefunden	berechnet für TCO ₂			
% Тс	75,45-75,53	75,57			
Tc(VII):0 _v	1:1,51	1:1,50			

3.4.1.2. Darstellung von TcO2 durch thermische Zersetzung von NH4TcO4

Erhitzt man NH_4TcO_4 im Vakuum oder Argonstrom, so beginnt die Zersetzung bei 160 ± 5°C. Nach 3-4 Stunden Reaktionsdauer ist die Reaktion beendet:

In einer weiteren Versuchsreihe wurde der Einfluß der zeitlichen Temperaturänderung untersucht. Dabei stellte sich heraus, daß diese nur einen Einfluß auf die Reaktionsgeschwindigkeit hat. Der Druck im horizontalen Bereich der Kurve (P(t) in Abbildung 16) blieb immer derselbe.

Läßt man NH_4TcO_4 isotherm bei $400^{\circ}C$ zersetzen, so bildet sich zu Beginn der Zersetzung eine größere Menge Tc_2O_7 , wahrscheinlich durch die schnelle Zersetzung, was mit den Ergebnissen von A. Deschanvres (47) für ReO_2 über - einstimmt.

Die Analyse ergab :

	gefunden	berechnet für TcO ₂
% Tc	75,5	75 , 57
Tc(VII):0 _v	1:1,50	1:1,50

3.4.1.3. Eigenschaften und röntgenografische Untersuchungen

 TcO_2 ist eine schwarze Substanz. In Wasser ist sie unlöslich. TcO_2 löst sich unter Zugabe von H_2O_2 oder Ce(IV)-Lösung. Im Vakuum sublimiert es bei 850-900°C ohne Zersetzung.

Die Röntgenuntersuchungen lieferten ein Diagramm, welches eine Verwandtschaft mit der monoklinen Struktur von ReO₂, VO₂, WO₂, MoO₂ usw. (48) zeigt.

3.4.2. Das System TcO2-Li20

3.4.2.1. Li2TcO3-

3.4.2.1.1. Darstellung und analytische Untersuchungen

Li₂TcO₃ konnte sowohl durch Reaktion von TcO₂ mit Li₂O gemäß (1) TcO₂ + Li₂O → Li₂TcO₃ (400-500°C, 10-30 Std.) als auch durch Symproportionierung gemäß

(2) 4 LiTcO₄+ 3Tc+ 5Li₂0 \longrightarrow 7 Li₂TcO₃ (450-650°C, 30-70 Std.)

erhalten werden.

Während die Reaktion (1) schnell und bei relativ niedrigen Temperaturen verläuft (400-500°C), benötigt die Symproportionierungsreaktion höhere Temperaturen (450-650°C) und längere Reaktionszeiten (30-70 h), um ein reines Präparat zu erhalten.

Die Analyse des schwarzen Li_oTcO₃ ergab :

	gefunden berechnet			
	Reakt. 1	Reakt. 2	für Li ₂ Tc0 ₃	
% Тс	61,5	61,4	61,53	
Tc(VII) : O _v	1:1,49	1:1,48	1:1,50	-

3.4.2.1.2. Eigenschaften

 Li_2TcO_3 ist eine schwarze Substanz, die gegenüber Wasser stabil ist, wie folgender Versuch zeigt :

6,83 mg der Substanz wurden mit H₂O l h unter N₂-Atmosphäre erhitzt, abzentrifugiert und in der überstehenden Lösung das Tc bestimmt. Dabei ergab sich folgender Wert :

$$\frac{\text{Tc (im Niederschlag)}}{\text{Tc (im Dekantat)}} = \frac{1}{\langle 10^{-3} \rangle}$$

Analyse und Röntgenuntersuchung des Niederschlages zeigten, daß reines $\text{Li}_2^{\text{TcO}}_3$ vorlag.

Fügt man zu der Aufschlemmung des Li_2TcO_3 im Wasser H_2O_2 hinzu, so löst sich Li_2TcO_3 vollständig auf. Li_2TcO_3 ist thermisch bis mindestens 900°C stabil.

3.4.2.1.3. Röntgenografische Untersuchungen

 Li_2TcO_3 konnte nach Lang (42) analog Li_4TcO_5 und Li_3TcO_4 indiziert werden. Seine Gitterkonstanten betragen :

$$a_{rh} = 4,988 \pm 0,002 \text{ Å}$$

$$b_{rh} = 8,639 \pm 0,002 \text{ Å}$$

$$c_{rh} = 29,63 \pm 0,02 \text{ Å}$$

$$c_{mon} = 10,01 \pm 0,03 \text{ Å}$$

$$\beta = 99,4^{\circ}$$

$$Q_{ront} = 5,02 \text{ g} \cdot \text{cm}^{-3}.$$

Versuche zur Darstellung einer Li₂^{TcO}-Modifikation mit NaCl-Struktur schlugen fehl. Bis 900[°]C blieb die monokline Struktur unverändert (Erhitz dauer 10 min bis 24 h). Nur die Rückstreureflexe wurden aufgespalten.

Oberhalb 1000° C erleidet Li₂TcO₃ thermische Zersetzung unter Bildung von metallischem Technetium.

Es sei hier bemerkt, daß die Darstellung eines ternären Oxids im System Li₂O-ReO₂ nicht gelungen ist.

Abbildung <u>17</u>

Strichdiagramm von Li2TcO3

3.4.2.2. Versuche zur Darstellung von Li₄TcO₄ und Li₈TcO₆

Erhitzt man Gemische von $TcO_2 + Li_2O$ im Verhältnis 1:2 bzw. 1:4 in evakuierten Ampullen in einem Temperaturbereich von 400-600°C (je 10-24 h), so erhält man immer homogene schwarze Produkte, die eine Mischung von Li_2TcO_3 und Li_2O darstellen. Die Reaktionen verlaufen also :

- (1) $\operatorname{TcO}_2 + 2 \operatorname{Li}_2 0 \longrightarrow \operatorname{Li}_2 \operatorname{TcO}_3 + \operatorname{Li}_2 0$,
- (2) $\operatorname{TcO}_2 + 4 \operatorname{Li}_2 0 \longrightarrow \operatorname{Li}_2 \operatorname{TcO}_3 + 3 \operatorname{Li}_2 0$.

Zum selben Ergebnis führt auch die Symproportionierungsreaktion aus $LiTcO_{\mu}$, Tc und $Li_{2}O_{2}$.

Nach der Extraktion des Li_20 mit H_20 in N_2 -Atmosphäre bleibt reines Li_2TcO_3 zurück, was aus der Röntgenuntersuchung und chemischen Analyse bestätigt werden konnte.

Die Nichtexistenz von Li_8TcO_6 schließt unter diesen Reaktionsbedingungen ebenfalls die Existenz des Li_6TcO_5 aus.

3.4.3. Das System TcO2-Na20

3.4.3.1. Na2TcO3-

3.4.3.1.1. Darstellung und analytische Untersuchungen

3.4.3.1.1.1. Symproportionierung von Tc(VII) und Tc(0)

Gemäß der Reaktion

4 NaTcO₄ + 3 Tc + 5 Na₂O \longrightarrow 7 Na₂TcO₃

wurde das fein gepulverte Ausgangsgemisch in evakuierter Ampulle 2 x 20 Stunden auf 320 bzw. 360° C erhitzt. Dabei entstand eine olivgrüne Substanz, die stark gesintert war.

Die Analyse ergab :

	gefunden	berechnet für Na ₂ TcO ₃
% Тс	51,2	51,30
Ic(VII) : O _v	1:1,49	1:1,50

- 46 -

3.4.3.1.1.2. Die Reaktion TcO₂ + Na₂O

Erhitzt man ein Gemisch $Na_2^{0+Tc0}_2 = 1:1$ in evakuierter Ampulle, so ändert sich die Farbe des Ausgangsgemisches schon bei $220^{\circ}C$. Bei einer Reak - tionsdauer von 20 bis 40 Stunden bei $300-450^{\circ}C$ erhält man ein olivgrüne Substanz, deren Röntgendiagramm dem von $Na_2^{Re0}_3$ gleicht. Die Analyse ergab :

	gefunden	berechnet für Na ₂ TcO ₃
% Тс	51,3	51,30
Tc(VII) : O _v	1:1,50	1:1,50

3.4.3.1.2. Eigenschaften

 $Na_2 TcO_3$ ist in Wasser praktisch unlöslich, wie folgender Versuch zeigt : Eine eingewogene Menge von $Na_2 TcO_3$ wurde 1/2 Stunde mit Wasser in N_2 -Atmos - phäre geschüttelt, abzentrifugiert und abdekantiert. Nach gutem Abspülen des Niederschlages wurde das Technetium in Lösung und im Niederschlag bestimmt. Dabei ergab sich ein Wert von $\frac{Tc (Niederschlag)}{Tc (Lösung)} = \frac{1}{\sqrt{0,02}}$. Die überstehende Lösung ist schwach grün gefärbt. Sie entfärbt sich jedoch rasch unter Niederschlagsbildung. Eine spektrophotometrische Untersuchung der schwach-grünen Lösung lieferte ein Absorptionsspektrum ohne diskreten Absorptionsbanden.

 Na_2TcO_3 ist bis etwa 500°C thermisch stabil. Oberhalb 550°C tritt Zer - setzung ein. Wie aus dem Röntgendiagramm festgestellt werden konnte, disproportioniert hierbei Na_2TcO_3 zu metallischem Technetium und Na_3TcO_5 . Die in Frage kommende Dispoportionierungsreaktion verläuft nach

$$7 \operatorname{Na_2TcO_3} \xrightarrow{500^{\circ}C} 4 \operatorname{Na_3TcO_5} + 3Tc + \operatorname{Na_2O}$$

3.4.3.1.3. Röntgenografische Untersuchung

Na₂TcO₃ lieferte ein Röntgendiagramm (Abbildung 18), das mit dem Dia gramm von Na₂ReO₃ nahezu identisch ist. Das Diagramm ist nicht hochsymme trisch indizierbar.

3.4.3.2. Na4TcO4

3.4.3.2.1. Darstellung und analytische Untersuchungen

3.4.3.2.1.1. Symproportionierung von Tc(VII) und Tc(0)

Gemäß der Gleichung

4 NaTcO₄ + 3 Tc + 12 Na₂O \longrightarrow 7 Na₄TcO₄

wurde Na_4TcO_4 bei einer Temperatur von 350°C erhalten. Es genügte eine Reaktionszeit von 2 x 8 h, um ein reines Präparat zu erhalten. Die Analyse der auf diese Weise erhaltenen rostbraunen Substanz ergab :

	gefunden	berechnet für Na ₄ TcO ₄
% Тс	38,8	38,83
Tc(VII) : O _v	1:1,50	1:1,50

3.4.3.2.1.2. Die Reaktion TcO2 + Na20

Erhöht man bei der Festkörperreaktion von TcO_2 mit Na_2O das Verhältnis $TcO_2:Na_2O$ auf 1:2, so bekommt man bei 430-460°C eine rostbraune Substanz, deren Röntgendiagramm vom Diagramm des Na_2TcO_3 verschieden ist. Unterhalb 400°C bildet sich nur Na_2TcO_3 . Die Analyse ergab folgende Werte :

	gefunden	berechnet für Na ₄ TcO ₄
% Тс	<i>3</i> 8,8	38,83
Tc(VII) : O _v	1:1,51	1:1,50

3.4.3.2.2. Eigenschaften

 Na_4TcO_4 ist eine rostbraune Substanz, die gegen Luft und Wasser instabil ist. Selbst in der Trockenbox tritt rasche Zersetzung ein, wobei die Substanz eine dunkelgrüne Farbe bekommt (Na_2TcO_3). Auch mit Wasser tritt Hydrolyse zu TcO_2 ein. Die überstehende Lösung ist schwach grün gefärbt (s. Na_2TcO_3). Nach kurzer Zeit fällt TcO₂ aus.

Erstaunlicherweise zeigt Na_4TcO_4 eine große thermische Stabilität (bis $800^{\circ}C$). Bei höheren Temperaturen disproportioniert Na_4TcO_4 zu Na_3TcO_5 bzw. Na_5TcO_6 und metallischem Technetium.

3.4.3.2.3. Röntgenografische Untersuchungen

 Na_4TcO_4 lieferte ein charakteristisches Diagramm, das sich vom Diagramm des Na_2TcO_3 unterscheidet. Als Vergleichssubstanz konnte keine Re-Verbindung verwendet werden, da kein Na_4ReO_4 existiert.

 Na_4TcO_4 zeigte dagegen Isotypie mit Na_4SnO_4 (Abbildung 19) (dargestellt aus $SnO_2 + 2 Na_2O$ im Vakuum bei 550°C. Die beiden Diagramme sind nicht hochsymmetrisch indizierbar. (Na_4SnO_4 wurde erstmals von Zintl und Morawietz (61) erhalten.

Abbildung 19 Stri

Strichdiagramme von $Na_{\mu}TcO_{\mu}$ und $Na_{\mu}SnO_{\mu}$

3.4.3.3. Versuche zur Darstellung von Na8TcO6-

Entsprechend den Reaktionen

(1) $TcO_2 + 4 Na_2O \longrightarrow Na_8TcO_6$

(2) $4 \text{NaTcO}_4 + 3 \text{Tc} + 26 \text{Na}_2 0 \longrightarrow 7 \text{Na}_8 \text{TcO}_6$

wurde es versucht, Na_8TcO_6 zu erhalten. In einem Temperaturbereich von 300-500°C wurden stets Na_2TcO_3 bzw. Na_4TcO_4 erhalten.

Die Nichtexistenz von Na8TcO6 schließt auch die Existenz von Na6TcO5 aus.

3.5.1. Das System Tc 03-Li 0

3.5.1.1. Versuche zur Darstellung von LiTco2

Gemäß den Gleichungen

(1) $3 \operatorname{LiTcO}_{4} + 4\operatorname{Tc} + 2 \operatorname{Li}_{2}^{0} \xrightarrow{400-750^{\circ}\mathrm{C}} 7 \operatorname{"LiTcO}_{2}^{\circ}$, (2) $3 \operatorname{TcO}_{2} + \operatorname{Tc} + 2 \operatorname{Li}_{2}^{0} \xrightarrow{500-1000^{\circ}\mathrm{C}} 4 \operatorname{"LiTcO}_{2}^{\circ}$

wurden fein gepulverte Ausgangsgemische 10 bis 150 Stunden auf verschiedene Temperaturen erhitzt. Dabei wurde stets eine Mischung aus Li₂TcO₃, metallischem Technetium und TcO₂ erhalten. Die Reaktion verläuft also gemäß :

(1') $3 \operatorname{LiTcO}_4 + 4\operatorname{Tc} + 2 \operatorname{Li}_2 0 \longrightarrow {}^{14}\!\!\!/_4 \operatorname{Li}_2 \operatorname{TcO}_3 + {}^{7}\!\!/_4 \operatorname{Tc} + {}^{7}\!\!/_4 \operatorname{Tc}_2$, (2') $3 \operatorname{TcO}_2 + \operatorname{Tc} + 2 \operatorname{Li}_2 0 \longrightarrow 2 \operatorname{Li}_2 \operatorname{TcO}_3 + \operatorname{Tc} + \operatorname{TcO}_2$.

Eine Bildung von LiTcO₂ wurde dabei nicht beobachtet. Es sei hier jedoch bemerkt, daß im System Re_2O_3 -Li₂O LiReO₂ dargestellt wurde (24). Es besitzt NaCl-Struktur mit a = 4,095 Å.

3.5.2. Das System Tc 0. - Na 20

3.5.2.1. NaTcO2-

Nach den Gleichungen

(1)
$$2\text{TcO}_2 + 2\text{Tc} + \text{NaTcO}_4 + 2\text{Na}_2 0 \xrightarrow{500-800^{\circ}\text{C}} 5 \text{NaTcO}_2$$

(2) $3\text{TcO}_2 + \text{Tc} + 2\text{Na}_2 0 \xrightarrow{400-650^{\circ}\text{C}} 4 \text{NaTcO}_2$

wurden Gemische der Ausgangssubstanzen in evakuierten Ampullen 10 bis 50 Stunden auf verschiedene Temperaturen erhitzt. Die Röntgenuntersuchungen zeigten, daß ab 600°C eine Substanz vorlag, deren Diagramm von allen ternären Oxiden im System Tc-Na verschieden war. Die Substanz war tief-violett gefärbt. In Wasser war sie unlöslich. Nach Zugabe von H_2O_2 ging sie langsam in Lösung. Wie im Falle von NaTcO₃ konnte auch hier kein definierter O_v -Wert erhalten werden, da die Substanz mit Ce(IV)-Lösung nicht vollständig in Lösung gebracht werden konnte. Die erhaltenen O_v -Werte lagen zwischen 1,75 und 1,80 (theore - tisch 2,00).

Bis 850°C zeigte die Substanz auf dem Diagramm keine Änderung der Reflexe. Versuche zur Darstellung isotyper Verbindungen und anderer Elemente brachten nicht das gewünschte Ergebnis.

Abbildung 20

Strichdiagramm von NaTcO2

4. VERGLEICHE ZWISCHEN DEN TERNÄREN OXIDEN DER ELEMENTE DER 7. NEBENGRUPPE DES PERIODENSYSTEMS

Nach Magnus (49) und Hartmann (50) ist eine Berechnung der Bindungs energie von Sauerstoffkomplexen bei Kenntnis der Ionenradien und der elektrostatischen Kräfte möglich, d.h. kann man genaue Angaben über die zu erwartende Kristallstruktur in einem System Metall-Sauerstoff machen, so gelingt eine Berechnung der Gitterenergie der zu erwartenden Verbindung. Man erhält nach dieser Methode die Gittermaximalenergie.

Experiment und Rechnung weisen jedoch noch größere Diskrepanzen auf. Manche Verbindungen, die nach der Rechnung sehr instabil sein sollten, zeigen sich im Experiment als sehr stabil. Dies ist zum großen Teil daraus herzuleiten, daß von den meisten ternären Oxiden die Kristallstrukturen nicht bekannt sind und man deshalb nur angenäherte Werte in die Rechnung einsetzen kann. Berechnet man nach Magnus die Stabilität der Metall-Sauerstoffanordnung verschiedener Wertigkeitsstufen des Technetiums, so erhält man die in Tabelle 22 angegebenen Daten.

		2.2.2			10		(
Anard- nung	einander gegenüber	gleichæit. Dreieck	Tetraeder	gleichseit. Fünfeck	Oktaeder	gleichseit. Siebeneck	Würfel
KZ Wertig- keit	2	3	4	5	6	7	8
VII			[Tc04] 41,30	[Tc0 ₅] ³⁻ 42,40	[Tc0 ₆] ⁵⁻ 44,16	[Tc0 ₇] ⁷⁻ 33,60	[Tc08] ⁹⁻ 32,96
VI		[Tc0 ₃]° 29,04	[Tc04] ²⁻ 33,28	[Tc0 ₅] ⁴⁻ 22,40	[Tc0 ₆] ⁶⁻ 32,16	[Tc0 ₇] ⁸⁻ 14,84	[Tc0 ₈] ¹⁰⁻ 6,4
v		[Tc0 ₃] ⁻ 23,04	[Tc0 ₄] ³⁻ 24,80	[Tc0 ₅] ⁵⁻ 22,40	[Tc0 ₆] ⁷⁻ 20,16	[Tc0 ₇] ⁹⁻ 5,6	
IV	[TcO ₂]° 14,00	[Tc0 ₃] ²⁻ 12,96	[Tc04] ⁴⁻ 17,28	[Tc0 ₅] ⁶⁻ 2,40	[Tc0 ₆] ⁸⁻ 8,16		
III	[Tc0 ₂] ⁻ 10,00	[Tc0 ₃] ³⁻ 4,54	[Tc0 ₄] ⁵⁻ 9,28	[Tc0 ₅] ⁷⁻ 2,4			

Tabelle 22

Zur Stabilität verschiedener Metallsauerstoffanordnungen in ternären Oxiden des Tc nach Magnus (49)(willkürl.Einheiten) Aus dieser Tabelle ist die bevorzugte Existenz der Ionen $(X^{VII}O_6)^{5-}$, $(X^{VI}O_6)^{6-}$, $(X^{VO}O_4)^{3-}$, $(X^{IV}O_4)^{4-}$ und $(X^{III}O_2)^{-}$ zu ersehen, was im Prinzip mit den Ergebnissen dieser Arbeit übereinstimmt, obwohl zahlreiche weitere ternäre Oxide, die laut dieser Berechnungen existent sein sollen, nicht erhalten wurden. Daher ist das Experiment noch immer das wichtigste Hilfsmittel zur Klärung der chemischen Verhältnisse in Metall-Sauerstoff - Verbindungen.

Vergleicht man die Typen der im System Me^{I} -Tc-O (Me^{I} = Li,Na) gebildeten ternären Oxide sowie deren Eigenschaften mit analogen Verbindungen der Elemente der 7.Nebengruppe des Periodensystems, so findet man die zu erwartende starke Verwandtschaft des Technetiums mit Rhenium. Falls Unterschiede zu bemerken sind, so sind diese mehr von graduellem als von prinzipiellem Charakter.

So ist z.B. die thermische Stabilität von ternären Oxiden des Tc(VII) geringer als die von entsprechenden Verbindungen des Re(VII). In noch viel stärkerem Maße ist die Abnahme der thermischen Stabilität bei den Erdalkaliverbindungen zu beobachten.

 $Ba(ReO_4)_2$ z.B. schmilzt unzersetzt bei 799°C (51), während bei $Ba(TcO_4)_2$ schon ab 200°C Sauerstoffabgabe zu beobachten ist (52). In dem Maße, wie die thermische Stabilität der höherwertigen Technetiumverbindungen abnimmt, nimmt die Stabilität der niederen Wertigkeitsstufen zu. Während die Darstellung von Na₂ReO₃ nur unter besonders ausgewählten Bedingungen möglich ist, die die Disproportionierung des Re(IV) nach Re(VII) + Re(O) vermeidet, tritt bei Na₂TcO₃ eine derartige Disproportionierung erst bei 550°C ein.

Noch augenfälliger ist die Stabilisierung von Tc(IV) im System $Li_2^{0}-TcO_2$ zu erkennen. Bei Versuchen im Verhältnis $Li_2^{0}:ReO_2 = 1:1$ ist keine Bildung von Li_2ReO_3 zu beobachten, vielmehr finden sich als Produkte dieser Reaktion $LiReO_2 + Li_6ReO_6$ (24). Da jedoch die Bildung von $LiReO_2$ durch direkte Syn these nicht möglich ist, muß eine intermediäre Bildung von Li_2ReO_3 angenommen werden. Dieses disproportioniert jedoch innerhalb kürzester Zeit, so daß selbst sein Nachweis nicht gelungen ist. Dagegen ist Li_2TcO_3 sehr stabil, selbst bei $800^{\circ}C$ ist noch keine Disproportionierung zu bemerken. Dies hatte zur Folge, daß LiTcO₂ nicht erhalten werden konnte.

In diesem Verhalten zeigt Tc(IV) eine nahe Verwandtschaft mit dem Mn(IV), so daß eine Beziehung des Technetiums zu seiner niederen Homologen erhalten wurde. Dies äußert sich weiterhin darin, daß das dem Na_4MnO_4 analoge Na_4TcO_4 dargestellt werden konnte, während Versuche zur Darstellung von Li₄XO₄

(X = Mn,Tc) stets negativ vorliegen. Mit dieser Beobachtung steht die Be rechnung der Stabilität nach Magnus in Einklang, d.h. Na₄TcO₄ soll eine größere Stabilität aufweisen als ${\rm Li}_4 {
m TcO}_4$. Die Umwandlungstemperaturen zwischen polymorphen Modifikationen eines bestimmten Formeltyps liegt bei den ternären Oxiden des Technetiums niedriger als bei den Rheniumverbindungen. Dies ist darauf zurückzuführen, daß die Bindungsfestigkeit der Re-O Bindung größer ist als diejenige der Tc-O Bindung.

Vergleicht man das Elementarvolumen entsprechender Verbindungen des Tc und Re (Tabelle 23), um einen Überblick über die relative Größe der Ionen radien zu erhalten, so stellt man fest, daß der Radius der sechswertigen Ionen etwa der gleiche ist, Tc(VII) einen etwas kleineren Ionenradius als Re(VII) besitzt, während der Radius von Tc((VI) größer ist als derjenige von Re((VI), wobei die Differenz mit abnehmender Wertigkeit der Ionen größer wird.

Tabelle	23	1
		(

Volumina der Elementarzellen für die isotypen Verbindungen des Rheniums und Technetiums

Wer-		$Volumen_{(Elementarzelle)}$ (Å) ³		V _{Re}	
keit		X = Re	X = Tc	V _{Tc}	
VII	NH4XO4	449,2	446,1	1,00	
	KXO ₄	409,0	407,9	1,00	
	NaXO ₄	<i>3</i> 71,6	338,4	1,09	
	RbX04	443 , 4	448,9	0,99	
	AgXO4	341,4	335,6	1,02	
	CsXO ₄	465,5	486,9	0,96	
	Tlxo ₄	432,9	425,2	1,02	
	L15 ^{XO} 6	314,18	310,18	1 , 01	
	ß-Li ₄ XO ₅	1253,2	1265,2	0,99	
VI	$Li_{2}(X_{0,6}Li_{0,4})^{0}$				
	B-Li6X06	314,21	313 , 62	1,00	
	B-Li ₃ XO4	1270,4	1275,7	0,99	
v	$Li_2(X_{0,75}Li_{0,25})^0_3$				
	a-LizXO4	70,85	72,51	0,98	
I	к ₅ х(сл) _б	1741,2	1771,9	0,98	(53)

Beim Vergleich der ternären Oxide der Elemente der 7.Nebengruppe des Periodensystems ergibt sich damit eine nahe chemische Verwandtschaft des Technetiums mit dem Rhenium, wenngleich auch Beziehungen zu Mangan eindeutig vorhanden sind. Von einer echten Mittelstellung des Technetiums zwi schen Mangan und Rhenium kann nicht gesprochen werden.

5. AUSGANGSSUBSTANZEN

Als Ausgangsmaterial zur Darstellung von höhersauerstoffkoordinierten Alkalioxotechnetaten dienten Alkalioxotechnetate(VII), die nach den in 3.1.1.1. beschriebenen Methoden dargestellt wurden. Ihre Reinheit (geprüft durch Tc-Bestimmung) betrug mindestens 99,5 %.

Die weiterhin verwendeten Substanzen waren von größtmöglicher Reinheit, zumeist p.a. Präparate verschiedener Firmen. Li_2^0 wurde in einer Reinheit von 99 % durch Entwässerung von LiOH im Hochvakuum bei 800°C dargestellt. Na₂0 wurde nach der Methode von Klemenc (54) aus NaOH + Na erhalten.

Das 99 Tc wurde von der USAEC mit einer Reinheit von $_{99,5\%}$ in Form einer Lösung von NH₄TcO₄ geliefert. Technetium-Metall wurde durch Reduktion von NH₄TcO₄ mit H₂ bei 500-600°C erhalten.

6. ANALYTISCHER TEIL

6.1. Bestimmung des Technetiums

In der Literatur sind mehrere Angaben über die Bestimmungsmethoden für Technetium aufgeführt. Analog dem Rhenium bildet auch Technetium eine Reihe von schwerlöslichen Salzen wie z.B. mit Tetraphenylarsoniumazetat oder Nitron, die für seine quantitative Bestimmung verwendet werden können.

Weiterhin kann das Technetium spektralphotometrisch mittels Toluol-3,4dithiol (55) (450 mµ; molare Extinktion ca. 15000), Thiocyanat nach Reduktion zu Tc(V) mit Ascorbinsäure (56) (585 mµ; molare Extinktion ca. 16500), Thioglykolsäure (57) (655 mµ; molare Extinktion ca. 1800), durch Messung der Absorption des Tc(VII) im UV (58) (244 und 287,5 mµ; molare Extinktion 6220 bzw.2360, Abbildung 21) polarografisch und coulometrisch (59) bestimmt werden.

Absorptionsspektren von TcO_{4}^{-4} (ca.l, $3xlO^{-4}$ m) in wässriger Lösung Bei der Durchführung dieser Arbeit wurde das Technetium entweder gravimetrisch mit Nitron oder photometrisch mit Thioglykolsäure bestimmt. Die vollständige Fällung als Nitronpertechnetat wurde durch Messung der B-Aktivität des Filtrats mit Hilfe eines Flüssigkeitszählers geprüft. Dieselbe Methode wurde auch angewandt bei Untersuchungen der Beständigkeit von ternären Oxiden gegenüber Wasser.

6.1.1. Bestimmung des Technetiums mit Nitron

Die Bestimmung wurde nach den Angaben von Geilmann und Voigt (60) für Rhenium durchgeführt. Das Technetium mußte als siebenwertiges Ion vorlie gen. Verbindungen des niederwertigen Technetiums mußten mit H₂O₂ zu Tc(VII) oxydiert werden.

Die mit Essigsäure schwach angesäuerte Lösung des Technetiums wurde im Wasserbad erwärmt und das Technetium mit 5 %iger Nitronazetatlösung ausge – fällt. Es wurde dabei soviel Nitron zugegeben, daß 0,3-0,5 % Nitronazetat als Überschuß verblieben. Die Lösung wurde 3-4 Stunden im Eisbad unter häufigem Umrühren belassen und der Niederschlag $C_{20}H_{16}N_4$ HTcO₄ nach Filtra – tion durch eine Fritte mit 0,3 %iger Nitronazetat-Lösung gewaschen (10-20cm³ Waschflüssigkeit in 3-5 Portionen). Anschließend wurde der Niederschlag mit eiskalter, gesättigter Nitronpertechnetat-Lösung gewaschen. Nach zweistündigem Trocknen bei 105-110[°]C wurde der Niederschlag gewogen.

6.1.2. Bestimmung des Technetiums mit Thioglykolsäure (56)

Die zur Tc-Bestimmung verwendete Probe wurde in einen 5 ml Meßkolben gegeben und 1 ml 1-molare Natriumazetat-Lösung als Pufferlösung sowie 1 ml 1 %ige Thioglykolsäure-Lösung mit einem pH-Wert von 8,0±0,1 zugegeben. Der Meßkolben wurde 20 Minuten im Wasserbad erhitzt. Dabei nahm die Lösung eine smaragdgrüne Farbe an. Nach Abkühlung wurde der Meßkolben mit destilliertem Wasser bis zur Markierung aufgefüllt. Dabei wurde darauf geachtet, daß die Lösung den pH-Wert von 8,0±0,2 nicht veränderte. Die Absorption der Lösung wurde in 1 cm Küvetten gegen eine Blindprobe gemessen (Abbildung 22) und aus der Eichkurve (Abbildung 23) der Gehalt an Technetium bestimmt.

Abbildung 22

Absorptionsspektrum von Tc(VII)-Lösung mit Thioglykolsäure (Es sei hier bemerkt, daß die Tc-Konzentration in der Endlösung zwischen 20 und 40 μ g/ml liegen muß, um gute Ergebnisse zu bekommen.)

Abbildung 23

6.2. Bestimmung des Oxydationswertes 0 des Technetiums

Die Einwaagen der niederwertigen Technetium-Verbindungen wurden mit einer genau abgemessenen Menge $n/_{50} Ce(SO_4)_2$ -Lösung versetzt und im Wasserbad bis zur vollständigen Oxydation zu Tc(VII) erhitzt. Das überschüssige $Ce(SO_4)_2$ wurde mit $n/_{50}$ FeSO₄-Lösung gegen Ferroin zurücktitriert. Für die FeSO₄-Lösung wurde eine Ag-Reduktorbürette verwendet.

7. ZUSAMMENFASSUNG

In der vorliegenden Arbeit wurden die Systeme Li-Tc-O und Na-Tc-O mittels chemischer und röntgenografischer Methoden untersucht.

7.1. Verbindungen des siebenwertigen Technetiums

- 7.1.1. Mehrere Verbindungen des Typs Me^ITcO₄ (Me^I = NH₄,Li,Na,K,Cs,Rb,Ag,Tl) wurden dargestellt. NH₄TcO₄, NaTcO₄, KTcO₄, RbTcO₄ und AgTcO₄ besitzen Scheelitstruktur, während CsTcO₄ und TlTcO₄ orthorhombische Struktur aufweisen.
 Die Gitterkonstanten dieser Verbindungen wurden bestimmt und mit den in der Literatur teilweise angegebenen Werten verglichen. Die Lös lichkeit der schwerlöslichen Verbindungen CsTcO₄, AgTcO₄ und TlTcO₄ wurde in Abhängigkeit der Temperatur gemessen und die Lösungswärme berechnet.
- 7.1.2. Im System Tc_2O_7 -Li_2O wurde Li_5TcO_6 als basenreichste Verbindung erhalten. Li_5TcO_5 konnte nicht dargestellt werden. Das dunkelbraune Li_5TcO_6 ist isotyp mit Li_5ReO_6. Es kristallisiert im hexagonalen Gitter. Seine Gitterkonstanten besitzen folgende Werte : a = 5,04 Å; c = 14,10 Å; c/a = 2,80.
- 7.1.3. Im System Tc₂O₇-Na₂O konnten Na₃TcO₅ und Na₅TcO₆ erhalten werden. Beide Verbindungen sind isotyp mit den entsprechenden Rheniumverbindungen.
- 7.1.4. Im System Tc₂0₇-K₂0 gelang die Darstellung von K₃TcO₅. Versuche zur Darstellung von K₅TcO₆ schlugen fehl.

7.2. Verbindungen des sechswertigen Technetiums

7.2.1. Im System TcO_3 -Li₂O konnten Li₆TcO₆ und Li₄TcO₅ in zwei Modifikationen erhalten werden. Das dunkelgrüne B-Li₆TcO₆ ist isotyp mit Li₅TcO₆. Seine hexagonalen Gitterkonstanten betragen : a = 5,05 Å; c = 14,20 Å; c/a = 2,81. Oberhalb 320°C wandelt sich $B-Li_6TcO_6$ in das blauschwarze $\alpha-Li_6TcO_6$ um.

Das blauschwarze $B-Li_4TcO_5$ besitzt Lang-Struktur. Seine orthorhombischen Gitterkonstanten betragen :

a = 5,055 Å ; b = 8,755 Å ; c = 28,59 Å . Oberhalb 800° C wandelt sich B-Li₄TcO₅ in die α -Modifikation (schwarz) um.

Versuche zur Darstellung von LigTcO_h schlugen fehl.

7.2.2. Im System TcO₃-Na₂O konnte keine Verbindungsbildung beobachtet werden. Bei entsprechenden Versuchen bildeten sich stets Gemische aus ternären Oxiden des Tc(VII) und Tc(IV).

7.3. Verbindungen des fünfwertigen Technetiums

7.3.1. Im System Tc₂O₅-Li₂O wurde Li₃TcO₄ mit zwei Modifikationen dargestellt.
B-Li₃TcO₄ besitzt Lang-Struktur mit folgenden orthorhombischen Git - terkonstanten :

a = 5,038 Å; b = 8,726 Å; c = 29,02 Å. Bei ca. $950^{\circ}C$ wandelt sich B-Li₃TcO₄ in die α -Modifikation um. α -Li₃TcO₄ ist kubisch (Kochsalztyp) mit a = 4,17 Å. Versuche zur Darstellung von LiTcO₃, Li₅TcO₃, Li₇TcO₆ schlugen fehl.

7.3.2. Im System Tc₂O₅-Na₂O wurde NaTcO₃ erhalten. Versuche zur Darstellung einer mit NaTcO₃ isotypen Verbindung waren ohne Erfolg wie auch Versuche zur Darstellung von Na₃TcO₄.

7.4. Verbindungen des vierwertigen Technetiums

7.4.1. Im System TcO_2 -Li₂O konnte Li₂TcO₃ erhalten werden. Es besitzt Lang-Struktur mit folgenden orthorhombischen Gitterkonstanten : a = 4,988 Å; b = 8,639 Å; c = 29,63 Å.

Versuche zur Darstellung von Li_4TcO_4 , Li_6TcO_5 und Li_8TcO_6 verliefen stets negativ.

7.4.2. Im System TcO₂-Na₂O konnten das olivgrüne Na₂TcO₃ und das rostbraune Na₄TcO₄ erhalten werden. Na₂TcO₃ ist isotyp mit Na₂ReO₃, während für Na₄TcO₄ die isotype Verbindung Na₄SnO₄ dargestellt werden konnte.

Versuche zur Darstellung von NagTcO₆ schlugen fehl.

7.5. Verbindungen des dreiwertigen Technetiums

- 7.5.1. Im System $Tc_2 O_3$ -Li_2 waren sämtliche Versuche zur Darstellung von LiTcO_2 ohne Ergebnis.
- 7.5.2. Im System Tc₂O₃-Na₂O konnte ein ternäres Oxid der Zusammensetzung NaTcO₂ erhalten werden. Versuche zur Darstellung einer mit NaTcO₂ isotypen Verbindung waren ohne Erfolg.

8. LITERATURVERZEICHNIS

Nature 159, 24 Perrier C., Segrè E. (1947) 1. Mattauch J. Z.Physik <u>91</u>, 361 (1934) 2. J.Chem.Phys. 5, 712 (1938) Perrier C., Segrè E. 3. Phys.Rev. <u>52</u>, 1252 (1937) 4. Segrè E., Cacciapuoti B.W. Perrier C., Segrè E. J.Chem.Phys. 7, 155 (1939) 5. J.Chem.Educ. <u>39</u>, 436 (1962) Kenna B.T. 6. Naturw. 13, 567 (1925) Noddack W., Tacke I. 7. Z.Naturforschg. 9, 907 (1954) 8. Herr W. Nucleonics <u>13</u>, 68 (1955) Nature <u>176</u>, 299 (1955) Alperowitsch E., Miller J. 9. J.Phys.Chem. <u>24</u>, 622 (1956) Anders E., Sen Serma R., Kato P. 10. J.Phys.Chem. 60, 707 (1956) 11. Boyd G.E., Larson Q. Fried S., Jaffey A.H., Hall N.F., Phys.Rev. 81, 741 (1951) 12. Glendenin L.E. Phys.Rev. <u>57</u>, 552 (1940) Segrè E., Wu G.S. 13. J.Chem.Educ. 36, 3 (1959) 14. Boyd G.E. Rev.Mod.Phys. 30, 385 (1958) Hollander J., Seaborg G. 15. UCRL - 98 (1948) 16. Hamilton J.G. Am.J.Physiol. <u>185</u>, 71 (1956) Bauman E.J. 17. J.Am.Chem.Soc. <u>74</u>, 1852 (1962) 18. Cobble J.W., Nelson C.M., Parker G.W., Smith W.T., Boyd G.E. Quart.Rev. 16, 299 (1962) 19. Colton R., Peacock R.D. (1958) Angew.Chem. <u>70</u>, 583 20. Scholder R. <u>75</u>, 375 (1963) Angew.Chem. Scholder R., Huppert K.L., 21. Pfeiffer P.P. Diss. K.L.Huppert, T.H. K'he 1959 22. Scholder R., Huppert K.L. 75, 376 (1963) Scholder R., Pfeiffer P.P. Angew.Chem. 23. Diss. P.P.Pfeiffer, T.H. K'he 1963 Scholder R., Pfeiffer P.P. 24.

25. Sleight A.W., Longo J., Ward R. Inorg.Chem. 1, 245 (1962) J.Am.Chem.Soc. 83, 1088 (1961) 26. Sleight A.W., Ward R. 83, 2816 (1961) 27. Longo J., Ward R. J.Am.Chem.Soc. ibid <u>82</u>, 5958 (1960) 28. Mc Donald B.J., Tyson G.J. Acta Cryst. 15, 87 (1962) 29. Schwochau K. Z.Naturforschg. 17, 630 (1962) Keller C., Kanellakopulos B. Radiochim.Acta 1, 107 (1963) 30. ORNL -2584 (1958) Busey R.H., Larson Q.V. Busey R.H., Bevan R.B. ORNL -2983 (1960) 33. Smith W.T. J.Am.Chem.Soc. 73, 77 (1951) 34. "The Chemistry of Rhenium", London Lebedev K.B. Butterworths (1962) Smith W.T. J.Am.Chem.Soc. 70, 354 (1948) 35. 36. Beintema J. Z.Kristallogr. 97, 300 (1937) NBS Circ. 539, <u>9</u>, 7 (1960) Nat.Bureau of Stand. Broch E. Z.Phys.Chem. 6, 22 (1929) 39. Nat.Bureau of Stand. NBS Circ. 539, 8, 41 (1959) Acta Cryst. 13, 443 (1960) 40. Morrow J.C. 41. Buschendorf F. Z.Phys.Chem. 20, 237 (1933) 42. Lang G. Z.anorg.allg.Chem. 276, 77 (1954) J.Am.Chem.Soc. <u>76</u>, 348 (1954) Nelson C.M., Boyd G.E., Smith W.T. 44. Cobble W.T. Diss., University of Tennessee 1952 45. Rogers L.B. J.Am.Chem.Soc. 71, 1507 (1959)

Priv. Mitteilg. von G.E. Boyd,

Acta Chem.Scand. 9, 1378 (1955)

Z.anorg.allg.Chem. <u>124</u>, 289 (1922)

Ann.Chim. 4, 1217 (1959)

Angew.Chem. <u>70</u>, 155 (1958)

J.Am.Chem.Soc. 73, 658 (1951)

zitiert in (14)

46. Fried S.

31.

32.

37.

38.

43.

47. Deschanvres A. 48. Magneli A., Andersson G. 49. Magnus A.

50. Hartmann H., Schäfer H.L.

Smith W.T., Maxwell G.E. 51.
- 52. Keller C., Wassilopulos M.
- 53. Schwochau K.
- 54. Klemenč A., Ofner G., Wirth H.
- 55. Miller F.J., Thomason P.F.
- 56. Howard O.H., Weber C.W.
- 57. Miller F.J., Thomason P.F.
- 58. Cartledge G.H.
- 59. Salaria G.B.S., Rulfs C.L., Elving P.J.
- 60. Geilmann W., Voigt A.
- 61. Zintl E., Morawietz H.

- Priv. Mitteilg., August 1963
- Z.anorg.allg.Chem. 73, 492 (1961)
- Z.anorg.allg.Chem. 265, 221 (1951)
- Anal.Chem. 33, 404 (1961)
- Anal.Chem. <u>34</u>, 530 (1962)
- Anal.Chem. <u>32</u>, 1429 (1960)
- Corrosion <u>11</u>, 335 (1955)
- Anal.Chem. <u>35</u>, 979 (1963)
- Z.anorg.allg.Chem. <u>193</u>, 311 (1930)
- Z.anorg.allg.Chem. 236, 372 (1938)