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ON MAGNUS INTEGRATORS FOR TIME-DEPENDENT

SCHRÖDINGER EQUATIONS

MARLIS HOCHBRUCK∗ AND CHRISTIAN LUBICH∗∗

Abstract. Numerical methods based on the Magnus expansion are an efficient class of integra-
tors for Schrödinger equations with time-dependent Hamiltonian. Though their derivation assumes
an unreasonably small time step size as would be required for a standard explicit integrator, the
methods perform well even for much larger step sizes. This favorable behavior is explained, and
optimal-order error bounds are derived which require no or only mild restrictions of the step size. In
contrast to standard integrators, the error does not depend on higher time derivatives of the solution,
which is in general highly oscillatory.

1. Introduction. We study numerical integrators for Schrödinger equations
with time-dependent Hamiltonian,

i
dψ

dt
= H(t)ψ, ψ(t0) = ψ0. (1.1)

The computational Hamiltonian H(t), which is a finite-dimensional hermitian oper-
ator, is typically the sum of a discretized negative Laplacian and a time-dependent
potential. As the discretization of an unbounded operator, H(t) can be of arbitrarily
large norm.

Magnus integrators are an interesting class of numerical methods for such prob-
lems [3, 12]. Though the error behavior of such methods is well understood in the
case of moderately bounded H(t) [6, 7], no results are so far available when ‖H(t)‖
becomes large. The present paper gives optimal-order estimates for situations where
the product of the time step h with ‖H(t)‖ can be of arbitrary size. Even more in-
teresting than the error bounds themselves are the mechanisms which lead to these
bounds and which make Magnus methods perform so well for Schrödinger equations,
as compared to standard explicit or implicit numerical integrators.

In Section 2 we recall the concepts underlying the construction of Magnus integra-
tors. Section 3 states the main results, which give asymptotically sharp error bounds
for Magnus integrators, in a framework that applies to time-dependent Schrödinger
equations requiring neither smallness nor bounds of h‖H(t)‖. The general procedure
for obtaining such estimates is outlined in Section 4, and is carried out in detail in
Sections 5 and 6 for methods of order 2 and 4, respectively. The extension to meth-
ods of arbitrary order is done in Section 7. Numerical experiments illustrating the
theoretical results are given in Section 8. A basic assumption for the results of this
paper are commutator bounds. Their validity for a spectral discretization is shown in
the Appendix.

Magnus integrators require computing a matrix exponential multiplying a vector
in every time step. For the large matrices (or rather, operators of large dimension)
arising from the spatial discretization of Schrödinger equations, this can be done
efficiently using operator splitting or Chebyshev or Lanczos approximations. These
techniques are well documented in the literature and are not considered here. Because
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Düsseldorf, Germany (E-mail: marlis@am.uni-duesseldorf.de)
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of the stable error propagation, errors arising from the approximation of the matrix
exponentials could be straightforwardly included in the error analysis.

2. Magnus integrators. For the linear differential equation

ẏ = A(t)y, y(0) = y0, (2.1)

with a time-dependent matrix A(t), the approach of Magnus [9] aims at writing the
solution as

y(t) = exp
(
Ω(t)

)
y0 (2.2)

for a suitable matrix Ω(t). An expression for Ω(t) is obtained by making the ansatz
(2.2) and differentiating. This gives

ẏ(t) = dexp Ω(t)(Ω̇(t)) y(t) ,

where the dexp operator can be expressed as

dexpΩ(B) = ϕ(adΩ)(B) =
∑

k≥0

1

(k + 1)!
adkΩ(B) (2.3)

with ϕ(z) = (ez − 1)/z and adΩ(B) = [Ω, B] = ΩB −BΩ. Hence, (2.2) solves (2.1) if

A(t) = dexp Ω(t)
(
Ω̇(t)

)
, Ω(0) = 0. (2.4)

As long as ‖Ω(t)‖ < π (which is not the situation of interest in this article!), the
operator dexp Ω(t) is invertible and the series

dexp−1Ω(t)
(
A(t)

)
=
∑

k≥0

βk
k!

adkΩ(t)(A(t)) (2.5)

converges. Here βk is the kth Bernoulli number appearing in the series z/(ez − 1) =∑∞
0 (βk/k!)z

k, which converges for |z| < 2π. (Note ‖adΩ(B)‖ ≤ 2‖Ω‖ · ‖B‖, which
shows that (2.5) indeed converges for ‖Ω(t)‖ < π.) This gives an explicit differential
equation for Ω(t):

Ω̇ = A(t)− 1

2
[Ω, A(t)] +

1

12
[Ω, [Ω, A(t)]] + . . . .

Picard iteration yields the Magnus expansion

Ω(t) =

∫ t

0

A(τ)dτ − 1

2

∫ t

0

[

∫ τ

0

A(σ)dσ,A(τ)] dτ

+
1

4

∫ t

0

[

∫ τ

0

[

∫ σ

0

A(µ)dµ,A(σ)] dσ,A(τ)] dτ (2.6)

+
1

12

∫ t

0

[

∫ τ

0

A(σ)dσ, [

∫ τ

0

A(µ)dµ,A(τ)]] dτ + . . . .

Numerical methods based on this expansion are reviewed by Iserles, Munthe-Kaas,
Nørsett and Zanna [6]. They are of the form

yn+1 = exp(Ωn)yn (2.7)
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to give an approximation to y(tn+1) at tn+1 = tn + h. Here Ωn is a suitable approx-
imation of Ω(h) given by (2.6) with A(tn + τ) instead of A(τ). This approximation
first involves truncating the expansion, and second approximating the integrals, e.g.,
by replacing A(t) locally by an interpolation polynomial Â(t) for the nodes tn + cjh,
so that the integrals in the Magnus expansion can be computed analytically. If Ωn is
built up in this way, then we speak of an interpolatory Magnus integrator. A method
of order p is obtained by combining a pth order truncation of the Magnus series and
interpolation of A(t) at the nodes of a pth order quadrature formula. A natural choice
is Gaussian quadrature.

For example, the midpoint rule yields a second-order scheme with

Ωn = hA(tn + h/2). (2.8)

The two-point Gauss quadrature rule has nodes c1,2 = 1/2 ∓
√
3/6. This yields a

fourth-order scheme with

Ωn =
h

2
(A1 +A2) +

√
3h2

12
[A2, A1], (2.9)

where Aj = A(tn + cjh), j = 1, 2.
High-order interpolatory Magnus integrators require the computation of many

commutators per step. Their number can be significantly reduced in specially con-
structed (non-interpolatory) Magnus integrators as given by Blanes, Casas and Ros [2].

For the purpose of this paper, the Magnus series approach is described only for
motivation, since we are interested in the case of large ‖hA(t)‖, for which dexp Ωn

need not be invertible and the Magnus expansion need not converge. The known
convergence proofs of Magnus series (see [1, 10]) require the time interval to be re-

stricted to
∫ t

0
‖A(τ)‖ dτ ≤ r with r ≈ 1, and there are actually examples of matrix

functions with divergent Magnus series for
∫ t

0
‖A(τ)‖ dτ = π. (The example of [10,

p. 30] is, admittedly, not of the type studied in this paper.) In any case, the question
of convergence of the Magnus series is irrelevant for the problem of obtaining error
bounds, much in the same way as the possible convergence or divergence of Taylor
series is of no importance for finite-order error bounds elsewhere in numerical anal-
ysis. The possible non-invertibility of the dexp operator and even non-existence of a
representation (2.2) of the exact solution would appear to be more serious obstacles,
but we will show how this problem can be circumvented, using a modified differen-
tial equation satisfied by the approximate solution instead of estimating directly the
difference between the Magnus expansion and its truncation.

The results of Iserles and Nørsett [7] on the order of Magnus integrators are for
‖hA(t)‖ → 0 and are obtained by studying the remainder of the truncated Magnus
series (2.6). The constants in those estimates depend on norms of commutators of
A(t) for different values of t, which all become large with growing ‖A(t)‖. Therefore,
results on the classical order of a method must be taken with caution in the case
of the Schrödinger equation, which involves discretizations of unbounded operators.
Nevertheless, Magnus integrators work extremely well even with step sizes for which
‖hA(t)‖ is large. The aim of the present paper is to explain this unexpectedly good
behavior.

3. Statement of results. In this section we state our assumptions and main
results. Throughout the paper, ‖·‖ is the Euclidean norm or its induced matrix norm,
or occasionally the L2 norm of functions. We write

A(t) = −iH(t) = −i
(
U + V (t)

)
. (3.1)
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We assume, once and for all, that the hermitian matrix-valued function V (t) and its
time derivatives are bounded by

∥∥∥ d
m

dtm
V (t)

∥∥∥ ≤Mm, m = 0, 1, 2, . . . . (3.2)

The matrix U is assumed symmetric positive definite, with ‖v‖ ≤ ‖Uv‖ for all v, but
no bound is assumed for the operator norm ‖U‖. We set

D = U1/2. (3.3)

The typical situation is given by a discretization of the spatially continuous case
where U = −∆ + I, e.g., with periodic boundary conditions on a cube Q, and V (t)
is a bounded multiplication operator, i.e., (V (t)v)(x) = V (x, t)v(x) for a real-valued
smooth potential V (x, t). In this continuous case we have

‖Dv‖2 =
∫

Q

|∇v|2dx+

∫

Q

v2dx,

so that ‖Dv‖ is the familiar H1 Sobolev norm of v. In the spatially discretized case,
‖Dv‖ can be viewed as a discrete Sobolev norm. For a space discretization with
minimal grid spacing ∆x, we note ‖U‖ ∼ ∆x−2 and ‖D‖ ∼ ∆x−1.

Our main assumptions are commutator bounds such as

‖[U, V (t)]v‖ ≤ K0‖Dv‖ and ‖[U, V̇ (t)]v‖ ≤ K1‖Dv‖ (3.4)

for all t and all vectors v. Condition (3.4) is easily verified in the spatially continuous
case, with U = −∆ + I and a smooth potential V (x, t) acting as a multiplication
operator. The bound is obtained by noting that in one space dimension, with ′ = d/dx,

[U, V ]v = −
(
(V v)′′ − V v′′

)
= −

(
2V ′v′ + V ′′v

)
,

with the obvious generalization to higher space dimensions. Hence, [U, V ] is a first-

order differential operator, which yields (3.4). For a spectral discretization the bound
(3.4) is shown, uniformly in the discretization parameter, in [8, Lemma 3.1].

Since [A(τ), A(σ)] = [U, V (σ) − V (τ)] =
∫ σ

τ
[U, V̇ (t)] dt (when V (σ) and V (τ)

commute), the second bound of (3.4) implies, for all vectors v,

‖[A(τ), A(σ)]v‖ ≤ K1h ‖Dv‖ for |τ − σ| ≤ h. (3.5)

Theorem 3.1. If A(t) satisfies the commutator bound (3.5), then the error of

the exponential midpoint rule (2.7) with (2.8) is bounded by

‖yn − y(tn)‖ ≤ Ch2 tn max
0≤t≤tn

‖Dy(t)‖.

The constant C depends only on Mm for m ≤ 2 and on K1. In particular, C is

independent of n, h, and ‖D‖.
This error bound is to be contrasted with the error bound of the classical implicit

midpoint rule yn+1 = yn + hA(tn+1/2)(yn + yn+1)/2, for which

‖yn − y(tn)‖ ≤ Ch2 tn max
0≤t≤tn

‖ d
3

dt3
y(t)‖.
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Since solutions of Schrödinger equations are in general highly oscillatory, the appear-
ance of higher time derivatives is unfavorable. On the other hand, ‖Dy(t)‖2 represents
essentially the quantum kinetic energy, which is bounded a priori. We remark that a
similar, but weaker estimate for the exponential midpoint rule, with ‖D2y(t)‖ instead
of ‖Dy(t)‖, was previously obtained in our paper [5] with a different proof. (That
paper unluckily also states an error bound for a third-order Magnus method, with-
out detailed proof and involving the operator norm ‖U‖, which is superseded by the
results of the present paper.)

For methods of order p which contain commutator products of A(tn + cjh) with
r factors (in Example 2 we have r = 2 for order p = 4, and r ≤ p − 1 holds for all
Magnus methods proposed in the literature), we assume that A satisfies, for all τj ,

‖[A(τk), [. . . , [A(τ1),
dm

dtm
V (τ0)]] . . .]v‖ ≤ K ‖Dkv‖

{
0 ≤ m ≤ p,

k + 1 ≤ rp.
(3.6)

Like (3.5), condition (3.6) is easily verified in the spatially continuous case. For a
spectral space discretization of a time-dependent Schrödinger equation, we show in
the Appendix that (3.6) is indeed satisfied uniformly in the discretization parameter.
Since [A(τ1), A(τ0)] = [A(τ1), A(τ0) − A(τ1)] = [A(τ1), i

∫ τ1
τ0
V̇ (τ)dτ ], condition (3.6)

implies, whenever |τ1 − τ0| ≤ h,

‖[A(τk), [. . . , [A(τ1), A(τ0)]] . . .]v‖ ≤ Kh ‖Dkv‖, k + 1 ≤ rp. (3.7)

Unlike the case of the exponential midpoint rule in Theorem 3.1, convergence of
higher-order methods is shown only in the spatially discrete case under a step size
restriction

h ‖D‖ ≤ c. (3.8)

Note that this restriction is milder than the step size restriction for explicit integrators,
such as Runge-Kutta methods, for which a more stringent condition h‖D‖2 ≤ c (i.e.,
h‖A(t)‖ ≤ γ for some constant γ) is required for stability. The classical error bounds
for implicit integrators require smallness of h‖D‖2 unless high temporal smoothness
is supposed.

The following error bound holds for pth order interpolatory Magnus integrators,
i.e., those based on a pth order truncation of the Magnus series and polynomial
interpolation of A(t) at the nodes of a pth order quadrature formula (see Section 2).

Theorem 3.2. If the commutator bounds (3.6) hold, then pth order interpolatory
Magnus integrators satisfy the error bound

‖yn − y(tn)‖ ≤ Chp tn max
0≤t≤tn

‖Dp−1y(t)‖

for time steps h restricted by (3.8). The constant C depends only on Mm for m ≤ p,
on K, c, and on p. In particular, C is independent of n, h, and ‖D‖ as long as

h‖D‖ ≤ c.
The error bound of Theorem 3.2 is valid also for non-interpolatory Magnus meth-

ods if the quadrature error satisfies, for all v,

‖Ωnv − Ω̃nv‖ ≤ Chp+1 ‖Dp−1v‖ , (3.9)

where Ω̃n denotes the pth order truncation of the Magnus series at tn. This general-
ization of Theorem 3.2 follows directly from the proof below.
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Condition (3.8) is not required for stability. If such a condition on the step size is
not imposed, there is still pth order convergence, though only for much smoother solu-
tions: the error is then bounded by Cph

p max ‖Dp−1y(t)‖+Cp+1h
p+1max ‖Dpy(t)‖+

· · ·+ Cprh
pr max ‖Dpr−1y(t)‖.

Though Theorem 3.2 is formulated for arbitrary order p, we note that high-order
error bounds are of limited value in the approximation of highly oscillatory solutions,
for which (discretized) high-order derivatives Dky(t) have progressively much larger
norms.

Theorems 3.1 and 3.2 are proved in the remainder of this article. In the following
section we describe a general procedure for deriving error bounds. We will follow this
procedure in detail for the exponential midpoint rule in Section 5 and for fourth-order
methods in Section 6. This gives all the tools for the extension to the general case,
which is treated in Section 7.

4. General procedure for deriving error bounds. The convergence anal-
ysis is done in two steps. In the first step we study the error which results from
truncating the Magnus expansion; in the second step, we discuss the error resulting
from approximating the integrals by quadrature. (In the estimates of this and the
following sections, C is a generic constant which assumes different values on different
occurrences.)

Truncation of the Magnus expansion amounts to using a modified Ω̃ instead of Ω
in (2.2), i.e.

ỹ(t) = exp
(
Ω̃(t)

)
y0.

By differentiating, we obtain the approximate solution ỹ(t) as the solution of the
modified differential equation

˙̃y(t) = Ã(t)ỹ(t) with Ã(t) = dexp Ω̃(t)
( ˙̃
Ω(t)

)
(4.1)

with initial value ỹ(0) = y0. Note that the truncated Magnus series Ω̃(t) and the

modified operator Ã(t) are skew hermitian if A(t) is skew hermitian. As the following

lemma shows, a bound on Ã−A then immediately gives a local error bound.
Lemma 4.1. Let y be a solution of (2.1) with skew-hermitian A, ỹ a solution of

(4.1). With E = Ã−A, the error satisfies

‖ ỹ(t)− y(t) ‖ ≤
∫ t

0

‖E(τ)y(τ)‖dτ.

Proof. We write (2.1) as ẏ = A(t)y = Ã(t)y − E(t)y and subtract (4.1). This
shows that the error ε̃ = ỹ − y satisfies

˙̃ε = Ã(t)ε̃+ E(t)y, ε̃(0) = 0.

Since Ã is skew hermitian, taking the inner product with ε̃ on both sides leads to

〈 ˙̃ε, ε̃〉 = 〈E y, ε̃〉 ≤ ‖E y‖ ‖ε̃‖.

On the other hand, 〈 ˙̃ε, ε̃〉 = 1
2

d
dt‖ε̃‖2 = d

dt‖ε̃‖ · ‖ε̃‖. Integrating the inequality proves
the lemma.
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A crucial step in obtaining a bound on E = Ã− A is truncating the dexp series
(2.3) and providing a bound for the remainder. We define the remainder function rp,
for p ≥ 1, via

ez − 1

z
= 1 +

1

2
z + . . .+

1

(p− 1)!
zp−2 +

1

p!
zp−1rp(z), (4.2)

so that

dexpΩ(B) = B +
1

2
[Ω, B] + . . .+

1

(p− 1)!
adp−2Ω (B) +

1

p!
rp(adΩ)

(
adp−1Ω (B)

)
. (4.3)

For A(t) of the form (3.1) satisfying the conditions of Section 3, we will bound the
remainder term by

‖rp(adΩ̃(t))
(
adp−1
Ω̃(t)

( ˙̃
Ω(t)

))
v‖ ≤ Chp ‖Dp−1v‖ , 0 ≤ t ≤ h. (4.4)

In the case of p > 2, it turns out that the bound requires time steps h with (3.8),
while for p = 2, no restriction on h is necessary.

Next we incorporate the error resulting from approximating the integrals. In the
nth time step, we take Ω̃(h) corresponding to the truncated Magnus series for A(tn+t)

instead of A(t), which we denote by Ω̃n. By the quadrature approximation, Ω̃n is
replaced by Ωn with which the actual computations are done. This approximation
typically satisfies

‖
(
Ω̃n − Ωn

)
v‖ ≤ Chp+1‖Dr−1v‖ (4.5)

where p is the order of the quadrature rule and commutator products with r factors
appear in the method. For the exponential midpoint rule (p = 2, r = 1) this bound
is independent of D. For pth-order interpolatory Magnus schemes (where r ≤ p− 1)
we will show that (4.5) holds and that this leads to the local error bound

‖ exp(Ω̃n)v − exp(Ωn)v‖ ≤ Chp+1‖Dr−1v‖. (4.6)

Putting both steps together, the exact solution y of (2.1) satisfies

y(tn+1) = exp(Ωn)y(tn) + εn, (4.7)

with εn = y(tn+1) − exp
(
Ω̃n

)
y(tn) + exp

(
Ω̃n

)
y(tn) − exp(Ωn)y(tn). By Lemma 4.1

and (4.6), this gives

‖εn‖ ≤
∫ tn+1

tn

‖E(τ)y(τ)‖dτ + Chp+1‖Dr−1y(tn)‖.

Subtracting (2.7) from (4.7) leads to the error recursion for en = yn − y(tn):
en+1 = exp(Ωn)en + εn ,

and thus

‖en‖ ≤
n−1∑

j=0

‖εj‖. (4.8)

In summary, error bounds for general Magnus methods are obtained as follows: We
have to provide a bound on E(t)y(t), which basically means to prove (4.4), and we
have to show that the approximation Ωn satisfies (4.6). This program is carried out
in the following sections.
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5. Error bounds for the exponential midpoint rule. In this section we
prove Theorem 3.1. The second order truncation of the Magnus expansion is simply

Ω̃(t) =

∫ t

0

A(τ) dτ, 0 ≤ t ≤ h.

Following the approach described in Section 4, we know that ỹ(t) = exp
(
Ω̃(t)

)
y0

solves (4.1) with

Ã(t) = dexp Ω̃(t)
( ˙̃
Ω(t)

)
= A(t) +

1

2
r2(adΩ̃(t))

(
adΩ̃(t)(

˙̃
Ω(t))

)
=: A(t) + E2(t) (5.1)

where the representation (4.3) for the dexp operator was used. The remainder r2 was
defined in (4.2).

Lemma 5.1. r2 satisfies (4.4) with p = 2, where the constant C depends only on

M0 of (3.2) and K1 of (3.5).
Proof. (a) We fix an arbitrary t with 0 ≤ t ≤ h. After an orthogonal similarity

transform, we may assume that Ω := Ω̃(t) is diagonal, Ω = diag(ωk) with purely

imaginary eigenvalues ωk, and we define B =
˙̃
Ω(t). Denoting by • the entrywise

product of matrices, we can write

adΩ(B) = ΩB −BΩ = Z •B,

where Z =
(
ωk − ω`

)
k,`

. This yields

rp(adΩ)
(
adp−1Ω (B)

)
v =

(
R • adp−1Ω (B)

)
v,

where R =
(
rp(ωk − ω`)

)
k,`

. We now follow the proof of Lemma 2.2 of [5]. Note

that for real x, rp(ix) = 1 + O(x), x → 0 and rp(ix) = O(x−1), |x| → ∞ and hence
rp, r

′
p ∈ L2(iR). As can be seen, e.g., from formula (2.13) in [5], rp has a Fourier

transform r̂p ∈ L1(R),

rp(ix) =

∫

R
eiξxr̂p(ξ) dξ ,

with ‖r̂p‖L1(R) ≤ 2π‖rp‖1/2L2(iR)‖r′p‖
1/2
L2(iR). Consequently, the above expression can be

written as

rp(adΩ)
(
adp−1Ω (B)

)
v =

∫

R
r̂p(ξ) exp(ξΩ) ad

p−1
Ω

(
B
)
exp(−ξΩ) v dξ,

so that

‖rp(adΩ)
(
adp−1Ω (B)

)
v‖ ≤ ‖r̂p‖L1(R) sup

ξ∈R
‖adp−1Ω

(
B
)
exp(−ξΩ)v‖. (5.2)

So far, this holds for general p.
(b) From now on we set p = 2. Using

adΩ(B) = adΩ̃(t)(
˙̃
Ω(t)) = [Ω̃(t),

˙̃
Ω(t)] =

∫ t

0

[A(τ), A(t)] dτ
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and (3.5), we obtain for all vectors w

‖adΩ(B)w‖ ≤ K1h
2‖Dw‖.

Hence we have

‖rp(adΩ)
(
adp−1Ω (B)

)
v‖ ≤ Ch2 sup

ξ∈R
‖D exp(−ξΩ)v‖. (5.3)

We now use the splitting (3.1) and write

i

t
Ω = U +

1

t

∫ t

0

V (τ)dτ =: U + Ṽ .

We choose α ≥ 0 such that U+ Ṽ +αI is symmetric and positive definite. To keep the
notation simple, we omit the constants and denote by ∼ equivalent norms. Because
of the boundedness of Ṽ and (3.3) we have for all vectors w

‖Dw‖ =
√
w∗Uw ∼

√
w∗(U + Ṽ + αI)w = ‖

(
i
tΩ+ αI

)1/2
w‖.

We use this norm equivalence to bound the last factor in (5.3):

‖D exp(−ξΩ)v‖ ∼ ‖
(
i
tΩ+ αI

)1/2
exp(−ξΩ)v‖

= ‖ exp(−ξΩ)
(
i
tΩ+ αI

)1/2
v‖

= ‖
(
i
tΩ+ αI

)1/2
v‖

∼ ‖Dv‖.

Inserting this into (5.3) proves the lemma.
By definition (5.1) of E2, this immediately yields the bound

‖E2(t)y(t)‖ ≤ Ch2‖Dy(t)‖, 0 ≤ t ≤ h.

Applying Lemma 4.1 gives

‖ε̃(t)‖ ≤ Ch3 max
0≤τ≤h

‖Dy(τ)‖. (5.4)

The midpoint rule uses the approximation

Ω̃n =

∫ h

0

A(tn + τ)dτ ≈ hA(tn+1/2) =: Ωn

in the scheme (2.7). The midpoint rule is of order two, and since ‖Ä(t)‖ ≤ M2, the
quadrature error is bounded by

‖Ω̃n − Ωn‖ ≤
1

24
M2h

3.

The identity

exp(Ω̃n)− exp(Ωn) =

∫ 1

0

exp
(
(1− s)Ωn

)(
Ω̃n − Ωn

)
exp
(
sΩ̃n

)
ds

9



then yields

‖ exp(Ω̃n)− exp(Ωn)‖ ≤
1

24
M2h

3. (5.5)

Combining (5.4) and (5.5) yields for the defects εj of (4.7)

‖εj‖ ≤ Ch3 max
tj≤τ≤tj+1

‖Dy(τ)‖.

By (4.8), this gives

‖en‖ ≤ Ch2 tn max
0≤t≤tn

‖Dy(t)‖,

which is just the statement of Theorem 3.1.

6. Error bounds for fourth order Magnus methods. This section gives
the proof of Theorem 3.2 for p = 4. It provides all the machinery needed for treating
general order p, but still gives an explicit presentation of the appearing terms.

A Magnus method of classical order four is constructed by setting

˙̃
Ω(t) = A(tn + t)− 1

2

∫ t

0

[A(tn + τ), A(tn + t)] dτ, Ω̃(tn) = 0 (6.1)

for 0 ≤ t ≤ h. To study the local error we simplify the notation and consider the case
n = 0. Then integration yields

Ω̃(t) =

∫ t

0

A(τ) dτ − 1

2

∫ t

0

∫ τ

0

[A(σ), A(τ)] dσdτ, 0 ≤ t ≤ h. (6.2)

In this case, ỹ(t) = exp
(
Ω̃(t)

)
y0 solves (4.1) with (partly omitting the argument t)

Ã(t) =
˙̃
Ω(t) +

1

2
[Ω̃,

˙̃
Ω] +

1

6
[Ω̃, [Ω̃,

˙̃
Ω]] +

1

24
r4(adΩ̃)

(
ad3
Ω̃
(
˙̃
Ω)
)
. (6.3)

Lemma 6.1. If h‖D‖ ≤ c, then r4 defined in (4.2) satisfies (4.4) with p = 4,
where the constant C depends only on K, M0, and c.

Proof. (a) The first part of the proof is identical to part (a) of the proof of

Lemma 5.1. We write again, for fixed t with 0 ≤ t ≤ h, Ω = Ω̃(t) and B =
˙̃
Ω(t), for

Ω̃(t) of (6.2). We start with the bound (5.2) and turn to estimate ad3Ω(B)w. Using the
commutator bound (3.7) (and previously the Jacobi identity, if necessary) for terms
such as, e.g.,

∥∥∥[
∫ t

0

A(τ)dτ, [

∫ t

0

A(τ)dτ, [

∫ t

0

∫ τ

0

[A(σ), A(τ)] dσdτ,A(t)]]]w
∥∥∥ ≤ Kh5‖D4w‖,

it is shown under the restriction h‖D‖ ≤ c that for all w,

‖ad3Ω(B)w‖ ≤ Ch4‖D3w‖, 0 ≤ t ≤ h.

Inserted in (5.2), this bound yields

r4(adΩ)
(
ad3Ω(B)

)
v ≤ Ch4 sup

ξ∈R
‖D3 exp(−ξΩ)v‖. (6.4)
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(b) It remains to show that the supremum can be bounded by C‖D3v‖. We use the
splitting (3.1) and write, still for fixed t with 0 < t ≤ h,

i

t
Ω = U +

1

t

∫ t

0

V (τ)dτ − i

2t

∫ t

0

∫ τ

0

[A(σ), A(τ)] dσdτ =: U + Ṽ .

By the assumptions, Ṽ = V (0) + O(h) is a hermitian bounded operator, and thus

there exists α ≥ 0 such that U + Ṽ +αI is positive definite. Our next aim is to show
that for all w,

‖D4w‖ = ‖U2w‖ ∼ ‖
(
i
tΩ+ αI

)2
w‖. (6.5)

We have

(U + Ṽ + αI)2 − U2 = 2(Ṽ + αI)U + [U, Ṽ + αI] + (Ṽ + αI)2.

The first and the last term on the right-hand side yield bounds

‖2(Ṽ + αI)Uw‖+ ‖(Ṽ + αI)2w‖ ≤ C‖D2w‖+ C‖w‖. (6.6)

Bounds for the second term are obtained from assumption (3.7). By definition of Ṽ
and writing U = iA(τ)− V (τ), we have

[U, Ṽ ] =
[
U,

1

t

∫ t

0

V (τ)dτ − i

2t

∫ t

0

∫ τ

0

[A(σ), A(τ)] dσdτ
]

=
i

t

∫ t

0

[A(τ), V (τ)] dτ

+
1

2t

∫ t

0

∫ τ

0

[A(0), [A(σ), A(τ)]] dσdτ

+
i

2t

∫ t

0

∫ τ

0

[V (0), [A(σ), A(τ)]] dσdτ.

By the commutator bounds (3.6) and (3.7) and the Jacobi identity, we obtain for
h‖D‖ ≤ c

‖[U, Ṽ ]w‖ ≤ K‖Dw‖+ 1
2Kh

2‖D2w‖+Kh‖D2w‖ ≤ C‖Dw‖. (6.7)

Together with (6.6) this proves (6.5). Moreover, the estimates (6.6) and (6.7) show
that

‖
(
(U + Ṽ + αI)2 − U2

)
U−1w‖ ≤ C‖w‖.

So we can apply Lemma 6.2 below with µ = 1/2 and θ = 3/4, to show that (6.5)
implies

‖D3w‖ = ‖U3/2w‖ ∼ ‖
(
i
tΩ+ αI

)3/2
w‖.

As at the end of the proof of Lemma 5.1, we then obtain

‖D3 exp(−ξΩ)v‖ ≤ C‖D3v‖
11



with a constant independent of ξ ∈ R and t with 0 < t ≤ h. Inserting this bound in
(6.4) completes the proof.

Lemma 6.2. Suppose S, T are hermitian positive definite operators such that

‖(S − T )S−µ‖ ≤M holds with 0 ≤ µ < 1. If

‖Sv‖ ≤ ‖Tv‖ for all v,

then, for 0 < θ < 1,

‖Sθv‖ ≤ C‖T θv‖ for all v,

where C depends only on M and µ.
Proof. This is a reformulation of Theorem 1.4.6 in [4].

We are now in the position to prove a bound of Ã(t)−A(t).
Lemma 6.3. For Ã(t) defined in (6.3) and time steps h with h‖D‖ ≤ c, the error

E4(t) := Ã(t)−A(t) is bounded, for all vectors v, by
‖E4(t)v‖ ≤ Ch4‖D3v‖, 0 ≤ t ≤ h. (6.8)

The constant C depends only on K, M0, M1, and c.
Proof. We insert (6.1) and (6.2) into (6.3):

E4(t) =−
1

12

∫ t

0

∫ t

0

∫ t

0

[A(µ), [A(τ), [A(σ), A(t)]]] dσdτdµ

− 1

12

∫ t

0

∫ t

0

∫ τ

0

[A(µ), [[A(σ), A(τ)], A(t)]] dσdτdµ

+
1

24

∫ t

0

∫ µ

0

∫ t

0

[[A(σ), A(µ)], [A(τ), A(t)]]dτdσdµ+R(t)

+
1

24
r4(adΩ̃)

(
ad3
Ω̃
(
˙̃
Ω)
)

Here, R(t)v contains integrals of commutators which, by (3.7), are bounded by

C
(
h5‖D4v‖+ h6‖D5v‖

)
≤ C ′h4‖D3v‖

for h‖D‖ ≤ c. The constant C only depends on K. Then, by (3.7),

‖E4(t)v‖ ≤ Ch4‖D3v‖+ 1

24
‖r4(adΩ̃)

(
ad3
Ω̃
(
˙̃
Ω)
)
v‖.

The bound (6.8) now follows from Lemma 6.1.
Lemma 4.1 shows that ε̃ = ỹ − y is bounded by

‖ε̃(t)‖ ≤ Ch5 max
0≤τ≤h

‖D3y(τ)‖, 0 ≤ t ≤ h.

Since we want to have a fourth order scheme, we use a quadrature formula (bi, ci)
s
i=1

of order p ≥ 4. In (6.2) we replace A by its interpolation polynomial Â in the nodes
tn+ cjh. The integrals can then be evaluated exactly. The quadrature error for n = 0
is given by

Ω̃0 − Ω0 =

∫ h

0

A(τ)dτ −
∫ h

0

Â(τ)dτ (6.9)

−
(
1

2

∫ h

0

∫ τ

0

[A(σ), A(τ)]dσdτ − 1

2

∫ h

0

∫ τ

0

[Â(σ), Â(τ)]dσdτ

)
,
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and similarly for the general nth step with A(tn + τ) instead of A(τ).
Lemma 6.4. The quadrature error in the nth step satisfies

‖
(
Ω̃n − Ωn

)
v‖ ≤ Chp+1‖Dv‖. (6.10)

The constant C depends only on Mm for m ≤ p and K1.
Proof. For ease of notation we let n = 0. The error of the single integral in the

representation of Ω̃n − Ωn is O(hp+1). Assume that we use a quadrature rule with
s nodes. For estimating the error of the double integral we define the interpolation
error

J(t) := A(t)− Â(t) = hs
∫ 1

0

κ̂s(θ, ϑ)A
(s)(θh)dθ, 0 ≤ t = ϑh ≤ h,

where κ̂s denotes the Peano kernel. The difficulty in the remaining proof comes from
the fact that we have only J(t) = O(hs), but we need an O(hp) estimate. We use in

addition J(cih) = 0 and
∫ h

0
J(t) dt = O(hp+1). For the second term in (6.9) we write

∫ h

0

∫ τ

0

[A(σ), A(τ)] dσdτ −
∫ h

0

∫ τ

0

[Â(σ), Â(τ)] dσdτ (6.11)

=

∫ h

0

∫ τ

0

(
[Â(σ), J(τ)] + [J(σ), Â(τ)] + [J(σ), J(τ)]

)
dσdτ.

Approximating the outer integral with the quadrature formula, the first term becomes

∫ h

0

∫ τ

0

[Â(σ), J(τ)] dσdτ = hp+1
∫ 1

0

κp(θ)G
(p)(θh) dθ,

where κp is the Peano kernel, and

G(τ) =

∫ τ

0

[Â(σ), J(τ)] dσ.

Using Leibniz’ rule, it is seen that the dominant term of G(p)(τ) is p [Â(τ), J (p−1)(τ)],
so that by (3.6), for any vector v,

‖G(p)(θh)v‖ ≤ C‖Dv‖.

This yields

‖
∫ h

0

∫ τ

0

[Â(σ), J(τ)] dσdτ v‖ ≤ Chp+1‖Dv‖. (6.12)

For the second term, we use partial integration

∫ h

0

∫ τ

0

[J(σ), Â(τ)] dσdτ = [

∫ h

0

J(σ)dσ,

∫ h

0

Â(µ)dµ]−
∫ h

0

∫ τ

0

[J(τ), Â(σ)] dσdτ.

Here, for the last term, the bound was already given in (6.12). Using the quadrature
formula for the integral over J , we have for the first term

[

∫ h

0

J(σ)dσ,

∫ h

0

Â(µ)dµ] = hp+1[

∫ 1

0

κp(θ)J
(p)(θh)dθ,

∫ h

0

Â(µ)dµ].

13



Noting J (p)(t) = A(p)(t) and using (3.6), this gives the bound

‖
∫ h

0

∫ τ

0

[J(σ), Â(τ)] dσdτ v‖ ≤ Chp+1‖Dv‖. (6.13)

Finally, since ‖J(t)‖ = O(hs),

‖
∫ h

0

∫ τ

0

[J(σ), J(τ)] dσ dτ v‖ ≤ Ch2s+2‖v‖ ≤ Chp+2‖v‖. (6.14)

Inserting the bounds (6.12)–(6.14) in (6.11) completes the proof.
Lemma 6.5. In the situation of Lemma 6.4,

‖ exp(Ω̃n)v − exp(Ωn)v‖ ≤ Chp+1‖Dv‖.

The constant C depends only on Mm for m ≤ p and K1.
Proof. The variation-of-constants formula yields

exp
(
Ω̃n

)
v − exp(Ωn)v =

∫ 1

0

exp
(
(1− s)Ωn

)(
Ω̃n − Ωn

)
exp
(
sΩ̃n

)
v ds.

By (6.10) we have

‖
(
Ω̃n − Ωn

)
exp
(
sΩ̃n

)
v‖ ≤ Chp+1‖D exp

(
sΩ̃n

)
v‖ ≤ C ′hp+1‖Dv‖,

where the last inequality is obtained as in the proof of Lemma 5.1. This gives the
stated bound.

For p ≥ 4, the local error εn of the scheme (2.7) thus satisfies (4.7) with

‖εn‖ ≤ Ch5 max
tn≤t≤tn+1

‖D3y(t)‖.

Hence, with (4.8), the global error is bounded by

‖en‖ ≤ Ctnh
4 max
0≤t≤tn

‖D3y(t)‖,

and Theorem 3.2 is proved for p = 4.

7. Error bounds for higher-order Magnus integrators. The arguments of
the previous section can be extended rather directly to methods of arbitrary order. In
the following we describe this extension, putting the emphasis on the general structure
and on a few additional considerations that become necessary. Though it would have
been possible to present the general proof without first discussing the second and
fourth order cases, we believe that it is useful to have seen and understood the explicit
expressions arising in the proofs for the lower order methods before embarking on the
general case.

Lemma 7.1. If ‖hD‖ ≤ c, then rp defined in (4.2) satisfies, for a pth order

truncated Magnus expansion Ω̃(t), the bound (4.4) where the constant C depends only

on K, M0, c, and p.

Proof. For the truncated Magnus series Ω̃(t), the expression adp−1
Ω̃(t)

( ˙̃
Ω(t)

)
con-

sists (after repeated use of the Jacobi identity) of a linear combination of iterated
commutators of A(·) integrated over all but one of the independent variables over in-
tervals bounded by h. The appearing iterated commutators and integrals are at least

14



(p−1)-fold. Together with the commutator bound (3.7) and ‖hD‖ ≤ c this yields the
bound

‖adp−1
Ω̃(t)

( ˙̃
Ω(t)

)
w‖ ≤ Chp ‖Dp−1w‖. (7.1)

By (5.2), this implies

‖rp(adΩ̃(t))ad
p−1

Ω̃(t)

( ˙̃
Ω(t)

)
v‖ ≤ Chp sup

ξ∈R
‖Dp−1 exp

(
ξΩ̃(t)

)
v‖ (7.2)

for all v. By a straightforward, but tedious generalization of the argument in the
proof of Lemma 6.1, the supremum is bounded by

sup
ξ∈R

‖Dp−1 exp
(
ξΩ̃(t)

)
v‖ ≤ C ‖Dp−1v‖, (7.3)

which yields the desired bound (4.4).

Lemma 7.2. For Ã(t) defined in (4.1) and time steps h with h‖D‖ ≤ c, the error

Ep(t) := Ã(t)−A(t) is bounded, for all vectors v, by

‖Ep(t)v‖ ≤ Chp ‖Dp−1v‖, 0 ≤ t ≤ h. (7.4)

The constant C depends only on K, M0, M1, c, and p.

Proof. By construction of the Magnus series, Ep(t) is a linear combination of at

least (p−1)-fold integrals of iterated commutators of A(·) and rp(adΩ̃(t))ad
p−1

Ω̃(t)

( ˙̃
Ω(t)

)
.

The stated estimate thus follows from the commutator bound (3.7), the step size
bound (3.8), and Lemma 7.1.

Consider a quadrature formula with nodes ci (i = 1, . . . , s) and weights bi of order

p. Let Â(τ) be the interpolation polynomial to A(τ) in the points cih, and denote by

Ω0 the expression obtained by replacing A(τ) by Â(τ) in the expression for Ω̃0 = Ω̃(h).

Similarly, let Ω̃n and Ωn denote the corresponding expressions for the nth step, with
A(tn + τ) instead of A(τ).

Lemma 7.3. The quadrature error in the nth step satisfies

‖
(
Ω̃n − Ωn

)
v‖ ≤ Chp+1‖Dp−2v‖. (7.5)

The constant C depends only on Mm for m ≤ p and K1.

Proof. The proof follows the lines of the proof of Lemma 6.4. The generaliza-
tion concerns the appearance of m-fold integrals of m-fold iterated commutators, for
m ≤ p − 2 , instead of the simple commutators studied in the proof of Lemma 6.4.
These terms are treated by the same techniques, they just involve more formidable
expressions. By the commutator bound (3.6), this leads to an estimate involving
‖Dp−2v‖ in the general situation.

As in Lemma 6.5, this implies

‖ exp(Ω̃n)v − exp(Ωn)v‖ ≤ Chp+1‖Dp−2v‖. (7.6)

Inserting the estimates (7.4) and (7.6) in the framework of Section 4 finally yields the
error bound of Theorem 3.2.
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8. Numerical experiments. To illustrate the theoretical results presented in
this paper, we consider the Schrödinger equation

i
∂ψ

∂t
= − 12∆ψ + b(x, t)ψ, x = (x1, . . . , xd) ∈ Rd, t > 0 (8.1)

with a smooth (C∞) potential b(x, t) that is 2π-periodic in every coordinate direction
xj . We impose periodic initial conditions ψ(x, 0) = ψ0(x). For ease of notation only,
the following discussion is for the one-dimensional case d = 1.

A standard space discretization is given by the pseudo-spectral method. Here, a
trigonometric polynomial

ψN (x, t) =

N/2−1∑

k=−N/2

cNk (t) eikx

is determined such that the equations

iψ̇N (x`, t) = − 12∆ψ
N (x`, t) + b(x`, t)ψ

N (x`, t)

ψN (x`, 0) = ψ0(x`)

are satisfied at the mesh-points x` = 2π`/N with ` = −N/2, . . . , N/2 − 1. Setting
cN (t) =

(
cNk (t)

)
the vector of Fourier coefficients, this amounts to solving

iċN = − 12∆̂
NcN +BN (t)cN , (8.2)

where, in the case of one space dimension,

∆̂N = (D̂N )2 with D̂N = diag (ik) (k = −N/2, . . . , N/2− 1),

and, with FN denoting the discrete Fourier transform of length N ,

BN (t) = FN diag
(
b(x`, t)

)
F−1N .

We consider a one-dimensional example with data from [11], slightly modified to
make the potential periodic with respect to the space interval x ∈ [−`, `] for ` = 10:

b(x, t) = 1
2
π2

`2

(
1− cos πx

`

)
+ sin2(t)π` sin

πx
` .

In the left picture of Figure 8.1 we give precision–step size diagrams at t = 1 for
four different initial values, where we used N = 128 Fourier modes for the spatial
discretization. As a smooth initial value, we used the eigenstate of the unforced
harmoic oscillator to the lowest energy level, Ψ(x, 0) = e−x2/2. The convergence
curves of the exponential midpoint and the fourth-order Gauss method corresponding
to the smooth initial data are the solid lines marked with circles. For the other three
curves, initial data of finite energy is chosen as cN (0) = (I−i(D̂N )j)−1v/ρ, j = 1, 2, 3,
where v is a vector of normally distributed random numbers, and ρ is chosen such
that ‖cN (0)‖ = 1. For j = 1, the results are plotted in the dashdotted curve marked
with × symbols, for j = 2, we have the dashed curved marked with + symbols, and
for j = 3, the curve is dotted marked with diamonds.

For the right picture of Figure 8.1, we took the smooth initial state Ψ(x, 0) =

e−x2/2 for all curves but varied the number of Fourier modes fromN = 32 toN = 2048
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Fig. 8.1. Error versus step sizes for the laser example: smooth and nonsmooth initial data on

the left, h‖D‖ = const on the right.

and the time steps such that Nh = 32. This corresponds to the situation that
‖hD‖ ≈ 3.5, where D = (− 12∆̂N + I)1/2. The solid line marked with the × symbol
indicates the error of the midpoint rule, and the solid line marked with circles is the
error for the fourth order Gauss method. The dotted lines in the top of the picture
represent the errors of the exponential midpoint and the Gauss method divided by h2

and h4, respectively, up to a constant factor.

9. Appendix. Commutator bounds for a spectral discretization. We
consider the pseudo-spectral space discretization (8.2) of the Schrödinger equation

(8.1). Equation (8.2) is of the type studied in this paper, with U = − 1
2

(
D̂N

)2
+ I

and V (t) = BN (t)− I. The matrix BN (t) is circulant, with (k, l) entry equal to

b̂Nk−l(t) =

∞∑

q=−∞

b̂k−l+qN (t)

by the aliasing formula, where b̂j(t) is the jth Fourier coefficient of the 2π-periodic
(in x) function b(x, t). If (and only if) b(x, t) is a C∞ function of x, the Fourier

coefficients b̂j(t) decay faster than any negative power of |j|. It then follows that the
entries of the matrix BN (t) = (bNk,l) are bounded by

∣∣bNkl
∣∣ ≤

{
γm(|k − l|+ 1)−m, |k − l| ≤ N/2

γm(N − |k − l|)−m, |k − l| > N/2
(9.1)

for k, l = −N/2, . . . , N/2− 1 with γm (m = 1, 2, 3, . . . ) independent of N .

The commutator bound (3.6) is obtained as a direct consequence of the three
lemmas below, for which we need to give a further definition. We say that a sequence
of matrices B = (BN ), with BN of dimension N × N , belongs to the class Γ∞,
if the entries satisfy estimates (9.1) with all γm independent of N . We denote by
γ(B) = (γ1, γ2, γ3, . . . ) the sequence of smallest possible such numbers.

Lemma 9.1. If A = (AN ) and B = (BN ) are in Γ∞, then also AB = (ANBN )
is in Γ∞, and γ(AB) is bounded in terms of γ(A) and γ(B).

The proof is by direct estimation and is not given here. The following result is
shown in the proof of Lemma 3.1 in [8].
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Lemma 9.2. If B = (BN ) is in Γ∞, then [D̂2,B] =
(
[(D̂N )2, BN ]

)
is of the form

[D̂2,B] =M0 +M1D̂ ,

where M0 and M1 are in Γ∞, with γ(M0) and γ(M1) bounded in terms of γ(B).
The next lemma is proved in the same way.
Lemma 9.3. If B = (BN ) is in Γ∞, then D̂B = (D̂NBN ) is of the form

D̂B = K0 +K1D̂ ,

where K0 and K1 are in Γ∞, with γ(K0) and γ(K1) bounded in terms of γ(B).
Repeated application of these lemmas shows that

[−(D̂N )2 +BN (τk), [. . . , [−(D̂N )2 +BN (τ1),
dm

dtm
BN (τ0)]] . . . ] =

k∑

j=0

MN
j (D̂N )j

with matricesMN
j bounded independently of N and τ0, . . . , τk. This gives the desired

commutator bound (3.6).

Acknowledgment. We thank Katina Lorenz for stimulating discussions on com-
mutator bounds.
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