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hyperbolic geometry∗
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Henning Meyerhenke Roman Prutkin†

Abstract
Complex networks have become increasingly popular for
modeling real-world phenomena, ranging from web hyper-
links to interactions between people. Realistic generative
network models are important in this context as they avoid
privacy concerns of real data and simplify complex network
research regarding data sharing, reproducibility, and scala-
bility studies. We study a geometric model creating unit-
disk graphs in hyperbolic space. Previous work provided
empirical and theoretical evidence that this model creates
networks with a hierarchical structure and other realistic
features. However, the investigated networks were small,
possibly due to a quadratic running time of a straightfor-
ward implementation. We provide a faster generator for a
representative subset of these networks. Our experiments
indicate a time complexity of O((n+m) logn) for our imple-
mentation and thus confirm our theoretical considerations.
To our knowledge our implementation is the first one with
subquadratic running time. The acceleration stems primar-
ily from the reduction of pairwise distance computations
through a polar quadtree newly adapted to hyperbolic space.
We also extend the generator to an alternative dynamic
model which preserves graph properties in expectation. Fi-
nally, we generate and evaluate the largest networks of this
model published so far. Our parallel implementation com-
putes networks with billions of edges on a shared-memory
server in a matter of few minutes. A comprehensive network
analysis shows that important features of complex networks,
such as a low diameter, power-law degree distribution and a
high clustering coefficient, are retained over different graph
sizes and densities.

Keywords: complex networks, hyperbolic geometry, gener-

ative model, network analysis, polar quadtree

1 Introduction

The algorithmic analysis of complex networks has be-
come a highly active research area recently since com-
plex networks are increasingly used to represent phe-
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nomena as varied as the WWW, social relations, pro-
tein interactions, and brain topology [16, 21]. Complex
networks have several non-trivial topological features:
They are usually scale-free, which refers to the presence
of a few high-degree nodes (hubs) among many low-
degree nodes. A degree distribution of networks that
occurs frequently in practice follows a power law [17,
p. 247], i. e. the number of nodes with degree k is pro-
portional to k−γ , for a fixed exponent γ > 0. Moreover,
complex networks often have the small-world property,
i. e. typical distance between two nodes is surprisingly
small, regardless of network size and growth.

Generative network models play a central role in
many complex network studies for several reasons: Real
data, such as social networks, might contain confiden-
tial information. It is often desirable to be able to work
on similar synthetic networks. Quick testing of algo-
rithms requires small test cases, while projection of fu-
ture growth and scalability studies need bigger graphs.
Graph generators can provide data at different user-
defined scales. Moreover, real networks might be im-
practical to transmit and store. When using a genera-
tive model, however, only the model parameters and the
generator need to be stored or transmitted. A central
goal for generative models is to produce networks with
realistic features: Realism is understood as the ability to
replicate relevant structural features of real-world net-
works such as degree distribution, spectral properties,
community structure, and frequency of triangles [6].
Moreover, the formulation of generative models is an
important theoretical step in network science, since re-
alistic models can improve our understanding of phe-
nomena that guide the formation of complex networks.

Motivation. One generative network model that
has been suggested previously as fairly realistic by Kri-
oukov et al. [14] creates networks with underlying hyper-
bolic geometry. Among the many interesting properties
of hyperbolic geometry, most relevant is the exponential
expansion of space: The area of a hyperbolic circle of
radius r is 2π(cosh(r)− 1) ' er, allowing a natural em-
bedding of trees and tree-like graphs. In recent years,
the link between hyperbolic geometry and graphs with
power-law degree distributions has been studied with re-
spect to routing applications [5]. The generative model
by Krioukov et al. has a proven high clustering coeffi-
cient [10], small diameter and a power-law degree dis-
tribution with adjustable exponent [14]. The generator
creates unit-disk graphs based on hyperbolic geometry.
Nodes are distributed randomly on a hyperbolic disk
of radius R and edges are inserted for every node pair
whose hyperbolic distance is below a threshold. Cal-
culating the hyperbolic distance between each pair of
coordinates has quadratic time complexity. This im-
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pedes the creation of massive networks and is likely the
reason previously published networks based on hyper-
bolic geometry have been in the range of at most 104

nodes. A faster generator is necessary to enable a use of
this promising model for networks of interesting scales.
Additionally, to judge the realism of these networks,
more detailed parameter studies and comparisons from
a network analysis point of view are necessary.

Outline and Contribution. We implement and
study the hyperbolic unit-disk graph model and address
deficiencies in terms of generation speed and network
analysis. Section 2 discusses other generative network
models and introduces fundamentals of hyperbolic ge-
ometry. The main technical part starts with Section 3,
in which we show how we relate hyperbolic to Euclidean
geometry during the generation process. This allows
us to employ a new space-partitioning data structure,
more precisely a polar quadtree within the Poincaré disk
model, to improve the running time of the naive gen-
eration process. We proceed by proposing an alterna-
tive dynamic model. Instead of deleting and reinserting
nodes as in [20], we let nodes move gradually in the
hyperbolic plane. This results in a smoother change of
the network, so that we believe it to be more realistic
for some applications. We also analyze the time com-
plexity of our static and dynamic generation process in
Section 3, resulting in an expected static running time
in O((n + m) log n) and an expected dynamic running
time in O((k + l) log n) when moving k nodes with l
edges under a reasonable assumption.

In Section 4 we add to previous studies a compre-
hensive network analytic evaluation of the generative
model based on hyperbolic geometry. The experimen-
tal results confirm the theoretical expected running time
of O((n+m) log n). In practice, a graph with 107 nodes
and 109 edges can be generated in less than 5 minutes
on our test machine. Network analysis shows a consis-
tently high clustering coefficient and power-law degree
distribution over a wide parameter range. Proofs omit-
ted due to space constraints can be found in the supple-
mentary material. The generator will be made available
in a future version of NetworKit [24], our open-source
framework for large-scale network analysis.

2 Related Work and Preliminaries

2.1 Related Generative Network Models. The
Erdős-Rényi Model is the earliest attempt to create a
formal method for generating graphs [19]. Edges are cre-
ated among n nodes with a uniform probability of p for
each of the {u, v} pairs. The Barabasi-Albert model [2]
was intended to model the growth of real complex net-
works and implements a preferential attachment process
which results in a power-law degree distribution. The

probability that a new node will be attached to an ex-
isting node v is proportional to its degree. The Recur-
sive Matrix (R-MAT) model [7] was proposed to recre-
ate properties of complex networks including a power-
law degree distribution, the small-world property and
self-similarity. Design goals also include few parame-
ters and high generation speed. The R-MAT genera-
tor recursively subdivides the initially empty adjacency
matrix into quadrants and drops edges into it accord-
ing to given probabilities. Given a degree sequence, the
Chung-Lu model [1] creates edges (u, v) with a proba-

bility of p(u, v) = deg(u)deg(v)∑
k deg(k) , which recreates the de-

gree sequence in expectation. The model can be con-
ceived as a weighted version of the Erdős-Rényi model,
and has been shown to have similar capabilities as the
R-MAT model [23]. The Dorogovtsev-Mendes genera-
tor is designed to model network growth and focuses
on speed over flexibility [8]. BTER [13] is a two-stage
structure-driven model, which combines aspects of the
ER and CL model. It uses the standard ER model to
form relatively dense subgraphs, thus forming distinct
communities. Afterwards, the CL model is used to add
edges, allowing to match the expected degree distribu-
tion [22]. Further generative network models include
the Havel-Hakimi generator [11] (which also generates
a graph from a degree sequence but tends to close trian-
gles) and the PubWeb generator [9] (which is designed
to model P2P networks based on Euclidean geometry).
In Section 4.3, we compare our generator to the mod-
els closest in spirit: Barabasi-Albert, BTER, Chung-Lu,
Dorogovtsev-Mendes and R-MAT.

2.2 Graphs in Hyperbolic Geometry. A geomet-
ric foundation for complex networks can be found in hy-
perbolic geometry. Kriokouv et al. [14] show how unit-
disk graphs generated with underlying hyperbolic geom-
etry naturally develop a power-law degree distribution.
An alternative implementation with an extended model
and quadratic time complexity is available [18]. Boguñá
et al. [5] use node embedding in hyperbolic space to ob-
tain virtual coordinates enabling greedy routing on in-
ternet topology networks, and Kleinberg showed that
every graph can be embedded in the hyperbolic space
such that greedy routing always succeeds [12]. Pa-
padopoulos et al. [20] extend the generator of [14] with
a dynamic growth model. In the hyperbolic unit-disk
graph model, nodes are distributed randomly over a disk
of radius R in the hyperbolic plane. Node positions are
generated in polar coordinates (φ, r). The angular co-
ordinate φ is drawn from a uniform distribution over
[0, 2π], while the probability density function for the ra-
dial coordinate r is proportional to the circumference of
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Figure 1: Native representation of graph in hyperbolic
geometry. Blue nodes are in a hyperbolic circle around
the bold blue node.

a hyperbolic circle with radius r:
(2.1)

f(r) =
2π sinh(r)

2π(cosh(R)− 1)
=

sinh(r)

cosh(R)− 1
∝ sinh(r)

Integrating and normalizing the probability density
function yields the cumulative distribution FQ(r) =
(cosh(r) − 1)/(cosh(R) − 1). The probability mass is
thus equally spread over the hyperbolic space within
the base disk. In the basic model, an edge is inserted
between two points p = (φp, rp) and q = (φq, rq) if their
hyperbolic distance distH(p, q) is below a threshold.
The neighborhood of a node thus consists of the nodes
lying in a hyperbolic circle around it. Gugelmann et
al. [10] analyzed this model theoretically and proved
a low variation of the clustering coefficient for fixed
parameters. The basic model can be extended with
a number of parameters, of which we focus on three:
The stretch parameter s determines the disk radius:
R = s · acosh(n/(2π) + 1). The dispersion parameter
α determines whether nodes tend to occur in the center
or at the border of the hyperbolic disk. For this purpose,
Equation 2.1 is changed to f(r) ∝ α · sinh(αr) and the
cumulative distribution function becomes (cosh(αr) −
1)/(cosh(αR) − 1). The third parameter t determines
the distance threshold for edge insertion. Two nodes
are connected with an edge if their hyperbolic distance
is below tR.

An example graph with 500 nodes, s = 1, α = 0.8
and t = 0.2 is shown in Figure 1. The neighborhood of
node u (the bold blue node) consists of nodes v where
distH(u, v) ≤ 0.2 · R (marked in blue).

Figure 2: Poincaré disk model. Neighborhood of
marked node lies in a Euclidean circle with moved
center.

2.3 Poincaré Model. The Poincaré disk model is
one of several representations of hyperbolic space within
Euclidean geometry. An n-dimensional hyperbolic
space is represented by a hypersphere of dimension n,
in our case the hyperbolic plane is mapped onto the
Euclidean unit disk D1(0). The hyperbolic distance be-
tween two points pE , qE ∈ D1(0) is given by the Poincaré
metric [3]:
(2.2)

distH(pE , qE) = acosh

(
1 + 2

||pE − qE ||2
(1− r2

pE )(1− r2
qE )

)
.

This model is conformal, i. e. it preserves angles. Hy-
perbolic circles are mapped onto Euclidean circles in
the Poincaré disk model, which is of importance to
our generation algorithm. Figure 2 shows the same
graph as in Figure 1, but translated into the Poincaré
model. The neighborhood of v – a hyperbolic circle
– consists of exactly those nodes which are within
the light blue Euclidean circle. Radius and position
of the Euclidean query circle are discussed in the
supplementary materials.

3 Fast Generation of Graphs in Hyperbolic
Geometry

Next we present our new generation algorithm using
the adapted quadtree, prove the quadtree’s balance in
expectation, and proceed with the complexity analysis
of the generator and the dynamic extension.

3.1 Generation Algorithm. The generation of a
graph in our model is described in Algorithm 3.1. Node
positions are generated (lines 5 and 6), mapped into
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the Poincaré disk (line 7) and stored in the quadtree
(line 8). For each node the hyperbolic circle defining
the neighborhood is generated and mapped into the
Poincaré disk (lines 10 and 11). Edges are created by
executing a Euclidean range query with the mapped
circle in the polar quadtree. Details of the used
functions are discussed in the supplementary materials.

Algorithm 3.1. (Graph generation)
Input: n, t, α, s. Output: G = (V,E)

1. R = s · acosh(n/(2π) + 1)
2. V = n nodes
3. T = empty polar quadtree
4. For each node v ∈ V :
5. draw φ[v] from U [0, 2π).
6. draw rH[v] with density f(r) ∝ α sinh(αr)
7. rE [v] = hyperbolicToEuclidean(rH[v])
8. insert v into T at (φ[v], rE [v])
9. For each node v ∈ V :

10. CH = circle around (φ[v], rH[v]) with radius tR
11. CE = transformCircleToEuclidean(CH)
12. For each node w ∈ T .getNodesInCircle(CE)
13. add (v, w) to E
14. Return G

3.2 Data Structure. Our central data structure is
a polar quadtree on the Poincaré disk. A node in the
quadtree is defined as a tuple (minφ,maxφ,minr,maxr)
with minφ ≤ maxφ and minr ≤ maxr. It is responsible
for a point p = (φp, rp) ∈ D1(0) iff (minφ ≤ φp < maxφ)
and (minr ≤ rp < maxr). Figure 3 shows a section of
a polar quadtree where quadtree nodes are marked by
dotted red lines. When a leaf node is full, it is split
into four children, once in the angular and once in the
radial direction. Splitting in the angular direction is
straightforward as the angle range is halved: midφ =
maxφ + minφ

2 . For the radial direction, we choose the
splitting radius to result in an equal division of space.

(3.3) midr = acosh
(cosh(maxr) + cosh(minr)

2

)
Theorem 3.1 Let R be the hyperbolic radius of the disk
covered. A node at depth i of the quadtree covers an area
of (2π(cosh(R)− 1))/4i.

When the graph generator is called with α = 1, the
points are generated uniformly within the hyperbolic
disk. In this case, the expected height of the tree is
logarithmically bounded in the number of nodes.

Theorem 3.2 Let T be a polar quadtree constructed as
defined in Eq. 3.3 with n points distributed uniformly in
hyperbolic space. Then E(height(T )) ∈ O(log n).

Figure 3: Polar Quadtree

In case of α 6= 1, the nodes are not distributed uniformly
in space. By setting the splitting radius in Equation 3.3
to acosh

(
cosh(αmaxr) + cosh(αminr)/2)

)
/α, we still

have an equal division of probability mass and the
balance argument holds.

3.3 Time Complexity. The time complexity of the
generator is determined by the operations of the polar
quadtree.

Quadtree Insertion. The quadtree is constructed
one element at a time. The time required for finding
the appropriate leaf node for insertion is linear in the
quadtree’s height. Due to Theorem 3.2, the expected
height is in O(log n). If the leaf with capacity c is full, it
needs to be split up and c move operations occur. Every
cth element induces a split, each element is moved one
additional time in amortization. The amortized time
complexity is:

(3.4) T (Insertion) ∈ O(log n) +O(1) = O(log n)

Quadtree Range Query. The neighborhood of a
node consists of the nodes within a hyperbolic circle of
radius r around it. For each neighbor found, at most c
nodes have to be examined in the leaf node. At most
4·height inner nodes need to be visited, with E(height) ∈
O(log n), cf. Theorem 3.2. It is possible that leaf
nodes have to be examined that do not contain suitable
points. These leaf nodes are cut by the boundary of
the query circle, but do not have points within the
query circle. The number of unnecessarily examined leaf
nodes depends on the circumference of the query circle.
Due to Theorem 3.1, each leaf on a given level manages
the same area of hyperbolic space. We work with the
assumption that the number of equally-sized cells cut is
linear in the circumference of the circle. This holds in
Euclidean geometry and seems to hold here as well, but
is yet unproven. Since the area of a hyperbolic circle is
in O(cosh(r)) and the circumference in O(sinh(r)) [3],
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the amortized number of unnecessary leaf examinations
lies in O(sinh(r)/ cosh(r)) = O(tanh(r)) = O(1) per
extracted edge. The amortized time complexity for a
node v with degree deg(v) is thus:

(3.5) T (RQ(v)) ∈ O(1 + deg(v) · log n).

Since the quadtree is not modified during this step, it
can be parallelized easily with up to n threads.

Graph Generation. To generate a graph G with
n nodes, the n points are distributed in a disc of radius
s · acosh(n/(2π) + 1) and inserted into the quadtree.
The expected time complexity of this is n · O(log n) =
O(n log n). In the next step, neighbors for all points are
extracted. This has a complexity of

(3.6)
∑
v

O(1 + deg(v) · log n) = O((n+m) log n).

The total running time is dominated by the range
queries. We can therefore conclude:

Theorem 3.3 Under the assumption of fast range
queries (Eq. 3.5), generating networks with hyperbolic
geometry can be done in O((n+m) log n) time in expec-
tation.

3.4 Dynamic Model. To model gradual change in
networks, we design and implement a dynamic version
with node movement. While deleting nodes or insert-
ing them at random positions is a suitable dynamic for
modeling internet infrastructure with sudden site fail-
ures or additions, change in for example social networks
happens more gradually. A suitable node movement
model needs to be consistent : After moving a node,
the network may change, but properties should stay
the same in expectation. Since the properties emerge
from the node positions, the probability distribution of
node positions needs to be preserved. In our imple-
mentation, movement happens in discrete time steps.
We choose the movement to be directed : If a node i
moves in a certain direction at time t, it will move in
the same direction at t + 1, We implement this move-
ment in two phases: In the initialization, step values
τφ and τr are assigned to each node according to the
desired movement. Each movement step of a node then
consists of a rotation and a radial movement. The ro-
tation step is a straightforward addition of angular co-
ordinates: rotated(φ, r, τφ) = (φ + τφ/r) mod 2π. The
radial movement is described in Algorithm 3.2, a visu-
alization can be found in the supplementary materials.

Algorithm 3.2. (Radial movement)
Input: r, τr, R. Output: rnew

1. x = cosh(r)
2. y = x+τr
3. z = acosh(y)
4. Return z

If the new node position would be outside the
boundary (r > R) or below the origin (r < 0), the
movement is reflected and τr set to −τr.
Theorem 3.4 Node movement preserves distribu-
tion of angular and radial coordinates: FX(r) =
FX(scale(r)) for 0 ≤ r ≤ R and FΦ(rotated((φ, r))) =
FΦ(φ) for 0 ≤ φ ≤ 2π.

Time Complexity. When a node is moved far
enough to change the quadtree cells, it is deleted from
the old cell and inserted into the new one. Affected
edges need to be recomputed. Deletion and insertion
are in amortized O(log n), thus we get:

(3.7) T (move(v)) ∈ O(log n+ deg(v) log n).

Details are discussed in the supplementary materials.

4 Evaluation

In this section we first discuss several structural proper-
ties of networks and use them to analyze the graphs gen-
erated by the model under different parameters. Com-
parisons to real-world networks and existing generators
as well as an evaluation of the running time follow.

4.1 Network Properties. A complex network is a
graph with non-trivial structural properties character-
ized by certain key figures. The degree distribution of
many complex networks follows a power law [17, p. 247].
The clustering coefficient is the fraction of closed tri-
angles to triads (paths of length 2) and measures how
likely two nodes with a common neighbor are to be con-
nected. Degree assortativity describes whether nodes
have neighbors of similar degree. A value near 1 sig-
nifies subgraphs with equal degree, a value of -1 star-
like structures. While many real network have multiple
connected components, one large component is usually
dominant. k-Cores are a generalization of components,
result from iteratively peeling away nodes of degree k
and assigning to each node the core number of the in-
nermost core it is contained in. The maximum distance
between two nodes is called the diameter. A small di-
ameter despite being sparse is defining for complex net-
works. Complex networks also often exhibit a commu-
nity structure, i. e. dense subgraphs with sparse connec-
tions between them. Modularity is a measure that quan-
tifies how well a partition of the node set corresponds to
the dense subgraphs. We use a modularity-maximizing
algorithm [24] to detect communities.
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The plots in Figure 4 illustrate the relationship be-
tween the model parameters dispersion α and stretch s
and a structural property of the resulting network. We
focus on α and s instead of the threshold t, since the the-
oretical analysis about power-law degree distributions
was previously only done for these parameters [14]. The
effect of t is very similar to the effect of s, only inverted.
Plots with a variation in t instead of s can be found
in the supplementary materials. The node dispersion α
starts from 0.8 (lower values tend to result in a complete
graph) and goes up to 3, which is sufficient to reveal
the relationships. The stretch s is in the range (0.5, 2),
yielding graphs that are not too dense nor too sparse.
As Figure 4a shows, the network becomes sparser with
rising dispersion and stretch. The density ranges from
10−5 at (α = 3, s = 2) to 0.1 at (α = 0.8, s = 0.5).
The stretch parameter s has a stronger influence on the
density than α. The generated graphs are connected
unless the stretch is very high and the average degree
below ≈ 20. Through parameter studies, we confirm
the theoretical result from [20] that the exponent of the
power-law degree distribution is γ = 2α+1 (Figure 4b).
When the stretch parameter is too high and the graph
very sparse, the degree distribution no longer follows a
power law (resulting in an outlier in Figure 4b).

The generator is capable of producing degree assor-
tative and disassortative networks. The degree assorta-
tivity rises with α and s, above α = 1.2 it is positive for
some, above α = 1.8 positive for all values of s (Fig. 4c).
Diameter rises with thinning graphs, until the graph be-
comes disconnected and only the diameter of the largest
component is measured (Figure 4d). At (α = 1, s = 1)
the diameter of a network with 106 nodes is three, the
maximum diameter is obtained at (α = 3, s = 1.6) with
5.2k. It is one of the few properties which are influenced
by both parameters equally. The clustering coefficient
(Fig. 4e) is above 0.75 for values of s below 1.9, signif-
icantly higher than in random graphs. The geometric
graph model inherently promotes the formation of trian-
gles, since two nodes connected to a third node are also
likely to be close to each other. This value is mostly
stable at around 0.8 and independent from the value
of α, but decreases in cases of high s. Determining the
maximum core number of a node through core decompo-
sition, we see that high density leads to a higher degree
of connectedness and hence the emergence of a dense
core (Fig. 4f). The maximum core number corresponds
closely to the overall density seen in Figure 4a.

Another revealing aspect of a network is its commu-
nity structure. We quantify it by applying a modularity-
driven algorithm [24] and measuring the modularity and
average size of the resulting communities. The size of
communities decreases with the sparsity of the network.

Dense graphs with very few communities have a rela-
tively low modularity. Modularity is not independent of
graph size and not an absolute measure for the strength
of community structure, but nonetheless indicates that
the graphs have community structure. Finally, Figure 4i
shows how well a power law function fits the degree dis-
tribution. Except for cases of high s, a power-law fit is
much more likely than an exponential fit.

4.2 Comparison with Real-world Networks.
To judge the realism of the generative model, we
list the properties of a diverse set of real complex
networks (Table 1): PGPgiantcompo describes the
largest connected component in the PGP web of trust,
caidaRouterLevel and as-Skitter represent internet
topology, while citationCiteseer and coPapersDBLP

are scientific collaboration networks, soc-LiveJournal
and fb-Texas84 are social networks and uk-2002 and
wiki link en result from web hyperlinks. The columns
show the number of nodes and edges, the clustering co-
efficient, the maximum core number derived by core de-
composition, the log likelihood of a power-law degree
distribution, the exponent of an optimal power-law fit,
the degree assortativity, the diameter, average size of
communities and modularity of the community struc-
ture. For the study, we tried to match typical properties
of this set of real networks by selecting parameters of
our generator. We found that the graphs generated by
the hyperbolic unit-disk model share important prop-
erties with the real-world networks, but differ in oth-
ers. The power law exponent γ can be easily matched
through the formula γ = 2α + 1. The average degree
can be influenced independently by varying s, with a
higher s leading to a sparser graph. If we match den-
sity and degree distribution to a real network, the clus-
tering coefficient tends to be higher (in the range of
0.75-0.85) than usually found in those networks, with
the exception of coPapersDBLP (which contains many
cliques). The diameter is right when matching the face-
book graph, but higher by a factor of about 100 oth-
erwise, since the generator produces fewer long-range
edges that are responsible for small-world network di-
ameters. The degree assortativity of the real networks
varies from slightly negative to strongly positive, and
our generator can represent this spectrum. Generated
dense subgraphs tend to be a tenth as large as communi-
ties typically found in real networks of the same density,
and are not independent of total graph size. Real net-
works mostly admit high-modularity partitions, which
is also true for our synthetic graphs. When targeting
an average degree below ≈ 20, the generated graphs are
no longer connected and decompose into many small
connected components.
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Figure 4: Properties of graphs generated with the hyperbolic generator for 100,000 nodes and different values for
the parameters α and s. Higher values of α cause fewer edges to be generated, as do higher values of s. With too
few edges, the graphs become disconnected and noise of other property measurements increases.

n m cc max core power law γ deg.ass. diameter comm. size mod.

PGPgiantcompo 10k 24k 0.44 31 2.04 4.41 0.23 24 101 0.88
fb-Texas84 36k 1.6m 0.19 81 1.54 4.8 0 7-8 1894 0.38
caidaRouterLevel 192k 609k 0.19 32 6.73 3.46 0.02 26-30 365 0.85
citationCiteseer 268k 1m 0.21 15 9.6 3.0 -0.05 36-40 1861 0.80
coPapersDBLP 540k 15m 0.81 336 4.04 5.95 0.50 23-24 2842 0.84
as-Skitter 1.7m 11m 0.3 111 20.3 2.35 -0.08 31-40 1349 0.83
soc-LiveJournal 4.8m 43m 0.36 373 6.94 3.34 0.02 19-24 632 0.75
uk-2002 18.5m 261m 0.69 943 331 2.45 -0.02 45-48 441 0.98
wiki link en[15] 27m 547m 0.10 - 26 3.41 -0.05 - 21.6 0.67

Table 1: Properties of various real networks.
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4.3 Comparison with Existing Generators.
When comparing the hyperbolic generator and its im-
plementation to existing generators, we consider real-
ism, flexibility and performance. The Barabasi-Albert
generator produces networks with a power-law degree
distribution and a fixed exponent of 3, which is roughly
in the range of real-world networks. However, the de-
gree assortativity is negative and the clustering coeffi-
cient low. The running time is in Θ(n2), rendering the
creation of massive networks infeasible. Accepting only
the node count n as parameter, the Dorogovtsev-Mendes
model is very fast at the expense of flexibility. Cluster-
ing coefficient, degree assortativity and power law expo-
nent of generated graphs are roughly similar to those of
real-world networks. The R-MAT generator has a fast
running time in practice and O(m logm log n) asymp-
totic complexity; it is also more flexible and subsumes
several other models. At least the Graph500 benchmark
parameters lead to an insignificant community structure
and clustering coefficients, as no incentive to close tri-
angles exists.

The Chung-Lu model recreates a graph to a given
degree sequence, which is matched in expectation.
When called with degree sequences from the first four
graphs in Table 1 as input, the degree distributions are
matched but in all results both clustering coefficient
and degree assortativity are near zero and the diam-
eter too small. The BTER generator matches both de-
gree distribution and clustering coefficient per degree of
existing graphs. We test it with the PGPgiantcompo,
caidaRouterLevel, citationCiteseer and coPapersDBLP
networks. The degree distributions and clustering coef-
ficients are matched with a difference of ≈ 5%. Similarly
to the hyperbolic unit disk generator, it has difficulties
recreating connected but sparse networks. Generated
communities have a size of 5-45 on average, which is
smaller than typical real communities and those of the
hyperbolic unit disk model.

In conclusion, the hyperbolic unit disk generator
can match a degree distribution exponent while having
stronger clustering than the Chung-Lu and R-MAT
generator and being more scalable and flexible than
the Barabasi-Albert generator. Diameter and number
of connected components are less realistic than those
produced by BTER, but community structure is closer
to typical real communities.

4.4 Performance Measurements. Figure 5 shows
the running times for networks with 105 − 107 nodes
and different values for α and s. Our test platform for
this is a shared-memory server with 256 GB RAM and
2x8 Intel(R) Xeon(R) E5-2680 cores (32 threads due to
hyperthreading) at 2.7 GHz. Apart from outliers, the

106 107 108 109 1010
10−1

100

101

102

edges

se
co
n
d
s

n = 105

n = 106

n = 107

Figure 5: Runtime for generating networks with 105 −
107 nodes and up to 6× 109 edges. With 32 threads we
achieve a throughput of up to 400 million edges/s.

running time grows linearly in the number of edges if n
remains fixed. Random differences in the node positions
influence the quadtree height and running time. For
graphs with 107 nodes, system memory became limiting
and small fluctuations in the memory consumption
had large effects on the amount of swapping and thus
running time.

5 Conclusion

We provide a scalable implementation of a generative
graph model based on hyperbolic geometry. The model
provides provably high clustering [10], a power-law de-
gree distribution with an adjustable exponent and a
good theoretical connection to the ongoing research
about hyperbolic embedding. Under the assumption of
a fast range query, the running time of our implemen-
tation is proven to be O((n + m log n) in expectation,
which is asymptotically faster than previous implemen-
tations we know of. This time complexity was supported
by experiments. Since all coordinates are projected onto
the unit disk, floating point precision might become a
problem at a certain graph size. Such problems could
be circumvented by using floating point data types with
arbitrary precision. In addition to the static model, we
provide a dynamic model for gradual movement, which
is yet without data but consistent to the static model.

We also provide a comprehensive network analysis
of the generated graphs, which are the largest published
networks of their kind.

http://www.graph500.org/specifications
http://www.graph500.org/specifications
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Name param m cc deg.ass. power law γ diam.

Barabasi-Albert k, n0 k · n 0-0.68 < 0 for n0 < 0.3n ' 3 < 30
BTER dd,ccd matched matched ≈matched possible ≈matched
Dorogovtsev-Mendes 2 · n 0.7 0.02-0.05 yes 5-6 15-40
Chung-Lu seq ≈

∑
seq/2 < 10−2 < 10−2 possible varies 8-12

Hyperbolic α, s, t 0.5-0.9 -0.05-0.4 yes 2α+ 1 3-5238
R-MAT a, b, c, d,eF eF · n 0-1 0-0.6 yes 0-10 0-18

Table 2: Measured properties of various generative models. Parameter ranges were nMax = 105, n0 ∈
[0, 105), k ∈ [0, 104) for the Barabasi-Albert generator, PGPgiantcompo, caidaRouterLevel, citationCiteseer and
coPapersDBLP for Chung-Lu and BTER and scale = 16, eF = 10, a ∈ [0.4, 1.0), b ∈ [0, a), c ∈ [0, a) for R-MAT.

A Transformation of Neighborhood Circles to
the Poincaré disk

When inserting edges for a given node u = (φh, rh) in
the hyperbolic model, all nodes v within a hyperbolic
circle of radius radiush need to be gathered. To avoid a
quadratic amount of hyperbolic distance computations,
we construct the Euclidean circle E in the Poincaré disk
which corresponds to the hyperbolic circle around u.
The center Ec and radius Er of E are almost always
different from u and radiush. All points on the edge of
the Euclidean circle have hyperbolic distance tR from
u. Two of these points are straightforward to construct
by keeping the angular coordinate fixed and choosing
the radial coordinates to match the hyperbolic distance:
(phih, re1) and (phih, re2), with re1,2 6= rh and

radiush = acosh(1 + 2(re − rh)2/((1− r2
h)(1− r2

e)))

These points are directly below and above u. The radial
coordinates can be derived with several transformations:

cosh(radiush)− 1 =
2(re − rh)2

(1− r2
h)(1− r2

e)
(1.8)

(cosh(radiush)− 1)(1− r2
e) =

2(r2
e − 2rhre + r2

h)

1− r2
h

(1.9)

To keep the notation short, define a = cosh(radiush)−1
and b = (1− r2

h) . It follows:

(a)− r2
e(a) =

2(r2
e − 2rhre + r2

h)

b

(1.10)

a = r2
e(a) +

2(r2
e − 2rhre + r2

h)

b
(1.11)

= r2
e(a+

2

b
) + re

−4rh
b

+
2r2
h

b
(1.12)

0 = r2
e(a+

2

b
) + re

−4rh
b

+
2r2
h

b
− a(1.13)

0 = r2
e + re

−4rh

b(a+ 2
b )

+
2r2
h

b(a+ 2
b )
− a

(a+ 2
b )

(1.14)

Solving this quadratic equation, we obtain:

(1.15) re1,2 =
2rh
ab+ 2

±
√(

2rh
ab+ 2

)2

− 2r2
h − ab
ab+ 2

Since (phih, re1) and (phih, re2) are different points
on the border of E, the center Ec needs to be on
the perpendicular bisector. Its radial coordinate rEc
is thus (re1 + re2)/2 = 2rh

ab+2 . To determine the angular
coordinate, we need the following lemma:

Lemma A.1 Let H be a hyperbolic circle centered at
(φh, rh) and radius radiush. The center Ec of the
corresponding Euclidean circle E is on the ray from
(φh, rh) to the origin.

Proof. Let p be a point in H, meaning
distH(p, (φh, rh)) ≤ radiush. Let p′ be the mirror
image of p under reflection on the ray going through
(φh, rh) and p. (φh, rh) is on the ray and unchanged
under reflection: (φh, rh) = (φh, rh)′. Since reflection
on the equator is an isometry in the Poincaré disk model
and preserves distance, we have distH(p′, (φh, rh)) =
distH(p, (φh, rh)′) = distH(p, (φh, rh)) ≤ radiush and
p′ ∈ H. The Euclidean circle E is then symmetric with
respect to the ray and Ec must lie on it. �

Ec is thus at (φh,
2rh
ab+2 ) and Er is

√(
2rh
ab+2

)2

− 2r2h−ab
ab+2 .

B Complexity Analysis and Dynamic Model

Theorem 3.1 Let R be the hyperbolic radius of the disk
covered. A node at depth i of the quadtree covers an area
of (2π(cosh(R)− 1))/4i.

Proof. Start of induction (i = 0): By definition from cir-
cle area in hyperbolic space: area(R) = (2π(cosh(R) −
1)).

Inductive step (i→ i+ 1): Let d be a node at level
i. It has four children at level i + 1. Let d′ be without
loss of generality the left inner child of d. The area of

9
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d′ is:
(2.16)

area(d′) =
midφ −minφ

2π
· (2π(cosh(midr))− cosh(min

r
))

This results in an area of 1
2 (maxφ−minφ) ·

(cosh(acosh
(
(cosh(maxr) + cosh(minr))/2

)
) −

cosh(minr)) = 1
2 (maxφ−minφ) · (cosh(maxr) +

cosh(minr))/2 − cosh(minr)) = 1
2 (maxφ−minφ) ·

1
2 (cosh(maxr)− cosh(minr)) = 1

4area(d). �

Theorem 3.2 Let T be a polar quadtree constructed
as defined in Equation 3.4 of the paper with n
points distributed uniformly in hyperbolic space. Then
E(height(T )) ∈ O(log n).

Proof. Due to Theorem 3.1, each tree cell at a given
height covers an equally-sized area of hyperbolic space.
In a complete quadtree 4k cells exist at height k. For
analysis, we construct a complete quadtree of height
k = dlog4(n)e, which has at least n leaf cells. As the
points are distributed uniformly in hyperbolic space,
each point has an equal chance to land in a given leaf
cell. Let C be an arbitrary but fixed leaf cell and c
the leaf capacity. The leaf C is split into child nodes
when more than c points land in the region managed
by C. An abstract representation of this probability is
an urn with balls of 4k different types. Drawing n balls
with replacement, what is the probability more than
c balls show the same type? This follows a binomial
distribution:

(2.17) P (split) = 1−
[c]∑
i=0

(
n

i

)
(1/(4k))i(1−1/(4k))n−i.

Generalizing this, a tree T exceeds height k if more
than c points fall in any region managed by a cell at
level k. The splitting probabilities for different cells
are unfortunately not independent, as can be seen with
the pigeonhole principle: If n = 5, k = 1 and c = 1,
a split needs to happen somewhere, but all individual
non-splitting probabilities are above 0 and so is their
product.

However, an argument borrowed from hashing
helps: Let c = 1 to allow only a single point per leaf cell.
The number of excess points in a leaf cell is then equiv-
alent to the number of hash collisions with n elements
and n buckets. For this scenario it is shown that the
expected maximum number of collisions in any bucket
is O(log n/ log log n) [4]. This will result in at most
O(log n/ log log n) additional levels and an expected to-
tal height of O(log n). �

C Dynamic Model

Theorem 3.4 Node movement preserves distribu-
tion of angular and radial coordinates: FX(r) =
FX(scale(r)) for 0 ≤ r ≤ R and FΦ(rotated((φ, r))) =
FΦ(φ) for 0 ≤ φ ≤ 2π.

Proof. As introduced in Section 2.2 of the paper, the
radial coordinate r is sampled from a distribution with
density sinh(r)/(cosh(R)− 1) and τr is the unscaled ra-
dial movement parameter.We introduce additional ran-
dom variables X,Y, Z for each step in Algorithm 3.2 of
the paper, each is denoted with the upper case letter
of its equivalent.We have an additional random variable
Q denoting the pre-movement radial coordinate. The
other variables are defined as X = cosh(Q), Y = X+τr
and Z = acosh(Y ) = scale(Q, τr). With FQ(r) =
(cosh(r)− 1)/(cosh(R)− 1), we get a uniform distribu-
tion over x: FX(x) = FQ(acosh(x)) = (cosh(acosh(x))−
1)/(cosh(R) − 1) = (x − 1)/(cosh(R) − 1). The cu-
mulative density functions are FY (r) = FX(r − τr) =
(r − τr − 1)/(cosh(R)− 1) and FZ(r) = FY (cosh(r)) =
(cosh(r)− τr − 1)/(cosh(R)− 1).

The distributions of Q and Z only differ in the
constant addition of τr/(cosh(R)−1). Every (cosh(R)−
1)/τr steps, the radial movement reaches a limit (0 or
R) and is reflected, causing τr to be multiplied with -1.
On average, τr is thus zero and FQ(r) = FZ(r).

A similar argument works for the rotational step:
While the rotational direction is unchanged, the change
in coordinates is balanced by the addition or subtraction
of 2π whenever the interval [0, 2π) is left, leading to an
average of zero in terms of change. �

C.1 Time Complexity We first discuss the move-
ment of a single node with j edges and then proceed to
move k nodes with l edges. Movement of a single node
v consists of the following steps:

1. Sbefore = neighborhood of v at old coordinates
2. update coordinates
3. IF new coordinates are in different quadtree cell
4. delete v from old cell
5. insert v into new cell
6. Safter = neighborhood of v at new coordinates
7. removed edges = Sbefore \ Safter

8. new edges = Safter \ Sbefore

As seen in Equation 3.5 of the paper, a range query
has a time complexity of O((1 + j) log n).The deletion
of a point from the quadtree requires height = log4(n)
steps to find the responsible leaf node, then at most
one coarsening operation if the number of elements in
this leaf node falls under a threshold. The coarsening
operation copies at most c elements, thus we have:

(3.18) T (Deletion) ∈ O(log4(n/c) + c) = O(log n).
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Figure 6: For each movement step, radial coordinates
are mapped into the interval [1, cosh(R)), where the
coordinate distribution is uniform. Adding τr and
transforming the coordinates back results in correctly
scaled movements.

This results in a total time complexity of 2 ·T (RQ(v))+
T (Deletion(v)) + T (Insertion(v)) + T (SetDifference(j))
The neighborhood set difference for j edges can be
obtained with an amortized complexity of O(j) using
a hash set. With the O(log n) time complexity for
insertion (Equation 3.4 of the paper) and O((1+j) log n)
for the range query, we have

(3.19) T (Movement) = O((1 + j) log n).

When moving k nodes with l edges, first all neighbor-
hood sets are computed at the old positions, then all
quadtree updates are applied and finally the neighbor-
hood sets at new positions are computed. This reorder-
ing does not influence the asymptotical running time,
which is O((k + l) log n).

D Parameter studies with varying threshold
factor t

The node dispersion α starts from 0.8 (lower values tend
to result in a complete graph) and goes up to 3. The
threshold factor t is in the range (0.1, 1). Choosing
values over 1 results in very dense graphs quickly, a
complete graph is generated for t = 2.1 The results are
visualized in Figure 7.
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Figure 7: Properties of graphs generated with the hyperbolic generator for 100,000 nodes and different values for
the parameters α and t. Higher values of α cause fewer edges to be generated, as do lower values of t. With too
few edges, the graphs become disconnected and noise of other property measurements increases.
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