
Politecnico di Torino

Porto Institutional Repository

[Proceeding] UML FOR SPACE SYSTEMS: FROM SPECIFICATION TO
DESIGN AND IMPLEMENTATION

Original Citation:
Rizwan Mughal, M.; Anwar, Ali; Haider, Ali; Reyneri, Leonardo M. (2013). UML FOR SPACE
SYSTEMS: FROM SPECIFICATION TO DESIGN AND IMPLEMENTATION. In: International
Astronautical Congress. pp. 1-7

Availability:
This version is available at : http://porto.polito.it/2530692/ since: February 2014

Publisher:
International Astronautical Federation (IAF)

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

(Article begins on next page)

http://porto.polito.it/2530692/
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=2530692

64th International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-13,D1,3,7 Page 1 of 7

IAC-13,D1,3,7,x18418

UML FOR SPACE SYSTEMS: FROM SPECIFICATION TO DESIGN AND IMPLEMENTATION

M. Rizwan Mughal, Anwar Ali, Haider Ali, Leonardo M. Reyneri,

Department of Electronics and Telecommunications,

Politecnico Di Torino, Italy

 {muhammad.mughal, anwar.ali, leonardo.reyneri}@polito.it

Unified Modeling language (UML) is a high level modeling language which comes with new approaches in the

modeling, design, documentation, testing of embedded systems. It is an upcoming approach borne in the software

community which is nowadays extending to other industrial domains and recently entering the space community. A

key element of the AraMiS architecture (A small satellite built by the students of Politecnico Di Torino) is the

specification, design, testing and documentation based on UML. Each subsystem has been associated with one or

more students who fully developed it from specifications to implementation and testing again using UML. A variety

of UML diagrams (use case, class, sequence, requirement, etc.) have been utilized for the development of each

subsystem. A teamwork server allows every designer to work independently from anywhere and commit his work

which can be reviewed by the project manager and updated in the main project and therefore, the other team is also

fully aware of the updated task. Complete documentation report and software code of the system can be generated at

the end of the design. The UML design approach is helpful to better understand the functionality of the system and

overcome design limitations on the early stages of the system. Design complexity and development time is reduced

by using proposed approach. At the end, we get a fully documented, tested, fault tolerant space system thanks to

UML design approach.

I. INTRODUCTION

Designing a space system is a very complex task. It

must be split into simpler functions and subsystems.

Each function and subsystem has to be specified,

designed, reviewed, validated, implemented, tested,

deployed, and most importantly documented.

Development requires a wide number of tools,

techniques and approaches.

Designing a low cost or university satellite has

to cope with a number of additional tough constraints:

Firstly, the Individual designers and teams mostly

consist of students who are available for a short period

of time. They often appear and disappear quickly.

Secondly, the designers and teams are often

inexperienced and do not have much exposure to the

vast variety of practical tools. Therefore, someone has

to lay down specifications for heterogeneous teams.

Innovative metholodigies are necessary that allow the

integration of more and more complex systems with

innovative design, testing and documentation.

This paper proposes the design technique of

initialization, requirements, documentation, and

modeling of subsystems of small satellites as a test case,

all using UML [1-4].

In particular, AraMiS is an innovative modular

architecture alternative to CubeSats, for larger and more

demanding applications, with a modularity at

mechanical, electronic and testing levels, to be used

mostly in LEO Satellites (600 – 800 km). Modularity

helps to share costs among multiple missions, to reduce

manufacturing and testing costs and to easily increase

redundancy. Actual satellite technology leads to high

costs for space missions. The use of COTS reduces

development time, cost and size. Reduced reliability of

COTS can be compensated by proper design and

redundancy.

A key element of the ARAMIS architecture is

the design and documentation methodology used, which

is based on an extension of UML, as described here.

The aim of this paper is to introduce an

approach to this problem using UML as a high level

specification, description and documentation language.

The purpose of this approach is to obtain a complete

development flow for mixed-systems able to produce,

on one side, documentation always close to real project

implementation and, on the other, a fast and reliable

method for reducing time- to-market in developing

these objects.

The design of all the major subsystems of AraMiS has

been carried out by using UML. Initially developed in

1995 for designing software, the UML was optimally

adapted to the description of systems made of both

hardware and software. It is based on the representation

of entities involved in the system functioning and all

interactions among them. There are many advantages of

using this language with most important being

64th International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-13,D1,3,7 Page 2 of 7

 Make easier the project understanding, even by

people external to the project, thanks to a

graphical/conceptual representation of the

elements that make the system (components,

subsystems, signals, functions...) starting from a

high level description to a specific one.

 Simplify and improve the description of system

functionalities and the specification definition

providing a common basis in the approach of

designing the units forming the whole system.

 Make exportable the system building blocks

(which are independent form each other) such that

they can be re-used in other projects so

implementing the modularity concept.

The UML design approach for AraMiS comes from the

evolution of the University Satellites at Politecnico di

Torino:

 PICPOT, launched on July 2006, but launcher

blew up during flight

 ARAMIS, heavily modular architecture for more

demanding applications.

An innovative approach to teamwork design of complex

system was needed:

 From mission- to circuit- and component-level

 Compatible with very heterogeneous and

inexperienced teams and with a variety of CAD

tools (mechanical, electrical, software, etc.)

Among all possible utilities that UML offers, there are

certain types of diagrams used in UML including, but

not limited to use case diagram, class diagram and

sequence diagram.

II. UML DIAGRAMS

II.I. SPECIFICATIONS: USE CASE DIAGRAMS

Use case diagrams show main function of the system

(use cases) and the entities that are outside the system

(actors). Use case diagrams show how the class and

objects of the class relate and hierarchical associations

and object interaction between classes and objects.

These diagrams allow us to specify the requirements of

the system and show interaction between system and

external actors. These diagrams are the starting point in

the system modeling and consist of actors and use cases.

II.I.I. Actors

Actors are generic entities, human users, other systems

or the external environment, which interact with the

system under design and implements one or more use

cases. They are usually shown as sketched people with a

short name which identifies the role in the system. They

are associated with a detailed documentation. The list of

actors is fundamental to understand all entities which

might interact with the system. The actors are very

fundamental entities and missing an actor will miss all

the interfaces and functions associated with it. Therefore

they are critical in the design and the designers need to

put more time in identifying the possible actors during

early stages of design.

Let’s imagine a situation where the designer forgot

to add an actor “tester” in the early stage of the design.

The possible consequences may be

 There might not be possibility of test

connector to test the satellite

 There will be no internal access node for

debugging

 No software will be added for detailed

testing

 There might not be special satellite mode

to allow testing before launch, etc.

II.I.II. Use Cases

The major work of the actors is to interact with different

subsystems of the satellite. The main concerning points

are

What does and actor expect from a system?

What does a system expect from an actor?

All this is detailed by Use Cases, which are usually

described by an oval with a name which shortly

describes it. Building up the list of use cases means

starting to specify the functions of the satellite or its

subsystem and therefore thinking to the mission.

There exist several kinds of relations between use cases

and actors including generalization, inclusion,

extensions, associations etc.

This section details the use cases of the magnetic

attitude subsystem of the AraMiS architecture. The use

case diagram defines the functional specifications of the

project and is shown in Fig.1 for magnetic torque

actuator subsystem. The central mission controller and

central attitude controller actors interact with the system

and perform many tasks. The central mission controller

is an entity (likely a software routine running on the

onboard computer) in charge of satellite supervision,

fault detection and management and emergency

management whereas the central attitude controller is an

entity (likely a software routine running on the OBC in

charge of managing the attitude control subsystem in

nominal operation. Fault and emergency handling are

left to the Central Mission Controller. All other use

cases implement most of the magnetic actuation and

control functions such as attach/ detach coil, get voltage

64th International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-13,D1,3,7 Page 3 of 7

and current levels of coil and housekeeping sensors etc.

All the housekeeping functions are performed by using

data handling technique described in [1].

Fig.1 Use case diagram of magnetic attitude control class

III. ARCHITECTURE AND DESIGN

III.I. Classes

The objects have tendency to know things i.e. they

have attributes and they do things i.e. they have

methods. All objects of the same type are represented by

a class. In UML notion, classes are depicted as boxes

with three sections, the top one indicates the name and

stereotype of the class, the middle one lists the attributes

of the class, and the bottom one lists the methods.

Each object in UML classes can either be associated

with hardware (HW), software (SW), an analog (ANA)

implementation etc. depending on the stereotype of each

class. Each stereotype is labelled with a specific colour.

Each subclass has objects which contain different

attributes and operations.

UML classes and objects are used to specify any

electronic, mechanical, software element of a system.

The attributes of the class store data for the class. The

attributes can either be constant, therefore representing

characteristics common to all objects of that type

variable, therefore storing time-variable data which are

part of the class. Classes in turn can be made of one or

more other classes (hierarchical structure). The generic

UML class for AraMiS is shown in Fig.2 showing

unique class for every major subsystem.

The class diagram of attitude and orbit control

subsystem has been elaborated as a test case. The

magnetic attitude control system together with the

inertial attitude control system is used to accomplish the

desired rotation to the satellite, by sending commands

directly from the ground. The system consists of certain

sensing and control classes as shown in the Fig.3. The

class diagram of magnetic attitude subsystem consist of

Fig. 2 . Generic class diagram for AraMiS architecture

 Bk1B222_Magnetic_Torque_Actuator

block consisting of solenoid coil.

Fig.2 Class diagram of AraMiS

 Bk1B221_Magnetometer_Sensor block

consisting of a magnetic field sensor and

conditioning electronics.

The current flowing through the solenoid provides the

tile angular momentum while the magnetometer

measures the values of earth magnetic field in orbit.

The block 1B22 uses a microprocessor located in the

Tile Power Management to handle the different sub-

commands to perform housekeeping calculations and

calibrate the telemetry data.

64th International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-13,D1,3,7 Page 4 of 7

Fig.3 Magnetic attitude control class diagram

64th International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-13,D1,3,7 Page 5 of 7

IV. SEQUENCE DIAGRAMS

Sequence diagrams describe how structural elements

communicate with one another and time sequence of

events. Time increases vertically from top to bottom.

Fig.4 shows the sequence diagram of simple data

handling example. Fig. shows sequence diagram to give

the set/ reset pulses to our magnetometer. The controller

sends either set or reset pulses to the magnetometer

bock which ultimately passes to the magnetometer

sensor.

Fig. 4 Sequence Diagram of set/reset pulses of Magnetometer

The detailed analysis of using all the UML diagrams

in the design, implementation and testing of any

electronic system is described in the next section.

V. DESIGN FLOW

The UML diagrams are very helpful in building

subsystems from conception to the final design and

testing. Fig.5 shows a design sequence for

magnetometer subsystem of AraMiS architecture. The

use case diagrams indicate all the functions of the

magnetometer managed by central mission controller

and central attitude controller actors. These use cases

are then realized by a set of UML classes in class

diagram. The class diagram shows the subclasses for

magnetometer and either hardware, software and analog

components needed in order to complete the design.

Each class is represented by a specific color based on its

type. The classes have been divided into different types

based on the attributes. The software classes contain the

software codes in order to implement the specific use

cases. This makes the design quite easier by placing

pieces of codes in the corresponding classes and then

generating the entire code at any time in the design. The

detailed documentation of every use case, class and

sequence diagram is written in the respective location.

The built-in project documentation design offers a high

level of flexibility, user control and customization. After

selecting output format using the desired template, the

project documentation can easily be customized

according to the user needs. There is also possibility of

selecting the level of detail for each element, such as

including hierarchy diagrams to assist the

communication of class relationships. There is also

possibility to insert hyperlinks to aid the navigation in

the project documentation.

After the use case and class diagrams, the final

design is realized as shown in Fig.5. Every hardware

and component stereotyped class corresponds to

physical component. The physical schematics can then

be realized by use of any CAD tool. The final design is

ready to be implemented at this stage. After the design

is physically available, the next step is to test it. Testing

sequence is realized by sequence diagrams. The test is

performed according to the sequence diagram and

verified with the requirement diagrams. If the test

sequence is in accordance with the requirements, the

final module is ready to be integrated onto the tiles. At

the end, a complete documentation report of all the steps

of the design can be easily generated. The generated

code for testing and realization is quite clear, readable

and well documented and properly commented.

Moreover, the generated code clearly depicts the system

design in terms of relationship between classes, their

associations, etc.

64th International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-13,D1,3,7 Page 6 of 7

Fig. 5 Design flow of magnetic attitude subsystem

U1

SEN_HMC1002

VbridgeA VbridgeB

G
N
D
1
A

G
N
D
2
A

G
N
D
1
B

G
N
D
2
B

G
N
D
-P
L
N

OFFSET-A

S/R-B

OFFSET-B

S/R+B

OFFSET+B

S/R+A

OFFSET+A

S/R-A

OUT+A

OUT-A

OUT+B

OUT-B

R1

R33R

RS_504-6562

R2

R33R

RS_504-6562

notSET

RESET

R3

R200R

RS_668-8356

Q1

IR
F
7
3
2
4

S

D

G

Q1

IR
F
7
3
2
4

S

D

G

U2

OA_AD623ARZ

IN+

IN-

RG+

RG-

VS+

VS-

OUT

REF

U3

OA_AD623ARZ

IN+

IN-

RG+

RG-

VS+

VS-

OUT

REF

R4
R3K3
RS_504-6506

R5
R3K3
RS_504-6506

R1K
R6

RS_504-8928

R1K
R9 RS_504-8928

R1K

R10

RS_504-8928

R1K

R12

RS_504-8928

MAGN_X

MAGN_Y

R1K

R7

RS_504-8928

R1K

R8

RS_504-8928

D1
CZRU52C3

A

K

D2
CZRU52C3

A

K

C12

C10u

DK_399-3525-6-ND

C15

C470n
DK_478-1263-1-ND

C14

C470n
DK_478-1263-1-ND

Q11

IR
F
7
3
1
1

G

D

S

Q11

IR
F
7
3
1
1

G

D

S

NC

NC

NC

NC

Testing

Class Code Details Documentation

Design Schematics

Design

Implementation

Module Integration

Verification:

Sequence Diagram

64th International Astronautical Congress, Beijing, China. Copyright ©2013 by the International Astronautical Federation. All rights reserved.

IAC-13,D1,3,7 Page 7 of 7

VI. CONCLUSION

This paper has introduced an object oriented

approach to the design of on-board data handling

subsystem of AraMiS Nano satellites based on UML.

There are many advantages of UML based design over

typical design approach. The UML design approach is

helpful to better understand the functionality of the

system and overcome design limitations on the early

stages of the system. Design complexity and

development time is reduced by using proposed

approach. Extensive documentation of each diagram

helps in understanding the system much better, reuse of

UML singleton classes helps minimize probability of

error. In addition, interaction between different blocks is

much easier. UML tool can generate code for several

programming languages. The generated code is quite

clear, readable and well documented and properly

commented. Moreover, the generated code clearly

depicts the system design in terms of relationship

between classes, their associations, etc.

REFERENCES

[1] Mughal, M.R.; Reyneri, L.M.; Ali, A., UML based design

methodology for serial data handling system of NanoSatellites,

Satellite Telecommunications (ESTEL), 2012 IEEE First AESS

European Conference on , vol., no., pp.1,6, 2-5 Oct. 2012

[2] Reyneri, L.M.; “UML-based design methodology for designing

university satellites” 1st IAA Conference on University Satellite

Missions and CubeSat Workshop, Rome, Italy, 24-29 January
2011

[3] Tranchero, M.; "HW-SW design flow of a Nano-satellite using

UML and CodeSimulink co-design environment,"
Electrotechnical Conference, 2006. MELECON 2006. IEEE

Mediterranean, vol., no., pp.85-88, 16-19 May 2006.

[4] Reyneri, L.M.; "An Object Oriented Codesign Flow for low-cost
HW/SW/mixed-signal systems based on UML," Electrotechnical

Conference, 2006. MELECON 2006. IEEE Mediterranean, vol.,

no., pp.80-84, 16-19 May 2006.

