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THE LIMITING ABSORPTION PRINCIPLE AND A RADIATION
CONDITION FOR THE SCATTERING BY A PERIODIC LAYER

ANDREAS KIRSCH AND ARMIN LECHLEITER

Abstract. Scattering of time-harmonic waves from periodic structures at some fixed
real-valued wave number becomes analytically difficult whenever there arise surface
waves: These non-zero solutions to the homogeneous scattering problem physically
correspond to modes propagating along the periodic structure and clearly imply non-
uniqueness of any solution to the scattering problem. In this paper, we consider a
medium that is defined in the upper two-dimensional half-space by a penetrable and
periodic contrast. We prove that there is a so-called limiting absorption solution to the
associated scattering problem. By definition, such a solution is the limit of a sequence
of unique solutions for artificial complex-valued wave numbers tending to the above-
mentioned real-valued wave number. Our method of proof seems to be new: By the
Floquet-Bloch transform we first reduce the scattering problem to a finite-dimensional
one that is set in the linear space spanned by all surface waves. In this space, we then
compute explicitly which modes propagate along the periodic structure to the left or to
the right. This finally yields a representation for our limiting absorption solution which
leads to a proper extension of the well known upward propagating radiation condition.
Finally, we prove uniqueness of a solution under this radiation condition.

1. Introduction

Periodic non-absorbing surface structures feature surface waves that propagate along the
structure without decaying. These waves do physically arise at certain exceptional val-
ues of the Bloch parameter, and mathematically they are eigenfunctions of a certain
(quasi-)periodic eigenvalue problem involving the surface structure. The corresponding
eigenvalue determines the surface wave’s frequency, and the surface wave itself is the
quasi-periodically extended eigenfunction.

Since the eigenfunction is a non-zero solution to a corresponding quasi-periodic scattering
problem from the periodic structure, the latter scattering problem cannot be uniquely
solvable at any of these eigenfrequencies. For this reason, such frequencies are usually
excluded from the analysis of surface scattering. Consequently, scattering theory from
periodic structures is a field that artificially always excludes surface waves, despite in
applications both phenomena of course can hardly be separated.

In this paper we show for a model scattering problem involving a periodic contrast function
that there always exists a unique solution that satisfies a so-called limiting absorption
principle, independent of whether surface waves do exist or not. By construction, this
solution is, in a certain topology, limit of the unique solutions to a family of coercive
problems with artificial complex-valued wave numbers.
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This limiting absorption solution consists of two parts that we determine via the Floquet-
Bloch transform: The first part belongs to H1 on any strip of finite height and the second
part is made up of surface waves. This second part vanishes if no surface waves exist and
arises via a finite-dimensional eigenvalue problem by holomorphic perturbation theory in a
neighborhood of any quasi-periodicity that features non-uniqueness. This paper seems to
be a first instance of such a limiting absorption principle for a surface scattering problem
(apart from flat surfaces and everywhere constant coefficients, where things are much
simpler).

Precisely, we consider a problem in the upper half plane R2
+ := R× (0,∞) that is formu-

lated variationally in the waveguide W := R× (0, h) ⊂ R2
+. We assume that the index of

refraction q ∈ L∞(R2
+) is 2π−periodic with respect to x1 and equals to one for x2 > h to

construct a (weak) limiting absorption solution u ∈ H2
loc(R2

+) solving

(1) ∆u+ k2q u = 0 in R2
+,

subject to Dirichlet boundary conditions u = 0 on Γ0 = R× {0} and a suitable radiating
condition stated below.

The limiting absorption principle has been established for frequency scattering problems
in free space, in closed waveguides, and in stratified media several times in the literature.
We refer to [13, 10, 14, 1, 16, 15]. Further, [4] (see also [8]) recently showed a limiting
absorption principle for scattering in a closed waveguide that relies fundamentally on the
Floquet-Bloch transform and has substantially motivated our present paper. In [4], the
authors decompose fields via the eigenfunctions of the generalized quasi-periodic Laplacian
in the unit cell. This technique cannot be applied in our case, as such decompositions
cannot be directly transferred to surface structures that form open instead of closed
waveguides. Our analysis is indeed rather different compared to the one in [4], and also
compared to the independent study in [7].

The limiting absorption principle leads to a special decomposition of the solution into
a field u(1) which decays and a finite combination of surface waves. This allows us to
formulate a radiation condition which includes the standard upward propagating radiation
condition and provides uniqueness of the solution. Also radiation conditions for scattering
problems by stratified media have a long history, see, e.g. [17, ?, ?] but, again, our work
seems to be the first for scattering problems by periodic layers.

Our analysis carries over without difficulty to the case of a completely open wave guide;
that is, formulated in all of R2 without the Dirichlet boundary, and to the case of closed
waveguides as considered in [4]. For this case, our approach provides an independent
proof of the limiting absorption principle and uniqueness.

The methods we apply are all well-known and in principle simple enough to extend our
analysis to more involved scattering problems in linear elasticity or electromagnetics. To
reduce technical difficulties, we are however merely considering the simple Helmholtz
equation in (1).

To briefly comment on this paper’s structure, the following Section 2 discusses the scat-
tering problem in more detail and Section 3 introduces the Floquet-Bloch transform as
well as the variational formulation of the scattering problem at complex-valued frequency.
Section 4 shows properties of this formulation at wave numbers and quasi-periodicities
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where non-uniqueness holds; Section 5 then reduces the mathematical problem to a finite-
dimensional one. Finally, Section 6 shows existence of a limiting absorption solution und
uniqueness of the solution.

2. Surface Scattering and Non-Uniqueness

Let k ∈ C with Re k > 0 and Im k ≥ 0 be the wave number. We consider in the
following the case that a point source at some point y ∈ R2 with y2 > 0 is scattered
by an inhomogeneous layer on top of a perfect conductor. The layer is assumed to be
2π−periodic with respect to the variable x1. Therefore, the incident field is given by
the Dirichlet Green’s function of the half plane R2

+ = R × (0,∞); that is, uinc(x) =
Φk(x, y) − Φk(x, y

∗) for x2 > 0 and x 6= y. Here, y∗ = (y1,−y2)> denotes the reflected
point at R× {0}, and

Φk(x, y) =
i

4
H

(1)
0 (k|x− y|), x 6= y,

is the radiating fundamental solution of the Helmholtz equation in R2.

We note that for real values k = k̂ we have the asymptotics |uinc(x)| ≤ c [1 + |x|3/2]−1 for
x2 ∈ [0, h] (for any h > 0 and c = c(h)) while in the case that Im k > 0 the function uinc

decays exponentially as |x| tends to infinity. Thus, in both cases uinc ∈ L2
(
R× (0, h)

)
for

every h > 0. By enlarging h we can assume that the source point y is inside the layer;
that is, 0 < y2 < h.

The scattering problem is to determine the total field ut ∈ H1
loc

(
R2

+ \ {y}
)

with

(2) ∆ut + k2q ut = 0 in R2
+ \ {y} , ut = 0 on Γ0 ,

and such that the scattered field us = ut − uinc is more regular than the incident field, in
particular us ∈ H1

loc(R2
+). So far, the solution is not uniquely determined, because some

kind of radiation condition for the scattered field is required. We will comment on this in
a moment. We transform this problem into an inhomogeneous equation in H1

loc(R2
+) with

a source term of bounded support. Indeed, choose ε < min{y2, h − y2} and a function
χ ∈ C∞(R2) with χ(x) = 0 for |x − y| ≤ ε/2 and χ(x) = 1 for |x − y| ≥ ε and set
u = us + χuinc. Then u vanishes for x2 = 0 and solves

(3) ∆u+ k2q u = f in R2
+ ,

where f := [k2(1 − q)(χ − 1) + ∆χ]uinc + 2∇χ · ∇uinc. We note that f ∈ L2(R2
+) has

support in the disc B(y, ε) ⊂ W and depends analytically on k. From now on we treat
f = fk ∈ L2(R2

+) as an arbitrary function with compact support in the disc B(y, ε) ⊂ W

such that k 7→ fk ∈ L2
(
B(y, ε)

)
is holomorphic in some (complex) neighborhood of

some k̂ ∈ R>0. In the case of the scattering problem the scattered field is then given
by us = u − χuinc and the total field by ut = u + (1 − χ)uinc. The solution of (3) is
understood in the variational sense:

Definition 2.1. A function u ∈ H1
loc(R2

+) with u = 0 on R × {0} is called variational
solution of (3) if

(4)

∫
R2
+

[
∇u · ∇ψ − k2q uψ

]
dx = −

∫
W

f ψ dx

for all ψ ∈ H1(R2
+) with compact support.
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By choosing ψ ∈ H1(R2
+) in (4) with compact support in R× (h,∞) we note that u is a

classical solution of the Helmholtz equation ∆u+ k2u = 0 for x2 > h and thus analytic.

As mentioned above, a further condition is needed to assure uniqueness. For wave numbers
with positive imaginary part we require that u ∈ H1(R2

+).

Theorem 2.2. For k ∈ C with Re k > 0 and Im k > 0 and q ≥ q0 in R2
+ for some q0 > 0

there exists a unique variational solution u ∈ H1(R2
+) of problem (4).

Proof: We define the closed subspace H1
0 (R2

+) of H1(R2
+) by H1

0 (R2
+) =

{
u ∈ H1(R2

+) :

u = 0 on R× {0}
}

and the bounded sesquilinear form a : H1
0 (R2

+)×H1
0 (R2

+)→ C by

a(u, ψ) =

∫
R2
+

[
∇u · ∇ψ − k2q uψ

]
dx , u, ψ ∈ H1

0 (R2
+) ,

and the bounded anti-linear form ` : H1
0 (R2

+)→ C by

`(ψ) = −
∫
W

f ψ dx , ψ ∈ H1
0 (R2

+) .

The form a is coercive. Indeed, write k2 in the form k2 = |k|2 exp(it) with 0 < t < π and
choose s ∈ (−π/2, π/2) with t− s ∈ (π/2, π). Then

Re
[
e−isa(u, u)

]
= cos(s) ‖∇u‖2

L2 − cos(t− s) |k|2
∫
W

q |u|2 dx ≥ c ‖u‖2
H1(R2

+)

with c = min{cos(s),−|k|2q0 cos(t− s)} > 0. The theorem of Lax-Milgram yields unique-
ness and existence of a solution u of (4). �

For real values of k a natural radiation condition would be the “upward propagating
radiation condition” (UPRC) that is well known from scattering by rough surfaces (see,
e.g., [3]). That is, u(·, h) ∈ L∞(R) and

(5) u(x) = 2

∫
Γh

u(y)
∂Φk(x, y)

∂y2

ds(y) , x2 > h ,

where Γh = R × {h}. However, even with this radiation condition one can not expect
uniqueness as the following example shows.

Example 2.3. Let q = q0 > 1 be constant in W = R× (0, h). Consider the homogeneous

boundary value problem to determine u ∈ C1(R2
+) ∩ C2(R2

+ \ (R× {1}) with

∆u(x) + k2q0 u(x) = 0 for x ∈ W ,

∆u(x) + k2 u(x) = 0 for x ∈ R× (1,∞) ,

subject to u(x1, 0) = 0 for x1 ∈ R, and the upward propagating radiation condition
(UPRC) for u in x2 > 1.

For a real parameter ω ∈ R, we search for a solution in the form

u(x) = eiωx1v(x2) for x2 > 0 ,

such that v has to satisfy

v′′(x2) + (k2q0 − ω2) v(x2) = 0 for 0 < x2 < 1 ,

v′′(x2) + (k2 − ω2) v(x2) = 0 for x2 > 1 ,
(6)
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subject to transmission conditions on Γh, homogeneous boundary condition v(0) = 0, and
the upwards radiation condition for v. The latter conditions require v to be of the form

v(x2) =

{
α exp

[
i
√
k2 − ω2 x2

]
, x2 > 1 ,

β sin
[√

k2q0 − ω2 x2

]
, 0 < x2 < 1 ,

where the square root is chosen such that the real and imaginary parts are non-negative.
We hence seek for constants α and β that solve the 2× 2-system

α exp
[
i
√
k2 − ω2

]
− β sin

√
k2q0 − ω2 = 0 ,

α i
√
k2 − ω2 exp

[
i
√
k2 − ω2

]
− β

√
k2q0 − ω2 cos

√
k2q0 − ω2 = 0 ,

which are equivalent to the transmission conditions on Γh. This system possesses non
trivial solutions (α, β)> if and only if the determinant of the associated matrix vanishes;
that is, if

d(ω2) := i
√
k2 − ω2 sin

√
k2q0 − ω2 −

√
k2q0 − ω2 cos

√
k2q0 − ω2 = 0 .

For |ω| < k or |ω| ≥ √q0k the only solution is the trivial one. Indeed, if |ω| < k

then, taking real and imaginary part of this equation, yields cos
√
k2q0 − ω2 = 0 and

sin
√
k2q0 − ω2 = 0 which is impossible. If |ω| > √q0 k then the equation takes the form

−
√
ω2 − k2 sinh

√
ω2 − k2q0 −

√
ω2 − k2q0 cosh

√
ω2 − k2q0 = 0

which is also not solvable because all four factors are positive. A separate argument
shows that the case |ω| = √q

0
k does not yield a vanishing determinant either. Therefore,

nontrivial solutions can only exist for zeros of d in the interval [k2, k2q0) – and, indeed,
such zeros exist in general. Since the function d is analytic in the interior (k2, k2q0) and
k2q0 is not a zero of d we conclude that t = k2 is the only possible accumulation point of
an infinite sequence tj ∈ (k2, k2q0) of zeros of d. The facts that d(tj)/(tj − k2) = 0; that
is,

1√
tj − k2

sin
√
k2q0 − tj = −

√
k2q0 − tj

cos
√
k2q0 − tj

tj − k2
,

and the analyticity of t 7→ sin
√
k2q0 − t and t 7→ cos

√
k2q0 − t at t = k2 yields a

contradiction because the right hand side is bounded as j tends to infinity while the
left hand side is unbounded. (Note that in this case cos

√
k2q0 − k2 has to vanish and

| sin
√
k2q0 − k2| = 1.) This shows that there exist only finitely many zeros of d. There-

fore, if ω̂2 ∈ [k2, k2q0) is such that d(ω̂2) = 0, then there exist nontrivial α and β such
that

u(x1, x2) =

{
α exp

[
iω̂ x1 −

√
ω̂2 − k2 x2

]
, x2 > 1 ,

β exp[iω̂ x1] sin
[√

k2q0 − ω̂2 x2

]
, 0 < x2 < 1 ,
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is a solution of (6). We note that this u satisfies also the upward propagating radiation
condition (UPRC) because for x ∈ R2 with x2 > 1 and ω > k it holds that

2

∞∫
−∞

∂Φk(x, y)

∂y2

∣∣∣∣
y2=1

eiωy1 dy1 = −ik
2

∞∫
−∞

H
(1)
1 (k|x− y|) y2 − x2

|x− y|

∣∣∣∣
y2=1

eiωy1 dy1

=
ik(x2 − 1)

2

∞∫
−∞

H
(1)
1

(
k
√

(x1 − y1)2 + (x2 − 1)2
)√

(x1 − y1)2 + (x2 − 1)2
eiωy1 dy1

= − i
2
eiωx1

∂

∂z

∞∫
−∞

H
(1)
0

(
k
√
y2

1 + z2
)
eiωy1 dy1

∣∣∣∣∣∣
z=x2−1

= −i eiωx1 ∂

∂z

∞∫
0

H
(1)
0

(
k
√
y2

1 + z2
)

cos(ωy1) dy1

∣∣∣∣∣∣
z=x2−1

= eiωx1 e−(x2−1)
√
ω2−k2

by standard formulas on Bessel functions (see [6], formulas 6.677, 3. and 4.). This formula
holds also for ω = k by continuity.

In the remaining sections we prove the limiting absorption principle; that is, we prove
convergence of the (unique) solution u = uk ∈ H1(R2

+) of the problem (4) for Im k > 0
to some function u as Im k tends to zero. Convergence will be shown in some topology
to be specified later.

3. The Floquet-Bloch Transform and Operator Equations for the
Scattering Problem

We go back to the problem of Definition 2.1 and use the Floquet-Bloch transform to re-
formulate the problem as a family of (quasi-)periodic problems. Recall that the (periodic)
Floquet-Bloch transform Tper : L2(R)→ L2

(
(0, 2π)× (−1/2, 1/2)

)
is defined by

(Tperf)(t, α) = f̃(t, α) =
∑
m∈Z

f(t+ 2πm) e−iα(t+2πm) .

The latter formula directly shows that for smooth functions f and fixed α the trans-
formed function t 7→ Tperf(t, α) = f̃(t, α) is 2π−periodic while for fixed t the function

α 7→ Tperf(t, α) = f̃(t, α) is t−quasi-periodic; that is, f̃(t, α + 1) = e−itf̃(t, α). It is
hence sufficient to consider L2

(
(0, 2π)× (−1/2, 1/2)

)
as image space of Tper. The inverse

transform is given by

(T−1
perg)(t) =

∫ 1/2

−1/2

g(t, α) eiαtdα , t ∈ R ,

where we extended g(·, α) to a 2π−periodic function in R. In view of our scattering
problem, we apply the Floquet-Bloch transform to the variable x1 and consider x2 as a
parameter. Setting WI := R × I as a horizontal strip and QI := (0, 2π) × I for any
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open interval I ⊂ R>0 one can then show that Tper is an isometry from L2(WI) onto
L2
(
QI × (−1/2, 1/2)

)
,

‖f̃‖2
L2(QI×(−1/2,1/2)) =

1/2∫
−1/2

∫
QI

|f̃(x, α)|2 dx dα =

∫
WI

|f(x)|2 dx = ‖f‖2
L2(WI) .

Further, the restriction of Tper to H1(WI) is an isomorphism from H1(WI) onto functions

f̃ ∈ L2
(
(−1/2, 1/2), H1(QI)

)
such that f̃(·, α) is 2π–periodic in x1, see [11, Section 6].

For k ∈ C with Re k > 0 and Im k > 0, the Floquet-Bloch transformations of the
compactly supported right-hand side and the variational solution to (3) in H1

0 (R2
+),

f̃(x, α) =
∑
m∈Z

f(x+ 2πme(1)) e−iα(x1+2πm) and

ũ(x, α) =
∑
m∈Z

u(x+ 2πme(1)) e−iα(x1+2πm) for x ∈ R2
+ and α ∈ R ,

are hence well-defined in L2((−1/2, 1/2), L2(QI)) and L2((−1/2, 1/2), H1(QI)), respec-
tively. As one straightforwardly computes that(

∂

∂xj
+ iα

)
ũ(x, α) = Tper

(
∂u

∂xj

)
(x, α) for x ∈ R2

+, α ∈ R,

the transformed 2π−periodic field ũ(·, α) hence is for fixed α a variational solution to

(7)

 ∆ũ(·, α) + 2iα
∂ũ(·, α)

∂x1

+ (k2q − α2) ũ(·, α) = f̃(·, α) in R× (0,∞) ,

ũ(·, α) = 0 for x2 = 0 .

To tackle the last problem variationally in a bounded domain, we set Q∞ = (0, 2π)×(0,∞)
to be the periodicity cell and define H1

per(Q
∞) as subspace of H1(Q∞) consisting of all

functions v such that v(0, x2) = v(2π, x2); that is, their 2π-periodic extension with respect
to x1 is in H1

loc(R2
+). Further, H1

per,loc(Q
∞) is the corresponding function space gained

from H1
loc(Q

∞), and H1
0,per(Q

∞) is the subspace of functions in H1
per(Q

∞) that vanish on
(0, 2π)× {0}.

For k ∈ C with Re k > 0 and Im k > 0, the theorem of Lax-Milgram shows just as in
Theorem 2.2 that for every α ∈ R there exists a unique variational solution ũ(·, α) ∈
H1

0,per(Q
∞) that solves (7). It is also well known that ũ(·, α) has a so-called Rayleigh

expansion of the form

(8) ũ(x, α) =
∑
n∈Z

un(α) einx1+i
√
k2−(n+α)2 (x2−h) for x2 > h ,

where un(α) = (2π)−1
∫ 2π

0
ũ(x1, h, α) exp(−inx1) dx1, n ∈ Z, are the Fourier coefficients

of ũ(·, h, α). The branch of the square root
√
z for z ∈ C with Im z > 0 is taken as the

one with positive imaginary part, that is, via a branch cut along the negative imaginary
axis. The series in (8) converges uniformly with all of its derivatives in any region x2 ≥ H

for H > h. Taking the same branch of the square root also in case that k = k̂ > 0, we
7



note that the Rayleigh expansion is still well defined for real and positive values of k and
provides a solution of the Dirichlet problem

∆ũ + 2iα
∂ũ

∂x1

+ (k̂2 − α2) ũ = 0 for x2 > h , ũ(x1, h) =
∑
n∈Z

un e
inx1 , x1 ∈ R ,

in the half plane R2
x2>h

. Here we dropped the dependence on α that will be a fixed
parameter, by quasiperiodicity of ũ in α in (−1/2, 1/2], in the rest of this section.

We reformulate the periodic scattering problem (7) for k ∈ C with Re k > 0 and Im k > 0
variationally in the truncated periodicity cell

Q := (0, 2π)× (0, h)

which is a bounded Lipschitz domain. To this end, we introduce first the periodic function
space H1

0,per(Q) = {u ∈ H1(Q) : u = U |Q for some U ∈ H1
0,per(Q

∞)} that is equipped

with the H1(Q)-norm. Second we define for parameters k and α the Dirichlet-Neumann

operator Λk,α : H
1/2
per (Γ̂h) → H

−1/2
per (Γ̂h). For simplicity, we identify Γ̂h = (0, 2π) × {h}

with (0, 2π), such that

Λk,αφ(x1) = i
∑
n∈Z

φn
√
k2 − (n+ α)2 einx1 for x1 ∈ (0, 2π) ,

where, again, φn = (2π)−1
∫ 2π

0
φ(x1) exp(−inx1) dx1 are the Fourier coefficients of φ. Then

we seek ũk,α ∈ H1
0,per(Q) as a solution to the variational formulation

(9) ak,α(ũk,α, ψ) = −
∫
Q

f̃(·, α)ψ dx for all ψ ∈ H1
0,per(Q)

where

ak,α(v, ψ) :=

∫
Q

[
∇v · ∇ψ + iα

(
v
∂ψ

∂x1

− ψ ∂v

∂x1

)
+ (α2 − k2q) v ψ

]
dx−

∫
Γ̂1

ψΛk,αv ds

=

∫
Q

[
∇v · ∇ψ + iα

(
v
∂ψ

∂x1

− ψ ∂v

∂x1

)
+ (α2 − k2q) v ψ

]
dx

− 2π i
∑
n∈Z

vnψn
√
k2 − (n+ α)2 .

Again, vn and ψn are the Fourier coefficients of v and ψ, respectively. The last problem (9)
is actually well defined for arbitrary k ∈ C with Re k > 0 and Im k ≥ 0. The proof of
the following theorem is simple and left to the reader.

Theorem 3.1. (a) If ũ(·, α) ∈ H1
per(Q

∞) is a solution to the scattering problem (7) for
wave number k ∈ C with Re k > 0 and Im k > 0, then the restriction ũk,α := ũ(·, α)|Q ∈
H1

0,per(Q) solves (9).

(b) If ũk,α ∈ H1
0,per(Q) is a solution of (9) for wave number k ∈ C with Re k > 0 and

Im k ≥ 0 then we extend ũk,α by

ũ(·, α) =

{
ũk,α , in Q ,

Ek,α
(
ũk,α|Γ̂h

)
in Q∞ \Q ,
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where the extension operator Ek,α : H
1/2
per (Γ̂h)→ H1

per,loc

(
(0, 2π)× (h,∞)

)
is defined by

(10) Ek,αφ(x) =
∑
n∈Z

φn e
inx1+i

√
k2−(n+α)2(x2−h) for x2 > h ,

with Fourier coefficients φn = (2π)−1
∫ 2π

0
φ(t) exp(−int) dt of φ. Then ũ(·, α) belongs to

H1
per,loc(Q

∞) and solves the problem (7-8) in the weak sense. If Im k > 0 then ũ(·, α) ∈
H1
per(Q

∞).

For any α ∈ (−1/2, 1/2] and k ∈ C we decompose
∫

Γ̂h
(Λk,αv)ψ ds into three sums,∫

Γ̂h

(Λk,αv)ψ ds = 2π i
∑
n∈Z

vnψn
√
k2 − (n+ α)2

= −2π
∑
n∈Z

√
n2 + 1 vnψn

+ 2π i
∑
|n+α|≤k

vnψn
[√

k2 − (n+ α)2 − i
√
n2 + 1

]
+ 2π

∑
|n+α|>k

vnψn
[√
n2 + 1−

√
(n+ α)2 − k2

]
,

and equip H1
0,per(Q) with the inner product

(u, v)∗ =

∫
Q

∇u · ∇v dx + 2π
∑
n∈Z

√
n2 + 1unvn .

Then we can rewrite the variational equation (9) as

(11) (ũk,α, ψ)∗ − bk,α(ũk,α, ψ) = −
∫
Q

f̃(·, α)ψ dx for all ψ ∈ H1
0,per(Q) ,

where

bk,α(v, ψ) := −
∫
Q

[
iα

(
v
∂ψ

∂x1

− ψ ∂v

∂x1

)
+ (α2 − k2q) v ψ

]
dx(12)

+ 2π i
∑
|n+α|≤k

vnψn
[√

k2 − (n+ α)2 − i
√
n2 + 1

]
+ 2π

∑
|n+α|>k

vnψn
[√
n2 + 1−

√
(n+ α)2 − k2

]
for v, ψ ∈ H1

0,per(Q).

We note that the source term f̃(·, α) depends also on k. Let again k ∈ C with Re k > 0
and Im k ≥ 0. By the theorem of Riesz, the compact embedding of H1

0,per(Q) in L2(Q),

and the boundedness of the sequence n 7→
√
n2 + 1 −

√
(n+ α)2 − k2 there exists a

compact operator Kk,α from H1
0,per(Q) into itself with bk,α(u, ψ) = (Kk,αu, ψ)∗ for all

u, ψ ∈ H1
0,per(Q). Furthermore, there exists fk,α ∈ H1

0,per(Q) with −
∫
Q
f̃(·, α)ψ dx =

(fk,α, ψ)∗ for all ψ ∈ H1
0,per(Q). Then we can rewrite the variational equation (11) as an

operator equation,

(13) ũk,α − Kk,αũk,α = fk,α in H1
0,per(Q) .

9



So far, we have assumed that Im k > 0. For these values of k we have uniqueness and
existence:

Theorem 3.2. For Im k > 0 equation (13) is uniquely solvable in H1
0,per(Q) for all

fk,α ∈ H1
0,per(Q) and all α ∈ (−1/2, 1/2].

Proof: This follows from the fact that ak,α is coercive for Im k > 0, compare Theorem 2.2.
�

The operator equation (13) is also well defined for positive k > 0. However, due to

Example 2.3, we expect non-uniqueness for some real k = k̂ > 0 at certain values of α
that we call exceptional values. In other words, we expect that for some α ∈ (−1/2, 1/2]
there is an eigenvalue λ = 1 of the non-selfadjoint operator Kk̂,α.

4. The Operator Equation at Exceptional Values

In this section we fix an arbitrary wave number k̂ ∈ R>0 and investigate the operator
equation (13) in a neighborhood of an arbitrary exceptional value α = α(k̂). (Of course,

such exceptional values do not need to exist for every k̂ > 0.) As it is well known from

periodic scattering theory, the values of α where (n + α)2 = k̂2 for some n ∈ Z are
difficult to treat analytically (see, e.g., the proof of Theorem 5.2 below). For this reason
we introduce the corresponding set

A(k̂) =
{
α ∈ (−1/2, 1/2] : |n+ α| = k̂ for some n ∈ Z

}
.

If we write k̂ in the form k̂ = m + ρ with m ∈ N and ρ ∈ [0, 1) then A(k̂) = {ρ,−ρ} or

A(k̂) = {1− ρ, ρ− 1} if ρ 6= 1/2 and A(k̂) = {1/2} if ρ = 1/2. Thus, (−1/2, 1/2] \ A(k̂)
consists of at most three intervals.

The following assumption ensures from now on that the operator I − Kk̂,α̂ is always

invertible for α ∈ A(k̂); this assumption is quite common for periodic scattering problems.

Assumption 4.1. The operator I−Kk̂,α̂ is one-to-one for the elements α̂ of A(k̂); that

is, λ = 1 is not an eigenvalue of Kk̂,α̂ for α̂ ∈ A(k̂).

Remark: According to Theorem 3.1 the equation (I − Kk̂,α̂)φ = 0 is equivalent to the
homogeneous problem

∆φ̃+ k̂2q φ̃ = 0 in (0, 2π)× (0,∞) , φ̃ = 0 for x2 = 0 ,

and φ̃(x) := φ(x)eiα̂x1 is α̂−quasi periodic and has a Rayleigh expansion (8). Therefore,

Assumption 4.1 transforms into the requirement that for k̂ ± α̂ ∈ N0 this homogeneous
boundary values admits only the trivial solution φ̃ = 0. We will see below in Lemma 4.2
that this implies an exponential decay of the solutions to this homogeneous problem.1

We next study the dependence of Kk,α and fk,α on k and α.

Lemma 4.2. Let again A(k̂) = {α ∈ (−1/2, 1/2] : |n + α| = k̂ for some n ∈ Z} and
assume that Assumption 4.1 holds.

1Otherwise, the component ek̂x1 appears in the Rayleigh expansion which does not decay.
10



(a) If α̂ ∈ (−1/2, 1/2] is an exceptional value; that is, I −Kk̂,α̂ fails to be one-to-one,

and (I −Kk̂,α̂)v = 0 then v is an evanescent solution of (7); that is, there exists

c > 0 and δ > 0 such that the extension satisfies
∣∣Ek̂,α̂v(x)

∣∣ ≤ c e−δ(x2−h) for all

x2 > h where Ek̂,α̂ is the extension operator from (10).

(b) If α̂ ∈ (−1/2, 1/2] is an exceptional value and (I − Kk̂,α̂)v = 0 then also −α̂ ∈
[−1/2, 1/2) is an exceptional value with eigenfunction v.

(c) There exists an open set D ⊂ C × C with {k̂} ×
(
[−1/2, 1/2] \ A(k̂)

)
⊂ D such

that D is the union of at most three connected sets, and the operator Kk,α and the
right-hand side fk,α of (13) depend holomorphicly on (k, α) ∈ D.

(d) There exist at most finitely many exceptional values {α̂j : j ∈ J} ⊂ (−1/2, 1/2]
for some finite index set J ⊂ Z. By part (b) we can assume that J is symmetric
with respect to the origin and α̂−j = −α̂j for all j ∈ J .

Remark 4.3. It may happen that the boundary point α = 1/2 of (−1/2, 1/2] is an excep-
tional value. As the proof of Lemma 4.2 below uses open sets around exceptional values,
we implicitly exploit that all operators and functions introduced so far depend x1-quasi-
periodically on α ∈ R (such that, e.g., fk,1/2 = exp(−ix1) fk,−1/2) and can be extended
quasi-periodically in α via their original definition into a neighborhood of the real axis.
The choice of an open ball in C around α = 1/2 is then no problem anymore. Note that
we omit to note this in most of the subsequent proofs.

Proof: (a) If (I−Kk̂,α̂)v = 0 then we substitute ψ = v in the homogeneous form of (9) (for

v instead of vk,α) and take the imaginary part. Thus,
∑
|n+α|<k̂ |vn|2

√
k̂2 − (n+ α)2 = 0

and thus vn = 0 for all |n+ α| < k̂. Therefore,

Ek̂,α̂v(x) =
∑
|n+α|>k̂

vn e
inx1−
√

(n+α)2−k̂ (x2−h) for x2 > h ,

which yields the assertion.

(b) If (I − Kk̂,α̂)v = 0 then ak̂,α̂(v, ψ) = 0 for all ψ ∈ H1
0,per(Q). Taking the complex

conjugate of this equation yields ak̂,−α̂(v, ψ) = 0 for all ψ ∈ H1
0,per(Q).

(c) Let α̂ ∈ (−1/2, 1/2] \ A(k̂); that is, |n + α̂| 6= k̂ for all n ∈ Z. We show that the
operator Kk,α depends holomorphicly on both variables (k, α) ∈ C2 in a neighborhood

of (k̂, α̂). Set N :=
{
n ∈ Z : |n + α̂| < k̂

}
. Then there exists ρ > 0 and open discs

B(α̂, δ0) ∈ C and B(k̂, δ0) ∈ C such that

• |n+ α| < |k|
√

1− ρ for all (k, α) ∈ D(α̂) := B(k̂, δ0)×B(α̂, δ0) and n ∈ N and
• |n+ α| > |k|

√
1 + ρ for (k, α) ∈ D(α̂) and n /∈ N .

Note that δ0 depends on α̂. For k = k1 + ik2 ∈ B(k̂, δ0), α = α1 + iα2 ∈ B(α̂, δ0) and
n ∈ N we have that (n+ α1)2 + α2

2 < (1− ρ)(k2
1 + k2

2) and thus

Re
[
k2 − (n+ α)2

]
= k2

1 − k2
2 − (n+ α1)2 + α2

2

> k2
1 − k2

2 −
[
(1− ρ)(k2

1 + k2
2)− α2

2

]
+ α2

2

≥ ρk2
1 − (2− ρ)k2

2 > 0 for k2
2 <

ρ

2− ρ
k2

1 .
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We choose δ0 so small such that k2
2 <

ρ
2−ρk

2
1 for k ∈ B(k̂, δ0). Then Re

[
k2− (n+α)2

]
> 0

for (k, α) ∈ D(α̂) and n ∈ N . Analogously, for (k, α) ∈ D(α̂) and n /∈ N ; that is,

|n+ α̂| > k̂ we have

Re
[
(n+ α)2 − k2

]
= (n+ α1)2 − α2

2 − k2
1 + k2

2

> (1 + ρ)(k2
1 + k2

2)− 2α2
2 − k2

1 + k2
2

≥ ρk2
1 − 2α2

2 > 0 for α2
2 <

ρ

2
k2

1

which holds for δ0 sufficiently small. Therefore, also in this case we have Re
[
k2 − (n +

α)2
]
> 0. Summarizing, we can choose δ0 so small such that (k, α) 7→

√
k2 − (n+ α)2 and

(k, α) 7→
√

(n+ α)2 − k2 are holomorphic in D(α̂) and n ∈ N and n /∈ N , respectively.

Since the set D := ∪{D(α̂) : α̂ ∈ (−1/2, 1/2] \ A(k̂)} is open and the union of finitely

many (at most three) domains and covers {k̂}× ((−1/2, 1/2] \A(k̂)) we have shown that
(k, α) 7→ Kk,α is holomorphic in D. The proof for the right-hand side fk,α follows from
the fact that f depends holomorphically on k and has compact support which implies
that the infinite series in the definition of the Floquet-Bloch transform is merely a finite
one.

(d) Assume on the contrary that there exists an (infinite) sequence (α̂j) in (−1/2, 1/2)
and a sequence (wj) in H1

0,per(Q) of corresponding normalized functions such that (I −
Kk̂,α̂j

)wj = 0 for all j. We can assume that the sequence belongs to one of the at most

three open intervals of (−1/2, 1/2) \ A(k̂), say to I. Since the mapping α 7→ K̃k̂,α is

analytic from a neighborhood of I into L(H1
0,per(Q)) it follows from [5, Th. 5.1] that the

equation (I − K̃k̂,α)w = 0 has the same number of linearly independent solutions at every
parameter α ∈ I except for finitely many. Since for the infinite sequence α̂j this number
is at least one, it has to be at least one for all α̂ ∈ I except for finitely many. From the
continuity of α 7→ K̃k̂,α one shows easily that also I −Kk̂,α cannot be one-to-one at the

boundary points of I. One of these boundary points must belong to A(k̂). This actually
contradicts Assumption 4.1, which supposes the latter operator to be one-to-one for all
exceptional values, and hence ends the proof. �

The last result introduced a finite index set J ⊂ Z that depends on k̂. Since I −Kk̂,α is

an isomorphism for α /∈ {α̂j : j ∈ J} we have convergence of ũk,α as k tends to k̂. Before
stating this, recall that B(α̂, δ) ⊂ C is the disc with center α̂ and radius δ.

Lemma 4.4. For any fixed δ > 0 the functions ũk,α converge to ũk̂,α in H1
0,per(Q) as

k → k̂ uniformly with respect to α ∈ [−1/2, 1/2] \
⋃
j∈J B(α̂j, δ).

It remains to study the convergence of ũk,α in neighborhoods of the exceptional values α̂j.

To this end, we recall the following results from abstract functional analysis. For any
eigenvalue λ 6= 0 of a compact operator K : H → H in a Hilbert space there exists
r = r(λ) ∈ N (sometimes called Riesz number) with

{0} = N
(
(λI −K)0

)
⊂ N

(
(λI −K)1

)
⊂ · · · ⊂ N

(
(λI −K)r

)
= N

(
(λI −K)r+1

)
12



and

H = (λI −K)0(H) ⊃ (λI −K)1(H) ⊃ · · · ⊃ (λI −K)r(H) = (λI −K)r+1(H) .

The dimension of N
(
(λI −K)r

)
is called the algebraic multiplicity of λ and elements of

N
(
(λI −K)r

)
the generalized eigenvectors (called root vectors in [5]) of λ.

Lemma 4.5. Let Assumption 4.1 hold and α̂ = α̂j ∈ (−1/2, 1/2] be an exceptional value
for some j ∈ J . Then the Riesz number of the eigenvalue λ = 1 of Kk̂,α̂ is one such that
λ = 1 is a semi-simple eigenvalue; that is, its geometric and the algebraic multiplicities
coincide.

Proof: Let v be such that (I −Kk̂,α̂)2v = 0. Then u := (I −Kk̂,α̂)v is an eigenfunction

of Kk̂,α̂ and therefore an evanescent wave by part (a) of Lemma 4.2. Therefore,

(u, u)∗ =
(
(I −Kk̂,α̂)v, u

)
∗ = ak̂,α̂(v, u)

=

∫
Q

[
∇v · ∇u+ iα̂

(
v
∂u

∂x1

− u ∂v

∂x1

)
+ (α̂2 − k̂2q) v u

]
dx

−2π
∑
|n+α̂|>k̂

vnun

√
(n+ α̂)2 − k̂2

= ak̂,α̂(u, v) = 0

because u is an eigenfunction. Therefore, u = 0; that is (I −Kk̂,α̂)v = 0. �

Recall that we have fixed the wave number k̂ > 0 in the beginning of this section. Now we
further fix j ∈ J , write α̂ for α̂j, and study certain projections of the operator equation

(13) for (k, α) ∈ Bδ1 := B(k̂, δ1) × B(α̂, δ1) where δ1 is chosen such that Kk,α and fk,α
of (13) depend holomorphicly on (k, α) ∈ Bδ1 . We define a projection onto the algebraic
eigenspace of Kk,α as follows: Choose a small circle C with center one such that no other

eigenvalue of K̂ := Kk̂,α̂ lies inside of C and define

(14) Pk,αu = − 1

2πi

∫
C

(z −Kk,α)−1u dz for u ∈ H1
0,per(Q)

and (k, α) ∈ Bδ2 ⊂ C×C where δ2 ≤ δ1 is chosen that z−Kk,α is invertible for all z ∈ C.
(This follows from a Neumann series argument.) Then it is well known that Pk,α is the
projection operator onto the sum

⊕
`N
(
(λ` − Kk,α)r`

)
of algebraic eigenspaces, where

λ` = λ`(k, α) are the eigenvalues of Kk,α inside the curve C, with Riesz numbers r`, see,
e.g., [9, Section II.1.4]. The sum of the algebraic multiplicities is constant; that is, for all
(k, α) ∈ Bδ2 there holds that∑

`

dimN
(
(λ` −Kk,α)r`

)
= dimN

(
1− K̂

)
= m ∈ N ,

which is the dimension of the (geometric and algebraic) eigenspace of K̂ = Kk̂,α̂ corre-
sponding to the eigenvalue one. From the explicit representation of the projection opera-
tor and the analytic dependence of Kk,α on (k, α) ∈ Bδ2 we note that also the projection
operator Pk,α depends holomorphicly on (k, α) ∈ Bδ2 .
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5. A Finite-dimensional Perturbation Problem

We are next going to project the operator equation (13) onto the ranges of the spectral
projection Pk,α and of I−Pk,α, respectively, that we introduced in (14) for (k, α) sufficiently

close to (k̂, α̂) for some exceptional value α̂. We call the solutions to the resulting two

projected equations ṽ
(1)
k,α and ṽ

(2)
k,α, which naturally belong to k- and α-dependent spaces

N (I − Kk,α) and R(I − Kk,α), respectively. Using a so-called similarity transform we
then map the projected equations into N (I − Kk̂,α̂) and R(I − Kk̂,α̂), which are spaces
independent of k and α. By an additional linearization argument, we will then be able to
derive the behavior of a solution to the scattering problem for complex-valued k in the
neighborhood of a critical value.
Now we carry out these steps in detail. Since Kk,α commutes with Pk,α the projection of
equation (13) ontoN (I−Kk,α) = Pk,α

(
H1

0,per(Q)
)

andR(I−Kk,α) = (I−Pk,α)
(
H1

0,per(Q)
)

yields

(15) ṽ
(1)
k,α − Pk,αKk,αṽ

(1)
k,α = Pk,αfk,α in N (I −Kk,α)

where ṽ
(1)
k,α = Pk,αũk,α ∈ N (I −Kk,α), and

(16) ṽ
(2)
k,α − (I − Pk,α)Kk,αṽ

(2)
k,α = (I − Pk,α)fk,α in R(I −Kk,α)

where ṽ
(2)
k,α = (I−Pk,α)ũk,α ∈ R(I−Kk,α). Since the spaces N (I−Kk,α) and R(I−Kk,α)

depend on k and α we use a similarity transformation to transform the equations into the
spaces N (I −Kk̂,α̂) = N (I − K̂) and R(I −Kk̂,α̂) = R(I − K̂) that are independent of

k and α. (Recall that K̂ = Kk̂,α̂ for brevity.)

Lemma 5.1. For all (k, α) ∈ Bδ2 := B(k̂, δ2) × B(α̂, δ2) there exists a linear bounded
mapping Uk,α from H1

0,per(Q) onto itself with the properties

(1) the inverse U−1
k,α : H1

0,per(Q)→ H1
0,per(Q) exists and Uk,α and U−1

k,α are holomorphic
for (k, α) ∈ Bδ2,

(2) Uk,αPk,αU
−1
k,α = P̂ := Pk̂,α̂ for all (k, α) ∈ Bδ2.

Proof: The theorem is proven in [9], Section II.4.2, for the case when P depends only
on one variable. Keeping α fixed and applying this result to the parameter k yields the
existence of Vk,α : H1

0,per(Q) → H1
0,per(Q) with Vk,αPk,αV

−1
k,α = Pk̂,α. A careful study of

the proof shows that Vk,α depends also holomorphically on the parameter α. Now we

keep k̂ fixed and apply Kato’s result to the parameter α. This yields the existence of
Wα : H1

0,per(Q) → H1
0,per(Q) with WαPk̂,αW

−1
α = Pk̂,α̂. Substituting Pk̂,α from the first

equation into the second yields the assertion for Uk,α = WαVk,α. �

Therefore, we can transform (15) and (16) onto the equations

(17) w
(1)
k,α − P̂Uk,αKk,αU

−1
k,αw

(1)
k,α = P̂Uk,αfk,α in N (I − K̂)

with w
(1)
k,α = Uk,αṽ

(1)
k,α = Uk,αPk,αũk,α and

(18) w
(2)
k,α − (I − P̂ )Uk,αKk,αU

−1
k,αw

(2)
k,α = (I − P̂ )Uk,αfk,α in R(I − K̂)

with w
(2)
k,α = Uk,αṽ

(2)
k,α = Uk,α(I − Pk,α)ũk,α.

14



For (k, α) = (k̂, α̂) equation (18) reduces to

w
(2)

k̂,α̂
− (I − P̂ )K̂w

(2)

k̂,α̂
= (I − P̂ )fk̂,α̂ in R(I − K̂)

because Uk̂,α̂ = I. It is easily seen that [I − (I − P̂ )K̂]
∣∣
R(I−K̂)

is an isomorphism from

R(I − K̂) onto itself. By a perturbation argument also
[
I − (I − P̂ )Uk,αKk,αU

−1
k,α

]∣∣
R(I−K̂)

is an isomorphism from R(I− K̂) onto itself for all (k, α) ∈ Bδ3 for some δ3 ≤ δ2, and the

solution w
(2)
k,α of (18) tends to w

(2)

k̂,α
as k tends to k̂, uniformly with respect to α ∈ B(α̂, δ3).

This implies that (I−Pk,α)ũk,α tends to (I−Pk̂,α)ũk̂,α in H1
0,per(Q), uniformly with respect

to α ∈ B(α̂, δ3),

(19) ṽ
(2)
k,α = (I−Pk,α)ũk,α = U−1

k,αw
(2)
k,α

k→k̂−→ U−1

k̂,α
w

(2)

k̂,α
= (I−Pk̂,α)ũk̂,α = ṽ

(2)

k̂,α
in H1

0,per(Q).

Now we consider equation (17) and recall that I − K̂ = I − Kk̂,α̂ has Riesz number
one, such that we have reduced the equation to a problem in the finite-dimensional space
X := N (I − K̂). We abbreviate M(k, α) = P̂Uk,αKk,αU

−1
k,α − I ∈ L(X) and gk,α =

−P̂Uk,αfk,α ∈ X; that is,

(20) M(k, α)w
(1)
k,α = gk,α in X = N (I − K̂) .

Theorem 5.2. The partial derivatives ∂
∂k
M(k̂, α̂) and ∂

∂α
M(k̂, α̂) are self-adjoint opera-

tors on X and ∂
∂k
M(k̂, α̂) is a positive definite operator; that is,

(
∂
∂k
M(k̂, α̂)w,w

)
∗
> 0

for all w ∈ X different from zero.

Proof: First we note that Uk̂,α̂ = U−1

k̂,α̂
= I. Therefore, by the product rule 0 =

∂
∂k

[
Uk,α U

−1
k,α

]∣∣
(k,α)=(k̂,α̂)

= ∂
∂k
Uk̂,α̂ + ∂

∂k
U−1

k̂,α̂
and

∂

∂k
M(k, α) = P̂

(
∂

∂k
Uk,α

)
Kk,αU

−1
k,α + P̂Uk,α

(
∂

∂k
Kk,α

)
U−1
k,α + P̂Uk,αKk,α

(
∂

∂k
U−1
k,α

)
.

For (k, α) = (k̂, α̂) this reduces to

∂

∂k
M(k, α)

∣∣∣∣
(k,α)=(k̂,α̂)

= P̂

(
∂

∂k
Uk̂,α̂

)
K̂ + P̂

∂

∂k
Kk̂,α̂ + P̂ K̂

(
∂

∂k
U−1

k̂,α̂

)
= P̂ (I − K̂)

∂

∂k
Uk̂,α̂ + P̂

∂

∂k
Kk̂,α̂

= P̂
∂

∂k
Kk̂,α̂

because P̂ (I − K̂) = 0 and K̂ = I on X. The partial derivative with respect to α has the
same form. For w,ψ ∈ X we compute from (12)(

∂

∂k
Kk,αw,ψ

)
∗

= 2k

∫
Q

q w ψ dx + 2kπ
∑

|n+α|>|k|

wnψn
1√

(n+ α)2 − k2

+ 2kπi
∑

|n+α|≤|k|

wnψn
1√

k2 − (n+ α)2

15



and thus for (k, α) = (k̂, α̂) there holds(
∂

∂k
M(k̂, α̂)w,ψ

)
∗

=

(
P̂
∂

∂k
Kk̂,α̂w,ψ

)
∗

=

(
∂

∂k
Kk̂,α̂w,ψ

)
∗

= 2k̂

∫
Q

q uψ dx + 2k̂π
∑
|n+α̂|>k̂

wnψn
1√

(n+ α̂)2 − k̂2

= 2k̂

∫
Q∞

q uψ dx

because wn = 0 for |n + α̂| ≤ |k̂| and w ∈ X = N (I − K̂). Here, we have identified
w,ψ ∈ X with their extensions into Q∞ = (0, 2π) × (0,∞) as evanescent solutions of

the Helmholtz equation. This proves that ∂
∂k
M(k̂, α̂) = P̂ ∂

∂k
Kk̂,α̂ is self-adjoint on X and

positive. Analogously we have(
∂

∂α
M(k̂, α̂)w,ψ

)
∗

=

(
∂

∂α
Kk̂,α̂w,ψ

)
∗

=

∫
Q

[
i

(
ψ
∂w

∂x1

− w ∂ψ

∂x1

)
− 2α̂ w ψ

]
dx − 2π

∑
|n+α̂|>k̂

wnψn
n+ α̂√

(n+ α̂)2 − k̂2

= 2i

∫
Q∞

(
∂w

∂x1

+ iα̂ w

)
ψ dx(21)

which shows that also ∂
∂α
M(k̂, α̂) = P̂ ∂

∂α
Kk̂,α̂ is self-adjoint on X. �

For the rest of the paper we make the following assumption:

Assumption 5.3. The operator ∂
∂α
M(k̂, α̂) is one-to-one on X.

Since M(k̂, α̂) = 0 we next compare the solution w
(1)
k,α to (20) with the solution w̃k,α to

the linearized equation

(22)

[
(k − k̂)

∂

∂k
M(k̂, α̂) + (α− α̂)

∂

∂α
M(k̂, α̂)

]
w̃k,α = gk̂,α̂ in X = N (I − K̂) .

To this end, we set k = k̂ + iε with ε > 0 und write w
(1)
ε,α instead of w

(1)

k̂+iε,α
, etc. To

study this equation we introduce an eigensystem (d`, φ`)
m
`=1 of the generalized self-adjoint

eigenvalue problem

(23) − ∂

∂α
M(k̂, α̂)φ = d

∂

∂k
M(k̂, α̂)φ ,

that is, d` ∈ R and {φ1, . . . , φm} ⊂ X forms a basis and

(24) − ∂

∂α
M(k̂, α̂)φ` = d`

∂

∂k
M(k̂, α̂)φ` , ` = 1, . . . ,m .

The functions φ` are orthonormalized such that

(25)
(
φ`, φ`′

)
X

:=

(
∂

∂k
M(k̂, α̂)φ`, φ`′

)
∗

= δ`,`′ , `, `′ ∈ {1, . . . ,m} .

As we assumed that ∂
∂α
M(k̂, α̂) is injective, none of the eigenvalues d` ∈ R can vanish.

16



Remark 5.4. The eigenpairs (d`, φ`) do later on explicitly determine the propagating
modes of the open waveguide, which is obvious by noting that φ` ∈ X is already a peri-
odic solution to the transformed, homogeneous Helmholtz equation (7). By the periodic
Lippmann-Schwinger equation this implies that φ` belongs to C1(Q). The sign of d` 6= 0
moreover determines whether that mode propagates to the left or to the right, as we see
in the next section.

Lemma 5.5. Let w
(1)
ε,α, w̃ε,α ∈ X be the solutions of (20) and (22), respectively, for ε ∈

(0, δ3) and α ∈ (α̂−δ3, α̂+δ3). Then there exists c > 0 and δ4 ≤ δ3 such that for ε ∈ (0, δ4)
and α ∈ (α̂− δ4, α̂ + δ4):

(a) ‖w(1)
ε,α − w̃ε,α‖X ≤ c and

(b) ‖ṽ(1)
ε,α − w̃ε,α‖X ≤ c where ṽ

(1)
ε,α is the solution of (15) for k = k̂ + iε.

Proof: First we show that there exists γ > 1 such that

(26)
1

γ
√
ε2 + α2

≤

∥∥∥∥∥
[
iε

∂

∂k
M(k̂, α̂) + α

∂

∂α
M(k̂, α̂)

]−1
∥∥∥∥∥ ≤ γ√

ε2 + α2

for all ε > 0, α ∈ R. Indeed, this is equivalent to

(27)
1

γ

√
ε2 + α2 ‖w‖X ≤

∥∥iε M̂kw + α M̂αw
∥∥
X
≤ γ

√
ε2 + α2 ‖w‖X

for all w ∈ X, ε > 0, and α ∈ R, where we have set M̂k = ∂
∂k
M(k̂, α̂) and M̂α =

∂
∂α
M(k̂, α̂) for abbreviation. Expanding w in the form w =

∑m
`=1w`φ` we estimate for

any `′ ∈ {1, . . . ,m}∥∥iε M̂kw + α M̂αw
∥∥
X
≥

∣∣(iε M̂kw + α M̂αw, φ`′
)
X

∣∣
=

∣∣∣∣∣
m∑
`=1

w`
[
iε (M̂kφ`, φ`′)X + α (M̂αφ`, φ`′)X

]∣∣∣∣∣
= |w`′ |

∣∣iε− α d`′∣∣ = |w`′ |
√
ε2 + α2 d2

`′

≥ c̃
√
ε2 + α2 |w`′ |

where c̃ ∈ (0, 1] is chosen such that c̃ ≤ |d`| for all ` = 1, . . . ,m. This yields the lower
estimate of (27) since `′ was arbitrary. The upper estimate is obvious.

Now we start with the actual proof of the lemma.

(a) By (26) we have

(28) ‖w̃ε,α‖X ≤
γ√

ε2 + (α− α̂)2
‖gε,α‖X .

Now we consider the difference ŵ := w̃ε,α − w(1)
ε,α which solves[

iε M̂k + (α− α̂) M̂α

]
ŵ = R(ε, α)w(1)

ε,α + g0,α̂ − gε,α
where

R(ε, α) := M(k̂ + iε, α) −
[
iε M̂k + (α− α̂) M̂α

]
17



satisfies an estimate of the form ‖R(ε, α)‖ ≤ c[ε2 + (α − α̂)2]. Now we use (26) again
which yields

‖ŵ‖X ≤ γ√
ε2 + (α− α̂)2

c[ε2 + (α− α̂)2]‖w(1)
ε,α‖X + ‖g0,α̂ − gε,α‖X

≤ cγ
√
ε2 + (α− α̂)2

[
‖ŵ‖X + ‖w̃ε,α‖X + c̃

]
for some c̃ > 0. Combining the terms involving ‖ŵ‖X and using (28) yields the assertion.

(b) By (a) it is sufficient to estimate ‖ṽ(1)
ε,α − w̃(1)

ε,α‖X .

‖ṽ(1)
ε,α − w̃(1)

ε,α‖X = ‖(U−1
ε,α − I)w̃(1)

ε,α‖X ≤ ‖U−1
ε,α − I‖ ‖w̃(1)

ε,α‖X
≤ c

√
ε2 + (α− α̂)2‖w̃(1)

ε,α‖X
≤ c

√
ε2 + (α− α̂)2

[
‖ŵ‖X + ‖w̃ε,α‖X

]
≤ c̃

by (28) and part (a). �

We are now ready to study the behavior of the the solution to the linearized equation (22)

with complex-values wave number k̂+iε as ε tends to zero. Expanding the right-hand side

side and the solution of (22) for k = k̂ + iε in the forms
(
∂
∂k
M(k̂, α̂)

)−1
g0,α̂ =

∑m
`=1 y` φ`

and w̃ε,α =
∑m

`=1 a` φ`, respectively, we observe that the solution of (22) is given by

(29) w̃ε,α =
m∑
`=1

y`
iε− d`(α− α̂)

φ` .

Before we turn to the limiting absorption principle we formulate the eigenvalue problem
(23) as a variational equation for the α̂−quasi-periodic eigenfunction in Q∞ = (0, 2π) ×
(0,∞), relying on the expressions for ∂M/∂k and ∂M/∂α from the proof of Theorem 5.2.

Lemma 5.6. We define the space

X̃ :=

{
φ̃ ∈ H1

loc(R2
+) :

∆φ̃` + k̂2qφ̃` = 0 in R2
+, φ̃ = 0 for x2 = 0,

φ̃ is α̂−quasi-periodic

}
.

Then φ ∈ X if, and only if, the α̂−quasi-periodic extension of

φ̃(x) =

{
φ(x) eiα̂x1 , x ∈ Q ,

Ek̂,α̂
(
φ eiα̂x1

)
(x) , x ∈ Q∞ \Q ,

is in X̃. Furthermore, if {φ` ∈ X : ` = 1, . . . ,m} is a complete system of eigenfunctions
of (23) corresponding to the eigenvalues d`, ` = 1, . . . ,m, then the corresponding functions

φ̃` ∈ X̃ satisfy

(30) −i
∫
Q∞

∂φ̃`
∂x1

ψ dx = d` k̂

∫
Q∞

q φ̃` ψ dx for all ψ ∈ X̃ .

The normalization (25) transforms into k̂
∫
Q∞

q φ̃` φ̃`′ dx = δ`,`′ for all `, `′ = 1, . . . ,m.
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6. A Limiting Absorption Solution

The semi-explicit expression of the Floquet-Bloch transform of a solution to the lineariza-
tion of the scattering problem’s operator equation in (29) allows to study convergence of
this quantity as the artificial absorption tends to zero. To this end, recall that for wave
number k and quasi-periodicity α in a ball Bδ4 around (k̂, α̂), the solution ũk,α to (22)
can be represented as

(31) ũk,α
(15−16)

= ṽ
(1)
k,α + ṽ

(2)
k,α = U−1

k,αw
(1)
k,α + U−1

k,αw
(2)
k,α , (k, α) ∈ Bδ4 ,

with ṽ
(1)
k,α = U−1

k,αw
(1)
k,α in N (I −Kk,α) and ṽ

(2)
k,α = U−1

k,αw
(2)
k,α in R(I −Kk,α). Thus, we need

to investigate convergence of the back transformations

(32)

∫ α̂+δ4

α̂−δ4
ṽ

(1)
k,α(x) eiαx1dα and

∫ α̂+δ4

α̂−δ4
ṽ

(2)
k,α(x) eiαx1 dα

for (k, α) ∈ Bδ2 and x ∈ W = R× (0, h) in suitable function spaces as k → k̂.

As we already showed in (19) that ṽ
(2)
k,α converges in H1

0,per(Q) to ṽ
(2)

k̂,α
, uniformly with

respect to α, we conclude that the inverse Floquet-Bloch transform converges, too,∫ α̂+δ4

α̂−δ4
ṽ

(2)
k,α(x) eiαx1dα

k→k̂−→
∫ α̂+δ4

α̂−δ4
ṽ

(2)

k̂,α
(x) eiαx1 dα in H1(W ).

It is hence sufficient to consider the first integral in (32); further, we merely consider
complex wave numbers of the form k + iε and, as in the last section, abbreviate the
dependence of all fields on the wave number by an index ε. Let us split the first integral
as∫ α̂+δ4

α̂−δ4
ṽ(1)
ε,α(x) eiαx1dα(33)

=

α̂+δ4∫
α̂−δ4

w̃ε,α(x) eiαx1dα +

α̂+δ4∫
α̂−δ4

[ṽ(1)
ε,α(x)− w̃ε,α(x)] eiαx1dα

=

α̂+δ4∫
α̂−δ4

[
ṽ(1)
ε,α(x)− w̃ε,α(x)

]
eiαx1dα +

m∑
`=1

y` φ`(x)

α̂+δ4∫
α̂−δ4

1

iε− d`(α− α̂)
eiαx1dα

=

α̂+δ4∫
α̂−δ4

[
ṽ(1)
ε,α(x)− w̃ε,α(x)

]
eiαx1dα −

m∑
`=1

y` φ`(x)

∫
δ4<|α−α̂|<1/2

1

iε− d`(α− α̂)
eiαx1dα

+
m∑
`=1

y` φ`(x)

α̂+1/2∫
α̂−1/2

1

iε− d`(α− α̂)
eiαx1dα

=: v(1)
ε (x) + v(2)

ε (x) for x ∈ W = R× (0, h) ,
19



where

v(2)
ε (x) =

m∑
`=1

y` φ`(x)

α̂+1/2∫
α̂−1/2

1

iε− d`(α− α̂)
eiαx1dα

and obvious meaning of v
(1)
ε (x).

Lemma 6.1. (a) As ε→ 0, the functions v
(1)
ε converge in H1(W ) to

(34) v
(1)
0 (x) =

α̂+δ4∫
α̂−δ4

[
ṽ

(1)
0,α(x)− w̃0,α(x)

]
eiαx1dα −

m∑
`=1

y`
d`
φ`(x)

∫
δ4<|α−α̂|<1/2

1

α− α̂
eiαx1dα .

(b) The functions v
(2)
ε are defined in all of R2

+. As ε→ 0, they converge for all R > 0 in
C1
(
[−R,R]× R≥0

)
to

(35) v
(2)
0 (x) = −iπ

m∑
`=1

y`
|d`|

φ`(x) eiα̂x1

[
1 + sign(d`)

2

π

∫ x1/2

0

sin t

t
dt

]
.

Proof: (a) First we note that it is sufficient to consider the first term because convergence
of
∑m

`=1 y` φ`(x)
∫
δ4<|α−α̂|<1/2

exp(iαx1)/[iε − d`(α − α̂)] dα is obvious. For simplicity, we

denote the integrand of the first term of v
(1)
ε as zε(·, α) := ṽ

(1)
ε,α−w̃ε,α for α ∈ [α̂−δ4, α̂+δ4].

As I − Kk̂,α is an isomorphism for all α that are no exceptional values, we deduce that

‖zε(·, α)− z0(·, α)‖∗ → 0 as ε→ 0 holds for all α 6= α̂. Furthermore, ‖zε(·, α)− z0(·, α)‖∗
is uniformly bounded with respect to ε and α. Indeed, for the terms of the sum this
is obvious by the holomorphy of y` in both arguments and for the term in brackets
this follows from Lemma 5.5(b). In case that α̂ ∈ (−1/2, 1/2) we reduce δ4 such that
(α̂ − δ4, α̂ + δ4) is a subset of (−1/2, 1/2). Then, Lebesgue’s theorem on dominated

convergence yields
∫ α̂+δ4
α̂−δ4 ‖zε(·, α) − z0(·, α)‖2

∗dα → 0 as ε → 0, that is, zε → z0 in

L2
(
(α̂− δ4, α̂+ δ4), H1

0,per(Q)
)
. If α̂ = 1/2, Remark 4.3 shows how to treat this boundary

case. In each case, the boundedness of the inverse Floquet-Bloch transform finally yields

v
(1)
ε → v

(1)
0 in H1(W ).

(b) The asymptotics of the integral
∫ α̂+1/2

α̂−1/2
exp(iαx1)/[iε−d`(α−α̂)] dα can be determined

explicitly,

α̂+1/2∫
α̂−1/2

exp(iαx1)

iε− d`(α− α̂)
dα = eiα̂x1

1/2∫
−1/2

1

iε− d`α
eiαx1dα = eiα̂x1

1/2∫
−1/2

−iε− d`α
ε2 + d2

`α
2
eiαx1dα

= −iε eiα̂x1
1/2∫

−1/2

cos(αx1)

ε2 + d2
`α

2
dα − id` e

iα̂x1

1/2∫
−1/2

α sin(αx1)

ε2 + d2
`α

2
dα .
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In the first integral we substitute α = t(ε/|d`|) and in the second integral t = αx1. This
yields

α̂+1/2∫
α̂−1/2

exp(iαx1)

iε− d`(α− α̂)
dα = eiα̂x1

 −i|d`|
|d`|/(2ε)∫

−|d`|/(2ε)

cos(tεx1/|d`|)
1 + t2

dt− id`

x1/2∫
−x1/2

t sin t

x2
1ε

2 + d2
` t

2
dt

 .

For ε→ 0 the expression on the right converges to

eiα̂x1

− i

|d`|

∞∫
−∞

1

1 + t2
dt− 2i

d`

x1/2∫
0

sin t

t
dt

 = − iπ

|d`|
eiα̂x1

1 + sign(d`)
2

π

x1/2∫
0

sin t

t
dt

 .
uniformly with respect to |x1| ≤ R, for arbitrary R > 0. The derivative of the investigated
parameter integral with respect to x1 converges uniformly for |x1| ≤ R for every R > 0
as well. �

Remark 6.2. As limT→∞
∫ T

0
sin(t)/t dt = π/2 we observe that ψ± ∈ C∞(R), defined by

(36) ψ±(x1) =
1

2

[
1 ± 2

π

∫ x1/2

0

sin t

t
dt

]
, x1 ∈ R ,

tends to 1 as x1 → ±∞ while it converges to 0 for x1 → ∓∞. Thus, as ε tends to zero,

v
(2)
ε from Lemma 6.1(b) converges to

(37) v
(2)
0 (x) = u+(x)ψ+(x1) + u−(x)ψ−(x1)

where

(38) u±(x) = −2πi
∑
d`≷0

y`
|d`|

φ`(x) eiα̂x1 .

This separates v
(2)
0 into groups of modes propagating to the left and the right.

The following lemma shows that the modes φ̃
`

satisfy a kind of radiation condition.

Lemma 6.3. Let L± = {` : d` ≷ 0} and u± =
∑

`∈L± a
±
` φ̃` for some a±` ∈ C. Then, for

every a ∈ R,

2π Im

∫ ∞
0

u±
∂u±

∂x1

∣∣∣∣
x1=a

dx2 = Im

∫
Q∞

u±
∂u±

∂x1

dx ≷ 0 if u± 6= 0 .
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Proof: We only consider u+. Setting v(x) = (x1−a)u+(x) yields ∂v
∂x1

= u+ + (x1−a) ∂u+

∂x1

and ∆v + k̂2qv = 2∂u
+

∂x1
. Therefore, with Q∞a = (a, a+ 2π)× (0,∞) ⊂ R2

+,

2

∫
Q∞a

u+
∂u+

∂x1

dx =

∫
Q∞a

u+
(
∆v + k̂2qv

)
dx

=

∫
Q∞a

v
(
∆u+ + k̂2qu+

)
dx +

∫
∂Q∞a

(
u+

∂v

∂ν
− v ∂u

+

∂ν

)
ds

= −
∫

x1=a

|u+|2dx2 +

∫
x1=a+2π

[
u+

(
u+ + 2π

∂u+

∂x1

)
− 2πu+ ∂u+

∂x1

]
dx2

= 2π

∫
x1=a

(
u+

∂u+

∂x1

− u+ ∂u+

∂x1

)
dx2 = 4π i Im

∫
x1=a

u+
∂u+

∂x1

dx2

which proves the first equality because x1 7→ u+ ∂u+

∂x1
is 2π−periodic. Furthermore,

∫
Q∞

u+
∂u+

∂x1

dx =
∑

`,`′∈L−
a` a`′

∫
Q∞

φ̃`
∂φ̃`′

∂x1

dx

= −ik̂
∑

`,`′∈L−
a` a`′ d`′

∫
Q∞

q φ̃` φ̃`′ dx = −i
∑
`∈L−
|a`|2 d`

by the orthonormalization of φ̃`. Taking the imaginary part yields the assertion. �

So far, we have considered the behavior of the periodic solutions to the Floquet-Bloch-
transformed Helmholtz equation with absorption in the neighborhood of one exceptional
value α̂ = α̂j at wave number k̂ > 0. Now we consider all exceptional values α̂j simultane-

ously. The quantities m, d`, X̃, φ̃`, L
± and so on depend on j. Before stating the related

limiting absorption result, let us recall that we work at wave number k̂ > 0, and that
that for all elements in the the (possibly empty) set {α̂j : j ∈ J} of the corresponding
exceptional values there exist mj linearly independent α̂j-quasi-periodic and evanescent

solutions to the Helmholtz equation ∆φ̃`,j + k̂2qφ̃`,j = 0 in R2
+, j ∈ J , that vanish for

x2 = 0. These functions are chosen as the normalized eigenfunctions of (23) for every
j ∈ J . Of course, we still suppose Assumptions 4.1 and 5.3 to hold. In particular, d`,j 6= 0
for all ` = 1, . . . ,mj and j ∈ J . Then we can extend Lemma 6.3 to different α̂j.

Lemma 6.4. Let L±j = {` : d`,j ≷ 0} and u± =
∑

j∈J
∑

`∈L±j
a±`,j φ̃`,j for some a±`,j ∈ C.

Then, for every a ∈ R,

Im

∫ ∞
0

u±
∂u±

∂x1

∣∣∣∣
x1=a

dx2 ≷ 0 if u± 6= 0 .
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Proof: Set u±j =
∑

`∈L±j
a±`,j φ̃`,j for j ∈ J . Then, for j, j′ ∈ J ,

0 =

∫
∂Q∞a

(
u±j

∂u±j′

∂ν
− u±j′

∂u±j
∂ν

)
ds

= −
∫
x1=a

(
u±j

∂u±j′

∂x1

− u±j′
∂u±j
∂x1

)
dx2 +

∫
x1=a+2π

(
u±j

∂u±j′

∂x1

− u±j′
∂u±j
∂x1

)
dx2

=
(
ei(α̂j′−α̂j)2π − 1

) ∫
x1=a

(
u±j

∂u±j′

∂x1

− u±j′
∂u±j
∂x1

)
dx2 .

Therefore, the last integral vanishes for j 6= j′. Thus we have

2π Im

∫ ∞
0

u±
∂u±

∂x1

∣∣∣∣
x1=a

dx2

= π

∫
x1=a

[
u±

∂u±

∂x1

− u± ∂u
±

∂x1

]
dx2 = π

∑
j∈J

∫
x1=a

[
u±j

∂u±j
∂x1

− u±j
∂u±j
∂x1

]
dx2

= 2π
∑
j∈J

Im

∫
x1=a

u±j
∂u±j
∂x1

dx2 =
∑
j∈J

Im

∫
Q∞

u±j
∂u±j
∂x1

dx ≷ 0

where we have used Lemma 6.3. �

Theorem 6.5. The restriction of the solution uk̂+iε to (4) for k = k̂ + iε to W has a

decomposition in the form uk̂+iε = u
(1)
ε + u

(2)
ε where u

(1)
ε ∈ H1(W ) converges in H1(W ) to

some u(1) ∈ H1(W ). Further, u
(2)
ε ∈ C1

b (W ) converges for every R > 0 in C1
(
[−R,R] ×

[0, h]
)

to u(2) ∈ C1
b (W ) which has the form

(39) u(2)(x) = ψ+(x1)
∑
j∈J

∑
`∈L+

j

a+
`,j φ̃`,j(x) + ψ−(x1)

∑
j∈J

∑
`∈L−j

a−`,j φ̃`,j(x)

for some a±`,j ∈ C. Here, the functions ψ± are defined in (36).

Proof: We have to evaluate the inverse Bloch-Floquet transform uk(x) =
∫ 1/2

−1/2
ũk,α(x) eiαx1dα

for k = k̂+ iε. Defining I = (−1/2, 1/2) \
⋃
j∈J B(α̂j, δ4) we decompose this integral into
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the form

uk(x) =

1/2∫
−1/2

ũk,α(x) eiαx1dα

=

∫
I

ũk,α(x) eiαx1dα +
∑
j∈J

α̂j+δ4∫
α̂j−δ4

ṽ
(2,j)
k,α (x) eiαx1dα +

∑
j∈J

α̂j+δ4∫
α̂j−δ4

ṽ
(1,j)
k,α (x) eiαx1dα

=

∫
I

ũk,α(x) eiαx1dα +
∑
j∈J

α̂j+δ4∫
α̂j−δ4

ṽ
(2,j)
k,α (x) eiαx1dα +

∑
j∈J

v(1,j)
ε (x) +

∑
j∈J

v(2,j)
ε (x)

= u
(1)
k (x) +

∑
j∈J

v(2,j)
ε (x)(40)

where ṽ
(1,j)
k,α , ṽ

(2,j)
k,α , v

(1,j)
ε , and v

(2,j)
ε denote the functions from (31) and (33), respectively,

for α̂ = α̂j. As we have seen before, the first three terms (which form the function

u
(1)
k ) converge in H1(W ) as ε tends to zero to the corresponding function u(1) for ε = 0.

Furthermore, by Lemma 6.1 the forth term converges in C1
(
[−R,R]× [0, h]

)
to∑

j∈J

v
(2,j)
0 (x) = ψ+(x1)

∑
j∈J

∑
`∈L+

j

a+
`,j φ̃`,j(x) + ψ−(x1)

∑
j∈J

∑
`∈L−j

a−`,j φ̃`,j(x)

for some coefficients a±`,j which are explicitly given through y`,j and d`,j. This yields the
form (39). �

As ψ±(x1) → 1 for x1 → ±∞ and ψ±(x1) → 0 for x1 → ∓∞, we further note that we
can also decompose the solution u = u(1) + u(2) from Theorem 6.5 in the forms

u = [u − u+] + u+ = [u − u−] + u−

with u± =
∑

j∈J
∑

`∈L±j
a±`,j φ̃`,j. In these decompositions all terms are solutions of the

Helmholtz equation; in the first form the term in the bracket decays to zero as x1 tends
to +∞ while in the second form the term in the bracket decays to zero as x1 tends to
−∞.

So far, we have studied the behavior of the solution inside the waveguide W . Now we
will extend the solution into the half space R2

+. Since the functions φ̃`,j are already

(evanescent) solutions of the Helmholtz equation in R2
+ it is sufficient to extend u(1).

Theorem 6.6. Let {α̂j : j ∈ J} be the (possibly empty) set of exceptional values for

wave number k̂ > 0 and let Assumptions 4.1 and 5.3 hold (the latter for all α̂j, j ∈ J).

Then the solutions uk̂+iε of (3) for k = k̂ + iε converge as ε → 0 in H1
loc(R2

+) to some

u ∈ H1
loc(R2

+) which satisfies the Helmholtz equation ∆u+ k̂2qu = f in R2
+. The solution

u has a decomposition in the form u = u(1) + u(2) where u(1) ∈ H1
(
R× (0, H)

)
for every
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H > h and u(2) is a linear combination of surface waves; that is, it has the form

(41) u(2)(x) = ψ+(x1)
∑
j∈J

∑
`∈L+

j

a+
`,j φ̃`,j(x) + ψ−(x1)

∑
j∈J

∑
`∈L−j

a−`,j φ̃`,j(x),

for x ∈ R2
+ where a±`,j ∈ C for ` = 1, . . . ,mj and j ∈ J . Furthermore, u satisfies the

upward propagating radiation condition (5).

Proof: Let again k = k̂+ iε. For ε > 0 the solution uk ∈ H1(R2
+) satisfies the Helmholtz

equation ∆uk + k2quk = 0 for x2 > 0 and uk(x1, 0) = 0 for x1 ∈ R. From (40) we recall

that in W it has the decomposition uk = u
(1)
k + u

(2)
k in W where u

(1)
k ∈ H1(W ) converges

to u(1) ∈ H1(W ) and u
(2)
k has the form

u
(2)
k (x) =

∑
j∈J

mj∑
`=1

y`,j φ`,j(x)

α̂j+1/2∫
α̂j−1/2

1

iε− d`,j(α− α̂j)
eiαx1dα

=
∑
j∈J

mj∑
`=1

y`,j

1/2∫
−1/2

1

iε− d`,jα
eiαx1dα

︸ ︷︷ ︸
= ψ`,j,ε(x1)

φ̃`,j(x)

=
∑
j∈J

mj∑
`=1

ψ`,j,ε(x1) φ̃`,j(x) .

Note that φ̃`,j(x) = φ`,j(x)eiα̂jx1 . Therefore, u
(2)
k is defined in all of R2

+. We have seen in
part (b) of Lemma 6.1 that it converges to

u(2)(x) := ψ+(x1)
∑
∈J

∑
`∈L+

j

a+
`,j φ̃`,j(x) + ψ−(x1)

∑
∈J

∑
`∈L−j

a−`,j φ̃`,j(x)

for some coefficients a±`,j ∈ C.

Now we consider u
(1)
k . Since uk satisfies the Helmholtz equation we observe that u

(1)
k

satisfies the following inhomogeneous boundary value problem

∆u
(1)
k (x) + k2q(x)u

(1)
k (x) = −

[
∆u

(2)
k (x) + k2q(x)u

(2)
k (x)

]
= −

∑
j∈J

mj∑
`=1

[
2ψ′`,j,ε(x1) ∂φ̃`,j(x)/∂x1 + ψ′′`,j,ε(x1) φ̃`,j(x)

]
=: σε(x) , x ∈ W ,(42)

u
(1)
k (x) = uk(x) − u

(2)
k (x)

=: ξε(x) , x ∈ Γh .(43)
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where we again used the index k on the left hand side and ε on the right hand side.2 We
compute ψ′`,j,ε as

ψ′`,j,ε(x1) = y`,j

1/2∫
−1/2

i α

iε− d`,jα
eiαx1dα

which converges to

ψ′`,j,0(x1) = −i y`,j
d`,j

1/2∫
−1/2

eiαx1dα = −i y`,j
d`,j

sin(x1/2)

x1/2

in C1[−R,R] for every R > 0 as ε tends to zero. Analogously, ψ′′`,j,ε converges to

ψ′′`,j,0(x1) = − i y`,j
d`,j

d
dx1

sin(x1/2)
x1/2

in C1[−R,R] for every R > 0. Therefore, σε converges

to σ0 = −[∆u(2) + k2qu(2)] in C1
(
[−R,R] × [0, H]

)
for every H,R > 0. As the above

representations of ψ′`,j,0 and ψ′′`,j,0 show that both functions belong to L2(R), the limit

σ0 belongs to L2(R2
+) and decays exponentially as x2 tends to infinity. Furthermore,

Theorem 6.5 implies convergence of ξε to ξ0 in H1/2(Γh) where ξ0 is given by ξ0 = u−u(2).

We still assume ε = Im k > 0 and extend u
(1)
k into the upper half plane by solving the

Dirichlet Problem

∆u
(1)
k + k2u

(1)
k = σε for x2 > h , u

(1)
k = ξε for x2 = h .

The H1−solution has the form

(44) u
(1)
k (x) = −

∫
x2>h

σε(y)Gk,h(x, y) dy + 2

∫
Γh

ξε(y)
∂Φk

∂y2

(x, y) ds(y) , x2 > h ,

whereGk,h denotes the Dirichlet Green’s function of the half space R2
x2>h

; that is, Gk,h(x, y) =

Φk(x, y)− Φk(x, y
∗
h) where y∗h = (y1, 2h− y2)>. Then uk coincides with u

(1)
k +

∑
j∈J v

(2,j)
ε

also in R2
x2>h

because both satisfy the same coercive Dirichlet boundary value problem in
{x2 > h}. (Note that ∂Gk,h(x, y)/∂y2 equals 2∂Φk/∂y2 for y ∈ Γh.)

As ε→ 0 the function u
(1)
k converges to

(45) u(1)(x) = −
∫
x2>h

σ0(y)Gk̂,h(x, y) dy + 2

∫
Γh

ξ0(y)
∂Φk̂

∂y2

(x, y) ds(y)

in H1(K) for every bounded domain K ⊂ R2
x2>h

. Therefore, we have shown convergence

of uk = u
(1)
k + u

(2)
k to u in H1(K) for every bounded domain K ⊂ R2

+ where u has the

form u = u(1) + u(2) with u(1) ∈ H1
(
R× [0, H)

)
for every H > h and

u(2)(x) = ψ+(x1)
∑
j∈J

∑
`∈L+

j

a+
`,j φ̃`,j(x) + ψ−(x1)

∑
j∈J

∑
`∈L−j

a−`,j φ̃`,j(x) .

Finally, we have to show the radiation condition (5). From (45) and the form of σ0 and
ξ0 we note that

(46) u(1)(x) =

∫
x2>h

(∆ + k̂2)u(2)(y)Gk̂,h(x, y) dy + 2

∫
Γh

u(1)(y)
∂Φk̂

∂y2

(x, y) ds(y)

2We hope that this does not lead to any confusion. Note that always k = k̂ + iε.
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for x2 > h. We set QR,H = (−R,R)× (h,H) and Q∞,H = R× (h,H) for the moment and
use Green’s representation theorem for u(2) and x in QR,H ,

u(2)(x) = −
∫
QR,H

(∆ + k̂2)u(2)(y)Gk̂,h(x, y) dy

−
∫
∂QR,H

[
u(2)(y)

∂Gk̂,h

∂ν
(x, y)−Gk̂,h(x, y)

∂u(2)

∂ν
(y)

]
ds(y) .

When R tends to infinity the integrals over the vertical components of ∂QR,H tend to
zero because u(2) and its derivatives are bounded and Gk̂,h and ∂Gk̂,h/∂x1 tend to zero
uniformly in every layer of finite height. Thus,

u(2)(x) = −
∫
Q∞,H

(∆ + k̂2)u(2)(y)Gk̂,h(x, y) dy +

∫
Γh

u(2)(y)
∂Gk̂,h

∂y2

(x, y) ds(y)

−
∫

ΓH

[
u(2)(y)

∂Gk̂,h

∂y2

(x, y)−Gk̂,h(x, y)
∂u(2)

∂y2

(y)

]
ds(y) .

Now we let H tend to infinity. The last integral tends to zero because of the estimate∣∣∣∣Gk̂,h(x, y)
∂u(2)

∂y2

(y)

∣∣∣∣ ≤ c x2

1 + |x|3/2
e−δx2

for some c, δ > 0 and the same for Gk̂,h and u(2) interchanged. In consequence,

(47) u(2)(x) = −
∫
x2>h

(∆ + k̂2)u(2)(y)Gk̂,h(x, y) dy +

∫
Γh

u(2)(y)
∂Gk̂,h

∂y2

(x, y) ds(y) .

Substituting this into (46) yields

u(1)(x) = −u(2)(x) +

∫
Γh

u(2)(y)
∂Gk̂,h

∂x2

(x, y) ds(y) + 2

∫
Γh

u(1)(y)
∂Φk̂

∂y2

(x, y) ds(y)

= −u(2)(x) + 2

∫
Γh

[
u(1)(y) + u(2)(y)

] ∂Φk̂

∂y2

(x, y) ds(y) , x2 > h ,

where we again exploited that ∂Gk̂,h/∂y2(·, y) equals 2∂Φk̂/∂y2(·, y) for y ∈ Γh. This

proves the form (5). Note that this implies also that u(·, h) ∈ L∞(R). �

We have just seen that the limiting absorption solution satisfies the following radiation
condition.

Definition 6.7. (Radiation Condition)

Let {α̂j : j ∈ J} be the (possibly empty) set of exceptional values for wave number k̂ > 0
and let Assumptions 4.1 and 5.3 hold (the latter for all α̂j, j ∈ J). For every j ∈ J let{
φ̃`,j : ` = 1, . . . ,mj

}
be the eigenfunctions of Lemma 5.6 for α̂ = α̂j and define the sets

L±j by

L±j :=
{
` ∈ {1, . . . ,mj} : d`,j ≷ 0

}
=

{
` ∈ {1, . . . ,mj} : Im

∫
Q∞

∂φ̃`,j
∂x1

φ̃`,j dx ≷ 0

}
.
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Then the field u has a decomposition in the form u = u(1)+u(2) where u(1) ∈ H1
(
R×(0, H)

)
for all H > h and u(2) has the form

u(2)(x) = ψ+(x1)
∑
j∈J

∑
`∈L+

j

a+
`,j φ̃`,j(x) + ψ−(x1)

∑
j∈J

∑
`∈L−j

a−`,j φ̃`,j(x), x ∈ R2
+,

for some a±`,j ∈ C where ψ± are given by (36). Furthermore, u satisfies the upward
propagating radiation condition (5).

This radiation condition in turn also provides uniqueness of a limiting absorption solution.

Theorem 6.8. For every f ∈ L2(R2
+) with compact support in W there exists a unique

solution u of (3) which vanishes on R× {0} and satisfies the radiation condition of Defi-
nition 6.7.

Proof: Existence has been shown in Theorem 6.6. To show uniqueness let f = 0 and set
u±j =

∑
`∈L∓j

a±`,j φ̃`,j. Substituting the representation u = u(1) + u(2) from the radiation

condition into the differential equation ∆u+ k̂2qu = 0 yields

∆u(1)(x) + k̂2q(x)u(1)(x) = −
[
∆u(2)(x) + k̂2q(x)u(2)(x)

]
= −

∑
j∈J

[
u+
j (x)

d2ψ+(x1)

dx2
1

+ 2
dψ+(x1)

dx1

∂u+
j (x)

∂x1

]
(48)

−
∑
j∈J

[
u−j (x)

d2ψ−(x1)

dx2
1

+ 2
dψ−(x1)

dx1

∂u−j (x)

∂x1

]
.

We set ϕ± = dψ±/dx1 and note that the right-hand side is in L2
(
R × (0, H)

)
for every

H > h. We take the quasi-periodic Bloch transform

(Tqpv)(x, α) = v̂(x, α) =
∑
n∈Z

v(x+ 2πne(1)) e−2πi nα

to both sides and note that, for any ϕ ∈ L2(R),

Tqp(u
±
j ϕ)(x, α) = u±j (x)

∑
n∈Z

ϕ(x1 + 2πn) e2πn(α̂j−α)i = u±j (x) ϕ̂(x1, α− α̂j) .

For x ∈ (0, 2π)× (0,∞) and α ∈ (−1/2, 1/2], this yields

∆û(1)(x, α) + k̂2q(x)û(1)(x, α) =

−
∑
j∈J

[
u+
j (x)

∂ϕ̂+(x1, α− α̂j)
∂x1

+ 2 ϕ̂+(x1, α− α̂j)
∂u+

j (x)

∂x1

]

−
∑
j∈J

[
u−j (x)

∂ϕ̂−(x1, α− α̂j)
∂x1

+ 2 ϕ̂−(x1, α− α̂j)
∂u−j (x)

∂x1

]
.

From the inversion formula for the quasi-periodic Floquet-Bloch transform we directly
compute the Floquet-Bloch transform of ϕ±,

1

π

∫ 1/2

−1/2

eiαx1dα =
sin(x1/2)

π x1/2
= ±ϕ±(x1),
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such that ϕ̂±(x1, α) = ± exp(iαx1)/π. Therefore,

∆û(1)(x, α) + k̂2q(x)û(1)(x, α) =

− 1

π

∑
j∈J

[
u+
j (x) i (α− α̂j) + 2

∂u+
j (x)

∂x1

]
ei(α−α̂j)x1

+
1

π

∑
j∈J

[
u−j (x) i (α− α̂j) + 2

∂u−j (x)

∂x1

]
ei(α−α̂j)x1(49)

= −
[
∆w1(x, α) + k̂2q(x)w1(x, α)

]
, x ∈ Q∞, α /∈ {α̂j : j ∈ J} ,

where

w1(x, α) :=
1

π

∑
j∈J

[
u+
j (x)− u−j (x)

] 1

i(α− α̂j)
ei(α−α̂j)x1 , x ∈ Q∞, α /∈ {α̂j : j ∈ J} .

Now we set w = û(1) +w1 in Q∞ for α ∈ (−1/2, 1/2], α /∈
{
α̂j : j ∈ J

}
. Then we observe

that w(·, α) is α−quasi-periodic and ∆w(·, α)+ k̂2q w(·, α) = 0 in Q∞ for α ∈ (−1/2, 1/2],
α /∈

{
α̂j : j ∈ J

}
and vanishes for x2 = 0.

Next we show that w has a Rayleigh expansion for x2 > h. First we rewrite (5) via (47)
in the form

u(1)(x) = −u(2)(x) +

∫
Γh

u(2)(y)
∂Gk̂,h

∂y2

(x, y) ds(y) + 2

∫
Γh

u(1(y)
∂Φk̂

∂y2

(x, y) ds(y)

=

∫
x2>h

(∆ + k̂2)u(2)(y)Gk̂,h(x, y) dy + 2

∫
Γh

u(1)(y)
∂Φk̂

∂y2

(x, y) ds(y)

= −
∫
x2>h

σ0(y)Gk̂,h(x, y) dy + 2

∫
Γh

ξ0(y)
∂Φk̂

∂y2

(x, y) ds(y))(50)

with ξ0 = u(1)
∣∣
Γh
∈ H1/2(Γh) and σ0 = −(∆ + k̂2)u(2) ∈ L2

(
R × (h,H)

)
for any H > h.

(The latter fact follows as in the first part of the proof of Theorem 6.6.) To compute the
Bloch transform of this equation we first compute the Bloch transform of a convolution:
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Let F ∈ L1(R) and ϕ ∈ C∞0 (R):

Tqp(F ∗ ϕ)(t, α) =
∑
n∈Z

e−2πi nα

∫ ∞
−∞

F (t+ 2πn− s)ϕ(s) ds

=
∑
n∈Z

e−2πi nα

∫ ∞
−∞

F (t− s)ϕ(s+ 2πn) ds

=

∫ ∞
−∞

F (t− s) ϕ̂(s, α) ds =
∑
n∈Z

∫ 2π(n+1)

2πn

F (t− s) ϕ̂(s, α) ds

=
∑
n∈Z

∫ 2π

0

F (t− s− 2πn) ϕ̂(s+ 2πn, α) ds

=
∑
n∈Z

e2πi nα

∫ 2π

0

F (t− s− 2πn) ϕ̂(s, α) ds

=
∑
n∈Z

e−2πi nα

∫ 2π

0

F (t+ 2πn− s) ϕ̂(s, α) ds

=

∫ 2π

0

F̂ (t− s, α) ϕ̂(s, α) ds .

This formula extends to ϕ ∈ L2(R) by density. Now we take the Bloch transform of the
representation (50). Since the integrals in (50) are convolutions, we get that

(51) û(1)(x, α) = −
∫
Q̂∞h

σ̂0(y, α) Ĝk̂,h(x, y, α) dy + 2

∫
Γ̂h

ξ̂0(y, α)
∂Φ̂k̂

∂y2

(x, y, α) ds(y)

where Ĝk̂,h and Φ̂k̂ are α−quasi-periodic Green’s functions (i.e., quasi-periodic with re-

spect to x1 and y1), Q̂∞h := (0, 2π)× (h,∞), and again Γ̂h = (0, 2π)×{h}. As (51) shows

that σ̂0(·, α) = (∆ + k̂2)û(1)(·, α) = −(∆ + k̂2)w1(·, α) for α /∈ {α̂j : j ∈ J} and thus by
Green’s representation theorem

û(1)(x, α) = 2

∫
Γ̂h

ξ̂0(y, α)
∂Φ̂k̂

∂y2

(x, y, α) ds(y) +

∫
Q̂∞h

(∆ + k̂2)w1(y, α) Ĝk̂,h(x, y, α) dy

= −w1(x, α) +

∫
Γ̂h

[
2 ξ̂0(y, α)

∂Φ̂k̂

∂y2

(x, y, α)− w1(y, α)
∂Ĝk̂,h

∂y2

(x, y, α)

]
ds(y)

= −w1(x, α) + 2

∫
Γ̂h

[
ξ̂0(y, α)− w1(y, α)

] ∂Φ̂k̂

∂y2

(x, y, α) ds(y) .

The quasi-periodic Green’s function Φ̂k̂ can be written via its a Rayleigh expansion

Φ̂k̂(x, y, α) =
i

4πk̂

∑
n∈Z

1√
k̂2 − (n+ α)2

ei(n+α)(x1−y1) ei
√
k̂2−(n+α)2|x2−y2|

for x− y /∈ {2πne(1) : n ∈ Z} provided k̂ 6= |n+ α| for any n ∈ Z, see, e.g. [12] or [2]. For
the derivative with respect to x2 this latter assumption can be removed by a continuity
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argument. This shows that w(·, α) = û(1)(·, α) + w1(·, α) is α−quasi-periodic, satisfies

(∆ + k̂2q)w(·, α) = 0 for x2 > h, the homogeneous boundary condition w(x, α) = 0 for
x2 = 0, and a Rayleigh expansion for x2 > h for every α /∈

{
α̂j : j ∈ J

}
. The trivial

uniqueness result for the α−quasi-periodic scattering problem at these non-exceptional
wave numbers implies that w(·, α) vanishes in Q for all these α. Thus,∑

j∈J

[
u+
j (x)− u−j (x)

] 1

i(α− α̂j)
ei(α−α̂j)x1 = −û(1)(x, α) , x ∈ (0, 2π)× (0, H) ,

for all α ∈ (−1/2, 1/2] with α /∈
{
α̂j : j ∈ J

}
. The right-hand side is in L2

(
(0, 2π) ×

(0, H) × (−1/2, 1/2)
)

but the left-hand side is not unless u−j = u+
j in Q for all j ∈ J .

Since u+
j and u−j are disjoint combinations of the basis functions φ̃`,j we conclude that

u±j vanishes for all j ∈ J . Therefore, also u(1) vanishes which proves uniqueness since the

coefficients for u(2) can be computed from u(1) using (48). �

Remarks 6.9. (a) The form of the radiation condition is justified by the limiting ab-
sorption principle of Theorem 6.6. Accepting this radiation, existence of a solution can
be shown more directly as through the limiting absorption principle. We sketch this ap-
proach but refer to a subsequent paper where we will carry out this in detail. One makes
an ansatz of the solution in the form u = u(1) + u(2) as in the radiation condition of
Definition 6.7 and arrives at the inhomogeneous form of (48) (including the source f)
and, analogously, the inhomogeneous form of (49). In order that the latter equation has a
solution for α̂ = α̂j for some fixed j ∈ J the right hand side of (49) has to be orthogonal

to φ̃`,j for all `. This leads to a linear system for the coefficients a±`,j which is uniquely

solvable. Then one has to show that the mapping α 7→ u(1)(·, α) is continuous.

(b) Our method of proving the limiting absorption principle carries over without difficulty
to the case of a closed waveguide; that is the problem to find u such that

∆u+ k2qu = f in W , u = 0 on ∂W ,

where f ∈ L2(W ) is a given function of compact support in W . Also the case of a
completely open layer can be treated analogously, one just has to treat the lower half-space
R2
x2<0 in the same way as the half-space R2

x2>h
.
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