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Abstract 
This report describes an investigation into Benford’s Law for the distribution 
of leading digits in real data sets. A large number of such data sets have been 
examined and it was found that only a small fraction of them conform to the 
law. Three classes of mathematical model of processes that might account for 
such a leading digit distribution have also been investigated. We found that 
based on the notion of taking the product of many random factors the most 
credible. This led to the identification of a class of lognormal distributions, 
those whose shape parameter exceeds 1, which satisfy Benford’s Law. This in 
turn led us to a novel explanation for the law: that it is fundamentally a 
consequence of the fact that many physical quantities cannot meaningfully take 
negative values. This enabled us to develop a simple set of rules for 
determining whether a given data set is likely to conform to Benford’s Law. 
Our explanation has an important advantage over previous attempts to account 
for the law: it also explains which data sets will not have logarithmically 
distributed leading digits.  Some techniques for generating data that satisfy 
Benford’s law are described and the report concludes with a summary and a 
discussion of the practical implications. 

1. Introduction 

The motivation to carry out the study described in this report arose as part of an 
investigation to discover what characteristics of data sets make them difficult for 
classification learning procedures. This study required numerous sets of data of known 
characteristics. The most efficient way to obtain such data is to generate it. However, results 
obtained using such artificial data sets are open to the objection that real data are in some way 
different from artificial data. Consequently it is important that artificial data generators 
produce data sharing as many of the properties of real data as possible. 

The notion that about 30% of all numbers obtained from real numerical data start with 
the digit 1 has been in circulation for over a century. Following an empirical study, Benford 
(1938) proposed a rule for the distribution of all nine possible leading digits in real data: 

P(First significant digit = d)   =  log10(1 + 1/d) 

This is now known as Benford’s Law. For many years its status was little more than a 
numerical curiosity but practical implications began to emerge in the 1960s when it was 
recognised that the suggestion that almost 1/3 of the numbers processed began with a 1 could 
have implications for the design of efficient computers (Hamming 1970, Knuth 1981).  
Varian (1972) suggested it could be used to assess the authenticity of economic models and in 
recent years it has been used to detect fraudulent financial data (Nigrini 1993, 1996). If 
Benford’s Law is true, that is, if it describes a property that is common in real data sets, there 
are strong implications for the generation of artificial data sets. Techniques must be developed 
that produce data complying with the law.  

However, it is a somewhat surprising law. The most obvious prior hypothesis is surely 
that all digits would be equally probable since the leading digit ought to depend on the unit of 
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measurement chosen. Benford himself recognised the unexpected nature of his rule and 
entitled his paper “The Law of Anomalous Numbers”. Consequently we decided to examine 
the evidence before embarking on the development of “Benford data generators”.  

Although the literature contains several theoretical papers that attempt to explain why 
Benford’s Law is true, there is very little empirical investigation of whether it is in fact true. 
We therefore decided to carry out such an empirical study ourselves. The primary objective of 
the study was to determine whether Benford’s Law is true of some, or even all, real numerical 
data. Our strong expectation was that only some sets of data would conform to the law.  If this 
proved to be the case, our secondary objective was to identify what types of data were most 
likely fit the law. 

This report provides an account of this empirical study and the explanation that we 
developed which led us to a convenient method for identifying data that is likely to conform 
to the law. In Section 2 we briefly review the origins of Benford’s Law and subsequent 
empirical and theoretical research. In the following section we re-examine the data presented 
in Benford’s original paper and find that only about half the data sets provide reasonably 
close matches to his law. Section 4 provides an account of our own much larger empirical 
study of 230 data sets. Despite deliberately seeking out data that looked as if it might have 
logarithmically distributed leading digits we found that only a small percentage of our data 
sets were reasonably close matches. We also identified a category of data that, while clearly 
not having the leading digit distribution prescribed by Benford’s Law, was similar in that 
leading digit frequency was a monotonically decreasing function of digit value. In the next 
section we investigate three classes of mathematical models of processes that could produce 
data conforming to the logarithmic law for digit distributions. In Section 6 we take the most 
promising of these as a starting point to investigate the leading digit distributions of 
lognormal distributions. We demonstrate that lognormal distributions with shape parameters 
greater than 1 have leading digit distributions that conform closely to Benford’s Law. This 
leads directly to the most important conclusion of this report: that Benford’s Law is a 
consequence of the fact that many physical quantities can only have positive values. This 
provides the basis for a simple set of rules for identifying data sets that are likely to conform 
to the law. Section 7 discusses artificial data generators for producing scalars and vectors 
whose leading digits fit closely to the logarithmic distribution. The concluding section 
summarises our findings and discusses their practical implications 

2. Benford’s Law 

Newcomb (1881) observed that the earlier pages of logarithmic tables were more worn 
than later pages. He concluded that numbers with low valued leading digits arose more 
frequently in calculations1. This led him to examine how numbers in natural data were 
distributed and ultimately to propose that the “probability of the occurrence of numbers is 
such that the mantissae of their logarithms are equally probable”. From this he inferred that 
the distribution of leading digits is such that 

P(First significant digit = d)   =  log10(1 + 1/d) 

Newcomb presented no empirical evidence or theoretical proof of this rule so, at this stage in 
its history, it might reasonably be called “Newcomb’s Conjecture”. 

The rule was rediscovered six decades later by Benford (1938) who was apparently 
unaware of Newcomb’s work. Benford provided empirical support by publishing the 
distributions of leading digits in 20 data sets taken from a wide variety of sources. For 

                                                 
1 There is another obvious explanation of Newcomb’s observation. If users paged through the tables from the 
beginning then the earlier pages would inevitably receive more wear, however the numbers were distributed. The 
story has something of the flavour Newton’s apple about it. 
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convenience, these results are reproduced in Table 1. Ever since, these have formed the core 
of the experimental support for what is now known as Benford’s Law. Most of the subsequent 
empirical evidence takes the form of isolated observations that particular data sets are in close 
accord with the law. Hill (1995a) provides a useful summary of these findings. Raimi (1976) 
is worthy of special mention since he includes two examples of data sets drawn from natural 
data that manifestly do not conform to Benford’s Law. 

 
First Digit Count 

Group Title 
1 2 3 4 5 6 7 8 9  

A Rivers, Area 31.0 16.4 10.7 11.3 7.2 8.6 5.5 4.2 5.1 335 
B Population 33.9 20.4 14.2 8.1 7.2 6.2 4.1 3.7 2.2 3259 
C Constants 41.3 14.4 4.8 8.6 10.6 5.8 1.0 2.9 10.6 104 
D Newspapers 30.0 18.0 12.0 10.0 8.0 6.0 6.0 5.0 5.0 100 
E Spec. Heat 24.0 18.4 16.2 14.6 10.6 4.1 3.2 4.8 4.1 1389 
F Pressure 29.6 18.3 12.8 9.8 8.3 6.4 5.7 4.4 4.7 703 
G H.P. Lost 30.0 18.4 11.9 10.8 8.1 7.0 5.1 5.1 3.6 690 
H Mol. Wgt. 26.7 25.2 15.4 10.8 6.7 5.1 4.1 2.8 3.2 1800 
I Drainage 27.1 23.9 13.8 12.6 8.2 5.0 5.0 2.5 1.9 159 
J Atomic Weight 47.2 18.7 5.5 4.4 6.6 4.4 3.3 4.4 5.5 91 
K n-1,√n,… 25.7 20.3 9.7 6.8 6.6 6.8 7.2 8.0 8.9 5000 
L Design 26.8 14.8 14.3 7.5 8.3 8.4 7.0 7.3 5.6 560 
M Digest 33.4 18.5 12.4 7.5 7.1 6.5 5.5 4.9 4.2 308 
N Cost Data 32.4 18.8 10.1 10.1 9.8 5.5 4.7 5.5 3.1 741 
O X-Ray Volts 27.9 17.5 14.4 9.0 8.1 7.4 5.1 5.8 4.8 707 
P Am. League 32.7 17.6 12.6 9.8 7.4 6.4 4.9 5.6 3.0 1458 
Q Black Body 31.0 17.3 14.1 8.7 6.6 7.0 5.2 4.7 5.4 1165 
R Addresses 28.9 19.2 12.6 8.8 8.5 6.4 5.6 5.0 5.0 342 
S n1,n2,….n! 25.3 16.0 12.0 10.0 8.5 8.8 6.8 7.1 5.5 900 
T Death Rate 27.0 18.6 15.7 9.4 6.7 6.5 7.2 4.8 4.1 418 

Average 30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7 1011 
Predicted 30.1 17.6 12.5 9.69 7.92 6.70 5.80 5.11 4.58  

Table 1: The distribution of leading digits in Benford’s (1938) data sets expressed as 
percentages. The final row of the table indicates the percentages predicted by 
Benford’s Law. 

Despite this rather slender empirical support, many very distinguished mathematicians 
and computer scientists have accepted the truth of Benford’s Law (e.g. Knuth 1981, Hamming 
1970, Weaver 1963).  There is disagreement about whether it is a necessary mathematical 
truth or a contingent property of nature. Weaver (1963) held that it was a “built-in 
characteristic of our number system”, while Knuth (1981) conjectured that the law was a 
close approximation to reality and that the true distribution might be changing as the universe 
expands. As a result of this widespread acceptance of the logarithmic law, research has been 
largely concerned with answering the theoretical question of why the law is true.  

The mathematical explanations proffered fall into three groups (see Raimi 1976 and 
Hill 1995a for reviews). Benford’s own explanation is an example of those based on the 
notion of counting upward through the natural numbers until you reach values whose 
representations have many digits. Suppose that in such a counting process you have reached 
the value of 9999. At this point the distribution of leading digits among the numbers 
generated will be uniform; each will have occurred about 11% of the time. Now suppose you 
continue counting until you reach 19999. All the additional numbers will have 1 as their 
leading digit so its frequency will rise to about 55%. The frequency of the other digits will 
decline proportionately. As the counting proceeds up to 99999, there will be no more 1s as 
leading digit. Consequently its frequency will decline once more to about 11%. Benford 
(1938) showed that the average value for the frequency of 1 as leading digit is 30.1%, as 
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predicted by his law. It can also be shown that such a counting process generates the other 
eight leading digits with the predicted frequencies. Benford’s paper is less clear on the type of 
process that would emulate this procedure and hence produce numbers conforming to his law. 
This leads to both theoretical and practical difficulties in applying this explanation. This point 
will be discussed further in Section 5.3. 

The second group of mathematical explanations is based on the notion producing a 
number by multiplying a lot of numbers together. This approach is appealing because of its 
similarity to the Central Limit Theorem.  This states that the distribution of the sum of a 
number of independent random variables tends to the normal distribution as the number of 
variables is increased. This theorem is the reason for the ubiquity of the normal distribution in 
science and statistics. Consequently the notion that Benford’s Law might embody a similar 
general rule for the product of a number of random variables is very appealing. 

An informal argument that multiplying random numbers will produce Benford’s 
distribution is provided by considering a circular slide rule (Raimi 1969, Boyle 1994). This is 
a disc with a base 10 logarithmic scale around its perimeter. Multiplying numbers is 
equivalent to adding their logarithms. So multiplying a set of numbers is equivalent to moving 
around the perimeter of the circular slide rule. In its crudest form the argument says that if 
you make enough such random moves, you are equally likely to end up anywhere on the 
perimeter. Hence the leading digits will be distributed logarithmically as Benford’s Law 
predicts. A more rigorous version of this argument, which does not appeal to the circular slide 
rule, was given by Boyle (1994) who showed that the logarithmic distribution is the limiting 
distribution of leading digits when random variables are repeatedly multiplied, divided or 
raised to integer powers. 

The third approach to deriving Benford’s Law is quite different in character. It could 
be termed the “ontological approach” because it asks what form would a first digit law take if 
such a law existed. The arguments begin by assuming that any such law should be 
independent either of the units of measurement used (scale invariance) or the base of the 
number system (base invariance) since these are contingent aspects of our culture rather than 
fundamental properties of nature. Both scale invariance and base invariance have been used to 
derive Benford’s Law. The derivations from scale invariance (e.g. Pinkham 1961) have been 
criticised (Knuth 1981, Hill 1995b) for lack of rigour because they make unwarranted 
assumptions about the distributions of numbers. Hill (1995b) has shown that base invariance 
uniquely implies Benford's Law. 

The first two groups of derivations postulate processes that may produce the numbers 
found in natural data sets. For the first group this process is counting and there are clearly 
some numbers that are derived in this way. An obvious example from Benford’s original data 
is provided by atomic weights. Successive elements include greater number of protons and 
neutrons (which have approximately equal masses) and these are by far the largest factors in 
determining the mass of the resultant atom. Similarly, many quantities may be the result of 
the multiplicative effect of a number of factors which is the underlying process for the second 
group of derivations. Neither derivation provides any insight into how many naturally 
occurring data sets are produced by the type of process that they postulate. Thus unless one 
has a prior model of the processes that led to the numbers in a data set, there is no reason to 
expect that they would conform to Benford’s Law. The third group of explanations has even 
less to say about whether real data should conform to the logarithmic law. In essence, it states 
that if there is a first digit law then it must be Benford’s Law but makes no contribution to 
assessing the truth of its premise. 

The situation is thus such that, if it should turn out to be the case that Benford’s Law is 
valid, then there are several alternative mathematical explanations of why this should be so. 
On the other hand, none of them imply that the logarithmic law is necessarily true. It remains 
a contingent truth that can only be settled empirically. In fact, it is obvious that Benford’s 
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Law is not a universal property of naturally occurring numbers. Consider, for example, the 
heights of an adult population measured in imperial units (feet). The most frequent leading 
digit will be 5, and the next two will be 4 and 6. It is extremely unlikely that there will be any 
values with a leading digit of 1. In contrast, if the same data were expressed in metric units, 
far too many  (well over 90%) of the values would have 1 as their first digit.  

Thus the real empirical questions are “Do a substantial proportion of natural data sets 
conform to Benford’s Law and, if so, which ones?”. These are the questions we set out 
answer in our experimental study. 

3. Benford’s Original Data – A Reassessment 

When Benford (1938) carried out his original empirical study, considerable labour was 
necessary to obtain the data. He used a wide variety of sources ranging from tabulations of 
mathematical functions, through physical constants and street addresses to numbers appearing 
in newspapers. The result was about 20,000 numbers distributed across 20 data sets. This 
body of data is still the most substantial piece of published evidence for Benford’s Law. It 
represents a formidable amount of tedious work counting the frequencies of leading digits. It 
should nevertheless be recognised that 20 sets of data with an average of 1000 numbers each 
is in fact a rather small sample from which to derive a law. 

Having counted his data, Benford simply expressed them as percentages and presented 
them in a table alongside the frequencies predicted by the logarithmic law. His claim that the 
data did indeed conform to his law rests entirely on the apparent similarity of the numbers. He 
made no attempt assess how good the fit was. In fact, closer inspection shows that, for some 
data sets, the digit frequency is not even a monotonically decreasing function of digit 
magnitude for higher valued digits. This could of course be due to chance variation in the 
sample.  However, the evidence would have been much more convincing if some measure of 
the statistical significance of the differences had been made. 

Although the raw data is not available, and in many cases the original source is 
extremely obscure, Benford’s paper tabulates the percentage frequencies and the total counts 
for each data set. These are sufficient to allow an assessment of how closely the data 
conforms to the logarithmic law. There are two standard tests for measuring the goodness of 
fit between a set of data and a hypothetical distribution from which it may be derived: the chi-
square test based on differences between observed and expected frequencies, and the 
Kolmogorov-Smirnov test, based on deviations between cumulative distributions. The former 
is applicable to binned data, while the latter is more suited to continuous data. Digit 
frequencies fall into nine bins so we used the chi-square measure as our criterion for assessing 
goodness of fit. (The Kolmogorov-Smirnov test was also applied to some of the data we 
studied but did not prove particularly useful).  

Table 2 shows the results of applying chi-square tests to Benford’s original data. The 
fourth column shows the probability that a value of χ2 at least this big would be produced in a 
sample drawn from a population conforming to Benford’s Law. It can be seen that three of the 
data sets (D, F, and R) are remarkably close fits. A further eight (A, G, I, M, O, P, Q, and T) 
satisfy the standard 5% significance criterion (i.e. there is a 1 in 20 chance that a χ2 this large 
would occur in a sample from a population conforming to the logarithmic law). The 
remaining nine sets of data cannot be regarded as conforming to Benford’s Law. 

Benford’s original data is not available and most of his data sets cannot be readily 
reconstructed. The exception is set J, Atomic Weights. The atomic weights of twelve 
transuranic elements have been measured since Benford’s paper was published. All of these 
have 2 as their leading digit. We assessed the goodness-of-fit for this enlarged data set in 
order to see whether advances in physics had led to closer conformation to Benford’s Law. 
The figures are given in the penultimate row of Table 2. The additional elements almost 
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double the value of χ2 and the corresponding probability dropped to 0.00102, thus removing 
atomic weights from the set of data sets that satisfy the 5% significance criterion. In fact, the 
digit distribution is too heavily weighted towards low value leading digits; the skewness is 
1.37 compared with the 0.79 to be expected from the logarithmic law. It will take the 
discovery of substantially more elements to redress this bias and bring the periodic table into 
line with Benford’s Law. 
 

Group Title χ2 Probability 

A Rivers, Area 4.962 0.762 
B Population 118.6  < 0.000001 
C Constants 24.44 0.00193  
D Newspapers 0.1602 0.999998  
E Spec. Heat 111.2 < 0.000001 
F Pressure 1.27 0.996 
G H.P. Lost 3.46 0.902 
H Mol. Wgt. 125.8 < 0.000001 
I Drainage 11.14 0.194 
J Atomic Weight 17.25 0.0276 
K n-1,√n,… 440.8 < 0.000001 
L Design 19.21 0.0138 
M Digest 3.227 0.919 
N Cost Data 15.6 0.0485 
O X-Ray Volts 5.426 0.711 
P Am. League 14.59 0.0675 
Q Black Body 9.523 0.300 
R Addresses 1.297 0.996 
S n1,n2,….n! 24.99 0.00156 
T Death Rate 7.555 0.478 
J* Extended Atomic Wts 26.07 0.00102 

Average  84.10 < 0.000001 

Table 2: Results of chi-square tests for the data sets presented in Benson (1938) (see 
text). 

Benford also computed the average values for each of the digit frequencies (see 
penultimate line of Table 1). Several authors have argued that the apparent close fit provided 
by these averages is evidence for the view that Benford’s Law reflects the leading digit 
distribution to be expected when data from many sources are pooled. However, Benford 
appears to have simply computed the average percentages for each digit and taken no account 
of the differing sizes of the 20 data sets. The final line of Table 2 shows the results of a chi-
square test applied to the pooled data, thus avoiding over-representation of smaller data sets. 
It is clear that the pooled data does not conform closely to Benford’s Law. 

One possible objection to this reassessment of Benford’s evidence is that using χ2 as a 
measure of goodness-of-fit is too strict a criterion. It is well known that a χ2 test will always 
detect a significant difference if a large enough sample is used. However, these are not 
particularly large data sets: the mean size is 1011. Furthermore, the criterion is only being 
used to identify data sets that do not deviate sufficiently to justify rejecting Benford’s Law: 
that is, there is at least a modest chance they were drawn form a population whose leading 
digits has a logarithmic distribution.  

So what conclusions can be drawn from Benson’s own empirical evidence? It is 
certainly not the convincing demonstration of the truth of his law that many have claimed it to 
be. Half the data sets proved to be very poor matches to the prescribed distribution. On the 
other hand, some of those that did match matched extraordinarily well. Furthermore, even 
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those data sets that do not match the law have distributions that are very heavily skewed to the 
low valued digits, rather than the uniform distribution that one might have expected. Thus 
Benson’s data certainly provides evidence for the idea that leading digit frequency is often a 
monotonically decreasing function of digit value. It provides some evidence that this function 
has the logarithmic form asserted in Benson’s Law but gives little grounds for believing that 
this is always the case. 

4. Natural Data Sets 

Modern computing techniques have dramatically reduced the effort required to carry 
out the type of empirical investigation that forms the core of Benford’s work. We decided to 
carry out a similar study using a substantially larger collection of data sets. 

This presented us with a methodological problem that we have still not satisfactorily 
resolved. How should one set about selecting such a collection of data sets? One of the 
questions we would have liked to answer is what proportion of natural data sets conform to 
Benford’s Law. This suggests that we should take a random sample of all such data sets. 
Unfortunately, it is not clear either whether the concept of the set of all data sets has any 
meaning or, if it does, how one may set about sampling it in an unbiased way. 

Indeed it is far from clear how Benford set about choosing his sample. The fact that all 
his examples appear, at least superficially, to conform to the law is a little suspicious. It is 
very easy to find data that departs drastically from the frequencies predicted by the 
logarithmic law. The absence of any such data sets from Benson’s study suggests that he may 
have had a, perhaps unconscious, bias towards data in which numbers starting with the digit 1 
were particularly common. In one sense our problem was very different from Benford’s. 
Whereas he had to painstakingly assemble the majority of his data sets from whatever 
potential sources he could find, we had access to the overwhelming quantity of data freely 
available on the web. 

It is generally recognised that artificially constructed numbers, such as telephone 
numbers or serial numbers, do not conform to Benford’s law, so this type of data was 
excluded from our study. Preliminary investigations suggested that data sets conforming to 
the law were not common. Since we also wished to gain some insight into what types of data 
did fit the logarithmic law, we decided to deliberately choose data sets that included variables 
that appeared plausible candidates: that is, their most frequent leading digit was 1. Such data 
sets often included other variables with very different leading digit distributions and these too 
were normally examined. Other data sets were chosen because previous authors have asserted 
that data of that type provided a good fit to the logarithmic law. Clearly, this approach 
precludes an estimate of the proportion of all data sets that conform to the law, although it 
could be regarded as evidence for an upper bound. Furthermore, it provides empirical 
evidence on how well those data sets that appear to conform actually fit the prescribed 
frequencies, and should also provide information about the type of data that conforms to 
Benford’s Law. 

We computed the chi-square statistic and the associated probability for each set of 
data examined. We also computed quantities related to the first four moments of the digit 
distribution (mean, variance, skewness and kurtosis) to provide a further basis for comparison 
between the actual frequencies and those predicted by Benford’s Law. 

We investigated the distribution of leading digits in 230 data sets, all of which can be 
accessed on the web. Details of these data sets, including the relevant URLs, are provided in 
Appendix 1. They ranged in size from 132 to 23484 items. In total well over half a million 
numbers were examined. 

Of the 230 data sets examined 29 (i.e. 12.6%) satisfied the 5% significance criterion 
for conformity to Benford’s Law. The results for these data sets are presented in Table 3, 
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which is ordered by declining goodness-of-fit. All but one of the remaining 201 data sets 
failed to fit at the 1% significance level. The vast majority of them were extremely poor fits 
with probabilities of less than 0.00001 that they were samples from distributions conforming 
to the logarithmic law. Given that the selection of data was biased towards including variables 
that appeared to fit the law, it seems reasonable to conclude that the majority of data sets do 
not have leading digit distributions characterised by Benford’s Law. 

 
Data Set Variable No of 

Items 
Modal 
Digits 

Mean Var Skew χ2 Prob 

Flag Data (MLDB) Population  194 1,2,3 3.30 5.88 0.826 3.376 0.9086 
USDA Crop Data tb8286 variable 2 4167 1,2,3 3.39 5.98 0.824 4.973 0.7605 
USDA Crop Data ry8286 variable 6 2607 1,2,3 3.45 6.05 0.795 5.654 0.6859 
USDA Crop Data ry87 variable 5 453 1,2,3 3.42 5.53 0.816 6.127 0.6330 
USDA Crop Data tb8286 variable 4 4167 1,2,3 3.45 6.11 0.807 6.535 0.5876 
USDA Crop Data ar8286 variable 5 784 1,2,3 3.19 5.91 0.948 7.205 0.5147 
USDA Crop Data ry8286 variable 2 2612 1,2,3 2.05 5.84 0.779 7.627 0.4708 
Boston Housing (MLDB) Crime per capita 506 1,2,3 3.61 6.63 0.67 7.923 0.4410 
USDA Crop Data br87 variable 2 2713 1,2,3 3.35 6.01 0.858 8.123 0.4216 
USDA Crop Data ry88 variable 5 388 1,2,4 3.62 6.65 0.692 8.428 0.3929 
USDA Crop Data ry7276 variable 6 1966 1,2,3 3.49 6.06 0.750 8.785 0.3608 
USDA Crop Data ry88 variable 3 388 1,2,3 3.45 5.52 0.770 8.871 0.3533 
USDA Crop Data ar8788 variable 3 311 1,2,(3,4) 3.55 5.58 0.687 9.147 0.3300 
USDA Crop Data ry87 variable 3 453 1,2,3 3.34 5.74 0.826 10.84 0.2112 
USDA Crop Data ar8788 variable 4 311 1,2,3 3.32 5.59 0.852 10.91 0.2068 
USDA Crop Data br87 variable 5 2676 1,2,3 3.52 6.14 0.770 11.18 0.1918 
USDA Crop Data br88 variable 2 2592 1,2,3 3.39 5.98 0.827 11.51 0.1746 
Wisconsin Breast Cancer wdbc variable 9 556 1,2,3 3.18 5.93 1.01 11.70 0.1649 
USDA Crop Data ry88 variable 2 388 1,2,3 3.56 6.94 0.707 12.06 0.1483 
USDA Crop Data br87 variable 3 2676 1,2,3 3.34 5.91 0.849 12.48 0.1310 
Flag Data (MLDB) Area 194 1,2,3 3.28 6.80 1.02 12.58 0.1271 
USDA Crop Data ar7781 variable 4 764 1,2,3 3.30 5.65 0.938 12.59 0.1268 
USDA Crop Data br88 variable 5 2536 1,2,3 3.40 5.84 0.817 12.67 0.1239 
Wisconsin Breast Cancer wpbc variable 17 198 1,2,4 3.85 6.12 0.527 13.50 0.0949 
USDA Crop Data tb7781 variable 4 4100 1,2,3 3.49 6.01 0.775 13.86 0.0854 
USDA Crop Data ar8788 variable 2 311 1,2,3 3.60 5.58 0.636 14.43 0.0713 
USDA Crop Data cp7276 variable 2 230 1,3,2 3.35 5.49 0.891 14.87 0.0618 
USDA Crop Data ry7276 variable 3 1967 1,2,3 3.36 5.76 0.879 15.06 0.0579 
USDA Crop Data cp7276 variable 6 226 1,3,2 3.50 6.68 0.741 15.53 0.0497 

Table 3: Variables providing the best fits to Benford’s Law from a sample of 230. The 
fourth column lists the most frequent leading digits in declining order of frequency. 
The next three columns list the mean, variance and skewness of the observed 
distributions. The eighth column is the value of χ2. The right hand column is the 
probability that a value of χ2 at least this large would be observed in a random sample 
drawn from a population conforming to the predicted values. 

Variables from the USDA Crop Data sets account for 24 of the 29 variables that 
conformed closely to the logarithmic law. This is only partially explained by the fact that 73 
of the 230 sets of data were taken from this source. One third (32.8%) of the USDA variables 
conformed to the law; the remaining two thirds included a large number of very poor fits. The 
remaining five sets of data that conformed to the predicted distribution were taken from the 
UCI Irvine Machine Learning Repository (Blake & Mertz 1998). Both the numeric variables 
from the Flags data set, which list the populations and areas of the world’s countries, provided 
good fits. Three of the 63 variables taken from the Wisconsin Breast Cancer data sets and the 
one variable we examined from the Boston Housing data set (crime per capita) also had 
leading digit distributions that conformed, by the 5% significance criterion, to Benford’s Law. 
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The results from the 87% of data sets that did not appear to conform to Benford’s Law 
are also worthy of consideration. These included all the variables in the climatological and 
financial time series data sets. The absence of examples of the latter, from the list of those that 
provided reasonably close fits, is surprising, since it has often been suggested that Benford’s 
Law provides a good model of such data. Table 4 lists the results we obtained for the Dow 
Jones data sets. The three sets that span the twentieth century are all very similar, the differing 
values for χ2  simply reflecting the different sample sizes. It is clear why they are such a poor 
fit to Benford’s Law: the second and third most frequent leading digits are 8 and 9 
respectively. The fourth data set, covering the decade 1983-93 is clearly different. Although 
1, 2 and 3 are the most frequent leading digits the fit is still very poor. The problem here is 
that there are far too few leading digits greater than 3. This is reflected in the low moment 
values. The corresponding values for a distribution following Benford’s Law are: mean 3.44, 
variance 6.07 and skewness 0.79. 

 
Data Set No of 

Items 
Modal 
Digits 

Mean Var Skew χ2 Prob 

Dow Jones 1900-99 Daily 27011 1,8,9 4.44 8.79 0.190 7999 <0.00000 
Dow Jones 1900-99 Weekly 5118 1,8,9 4.51 8.80 0.157 1650 <0.00000 
Dow Jones 1900-99 Monthly 1177 1,8,9 4.51 8.76 0.152 371 <0.00000 
Dow Jones 1983-1993 Daily 2782 1,2,3 1.81 0.57 0.330 2076 <0.00000 

Table 4. Results obtained for the four Dow Jones index data sets. (See caption to 
Table 3 for explanation of columns).  

A more interesting failure to fit the prescribed distribution arises in the Global Ocean 
Wind Stress data sets. The results for the first four of these (which are typical) are shown in 
Table 5. It is clear that these four digit distributions are very similar to each other. 
Furthermore their χ2 values are all well under 100. Thus, although none of them come close to 
satisfying the criterion for matching Benford’s Law (for which a maximum χ2 of about 15 is 
required), they do provide a much better fit than the financial data just discussed. 

 
Data Set No of 

Items 
Modal 
Digits 

Mean Var Skew χ2 Prob 

Global Ocean Wind Stress m1v1 2161 1,2,3 3.29 6.12 0.837 51.27 <0.00000 
Global Ocean Wind Stress m1v2 2161 1,2,3 3.26 6.32 0.874 65.03 <0.00000 
Global Ocean Wind Stress m1v3 2161 1,2,3 3.29 6.31 0.840 61.76 <0.00000 
Global Ocean Wind Stress m1v4 2161 1,2,3 3.24 6.17 0.902 53.48 <0.00000 

Table 5. Results obtained for four of the Global Ocean Wind Stress data sets. (See 
caption to Table 3 for explanation of columns). 

Figure 1 shows the observed frequencies for these four data sets. This provides a further 
demonstration that these data sets have very similar leading digit distributions which resemble 
that prescribed by Benford’s Law but differ from it in a consistent fashion. The leading digit 
is 1 too often and the frequencies of the next few possible values are reduced roughly 
proportionately. 

Leading digit distributions such as these raise some interesting questions. They are 
clearly orderly: that is, their frequency declines smoothly as the digit value increases. 
Furthermore, a superficial inspection suggests that they conform to Benford’s Law but a 
closer scrutiny shows that this is not the case. The problem is not that the chi-square criterion 
is too strict. It is evident from Figure 1 that there is a systematic deviation from the 
logarithmic law.  

Such approximations to Benford’s Law were common in our data sets. They suggest a 
number of possibilities. One is that leading digit distributions follow some other law that 
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produces frequencies that are similar to those prescribed by the logarithmic law. Both the 
theoretical and empirical evidence are against this. The fact Benford’s Law is the only 
function that is base invariant (Hill 1995b) implies that any alternative law would fail if we 
use any base but 10 for our number system. Although such approximations to Benford’s Law 
are common in our data, they do not all show the same patterns of deviation as those 
illustrated in Figure 1. An alternative possibility is that these distributions that approximate 
Benford’s Law are produced by processes which would, if continued further, produce 
distributions which were much closer matches. This possibility will be explored further in the 
next section. 

 

Figure 1: First digit frequency distributions as prescribed by Benford’s Law and as 
observed in a typical examples from the Wind Stress data sets. 

The main conclusions to be drawn from our empirical study are: 

(1) That only a small proportion of real data sets conform closely to Benford’s Law. 

(2) That many real data sets have leading digit distributions that are radically different 
from those prescribed by the logarithmic law. 

(3) That there are a significant number of real data sets that definitely do not conform 
to the law but have leading digit distributions that are broadly similar. In 
particular, leading digit frequency is a monotonically decreasing function of digit 
value. 

In the next section we will investigate mathematical models of processes that could explain 
both close and approximate matches to Benford’s Law. 

5. Mathematically Generated Data Sets 

Benford (1938) believed that there was “a distinct tendency for [items] of a random 
nature to agree better with the logarithmic law than those of a formal or mathematical nature”. 
We decided to investigate how several sets of data generated by mathematical functions 
conformed to the law. Our motivation was not to discover mathematical relationships but to 
identify processes that might give rise to logarithmic leading digit distributions in real data. 
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5.1 Recurrent products 

The first type of process considered was that in which successive numbers are 
generated by repeatedly multiplying the current number by either a constant or a random 
number. The results obtained are shown in Tables 6 and 7. 

 
Data Set Series No of 

Terms 
χ2 Prob 

1 tn+1 = tn + tn-1 (Fibonacci) 1476 0.0470 1.00000 
2 tn+1 = tn × (1 + √5)/2 1475 0.0423 1.00000 
3 tn+1 = tn × (1 + √3)/2 2276 0.436 0.99992 
4 tn+1 = tn × e/2 2314 1.56 0.99153 
5 tn+1 = tn × (1 + √3)/3 7934 0.0519 1.00000 
6 tn+1 = tn × e/3 7530 0.0318 1.00000 
7 tn+1 = tn × √2 2048 0.0725 1.00000 
8 tn+1 = tn × √3 1293 0.0466 1.00000 
9 tn+1 = tn × √5 883 0.100 1.00000 
10 tn+1 = tn × √6 793 0.246 0.99999 
11 tn+1 = tn × √7 730 0.403 0.99994 
12 tn+1 = tn × √8 683 0.732 0.9994 
13 tn+1 = tn × 2 1001 0.161 1.0000 
14 tn+1 = tn × 5 5000 0.0930 1.0000 
15 tn+1 = tn × 9 5000 0.026 1.000 
16 tn+1 = tn × 9.9 5000 0.766 0.999 
17 tn+1 = tn × 9.99 5000 137 0.0000 
18 tn+1 = tn × 9.999 5000 17561 0.0000 
19 tn+1 = tn × 10 5000 11609 0.0000 
20 tn+1 = tn × √10 5000 18315 0.0000 

Table 6: Conformity to Benford’s Law of sequences generated by repeated 
multiplication by a constant. 

The first row of Table 6 shows the results for the first 1476 terms of the Fibonnaci 
sequence. It confirms the well known result that its leading digit frequencies conform very 
closely to Benford’s Law. The remaining rows show the effect of using a range of constants 
as multipliers. As can be seen, in the majority of cases the resulting distribution is a very close 
fit to the logarithmic law. The exceptions arise when the multiplier is an exact integral power 
or root of 10. This is to be expected since multiplying by 10 does not change the leading digit. 
Values close to such roots or powers of 10 will only converge very slowly on the logarithmic 
distribution. 

Table 7 show the effect when the multiplier is not a constant but a uniformly 
distributed random variate.  This type of generation provides a simple Markov model for 
many naturally occurring processes. For example, successive stock market closing prices 
could be considered as generated by multiplying the previous closing price by a random 
factor. 

It is clear that such sequences converge on the logarithmic distribution except in those 
cases where the mean is an integral power or root of 10 and the standard deviation is small. 
This raises the question of why we found that the Dow Jones index data (see Table 4) did not 
conform to Benford’s Law. There are two obvious reasons. First the simple Markov model is 
not strictly appropriate since the change between two successive closing values will not be 
independent of preceding changes. More significantly, the average ratio between successive 
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values will be close to 1 and the change will be a small fraction of the value. This is exactly 
the situation in which we would not expect to see convergence on the logarithmic distribution 
even in a sample of many thousands. Thus it would be surprising if such financial indices did 
conform to Benford’s Law except in spectacularly volatile markets. 

 
Series Mean Stnd Dev No Terms χ2 Prob 

tn+1 = tn × urand(0.0,1.0) 0.5 0.289 10000 6.66 0.574 
tn+1 = tn × urand(0.5,1.5) 1.0 0.289 10000 3.67 0.886 
tn+1 = tn × urand(0.9,1.1) 1.0 0.0577 10000 502 0.000 
tn+1 = tn × urand(0.95,1.05) 1.0 0.0289 10000 1002 0.000 
tn+1 = tn × urand(0.99,1.01) 1.0 0.00577 10000 28576 0.529 
tn+1 = tn × urand(0.95,1.1) 1.025 0.0433 10000 21.9 0.005 
tn+1 = tn × urand(0.5,2.0) 1.25 0.639 10000 7.86 0.448 
tn+1 = tn × urand(1.0,3.0) 2.0 0.577 10000 9.70 0.287 

Table 7: Conformity to Benford’s Law of sequences generated by repeated 
multiplication by a random variate. urand(a,b) is uniformly distributed in the range 
a..b. Columns 2 and 3 show the mean and standard deviation of the random variate. 

5.2 Products of random variates 

The next type of process we considered was that in which each number in the data set 
is the product of several random variables. Such processes are of interest because they are the 
basis for one of the theoretical explanations of Benford’s Law. Furthermore, as noted above, 
Boyle (1994) has shown that the logarithmic distribution is the limiting distribution of leading 
digits when random variables are repeatedly multiplied, divided or raised to integer powers. 
Thus we would expect to find close conformity to Benford’s Law in such data. 

 
 Number of terms in product 

Data Set 10 terms 20 terms 50 terms 
 χ2 Prob χ2 Prob χ2 Prob 

Π(urand(0.0,1.0) 8.21 0.414 - - - - 
Π(urand(0.0,0.5) 7.86 0.447 - - - - 
Π(urand(0.5,1.5) 15.0 0.0589 6.82 0.55 5.26 0.729 
Π(urand(0.9,1.1) 16096 0.0000 10694 0.0000 4930 0.0000 
Π(urand(2.0,8.0) 6.99 0.537 6.74 0.565 1.64 0.990 
Π(urand(4.0,6.0) 6086 0.0000 2026 0.0000 142 0.0000 
Π(urand(4.5,5.5) 17056 0.0000 10947 0.0000 5037 0.0000 
Π(urand(4.9,5.1) 108344 0.0000 80260 0.0000 63075 0.0000 
Π(norm(0.0,1.0) 2.90 0.935 3.25 0.918 11.0 0.201 
Π(norm(5.0,1.0) 707 0.0000 20.4 0.00884 8.87 0.354 

Table 8: Conformity to Benford’s Law of sets of numbers, each of which is the 
product of several identically distributed random variates. urand(a,b) is uniformly 
distributed in the range a..b. norm(m,s) is a normally distributed random variate with 
mean m and standard deviation s. Columns 2 and 3 show the χ2  and associated 
probability when 10 random variates are multiplied. The remaining columns show the 
same information for products of 20 and 50 random variates respectively. Each data 
set contained 10000 items. 

Our results shown in Table 8 show that there is indeed convergence towards the 
logarithmic distribution in all cases, and that for some distributions this convergence is rapid. 
However, it is also clear that in other cases the deviation may be very slow. Two factors 
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clearly influence the rate of convergence: the variance of the mantissa of the random variate 
and the deviation of the random variate’s distribution from Benford’s Law. This illustrated in 
Figure 2 in which log10(χ2 ) is plotted against the number of terms in the product of random 
variates. It is clear that the reduction is approximately linear until values are reached where 
the fit is good. (Note that the variation in χ2 once values of 1 have been reached is to be 
expected. In interpreting this and subsequent data, a helpful rule is that about 25% of samples 
drawn from a population conforming to Benford’s Law would have a χ2 in excess of 10, and 
that about 50% would have values more than 7) 

Figure 2: Convergence of the product of random variates on logarithmic distribution 
prescribed by Benford’s Law. 

These results suggest a possible explanation for our finding that many data were approximate 
matches to Benford’s Law: that is, their leading digit distributions did not conform to the 
logarithmic law but nevertheless declined monotonically as the digit value increased. A 
process that can be modelled by the multiplication of random variates might produce an 
approximation to Benford’s Law if the number of such variates was too few to produce 
complete convergence. 

Figure 3 shows how the frequency of 1 as the leading digit changes as the number of 
terms in the product of normal random variates (mean 5.0, s.d. 1.0) is increased. Other digits 
exhibit a similar pattern. It is clear that distributions with either too few or too many 1s as 
leading digit could arise as the product of small number of random variates. This would 
explain the type of approximation to Benford’s Law illustrated by the Wind Stress data sets 
(see Figure 1). 

Thus, the explanation of Benford’s Law as a consequence of the multiplication of 
random factors could provide an explanation not only for the minority of data sets that 
actually do conform to the prescribed distribution but also of those which, while clearly not 
conforming, do have similar distributions. 
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Figure 3: Frequency of 1 among leading digits for the product of random variates 
having a mean of 5 and a standard deviation of 1. 

5.3 Modelling Benford’s explanation 

Section 2 included a brief account of Benford’s own explanation of his law (Benford 
1938). This was based on the observation that if you begin counting at 1 and continue 
indefinitely the average leading digit frequencies will fluctuate in such a manner that their 
average values are those prescribed by the logarithmic law. It is not clear what forms of 
physical or social process could be modelled by such a procedure. In an attempt to emulate it, 
we produced data sets using the following simple method: 

repeat 

upper_bound = urandint(1,Grand_Upper_Bound) 

output(urandint(1,upper_bound)) 

until enough data generated 

where urandint is a procedure returning a random integer uniformly distributed in the range 
specified by its parameters. This algorithm seems a reasonable replication of the account 
Benford gives for the distribution in his Addresses data. Each person lives at a random house 
number in a different street, and the streets are of different random lengths. The results we 
obtained are shown in Table 9 for different values of the Grand Upper Bound. 

 
Grand Upper Bound χ2 Prob 

10000 150 0.000 
20000 111 0.000 
30000 145 0.000 
40000 140 0.000 
50000 133 0.000 
60000 137 0.000 
70000 147 0.000 
80000 153 0.000 
90000 151 0.000 

Table 9. Conformity to Benford’s Law of data sets produced using a procedure based 
on Benford’s explanation (see text). Each data set contained 5000 items. 
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These results provide little evidence that Benford’s explanation applies to the data sets 
he considered. The fit to the logarithmic distribution is poor. On the other hand, all the 
distributions obtained by this process decreased monotonically as the value of the digit 
increased. There is also something deeply unsatisfactory about the need to introduce the 
Grand_Upper_Bound parameter. Postulating that the upper bounds of data sets are 
uniformly distributed between 0 and some finite maximum is really a very crude way of 
approximating the distribution of the maxima of all data sets over the range -∞ …+∞. There is 
in fact no meaningful way in which this distribution can be defined and this fact is at the root 
of the theoretical objections to Benford’s explanation. 

5.4 Conclusions 

We have examined three classes of model for processes that might give rise to data 
conforming to Benford’s Law. Of these, the third, based on Benford’s own explanation, is the 
least satisfactory for both empirical and theoretical reasons. The success of the first method, 
based on recurrent multiplication is somewhat marred by its failure to provide a useful model 
of financial indices. Nevertheless this model is worth serious consideration when the data 
items are successive members of a sequence. However, in the majority of data sets the 
individual items have a much greater degree of independence. For these, only the second 
model, based on each item being the product of several random variates, appears plausible. 
This model has the additional advantage of offering an explanation for the occurrence of data 
sets that roughly approximate Benford’s Law. The implications of this model are explored 
further in the next section. 

6. An Explanation for Benford’s Law 

The evidence in the preceding two sections suggests that the multiplication of random 
factors is the most plausible explanation for a data sets conformity to Benford’s Law. 
Multiplying numbers together is equivalent to adding their logarithms. The central limit 
theorem states that the sum of independent random variates tends to a normal distribution as 
the number of variates is increased. Thus the logarithm of the product of random variates 
should also tend to a normal distribution. 

6.1 The Lognormal Distribution and Benford’s Law 

A probability in which the logarithm of the variable is distributed normally is called a 
lognormal distribution (Evans, Hastings & Peacock 2000). Lognormal distributions, are 
unimodal, positively skewed, have a range from 0 to ∞, and are defined by two parameters. 
The first is a scale parameter, m, whose value is the median of the distribution. The other is a 
shape parameter, σ, which is the standard deviation of the logarithm of the variate – in other 
words, it is the standard deviation of the associated normal distribution.  

It therefore seems pertinent to investigate under what circumstances the lognormal 
distribution gives rise to leading digit distributions that conform to Benford’s Law. Table 10 
shows the results of estimating the goodness of fit to Benford’s Law of a range of lognormal 
distributions with various median and shape parameters. 

These results clearly show that conformity to Benford’s law is independent of the 
median of the lognormal distribution. This result is to be expected since it is a scale parameter 
and the law is scale invariant. They also show that the goodness of fit is a function of the 
shape parameter σ. In particular, distributions whose shape parameters exceed 1.2 appear to 
be very good fits. In contrast, as the value of the shape parameter is reduced below 1.2, the fit 
deteriorates rapidly. 

These results also demonstrate that not every lognormal distribution has a leading digit 
distribution that accords with Benford’s Law. Conversely, it is not the case that every 
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distribution whose leading digits are distributed according to the logarithmic law is 
lognormal. Counterexamples are readily generated. Consider a sample from a lognormal 
distribution that does fit Benford’s Law. Now multiply 50% of the items by -1. The result will 
be a distribution that satisfies Benford’s Law (because the leading digits are not changed) but 
is not lognormal (because it is symmetric).  
 

 Shape Parameter σ 
Median 0.2 0.5 0.8 1.0 1.2 2.0 3.0 4.0 5.0 10.0 

0.2 11507 2773 194 33.0 7.04 7.64 10.1 4.39 10.4 7.72 
0.5 21507 3152 225 45.3 13.1 10.1 5.49 7.89 5.47 7.89 
0.8 21360 2738 201 27.3 15.1 8.96 9.05 7.23 10.7 14.0 
1.0 14525 2801 199 38.0 14.1 11.6 9.29 5.98 9.86 6.71 
2.0 11507 2773 194 33.0 7.04 7.64 9.99 4.38 10.8 9.02 
3.0 18023 2940 213 36.3 11.4 10.1 6.27 11.4 19.6 5.41 
4.0 20673 3105 211 35.6 8.44 11.1 6.33 7.30 10.9 8.40 
5.0 21507 3152 225 45.3 13.1 8.79 5.54 7.68 5.62 6.96 

Mean 17576 2929 208 36.7 11.2 9.49 7.76 7.03 10.4 8.27 

Table 10: Conformity (χ2) of lognormal distributions with various median and shape 
parameters to Benford’s Law. Each data set contained 10000 items. The final row 
shows the average χ2value for each shape parameter. 

Lognormal variates have been widely used to model physical quantities where the 
normal distribution is inappropriate because their values are necessarily positive. For example 
negative weights, heights and time durations are usually meaningless. In some cases the 
normal distribution is still acceptable because the mean is many standard deviations above 
zero; adult human height is such an example. In such a situation, the best fitting lognormal 
distribution would have a very small shape parameter. In contrast, when the mean is closer to 
zero, the lognormal distribution provides a much better model than the normal distribution. In 
such circumstances the shape parameter will be much larger. 

6.2 Explaining Benford’s Law 

Hence we are now in a position to characterise data sets that we would expect to give 
rise to digit distributions satisfying Benford’s Law. Data whose distributions conform to a 
lognormal distribution whose shape parameter exceeds 1.2 should give rise to leading digit 
distributions satisfying the logarithmic law. Data that are likely to satisfy this criterion will: 

(1) Have only positive values. 

(2) Have a unimodal distribution whose modal value is not zero. 

(3) Have a positively skewed distribution in which the median is no more than half of 
the mean. (This constraint ensures that the shape parameter of the lognormal 
distribution will exceed 1.2) 

In the many cases these criteria could be assessed, without actually examining the 
data, simply by considering the properties of the quantities that the numbers represent. For 
example, it is obvious that adult height is a positive quantity with a unimodal distribution. 
However, it is certainly not sufficiently skewed to have a median only half of its mean (in fact 
they are essentially the same). Hence we should not expect height to conform to Benford’s 
Law. In contrast, consider the distribution of annual salary among all the employees of a large 
company. Once again this is necessarily positive and almost certainly unimodal. Since there 
will be far more people on low pay than receiving large salaries the distribution will be 
positively skewed. Whether it will be sufficiently skewed for the median to be less than half 
the mean is less obvious; at this stage inspection of the data would be necessary. However, 
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even without such an inspection, it is clear that this quantity is much more likely to conform 
to Benford’s Law. 

It is interesting to consider how this explanation applies to the Address data that 
Benford used to illustrate his own explanation (see Section 5.3). Street addresses are by 
convention positive integers. All streets start at number 1 but some are longer than others, so 
the highest number address will vary. Hence street numbers are positive and their distribution 
will be positively skewed. Since 1 will be the modal value but some streets are quite long the 
median will be much less than the mean. Hence, by the rules given above we would expect a 
random collection of addresses to approximate to a lognormal distribution with shape 
parameter greater than 1.2. We would therefore expect their leading digits to conform to 
Benford’s Law. This explanation avoids any need to make dubious postulates about the 
distribution of street lengths. 

It is also worth noting that many other probability distributions that have a positive 
range and a large positive skew can be closely approximated by a lognormal distribution. 
Such distributions could therefore be expected to be reasonable approximations to Benford’s 
Law. This is readily confirmed by experiment. For example, the negative exponential 
distribution yields χ2  values in the range 53…77; a fit similar to that of the wind stress data 
discussed in Section 4. 

The fundamental conclusion to be drawn from this is that Benford’s Law is not a 
necessary mathematical truth or a deep mystical property of our universe. It is a 
straightforward consequence of the way in which we quantify our observations of that 
universe.  Measurements that cannot meaningfully take values less than zero give rise to 
Benford’s Law. Not all of them do. If the range of measurement is such that zero falls well 
outside the range of practical consideration, then the leading digits will not conform to the 
law. But many of the quantities that we measure are necessarily positive and have ranges that 
include significant numbers of items close to zero. According to our explanation, it is these 
that give rise to Benford’s Law. 

7. Generating Data that Conforms to Benford’s Law 

This investigation was originally motivated by our wish to generate artificial data sets 
whose characteristics closely resembled those of real data. Having established that many real 
data sets either conform to Benford’s Law or have leading digit distributions that are roughly 
similar, we must now consider how to generate artificial data with these characteristics.  

There are two ways in which this can be done. The first relies on our finding that the 
leading digits of a lognormal distribution with a shape parameter greater than 1 appear to 
distributed according to the logarithmic law. Lognormally distributed numbers are readily 
generated by transforming the output of a normal random number generator (Evans, Hastings 
& Peacock 2000). Specifically,  

me
σN (1,0)

 

where N(0,1) is a standard normal variate, is lognormally distributed with median m and 
shape parameter σ.  

This relationship to normal variates offers a further advantage that is of particular 
relevance in our own application of evaluating the performance of machine learning 
procedures. We have previously described a random vector generator that produces vectors of 
normally distributed numbers in which the interdependency of the elements is specified with a 
covariance matrix (Scott & Wilkins 1999). By transforming the output of such a generator it 
is thus possible to produce vectors of numbers satisfying Benford’s Law with any desired 
degree of mutual interdependence. 
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The transformation of a normal variate offers a convenient way of generating artificial 
data whose leading digits conform closely to the logarithmic law. However, many real data 
sets only conform approximately. Generating such data presents more of a problem because 
there are many ways in which data could deviate while still remaining an approximate match. 
Numbers distributed lognormally with a shape parameter less than 1.2 appear to produce 
leading digit distributions that have too many 1s and too few high value digits. An alternative 
approach would be needed to produce other types of deviation. 

One such alternative approach to generating data conforming to the logarithmic law 
would be to directly exploit the finding, discussed above, that the product of random variables 
converges on this distribution.  Such a generator would simply produce the product of a pre-
defined number of random variates. (A similar approach was once used to generate 
approximations to normally distributed variables before the widespread adoption of the Box-
Muller method). This method offers no advantages over the transformational method if the 
goal is data that conforms closely to Benford’s Law. However, by varying the choice of 
random distribution and the number of terms in the product, data that only approximately 
conforms to Benford’s Law could be produced (see Section 5.2). 

8. Conclusions 

This investigation has achieved more than we intended when we began. Our initial 
intention was to discover whether Benford’s Law applied to a significant number of real data 
sets and, if so, to identify common features of those data sets. In fact our investigation has 
lead us to a novel explanation of the law and a simple set of rules for identifying data sets that 
are likely to conform or approximate to the logarithmic distribution of leading digits. 

Re-examination of Benford’s own data revealed that only about half of his data sets 
provided evidence for his law. Examination of a much larger collection of data sets showed 
that only a small though significant minority conformed to the law. A larger group conformed 
roughly in that the leading digit distribution was a monotonically decreasing function of digit 
value. The remainder had digit distributions that were radically different from those 
prescribed by Benford’s Law. This last group includes types of data, such as financial indices, 
that previous authors have cited as exemplars of the law. 

Three mathematical models of data generating processes were then explored. We 
concluded that one based on Benford’s own explanation was flawed both in practice and 
theory. A second, based on recurrent multiplication by random factors produced good results 
but was only applicable to data in which successive items are strongly interdependent. The 
third, based on generating each item by multiplying several random factors, was applicable 
when the data items were independent. It gave good results, and had a sound theoretical basis 
in Boyle’s (1994) proof that such processes converge on the logarithmic distribution. It also 
provided an explanation of those distributions that provided an approximate match to 
Benford’s Law. 

This process led us to consider the distribution of leading digits in lognormal 
distributions. We demonstrated that lognormal distributions with shape parameters greater 
than 1.2 had leading digit distributions that conformed closely with the logarithmic law. 
Hence it followed that any set of data that could be modelled by such a distribution would 
conform to Benford’s Law. Hence the task of characterising data that would fit the law was 
transformed into the simpler one of stating the properties of such a lognormal distribution. 

From this it was immediately apparent that the distribution must be confined to 
positive values. Hence Benford’s Law arises because many naturally occurring quantities are 
measured in such a way that negative values have no meaning. Not all such necessarily 
positive quantities will be distributed according to the law. Only those where the median of 
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their distribution is much closer to zero than the mean. A large number of naturally occurring 
quantities have these characteristics. 

This explanation offers more than a solution to a longstanding numerical curiosity; it 
also has considerable practical value. In recent years Benford’s Law has been increasingly 
employed to identify fraudulent financial data (Nigrini 1993, 1996). Both the validity and the 
utility of this technique depend upon knowing when data ought to conform to Benford’s Law. 
The criteria we propose can be applied simply and rapidly by anyone with an understanding 
of what the numbers in a data set represent about the world. It is also immediately clear that 
data conforming to Benford’s Law can be produced readily by generating lognormally 
distributed random numbers. 

Further research would strengthen the argument propounded in this report. The claim 
that the leading digits of a variable distributed lognormally with a shape parameter greater 
than 1.2 conform to Benford’s Law is crucial. It rests at present on simulation evidence. 
Clearly a proof would be preferable. The argument demonstrates that a large class of naturally 
occurring quantities can be expected to conform to the law. This does not preclude the 
possibility that there are other types of natural quantity that are not distributed lognormally 
but also conform to the law. It is possible to construct such distributions but it is an open 
question whether they provide models of quantities occurring in real data. We conjecture that, 
if any such quantities exist, they are uncommon and that the empirical finding that a 
significant proportion of real data sets conform to Benford’s Law is essentially a consequence 
of their being necessarily restricted to positive values. 
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Appendix: Sets of Natural Data 
The natural data sets used in the study were obtained from the web. This appendix 

gives a brief description of each and the url of the site from which it was obtained. 

 

UCI Repository of Machine Learning Databases. (Blake & Mertz 1998)  
http://www.ics.uci.edu/~/mlearn/MLRepository.html 

Flags: (2 variables, 194 cases) 

The two numeric variables are the populations and areas of the worlds 
countries. 

Boston Housing: (1 variable, 506 cases) 

The single variable examined is the crime per capita by township. 

Wisconsin Prognostic Breast Cancer: (32 variables, 198 cases) 

Wisconsin Diagnostic Breast Cancer: (30 variables, 569 cases) 

Abalone (8 variables, 4176 cases) 

Echocardiogram (1 variable, 132 cases) 

 

Fraser River Flow Data (6 variables, 156 cases) 
http://libstat.cmu.edu/datasets/fraser-river 

Mean monthly flow of the Fraser at Hope B.C., March 1913 – December 1990. 

Climate Datasets 
http://dss.ucar.edu/datasets 

This site contains a heterogeneous collection of climatological data sets. Three were 
used in this study: 

Global Ocean Wind Stress 1870-1976 (ds232.0) (45 variables, 2161 cases) 

Monthly Antarctic Ice Analyses 1973-1990 (ds234.0) (9 variables, approx 800 cases) 

Shea’s Climatology Atlas 1950-1979 (ds290.0) (8 variables, 23484 cases) 
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USDA-NASS Crop County Data (73 variables, cases range from 226 to 17091) 
http://usda.mannlib.cornell.edu/data-sets/crops/9X100/ 

Agricultural productivity data. Data items are planted and harvested acreage, yield per 
harvested acre, and total production by county. 

Financial Indices 
Dow Jones 

http://www.quoteline.com 

Dow Jones Index 1900-99 (Daily) (1 variable, 27011 cases) 

Dow Jones Index 1900-99 (Weekly) (1 variable, 5118 cases) 

Dow Jones Index 1900-99 (Monthly) (1 variable, 1177 cases) 

Dow Jones Index 1983-93 (Daily) (1 variable, 2782 cases) 

S&P (3 variables, 648-6789 cases) 

http://sciapp.com/fhdata.html 

Consumer Credit Data (6 variables, 681 cases) 
http://www.big.frb.fed.us/releases/G19/hist/cc_hist_cb.html 

Historical data for US consumer credit outstanding for commercial banks and finance 
companies.  

Consumer Price Index (1 variable, 645 cases) 
http://www.stls.frb.org/fred/data/cpi/cpiaucns 

US consumer price index 1946-1999 
 


