Thermodynamic Properties of 1,4-Benzoquinones in Gaseous and Condensed Phases: Experimental and Theoretical Studies

Emel’Yanenko V., Varfolomeev M., Novikov V., Turovtsev V., Orlov Y.
Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© 2017 American Chemical Society. A complete study of thermodynamic properties of 1,4-benzoquinones in the condensed and gaseous phases was carried out using experimental techniques and theoretical approaches. Enthalpies of combustion and formation of 2-methyl-1,4-benzoquinone were evaluated using combustion calorimetry. The transpiration method was utilized to determine the temperature dependence of the vapor pressures of 1,4-benzoquinone and 2-methyl-1,4-benzoquinone for the sublimation and vaporization enthalpies calculation. The group additivity scheme was used independently for verification of sublimation enthalpy of 2-methyl-1,4-benzoquinone. For this procedure the enthalpy of solution of 2-methyl-1,4-benzoquinone in benzene was measured at 298.15 K. The experimental values obtained were combined with published data and organized to obtain a reliable set of the experimental enthalpies of formation and enthalpies of phase transition of compounds. The methods of quantum chemistry and statistical physics based on the "rigid rotator-anharmonic oscillator" model were used to calculate thermodynamic functions of 1,4-benzoquinones in the ideal gas state in the temperature range 273.15-150 0 K. The strain enthalpy and the enthalpy of π-conjugation were also estimated.

http://dx.doi.org/10.1021/acs.jced.7b00354

References

[1] Coolidge, A. S.; Coolidge, M. S. The sublimation pressures of substituted quinones and hydroquinones J. Am. Chem. Soc. 1927, 49, 100-104 10.1021/ja01400a013
[3] de Kruif, C. G. Thermodynamic properties of 1,4-benzoquinone (BQ), 1,4-hydroquinone (HQ), 1,4-naphthoquinone (NQ), 1,4-naphthohydroquinone (NHQ), and the complexes BQ-HQ 1:1, NQ-HQ 1:1, NQ-NHQ 2:1, and NQ-NHQ 1:1 J. Chem. Phys. 1981, 74, 5838-5841 10.1063/1.440898


Zaitsev, B. E.; Tranvkviilitskaya, N. A. Study of Intermolecular Interaction between Quinone Derivatives and Aprotic Solvents J. Appl. Spectrosc. 1973, 18, 332-335 10.1007/BF00613855


Rosenstock, H. M.; Dannacher, J.; Liebman, J. F. The Role of Excited Electronic States in Ion Fragmentation: CH 