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CHAPTER 1

Introduction

This thesis develops statistical models and inference procedures to address bi-
ological questions that arise from the analysis of microarray and sequencing data.
Statistical analysis of such data is a difficult task, mainly because there are rela-
tively few observations on many features. To deal with the scarcity of data regu-
larization is often needed to produce good statistical estimators. Another difficulty
is that the biological process under study can be complex, so care must be taken
in choosing a (family of) statistical model(s). The following chapters treat the
subjects of integration of different molecular data types for statistical modeling,
shrinkage for the borrowing of strength in the analysis of high-dimensional data
and network reconstruction to decipher dependencies between functional biologi-
cal units (e.g. genes). This introduction offers the general reader a small detour
through some aspects of biology and experimental data generation to approach
the other chapters with more ease. It concludes with an outline of the thesis.

1.1 General background. The face of biology has changed tremendously with
the emergence of technologies that allow the parallel measurement of thousands of bi-
ological sequences (such as DNA, RNA or protein sequences). These high-throughput
technologies (such as microarrays and next-generation sequencing) have produced
massive amounts of data that have proven valuable to researchers in understanding
molecular and cellular processes. For example, in cancer research many new dysfunc-
tions have been pinpointed as drivers for ‘what goes wrong’ in tumour cells and as
potential targets for molecular therapy. Collected data have also helped in defining
molecular signatures and characterizing the heterogeneity of cancer tissues, which
are important for diagnosis and prognosis. These biotechnologies have revolutionized
research in many disciplines and promise to further our understanding of complex
diseases.

The large amounts of data produced by these technologies have complicated their
organization and utilization. These problems have motivated a surge of interest in
fields such as computer science and statistics where many new developments have oc-
curred. Interestingly, the two disciplines have become particularly intertwined. Com-
puter scientists are increasingly led to develop new tools that employ statistical tech-
niques and statisticians are increasingly concerned with the computational aspects of
their methods. This interplay has spawned new interdisciplinary fields such as bioin-
formatics, which organizes and exploits information regarding biological sequences
and molecules. Similarly, statistical genomics has emerged as a new and rapidly ex-
panding field that develops statistical procedures to answer research questions that
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arise from the analysis of microarray and sequencing data. The emergence of new
biotechnologies has brought new areas of research that will likely expand in the fu-
ture with advancement of science and technology.

Statistical methods are constantly challenged by the analysis of genomic data. This
is mainly because high-throughput technologies are diverse and fast-evolving. Data
types, processing and analysis may greatly differ between technologies and are ex-
pected to change with new technological developments. A prime example of such
change is the current transition from microarray-based to sequencing-based experi-
ments. These two types of experiments result in completely different data types. In
statistical words, in the former case data are (after preprocessing) continuous and
conveniently assumed to be approximately Gaussian whereas in the latter case data
are discrete and usually taken to follow a Poisson or negative binomial distribution. It
is still unclear which discrete distribution is most appropriate, how to model overdis-
persion or even whether zero-inflation should be accounted for. This may actually
depend on the technology used. The surge of sequence data brings new challenges
to the statistician for whom stepping out the ‘normal’ world can be delicate. This
is especially true when answering difficult problems such as network reconstruction.
Methodologies for such data are currently under active research.

The present thesis intends to contribute to the development of statistical method-
ologies for the analysis of microarray and sequencing data. Particularly, it focuses on
differential gene expression analysis, the integration of DNA copy number and gene
expression data, and gene network analysis. To understand the specific nature of data
being used, we briefly give an account of molecular biology and technologies that gen-
erate them. Readers interested in a more complete introduction to the field molecular
biology are referred to Hunter (2009) and Strachan and Read (2010).

1.2 Cell biology. The genetic information contained in the cell is responsible for
the incredible diversity of functions that it can carry out. This information is encoded
in the DNA, a double-helix shaped molecule, and reflected in the order in which a set of
only four nucleotide bases (adenine (A), thymine (T), guanine (G), and cytosine (C))
appear (see Figure 1.1). The two strands of the DNA helix are complementary, which
means that the knowledge of one can be used to determine the other. For example, if
the linear sequence of nucleotide bases on one strand is ‘AGACTG’, its complementary
sequence on the opposite strand will be ‘TCTGAC’. This is because nucleotide bases go
hand in hand with each other: base A always ‘pairs’ with base T, and base C with G.
This property is very useful in practice. For example, it is commonly used in laboratory
to amplify DNA (Strachan and Read, 2010).

The information contained in the DNA is essentially the same in all cells of an
individual. Yet, they all carry out very different functions. Mechanisms yielding to
these functions are very complex and not yet fully understood. The most simplified
picture of these mechanisms is provided by the central dogma of biology (Crick, 1958,
Figure 1.2), which stipulates that pieces of DNA are first transcribed into a molecule
called messenger RNA (mRNA) that vehicle the information outside the nucleus in
the cytoplasm, to be translated into proteins, the final products that carry out most
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functions in the cell. As opposed to DNA, mRNA is a single-stranded molecule which
has a uracil (U) nucleotide in place of T and which linear sequence represents disjoint
sets of nucleotide triplets (codons) that encode for specific amino acids. The sequence
of amino acids defines in turn the protein and its structure. The cell function is mainly
determined by the types of proteins that are at work.

High-throughput techniques such as microarray help in understanding the cell bi-
ology by collecting information on molecular levels such DNA or RNA. We next discuss
these technologies and the data they generate.

FIGURE 1.1. Schematic representation of the cell, its nucleus and the chromosomes it contains. The
figure illustrates how the DNA is organized and highly packed into chromosomes. Image courtesy
of the National Human Genome Research Institute.

FIGURE 1.2. Illustration of the central dogma of molecular biology. Image courtesy of atdbio
(www.atdbio.com).
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1.3 Experimental data. A microarray is a measurement device that can quantify
in parallel tens of thousands of predefined biological sequences (such as DNA or mRNA
sequences) that have been immobilized on a solid support (see Figure 1.3(a)). These
sequences are usually chosen so they correspond to known functional units. In gene
expression arrays known sequences of genes are used. Then, the abundance of mRNA
transcripts that have been measured for a specific sequence is used to quantify the
level of ‘expression’ for the corresponding gene.

The microarray experiment consists in fixing the mRNA sequences present in a
sample on the surface of the microarray chip. Briefly, RNA is first isolated from the
tissue sample and labelled with a fluorescent dye. In case of more than one sample
(e.g. treatment versus control or normal versus cancer), sequences are distinguished
by different fluorescent dyes. Using appropriate conditions (such as temperature),
the sample(s) are then hybridized on the microarray chip (see Figure 1.3(b)). After
washing off non-hybridized strands, the amounts of labelled hybridized strands are
quantified by optical fluorescence intensities (Figure 1.3(c)) using laser scanning. The
log2-values of intensities, as measured under the dye spectrum, are taken as final mea-
sures of the levels of expression for each element on the array.

(a) Array (b) Hybridization

(c) Optical intensities

FIGURE 1.3. Illustration of the main steps of a microarray experiment: (a) array preparation, (b)
hybridization and (c) quantification of optical fluorescence intensities. Image courtesy of Affymetrix
(www.affymetrix.com).
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Before being used for analysis, microarray data need to be pre-processed in order to
remove experimental artifacts that may have been introduced during the experiment.
Array intensities also need to be adjusted so that meaningful biological comparisons
can be made. There exists many approaches to within- and between-array normaliza-
tion (Quackenbush, 2002).

Next generation sequencing is quickly replacing microarrays as a promising tech-
nique to probe different molecular levels of the cell. The technology presents various
advantages over microarrays that make it attractive (’t Hoen et al., 2008, Wang et al.,
2009): it does not rely on the existing knowledge of genomic sequences, has a better
dynamic range of expression levels (good sensitivity at the lower end of the spectrum
and no upper limit for quantification) and allows to look at coding and non-coding
RNA, splicing and allele specific expression.

The experiment typically consists in isolating RNA from the tissue sample and con-
verting it into complementary DNA (cDNA) fragments. These are then sequenced
using high-throughput DNA sequencing methods, which produce counts of short se-
quences or reads. These reads are finally mapped to a reference genome and sum-
marized. Different (non-Sanger-based) sequencing strategies can be adopted. See
Metzker (2010) for a description of those. The final output of the experiment pro-
duces count data in the form of aligned read-counts. As for microarray, these counts
need to be normalized before analysis (Robinson and Oshlack, 2010).

1.4 Outline of the thesis. The remainder of the thesis is divided into five chap-
ters that we briefly describe here.

Chapter 2 presents a flexible class of models to decipher how DNA copy number
abnormalities in cancer cells alter the mRNA gene expression level. This class of mod-
els aims to reflect the biological mechanism operating between these two molecular
levels and help in identifying relevant markers. We motivate the use of piecewise lin-
ear regression splines with biologically motivated constraints on parameters to model
associations. Because model estimation and selection is difficult in this context, the
chapter provides methodology for testing the effect of DNA on mRNA, identifying the
appropriate model and obtaining uniform confidence bands that incorporates model
uncertainty. Using two real data sets, it is illustrated that flexible models may bring
more insight in the interaction between the two markers.

Chapter 3 presents the R package PLRS, which implements the statistical frame-
work introduced in chapter 2. The method is illustrated on an additional real data
set from The Cancer Genome Atlas (TCGA). On such a data set, the need for flexible
models is particularly pronounced.

Chapter 4 develops a Bayesian method for differential gene expression analysis
using next generation sequencing data. The method is particularly useful for its large
flexibility of the likelihood count model and its ability to handle complex designs while
accommodating multi-parameter shrinkage. An empirical Bayes procedure for estimat-
ing parameters of priors is introduced and different types of (non-) parametric priors
are discussed along with Bayesian corrections for multiplicity. The chapter and its
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appendix present various model- and data-based simulations that validate the perfor-
mance of the approach in detecting true differences. In particular, compared to other
methods, results are shown to be more reproducible on real data.

Chapter 5 studies differences in gene expression between brain regions in aged
human. In this work, the contribution lies in the differential expression analysis using
CAGE data.

Finally, chapter 6 studies network reconstruction using a computationally attrac-
tive Bayesian structural equation model (SEM). It is argued that regularization by
means of Gaussian priors coupled with a posteriori edge selection is a simple and at-
tractive alternative to sparse priors. A novelty of the approach is the use of shrinkage
priors that borrow information across equations. In simulations, it is demonstrated
that the empirical Bayes procedure of chapter 4 is appropriate in this context and that
shrinkage priors can substantially improve graph structure recovery. The Bayesian
SEM is also shown to outperform popular sparse methods in various settings.

We now dwell on the relations between the chapters.
Chapter 2 and 3 focus on delineating the direct (in cis) transcriptional effects of

copy number aberrations. As a natural extension, Chapter 6 originally aimed at intro-
ducing a Bayesian SEM for the joint estimation of direct and indirect (in trans) tran-
scriptional effects of copy number aberrations, hence resulting in network reconstruc-
tion when incorporating genetic perturbations. Due to time considerations, chapter 6
focuses on network reconstruction only using some of the methodology developed in
chapter 4. The incorporation of perturbations such as copy number aberrations was
left for future research.

The work in chapter 4 was motivated by the complexity of the experimental de-
sign in chapter 5 and the lack of appropriate methods in statistical literature. Hence
both works have been conducted in parallel, which explains the difference between
the methodology developed in chapter 4 and the one used in chapter 5.

In all, this thesis presents diverse topics and approaches, which reflects the broad-
ness of the statistical genomics field.



CHAPTER 2

Modeling association between DNA copy number and
gene expression with constrained piecewise linear

regression splines

DNA copy number and mRNA expression are widely used data types in cancer
studies, which combined provide more insight than separately. Whereas in exist-
ing literature the form of the relationship between these two types of markers is
fixed a-priori, in this paper we model their association. We employ piecewise lin-
ear regression splines (PLRS), which combine good interpretation with sufficient
flexibility to identify any plausible type of relationship. The specification of the
model leads to estimation and model selection in a constrained, nonstandard set-
ting. We provide methodology for testing the effect of DNA on mRNA and choos-
ing the appropriate model. Furthermore, we present a novel approach to obtain
reliable confidence bands for constrained PLRS, which incorporates model uncer-
tainty. The procedures are applied to colorectal and breast cancer data. Common
assumptions are found to be potentially misleading for biologically relevant genes.
More flexible models may bring more insight in the interaction between the two
markers.

This chapter was published as:
Leday, G.G.R., van der Vaart, A.W., van Wieringen, W.N., and van de Wiel, M.A.
(2013). Modeling association between DNA copy number and gene expression
with constrained piecewise linear regression splines. Ann. Appl. Stat., 7(2):823-
845.

2.1 Introduction. The genetic material of the human cancer cells often exhibits
abnormalities, of which DNA copy number aberrations are a prime example. These
aberrations comprise gains and losses of chromosome pieces that are highly variable
in size. Thereby, all or parts of a chromosome may have more or less than the two
copies received from the parents. Abnormal DNA copy numbers (different from two)
may alter expression levels of mRNA transcripts (encoding for functional proteins) that
map to the aberration’s genomic location. Apart from being concordant (copy number
tends to correlate positively with expression level), the form of this association is not
established and may even vary per gene. In this paper we use high-throughput data
available for tissue-specific samples from unrelated patients to study the relationship
between copy number (DNA) and gene expression (mRNA). We employ a wide class of
interpretable models to reflect the biological mechanism operating between these two
molecular levels and identify relevant markers that may serve as therapeutic targets.
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DNA copy number aberrations are often measured by array comparative genomic
hybridization (aCGH) (Pinkel and Albertson, 2005). This measuring device is simi-
lar to expression microarrays, which measure expression levels of thousands of genes
simultaneously but interrogate DNA rather than RNA. Thereby, both profiling experi-
ments produce a continuous value for every element/probe on the array: a log2-value
of optical fluorescence intensity. Although experiments appear similar, types of infor-
mation differ and so are their subsequent treatment. To understand the specific nature
of these data we include a description of their processing.

Normalization of mRNA expression profiles (Quackenbush, 2002) consists in re-
moving experimental artifacts (such as array differences, means, scales) and yields,
for every gene on each array, a continuous value (normalized log2-value) which rep-
resents the amount of the gene’s transcript present in the sample. Preprocessing of
copy number/aCGH profiles aims to characterize the genomic instability of each tumor
sample and show deleted/duplicated pieces of chromosomes. Three successive steps
(illustrated in Figure 2.1) are typically executed to recover the aberration states of all
probes (van de Wiel et al., 2011). Through these steps, the size, genomic position and
type of copy number aberrations are determined for all samples. First preprocessing
step, the normalization of log2-values removes technical or biological artifacts (such
as tumor sample contamination, GC content) and makes the data comparable across
samples. Next segmentation partitions the genome of each sample into segments of
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 21

MAD = 0.0419k x 1 bp

FIGURE 2.1. Plot of a copy number/aCGH profile from the breast cancer data set (Neve et al.,
2006) showing the different preprocessing steps. Probes on the array are genomically ordered on
the x-axis (only the chromosome number is displayed). Black dots and orange segments indicate the
normalized and segmented log2-values (right y-axis), respectively. Bars represent “loss” (red) and
“gain” (green and reversed) membership probabilities (left y-axis). Amplifications are indicated by
tick marks on the top axis.

constant log2-values. These segments are considered a smoothed (and thus de-noised)
version of their normalized counterparts. Segmentation is motivated by the biologi-
cal breakpoint process on the DNA that may cause differential copy number between



2.1 INTRODUCTION 9

neighbouring locations. Finally calling assigns an aberration state to each segment.
Probabilistic calling, usually based on mixture models, results in a probability distri-
bution over a set of ordered possible types of genomic aberrations (which we will refer
to as states), typically comprising “loss” (< 2 copies), “normal” (= 2 copies), “gain”
(3-4 copies) and “amplification” (> 4 copies). A state is attributed to each probe using
a classification rule on the membership probabilities. Non-probabilistic calling directly
assigns states to segmented values, e.g. by using a threshold. Note that larger seg-
mented values almost always correspond to larger or equal called copy number (see
Figure 2.1). All in all, the three steps of the preprocessing procedure provide distinct,
but strongly related, data sets: 1) the normalized, 2) segmented and 3) called aCGH
data. While most down-stream analyses use either segmented or called data, we use
them jointly.

Current methodology for integrative genomic studies assumes rather than explores
the mathematical form of the relationship between copy number and expression level.
The relationship is said to be either linear or stepwise (see examples in Figure 2.2).
A linear relationship is often assumed in combination with segmented aCGH data.
For instance, the strength of the DNA-mRNA association is measured by a (modified)
correlation coefficient (Lee et al., 2008, Lipson et al., 2004, Salari et al., 2010, Schäfer
et al., 2009). Alternatively, a linear regression approach is entertained (Asimit et al.,
2011, Gu et al., 2008, Menezes et al., 2009). Recently published multivariate methods
(Jörnsten et al., 2011, Peng et al., 2010b, Soneson et al., 2010, van Wieringen et al.,
2010) also assume linearity. A piecewise DNA-mRNA relationship is considered when
using the called aCGH data for integrative analysis. van Wieringen and van de Wiel
(2009) and Bicciato et al. (2009) have proposed stepwise methods.
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FIGURE 2.2. Illustration of the association between DNA and mRNA for three genes in the breast
cancer data set (Neve et al., 2006) used in this study. Segmented copy number is on x-axis while
gene expression is on y-axis. Symbols indicate the different states, namely loss (5), normal (©)
and gain (4). The dashed and “continuous” lines give the fitted linear and stepwise model, respec-
tively.

In this paper we develop model selection for piecewise linear regression splines
(PLRS) to decipher how DNA copy number abnormalities alter the mRNA gene ex-
pression level. In addition, we propose a statistical test that accounts for model uncer-



10 2.2 METHODS

tainty in the PLRS context to detect those genes that drive important shifts. The PLRS
framework encompasses the linear and stepwise relationships, but provides flexibil-
ity, while maintaining good interpretability. In particular, it accommodates differential
DNA-mRNA relationships across states. This is biologically plausible, because the cell
has various post-transcriptional mechanisms to undo the effects of DNA aberrations.
For a given gene, the efficacy of such mechanisms is likely to differ between gains and
losses. E.g. a gain can directly be compensated by regulatory mechanisms that cause
mRNA degradation, such as methylation. On the other hand, a complete loss of both
DNA copies (which is more rare than partial loss) cannot be compensated at all.

Segmented and called data are incorporated into the analysis, and biologically
motivated constraints are imposed on the model parameters. As this makes model
selection and inference nonstandard, we provide methodology for testing the effect of
DNA on mRNA within the context of PLRS and for selecting the appropriate model.
We also present a novel and computationally inexpensive method for obtaining uni-
form confidence bands. We apply the proposed methodology to colorectal and breast
cancer data sets, where we identify many genes exhibiting non-standard behavior.

2.2 Methods. We model the association between DNA copy number and mRNA
expression by piecewise linear regression splines (PLRS), with biologically motivated
constraints on the coefficients. In this section we address model selection and describe
a modified Akaike criterion in this context. Further we present a method for deter-
mining uniform confidence bands, along with a statistical test for the effect of copy
number on mRNA expression.

2.2.1 Model. Consider gene expression and aCGH profiling of n independent
tumor samples where for a given gene {yi , x i ,si}ni=1 are available, with yi being the
normalized mRNA expression (log2 scale), x i the segmented copy number (log2 scale)
and si the copy number state (“loss”, “normal”, “gain” and “amplification”, coded by
-1, 0, 1 and 2) value of the ith observation, respectively. Then, the "full" model with S
states (or parts) takes the form:

(2.1) yi = fα(x i;θ)+εi = θ0+θ1 x i+
S−1
∑

j=1

1
∑

d=0

θ j,d

�

x i−α j

�d

++εi .

Here θ = {θ0,θ1,θ1,0, . . . ,θS−1,0,θ1,1, . . . ,θS−1,1} is a vector of 2×S unknown parame-
ters, the εi are independent random variables each normally distributed with mean 0
and variance σ2, and {α j} are S−1 known knots. The quantity (a)d+ represents the
positive part max(a,0) of a raised to the power d. The number of aberration states
S varies across genes. In this study no more than four different aberration states are
considered (S≤ 4). Below, for the purpose of discussing model (2.1) we consider the
general case S= 4.

Knots {α j} are obtained using data from the calling preprocessing step. Depend-
ing on the type of calling, two possibilities present themselves. First, consider non-
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probabilistic calling which renders states {si}ni=1. Then, α j is taken to be the midpoint
of the interval between segmented values x i belonging to consecutive states (method
I). This makes the (natural) supposition that the calling values respect the ordering
of the segmented values x i , and should be reasonably precise if the between-state
intervals are small, which is typical (see Figure 2.2). Second, consider probabilistic
calling, which renders membership (or call) probabilities: (pi,−1, pi,0, pi,1, pi,2). These
reflect the plausibility of the segmented value x i to belong to the states si ∈{−1,0,1,2}
(van de Wiel et al. (2007)). Then for j ∈ {1,2,3}, we estimate α j (method II) by

(2.2) α̂ j = argmax
α∈R

n
∑

i=1

pi, j(i,α), j(i,α) =

¨

j−2 if x i ≤α
j−1 if x i >α

.

For instance, α2 is the knot between states 0 and 1. To determine its position we
select for each sample its plausibility pi,0 of belonging to state 0 (when x i ≤ α2) or
pi,1 of belonging to state 1 (when x i > α2), and add over all samples. We select α2
to maximize the sum. The maximum may not be unique but described by a small
interval; in such a case, we use the corresponding midpoint. This method may be
preferable as it accounts for the uncertainty of the calling states. The two methods
taken here use data as provided by available calling algorithms. Proposed models for
this preprocessing step typically depend on data from all samples, which stabilizes the
estimation of α j . Furthermore, knots are to be interpreted as boundaries between
the (ordered) states {−1,0,1,2}, which gives us strong a priori knowledge as to their
placing (see Figure 2.2). Together, these two arguments support our approach to
consider knots in model (2.1) as being known. In Appendix A.2, a simulation shows
that standard deviations of α̂ j are indeed very small.

Model (2.1) contains seven basis functions besides the intercept θ0 and hence is
quite flexible. Our approach is to select appropriate basis functions (27= 128 possible
models) and estimate the parameters. The basis functions of degree zero x 7→ (x−
α)0+ model discontinuities, and hence allow for a different effect of copy number on
expression for each state.

This framework is a natural fundament to test meaningful hypotheses. For exam-
ple, the hypothesis that for a given state there is an effect of copy number on mRNA can
be expressed in terms of a linear function of the parameters being zero (

∑

j θ j,1 = 0);
a difference between the effects of two adjacent states corresponds to knot deletion.
The submodel consisting of piecewise constant functions (without the functions x 7→ x
and x 7→ (x−α)1+) allows testing the difference in expression between states based on
discrete genomic information.

To increase biological plausibility, aid interpretation and increase the stability of
estimation we impose a set of linear constraints on the parameters. As it is generally
believed that direct causal effects of DNA on mRNA should be positive, we constrain
all slopes to be non-negative. More exactly, we constrain the slope corresponding
to the “normal” state to be non-negative (θ1+θ1,1 ≥ 0), while others are forced to
be at least equal to the latter (implied by θ1,1 ≤ 0 for losses, θ2,1 ≥ 0 for gains and
θ2,1+θ3,1 ≥ 0 for amplifications). For the same reason we constrain jumps θ j,0 from
state to state to be non-negative. Note that the restrictions adopted here force the
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slope of the “normal” state to be small or null and make the natural assumption that a
normal copy number is not expected to affect (at least severely) gene expression.

The maximum likelihood estimator of the unknown vector of coefficients θ solves
the following convex optimization problem:

(2.3) minimize
θ

�

y−Xθ
�T�y−Xθ

�

subject to Cθ≥ 0.

This can be solved by quadratic programming (Boyd and Vandenberghe, 2004). The
vector y = {y1, . . . , yn} denotes the expression signature of a given gene and X the
associated matrix of covariates designed according to (2.1). The full row-rank matrix
C expresses the constraints that are imposed on the parameters. For the 4-state full
model we define C as the matrix in:

(2.4)





















0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
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≥ 0.

2.2.2 Model selection. Given R competing statistical models, with log-likelihoods
Lr(θr), based on a kr×1 parameter vector θr and with corresponding maximum like-
lihood estimators (MLE) θ̂r , the Akaike information criterion (AIC) selects as best the
model that minimizes

(2.5) AICr =−Lr(θ̂r)+kr , ∀r ∈ {1,.. . ,R}.

This information criterion consists of two parts: the negative maximized log-likelihood,
which measures the lack of model fit, and a penalty for model complexity. Although
AIC has found wide application, it is less suitable for models that include parameter
constraints, as in our situation. It can be adapted as follows.

The original motivation for the criterion (Akaike, 1973) is to choose the model that
minimizes the Kullback-Leibler (KL) divergence to the true distribution of the data. In-
deed, the criterion AICr is (under some conditions) an asymptotically unbiased estima-
tor of this KL divergence. The likelihood at a given parameter is an unbiased estimate
of the KL divergence at this parameter, but evaluating it at the maximum likelihood
estimator introduces a bias caused by “using the data twice”, which is compensated
by the penalty kr (Bozdogan, 1987). In the constrained case (i.e., subject to Cθ ≥ 0)
we can follow the same motivation, but must account for a different behaviour of the
maximum likelihood estimator and the resulting bias. Intuitively, the penalty adjusts
for an expected increase in the maximized log-likelihood when variables are added to
the model, which is less likely under constraints. The likelihood of violation of the
constraints must be taken into account.
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Hughes and King (2003) adapted the AIC criterion using the asymptotic distribu-
tion of the Wald test statistic. In the constrained situation this statistic is not distributed
as a chi-squared random variable anymore, but as a probability weighted mixture of
chi-squared random variables (see Chernoff (1954), Gouriéroux et al. (1982), Kodde
and Palm (1986), or van der Vaart (1998, Theorem 16.7)). It is of the form (partially
inequality constrained Wald statistic):

(2.6)
pr
∑

h=0

w(pr ,h)χ2(kr− pr+h),

where pr is the number of inequality constraints and w(pr ,h) are weights summing to
one, which can be interpreted as the probabilities under the null hypothesis that the
constrained maximum likelihood estimator eθr satisfies h out of pr constraints.

Hughes and King (2003) propose to use the one-sided AIC (OSAIC) which is an
asymptotically unbiased estimator of the KL divergence in the presence of one-sided
information:

(2.7) OSAICr =−Lr(eθr)+
pr
∑

h=0

w(pr ,h)(kr− pr+h).

Calculating the weights is a combinatorial problem, which aims to determine the prob-
ability that the vector eθr lies in any face of dimension h (Grömping, 2010, Kudô, 1963,
Shapiro, 1988). This can be computationally intensive as the number of variables, kr ,
increases (Grömping, 2010). However, in this study the largest model has eight free
parameters (because S≤ 4). Therefore, the model selection procedure is still very fast
(a couple of seconds).

2.2.3 Testing. To evaluate the effect of DNA copy number on expression, we test
the hypothesis H0 : Cθ= 0 against the alternative H1 : Cθ 6= 0,Cθ≥ 0, i.e. we test that
all inequality constraints are satisfied as equalities against the possibility that at least
one of them is strict. From (2.4) we observe that all parameters except the intercept
θ0 are subject to inequality constraints, and that the null hypothesis reduces the model
to the intercept.

We employ the likelihood ratio statistic LR= 2(L1−L0), where L0 and L1 are the
maximized log-likelihood under the null and alternative hypotheses, respectively. The
test rejects the null hypothesis for large values of:

(2.8) min
Cθ≥0

(y−Xθ)T(y−Xθ)−min
Cθ=0

(y−Xθ)T(y−Xθ).

This can be shown (Robertson et al., 1988) to be equivalent to rejecting for large
values of

(2.9) χ2 = (eθ−eθ=)TΣ−1
X (eθ−eθ=),

where eθ and eθ= are the maximum likelihood estimators under the inequality and
the equality constraints, respectively, and ΣX = σ2(XTX)−1 is the covariance matrix
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of the unconstrained least squares estimator. For known error variance σ2 the chi-
bar-squared statistic χ2 may be employed with null distribution approximated by a
weighted mixture of χ2 distributions (Chernoff, 1954, Gouriéroux et al., 1982). As σ2

is typically unknown, we use instead the so-called E-bar-squared statistic (Grömping,
2010, Robertson et al., 1988, Shapiro, 1988, Silvapulle and Sen, 2005)

(2.10) E
2
=

(eθ−eθ=)TΩ−1
X (eθ−eθ=)

(eθ−eθ=)TΩ−1
X (eθ−eθ=)+(y−Xθ̂)T(y−Xθ̂)

.

Here ΩX = XTX. The null distribution of this statistic is a weighted mixture of Beta
distributions of the form

(2.11)
p
∑

h=0

w(p,h)B(h/2,(n− p)/2),

where p is the number of parameters, and B(a, b) refers to a beta distribution with
shape parameters a and b. The mixing weights are the same as in (2.6) (applied to
the full model); unknown parameters are estimated by their MLEs.

Further details on these test statistics can be found in Robertson et al. (1988),
Shapiro (1988), Silvapulle and Sen (2005).

2.2.4 Confidence bands. Confidence bands (CBs) for the (spline) function x 7→
fα(x;θ) in Equation (2.1) should take both the model selection procedure (see Buck-
land et al. (1997)) and the constraints into account.

Initially we implemented a bootstrap procedure (Grömping, 2010), accounting for
model uncertainty along the lines of Burnham and Anderson (2002), who propose the
construction of so-called unconditional confidence intervals where only the selected
model is considered for each bootstrap sample. Unfortunately, simulated coverage
probabilities were below (and sometimes far below, e.g. 0.6 instead of 0.95) the nom-
inal level, probably due to the presence of the inequality constraints in our model
(Andrews, 2000). We therefore developed an “exact” alternative based on the E-bar-
squared statistic (2.10), using semidefinite programming to achieve computational ef-
ficiency. A simulation study reported in Section 2.3.2 shows that this approach yields
accurate uniform CBs.

2.2.4.1 Problem formulation. We start by the construction of a joint confidence
region for all parameters θ in the full model, including the intercept θ0, by inverting
the likelihood ratio test described previously. Analogously to Equation (2.10), define

E
2
(θ) =

(eθ−θ)TΩ−1
X (eθ−θ)

(eθ−θ)TΩ−1
X (eθ−θ)+(y−Xθ̂)T(y−Xθ̂)

.

Then a (1−α)% confidence region R for θ is

(2.12) R= {θ : E
2
(θ)≤Q1−α,Cθ≥ 0},
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where Q1−α denotes the (1−α)-quantile of the beta mixture distribution in (2.11).
Here we increment the first parameter of the Beta distributions to (h+1)/2, because
presently we include the intercept as a parameter, whereas before it was free under the
null hypothesis. Interval estimation based on inversion of a likelihood ratio statistic
is known to possess good properties (Arnold and Shavelle, 1998, Brown et al., 2003,
Meeker and Escobar, 1995).

Given the confidence region R we compute a confidence band by determining for
each x the minimum and maximum values fα(x;θ) = xTθ. This means determining:

inf
θ∈R

xTθ and sup
θ∈R

xTθ.

Thus a simple linear function must be minimized (or maximized) subject to linear and
ellipsoidal inequality constraints. In the following section, we show that this (convex)
problem can be solved efficiently by semidefinite programming.

2.2.4.2 Semidefinite programming. A semidefinite program (Vandenberghe and
Boyd, 1996) is concerned with the minimization of a linear objective function under
the constraint that a linear combination of symmetric matrices is positive semidefinite:

(2.13) minimize
y∈Rm

bT y subject to F(y) = F0+
m
∑

i=1

yiFi � 0.

The vector b ∈Rm and the symmetric (n×n) matrices F0, . . . ,Fm are fixed, and the ex-
pression F(y)�0 means that the matrix F(y) is positive semidefinite (that is, zTF(y)z≥
0, ∀z ∈Rn). Because a linear matrix inequality constraint F(y)� 0 is convex, the pro-
gram can be solved efficiently using interior-point methods (Vandenberghe and Boyd,
1996).

We may express the optimization problem of the previous section as a semidefinite
program, based on two equivalences given by Vandenberghe and Boyd (1996) and
provided below.

EQUIVALENCE 1: A linear inequality constraint Ax+ b ≥ 0, where A=
�

a1 · · ·ak
�

and
x ∈Rn, is equivalent to the following linear matrix inequality (LMI):

F(x) = F0+
k
∑

i=1

x iFi � 0,

where F0 = diag(b), Fi = diag(ai), i = 1, · · · ,k. diag(v) represents the diagonal matrix
with the vector v on its diagonal.

EQUIVALENCE 2: A convex quadratic constraint (Ax+ b)T(Ax+ b)− cT x−d ≤ 0, where
A= [a1 · · ·ak] and x ∈Rn, is equivalent to the following LMI:

F(x) = F0+
k
∑

i=1

x iFi � 0,
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where

F0 =
�

I b
bT d

�

, Fi =
�

0 ai
aT

i ci

�

, i= 1, · · · ,k.

Note that multiple LMIs can be expressed as a single one using block diagonal
matrices (VanAntwerp, 2000).

For convenience, we replace the ellipsoidal constraint E
2
(θ) ≤ Q1−α by (Mθ−

Meθ)T(Mθ−Meθ)≤λ, where λ= (y−Xθ̂)T(y−Xθ̂)Q1−α/(1−Q1−α) and Ω−1
X =MTM.

Given this, the semidefinite program is

(2.14) minimize
θ

xTθ subject to F(θ) = F0+
p
∑

i=1

θiFi � 0,

where

F0 =

�

0 0
0 F(2)0

�

, Fi =

�

F(1)i 0
0 F(2)i

�

, i= 1, · · · , p,

with the submatrices defined as:

F(1)i = diag(ci), F(2)0 =

�

I −Meθ
(−Meθ)T λ

�

and F(2)i =
�

0 mi
mT

i 0

�

.

Here mi and ci denote the ith column vector of the matrices M and C (the matrix of
linear restrictions expressed in (2.3)), respectively.

The optimization procedure needs to be repeated twice in order to determine the
lower and upper bound on xTθ. Even though this must next be repeated for every new
instance x to obtain a confidence band, the overall procedure is fast. For instance,
for 100 new instances computation on a 2.66GHz Intel quad-core took less than 12s
(without parallel computing).

2.3 Simulation. We conducted simulation experiments to: 1) determine the ac-
curacy of estimates provided by PLRS (Section 2.3.1); 2) examine the coverage prob-
abilities of the method proposed in Section 2.2.4 (Section 2.3.2); and 3) evaluate the
performance of the PLRS screening test in detecting associations of various functional
forms (Section 2.3.3).

2.3.1 Point estimation. The simulation study examined the accuracy of the es-
timates obtained by fitting piecewise splines or a simple linear model. For simplicity,
we consider a two-state model (normal and gain) and the knot was fixed to 0.5. Data
were generated according to:

• model 1: y = 1+a2(x−0.5)1+, a2 ∈ {0,0.5,1,2,5}

• model 2: y = 1+0.5x+(a2−0.5)(x−0.5)1+, a2 ∈ {0,0.5,1,2,5}



2.3 SIMULATION 17

The first state (normal) has no or little effect on expression. The linear function is
contained in both models, and is found for a2 = 0 and a2 = 0.5, respectively. We gen-
erated errors from a normal distribution N (0,σ2) where σ ∈ {0.1,0.25,0.5,0.75,1}.
This resulted in 25 cases for each of the two models (5 values of a2 times 5 values
of σ). The sample size was set to 80, and the 80 values of x were generated from a
uniform distribution U(0,1).

We were interested in comparing the precision of the estimates of the slope a2
when fitting a linear or a piecewise linear model (the latter with a single knot placed
at 0.5; 4 parameters). For each of the 25 cases we repeated the simulation experiment
1000 times, and computed the estimator of the slope for both models. Table 2.1 re-
ports the empirical squared bias and variance over the 1000 repetitions.

Model 1 Model 2
σ a2 linear piecewise linear piecewise

0.1

0 0.000 (0.001) 0.001 (0.002) 0.059 (0.001) 0.059 (0.001)
0.5 0.070 (0.002) 0.001 (0.008) 0.000 (0.001) 0.001 (0.003)
1 0.278 (0.002) 0.000 (0.007) 0.059 (0.001) 0.000 (0.007)
2 1.116 (0.002) 0.001 (0.007) 0.532 (0.001) 0.000 (0.007)
5 6.992 (0.002) 0.001 (0.008) 4.807 (0.001) 0.000 (0.007)

0.25

0 0.002 (0.004) 0.007 (0.012) 0.060 (0.008) 0.063 (0.009)
0.5 0.070 (0.011) 0.002 (0.039) 0.000 (0.009) 0.005 (0.019)
1 0.282 (0.011) 0.004 (0.045) 0.058 (0.008) 0.000 (0.036)
2 1.114 (0.011) 0.003 (0.045) 0.545 (0.008) 0.000 (0.041)
5 6.962 (0.011) 0.003 (0.042) 4.782 (0.008) 0.000 (0.046)

0.5

0 0.007 (0.015) 0.023 (0.045) 0.063 (0.027) 0.085 (0.040)
0.5 0.065 (0.035) 0.001 (0.110) 0.000 (0.032) 0.020 (0.072)
1 0.272 (0.045) 0.006 (0.155) 0.059 (0.032) 0.003 (0.107)
2 1.101 (0.041) 0.016 (0.179) 0.537 (0.036) 0.000 (0.152)
5 6.933 (0.040) 0.014 (0.175) 4.822 (0.035) 0.000 (0.149)

0.75

0 0.015 (0.033) 0.047 (0.090) 0.075 (0.053) 0.124 (0.097)
0.5 0.050 (0.060) 0.000 (0.193) 0.000 (0.066) 0.030 (0.146)
1 0.270 (0.081) 0.008 (0.271) 0.055 (0.070) 0.006 (0.180)
2 1.124 (0.094) 0.027 (0.339) 0.521 (0.075) 0.000 (0.289)
5 6.908 (0.103) 0.022 (0.393) 4.857 (0.073) 0.004 (0.320)

1

0 0.028 (0.061) 0.090 (0.166) 0.087 (0.083) 0.154 (0.147)
0.5 0.041 (0.090) 0.003 (0.264) 0.001 (0.115) 0.055 (0.235)
1 0.266 (0.140) 0.006 (0.442) 0.050 (0.122) 0.014 (0.293)
2 1.107 (0.168) 0.032 (0.600) 0.562 (0.131) 0.002 (0.448)
5 6.947 (0.160) 0.052 (0.707) 4.806 (0.129) 0.012 (0.544)

TABLE 2.1. Squared bias and variance (in parentheses) of the slope estimates of the linear and
piecewise spline models as a function of the true slope a2, noise σ and model. In bold: setting for
which the true model is linear.
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Not surprisingly the piecewise model can capture the relationship well in all cases:
the squared bias is small, and the variance never unduly large. On the other hand,
the estimate of the slope given by the linear model is strongly biased for larger values
of the slope a2. As expected, the variance of the PLRS estimate is usually somewhat
larger than that of the linear model estimate. However, this difference is much less
prominent than for the squared bias. When the data generating process is linear, i.e.
when a2= 0 in model 1 and a2= 0.5 in model 2, the difference between the estimates
from the linear and PLRS models is smaller than in the other cases.

The study suggests that, when estimating or testing the effect of DNA copy number
on mRNA expression, there is potentially more to loose than to gain (due to misspec-
ification versus overspecification of the model) by applying the linear instead of the
piecewise linear spline model.

2.3.2 Uniform CBs. To study the coverage probabilities of the method proposed
in Section 2.2.4 we simulated data according to the model y = 1+(x−0.5)0++(x−
0.5)1+, with x-values drawn from a uniform distribution U(0,1). Gaussian errors of
standard deviation σ ∈ {0.5,1}, and three sample sizes n ∈ {20,40,80}. For a given
data set we computed the confidence band on a grid of 10 equidistant values, for two
different significance levels α∈{0.05,0.1}, and checked whether the 10 corresponding
values of the function in the display fall simultaneously into the estimated confidence
band. (For computational reasons the simulation was limited to 10 values; we believe
that using the continuous range would not have altered the findings.) Table 2.2 shows
the empirical coverage probabilities over 10,000 data sets for each situation.

The simulated coverage probabilities are close to their corresponding nominal val-
ues. Even though the coverage procedure is motivated by asymptotic approximations,
this is true even when the sample size is small, in agreement with previous literature
on likelihood-based interval estimation.

σ= 0.5 σ= 1
α= 0.05 α= 0.1 α= 0.05 α= 0.1

n= 20 0.953 0.898 0.968 0.922
n= 40 0.952 0.883 0.967 0.926
n= 80 0.939 0.863 0.960 0.915

TABLE 2.2. Simulated coverage probability for different sample sizes, noise levels and significance
levels.

2.3.3 PLRS screening test. We evaluated the performance of the PLRS testing
procedure in detecting associations of various functional shapes. PLRS was compared
to the LM test (see Section 2.4.2), Spearman’s correlation test and the test proposed
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by van Wieringen and van de Wiel (2009). In Appendix A.4.4, Figures A.3 to A.12
show partial ROC curves (sensitivity versus type I error α, where α≤ 0.2) and partial
AUC. Details are provided in Appendix A.4. Here, we summarize the results.

The PLRS test yielded good performance in detecting various types of associations.
It achieved the highest AUC in 68 out of the 90 simulation cases (against 23 for LM).
When the true effect is linear PLRS performed reasonably well. In other cases, it al-
ways produced a high, if not the highest, AUC. In particular, PLRS presented a clear
advantage over others in detecting partial effects on gene expression, i.e. when only
one abnormal state (among others) affects expression. In all, results suggest that
PLRS accommodates well both continuous and discrete genomic information and, un-
like others, is able to detect various types of association.

2.4 Application. The proposed framework was applied to two data sets. The
first data set (Carvalho et al. (2009); available at ncbi.nlm.nih.gov/geo; accession
number GSE8067), consists of copy number and gene expression values for 57 sam-
ples of colorectal cancer tissue. These were generated with BAC/PAC and Human
Release 2.0 oligonucleotide arrays, respectively. Normalization is as in Carvalho et al.
(2009). aCGH data were segmented with the CBS algorithm of Olshen et al. (2004)
and discretized with CGHcall (van de Wiel et al., 2007). Matching of mRNA and aCGH
features was based on minimizing the distance between the midpoints of the genomic
locations of the array elements. The final data set comprises 25,869 matched fea-
tures. The second data set (Neve et al. (2006); available from Bioconductor) consists
of copy number number and expression data for 50 samples (cell lines) of breast can-
cer, profiled with OncoBAC and Affymetrix HG-U133A arrays. Preprocessing of mRNA
expression is described in Neve et al. (2006). aCGH data were segmented and called
as above. The resulting data set contains 19,224 matched features. For the colorectal
and breast cancer data sets, knots of the PLRS model were estimated using method I
and II, respectively.

We first present some global results on model selection, and next consider testing
the association between DNA and mRNA. Finally some relevant relationships are illus-
trated.

2.4.1 Model selection with the OSAIC procedure. Table 2.3 reports the num-
ber of genes for which our procedure (column OSAIC) selects a certain type of model,
for both data sets. Clearly both the piecewise linear model and the piecewise level
model are selected a large number of times. Different procedures such as AIC and
BIC, BICr =−2 ·Lr(eθr)+ log(n) ·kr , which put bigger penalities on larger models (too
large given the constraints), still often prefer piecewise splines. This gives strong evi-
dence on the inadequacy of both the simple linear and piecewise constant models for
many genes. In Appendix A.1, an overlap comparison of the three procedures shows
differences induced by the different penalty functions.
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Carvalho et al. (2009) Neve et al. (2006)
Type of model OSAIC AIC BIC OSAIC AIC BIC

Intercept 14720 18083 21700 5081 6968 9379
Simple linear 4916 3674 2043 5262 6689 6345

Piecewise level 2667 1977 992 2761 2477 1608
Piecewise linear 3566 2135 1134 6120 3090 1892

TABLE 2.3. The number of times a model is selected by type of model, by three model selection
procedures, for the two data sets

2.4.2 Testing the effect of DNA on mRNA. The hypothesis that DNA copy num-
ber has no effect on mRNA expression corresponds to model (2.1) with only the inter-
cept parameter θ0 nonzero. We tested this as the null model both versus the full model
(2.1) (test “PLRS”) and versus the linear submodel (test “LM”), with the purpose to
compare these two screening models in their effectiveness to detect an association.
A third possibility would be to test the null model versus the model selected by the
OSAIC procedure. However, because this would naively suggest that the form of the
relationship is known a priori, we did not pursue this option. For the PLRS test a min-
imum number of five observations (the default being three) per state was imposed.

Table 2.4 gives the number of associations with a q-value below 0.1 (based on the
Benjamini and Hochberg (1995) FDR). The LM test is seen to detect slightly more
associations as being significant than the PLRS test. This may be a consequence of
the fact that the linear model involves fewer parameters. However, closer inspection
shows that the sets of detected genes are not nested, and the PLRS test is able to de-
tect biologically meaningful genes that are not detected by the LM test. To illustrate,
three DNA-mRNA relationships are plotted in Figure 2.3. The first corresponds to an
association detected as significant with the LM test, but not with the PLRS test. Recip-
rocally, the last two associations (genes PDE3B and CLIP1) are detected with the PLRS
test but not with the LM test. The figure shows that the PLRS test is able to detect
relationships for which an effect is present for only a few samples (but at least five).
Identifying the last two genes may be more important than the first, as they are more
interesting potential targets for studying individual effects.

H0 Ha Carvalho et al. (2009) Neve et al. (2006)
intercept linear 1726 9783
intercept full 1554 9105

TABLE 2.4. Number of associations with an estimated false discovery rate below 0.1 for different
model comparisons.

The first gene in Figure 2.3 also illustrates that the testing procedures may differ
considerably in q-values, even though the estimated regression function found by the
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(c) CLIP1

FIGURE 2.3. Association between DNA and mRNA for different genes in the breast cancer data
set (Neve et al., 2006). Segmented copy number is on x-axis while gene expression is on y-axis.
Symbols indicate the different states, namely loss (5), normal (©) and gain (4). Grey surfaces
correspond to 95% uniform CBs. The top left values correspond to q-values of test LM and PLRS,
respectively. The dashed line gives the fitted LM model; the “continuous” spline is the fitted PLRS
model.

two models is the same. This is partly explained by the difference in complexity be-
tween the alternative models. However, we note that q-values for a single gene are
not directly comparable, since they also depend on p-values of other genes. In Ap-
pendix A.3, we provide, for selected genes, p- and q-values for the different types of
test.

2.4.3 Results for selected genes. In this section we show the estimated rela-
tionships for selected genes. The selection is based on the Cancer Gene Census list1

and on our observation that some associations are atypical. Also we show results for
genes C20orf24, TCFL5 and TH1L, which were reported in Carvalho et al. (2009) as
important for colorectal cancer progression.

Figures 2.4 and 2.5 show nine DNA-mRNA associations for each of the two data
sets. Each plot displays the fit of the linear model and of the PLRS model chosen by
the OSAIC criterion. Uniform 95% confidence bands (that account for model selection
uncertainty) are also plotted. (Some curious shapes result from the fact that pointwise
variation bursts near the boundaries and around knots.)

Both figures show a diverse set of forms of associations. Fitted models with jumps
reveal that discrete copy number states can, by themselves, explain variation in expres-
sion. This is even more true when a piecewise level relationship is identified (as for
gene APC and MTUS1 in Figure 2.4). More generally, piecewise linear models capture
effects that differ for losses, gains and/or amplifications. Statistically speaking, this
has the advantage of giving more accurate estimates of slope(s), as is clearly observed
for genes ATMIN, PITPNA and PTEN in Figure 2.5. Having a better estimator, we may
expect a better test. From a biological point of view, the ability to distinguish effects

1available at www.sanger.ac.uk/genetics/CGP/Census/
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between states may help the detection of onco and tumor-suppressor genes. Moreover,
genes for which these effects concern only a few samples may also be interesting to
biologists for studying individual effects.
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(f) RPRD1B
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FIGURE 2.4. Association between DNA and mRNA for different genes in the colorectal cancer data
set. Segmented copy number is on the x-axis while gene expression is on the y-axis. States are
indicated by different symbols: loss (5), normal (©), gain (4) and amplification (×). Grey
surfaces correspond to 95% uniform CBs. In all cases the piecewise linear model is preferred to the
simple linear one (dashed line). The top left values correspond to the p- and q-values of the PLRS
test.
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(c) CEP350
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(e) ERBB2
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(f) FGFR1
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(g) PAK1
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(h) PITPNA
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(i) PTEN

FIGURE 2.5. Association between DNA and mRNA for different genes in the breast cancer data
set. Segmented copy number is on the x-axis while gene expression is on the y-axis. States are
indicated by different symbols: loss (5), normal (©), gain (4) and amplification (×). Grey
surfaces correspond to 95% uniform CBs. In all cases the piecewise linear model is preferred to the
simple linear one (dashed line). The top left values correspond to the p- and q-values of the PLRS
test.

The simple linear model is observed to be a tight template for modeling. As a
matter of fact, it is potentially misleading when the relationship really depends on the
underlying copy number state. This happens to be the case for known cancer genes
(see FGFR1, PAK1 and PTEN in Figure 2.5). As a result, when testing the effect of DNA
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on mRNA with the LM and PLRS tests (see Section 2.4.2), one may obtain a consid-
erable difference between the p-values, and hence q-values (see Appendix A.3). For
this reason the proposed framework may improve the detection of (highly) significant
associations and their ranking.

Finally, we dwell on the notion of effect in itself. The notion of “association” is
broad, and can be expressed both by an intercept and a slope. This can imply a clear
difference in interpretation with respect to the linear model. Consider the simple
example of gene MTUS1 in Figure 2.4, where a piecewise level model is preferable.
Here intuition clearly tells us that one is more interested in assessing the difference
in expression level between samples presenting loss and normal aberrations than an
overall trend. Therefore, a linear model may focus on the wrong quantity of interest,
whereas the PLRS procedure may yield meaningful interpretation.

We concentrated on comparing our results with those of the linear model. How-
ever, it is clear from Figures 2.4 and 2.5 that also the other alternative, the piecewise
level model (which allows only horizontal lines per state), is often not adequate (see
TH1L and PITPNA).

2.5 Conclusion. We proposed a statistical framework for the integrative analy-
sis of DNA copy number and mRNA expression, which incorporates segmented and
called aCGH data. By using discrete aCGH data we improved model flexibility and
interpretability. The form of the relationship is allowed to vary per gene. Model in-
terpretation is ameliorated with biologically motivated constraints on the parameters.
This complicates the statistical procedures for identifying and inferring the relation-
ship between the markers, but we provided methods for model selection, interval
estimation and testing the strength of the association. We applied the methodology to
two real data sets. Many (reported) genes exhibited interesting behavior.

A novelty of this work is the combined use of segmented and called aCGH data.
Which of the two data types is more suitable is a matter of debate in the aCGH com-
munity, and may depend on the type of downstream analysis (van Wieringen et al.,
2007). Our method provides a compromise that uses both characteristics of the data.

The form of association between copy number and expression in breast cancer is
also explored in the recent paper Solvang et al. (2011) (which we received after com-
pletion of this paper). This interesting paper distinguishes (only) between linear and
quadratic types of effect, and uses (only) two types of aberrations, without distin-
guishing gains from amplifications. The interpretation of the coefficients in our model
seems to be simpler.

The proposed methodology is also applicable to the joint analysis of copy number
and microRNA expression. This class of non-coding RNA was shown to play an im-
portant role in tumor development. Our method may be particularly suitable for these
data, because microRNA transcripts are often expressed in part of the samples only.

Next generation sequencing data will impose new challenges, which will be taken
up in future work. This type of data provides higher resolution than microarrays,
while reducing biases, in particular at the lower end of the spectrum. Because expres-
sion levels are measured as counts rather than intensities, the distribution of the re-
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sponse variable cannot be assumed to be Gaussian, and hence a different noise model
is needed.

In short, we provide methodology for statistical inference and model selection in
the framework of constrained PLRS, and showed that this is able to reveal interesting
DNA-mRNA relationships for cancer genes. The method is implemented in R and avail-
able as a package from Bioconductor (as of version 2.12; http://bioconductor.org).
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CHAPTER 3

PLRS: a flexible tool for the joint analysis of DNA copy
number and mRNA expression data

DNA copy number and mRNA expression are commonly used data types in
cancer studies. Available software for integrative analysis arbitrarily fixes the para-
metric form of the association between the two molecular levels and hence offers
no opportunities for modeling it. We present a new tool for flexible modeling of
this association. PLRS employs a wide class of interpretable models including
popular ones and incorporates prior biological knowledge. It is capable to identify
the gene-specific type of relationship between gene copy number and mRNA ex-
pression. Moreover, it tests the strength of the association and provides confidence
intervals. We illustrate PLRS using glioblastoma data from The Cancer Genome
Atlas (TCGA). PLRS is implemented as an R package and available from Biocon-
ductor (as of version 2.12; http://bioconductor.org).

This chapter was published as:
Leday, G.G.R. and van de Wiel, M.A. (2013). PLRS: a flexible tool for the joint
analysis of DNA copy number and mRNA expression data. Bioinformatics, 29(8):
1081-1082.

3.1 Introduction. DNA copy number aberrations are characteristics of the can-
cer cell. These aberrations are gains and losses of chromosomal DNA, which may alter
expression levels of mRNA transcripts. The identification of genes for which an abnor-
mal copy number affects gene expression is important in cancer studies, as these genes
are likely to be relevant for tumorigenesis. Here, we present a new tool for exploratory
and confirmatory analysis of such effects.

For a given gene, copy number and mRNA expression are generally believed to
be concordant. The exact form of the association is usually not established. In fact,
the shape is likely to differ between genes because of the presence of different (post-)
transcriptional regulatory mechanisms. Tools that investigate the interaction between
the two molecular levels assist in better understanding of regulatory mechanisms.

Numerous software packages have been proposed for joint analysis of copy num-
ber and gene expression data (Chari et al., 2008, Lê Cao et al., 2009, Lee and Kim,
2009, Louhimo and Hautaniemi, 2011, Salari et al., 2010, van Wieringen et al., 2006).
However, most of these fix the association between DNA and RNA a priori, typically a
linear or piecewise constant one. Hence these approaches do not permit investigation
or identification of the shape of the association. Recently, the need for more subtle
models has been highlighted (Leday et al., 2013, Nemes et al., 2012, Solvang et al.,
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2011) to reflect the biological mechanisms between the two molecular levels. Here,
we describe the R package PLRS that implements the framework recently proposed
by Leday et al., 2013. PLRS uses piecewise linear regression splines, which allow
multiple linear lines, and are a wide class of interpretable models including the linear
and piecewise constant ones. It enforces concordance by restricting relevant model
parameters. In addition, PLRS tests the strength of the overall association, identifies
its functional shape, and provides confidence intervals for the estimated curve. We
illustrate PLRS using a data set from 160 glioblastoma samples obtained from TCGA.

3.2 Model. PLRS models cis-relationships between copy number and mRNA ex-
pression by piecewise linear regression splines (Leday et al., 2013). The relevance of
this class of models is multifold. Unlike other methods, PLRS combines copy number
data from various steps of the preprocessing, namely the segmented and called data
(van de Wiel et al., 2011). Segmented data are continuous (log2-values) and provide
the (relative) amount of DNA copies (gene dosage) whereas called data represent
discrete states associated with the various types of copy number aberration; the bio-
logical literature commonly distinguishes four of these: “loss” (< 2 copies of genomic
DNA), “normal” (= 2 copies), “gain” (3-4 copies) and “amplification” (> 4 copies).
Second, PLRS allows the effect of DNA on mRNA to differ across types of aberrations.
This is biologically plausible: the efficacy of mechanisms that compensate for genomic
aberrations may differ between losses, gains and amplifications. Third, good inter-
pretability is ensured by the piecewise linearity of the model and a set of restrictions
on the parameters. For example, copy number is concordant with gene expression and
“normal” copy number cannot severely alter gene expression.

In this context, the R package PLRS implements various statistical procedures to
detect which and how gene copy number abnormalities alter the gene expression level.
Identification of the functional form of the association is achieved by model selection,
which automatically merges copy number states when their association with mRNA ex-
pression can be captured with one regression line. Simultaneous confidence intervals
on the selected curve are provided for more detailed description. Finally, a statistical
test evaluates the significance of the overall association by testing the null hypothesis:
copy number does not affect mRNA expression, leading to a single horizontal line.

3.3 Results. We applied PLRS to a data set of 160 glioblastoma tumor samples
obtained from TCGA (http://cancergenome.nih.gov/; Verhaak et al., 2010) for which
copy number (Agilent CGH Microarray 244A) and mRNA expression (Agilent 244K
platform) were available. We found that for many known cancer genes, the expres-
sion level is strongly associated with DNA aberrations (cf. Supplementary Material).
Figure 3.1 depicts the DNA-mRNA association for four genes, including known cancer
genes MET, ERCC2 and AGAP2. Clearly, relationships are different and demonstrate
that the flexibility of the PLRS model allows new insights in the association. For gene
MET, we observe that the effect of amplifications extends that of gains more than pro-
portionally. For ERCC2, the expression level of samples with loss and normal copy
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number differ in average and expression increases linearly with dosage. Amplifica-
tions of gene AGAP2 have a strong effect on mRNA expression, whereas gains have
none. The effect as defined by PLRS is broad and expressed by both an intercept and
a slope for each copy number aberration state. The variety of models resulting from
PLRS contrasts with most other methods, which impose a unique parametric form
to all genes. Our method lets the data decide what is most appropriate. As a conse-
quence PLRS has more power than other standard methods for detecting relatively
large effects occurring in small subgroups of samples (Leday et al., 2013). Note that
other non-linear techniques, e.g. based on mutual information, can be competitive but
less interpretable.
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FIGURE 3.1. DNA-mRNA associations for four genes in the TCGA data set. X-axis: Gene dosage
(segmented values), y-axis: mRNA gene expression. Copy number states are indicated by symbols:
loss (5), normal (©), gain (4) and amplification (×). Grey surfaces correspond to 95% uniform
confidence bands. The top left value corresponds to the p-value of the PLRS test.
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3.4 Conclusion. PLRS is a tool for flexible modeling of the association between
DNA copy number and mRNA expression. We demonstrated its potential to reveal
interesting relationships. It is particularly useful for a) a detailed understanding of
the relationship between DNA copy number and mRNA expression; and b) powerful
detection of copy number induced sample subgroup specific effects, thereby acknowl-
edging heterogeneity of many cancers. The software can also be used for studying the
effect of DNA copy number on microRNA expression.



CHAPTER 4

Bayesian analysis of RNA sequencing data by estimating
multiple shrinkage priors

Next generation sequencing is quickly replacing microarrays as a technique to
probe different molecular levels of the cell, such as DNA or RNA. The technol-
ogy provides higher resolution, while reducing bias. RNA sequencing results in
counts of RNA strands. This type of data imposes new statistical challenges. We
present a novel, generic approach to model and analyze such data. Our approach
aims at large flexibility of the likelihood (count) model and the regression model
alike. Hence, a variety of count models is supported, such as the popular neg-
ative binomial model, which accounts for overdispersion. In addition, complex,
non-balanced designs and random effects are accommodated. Like some other
methods, our method provides shrinkage of dispersion-related parameters. How-
ever, we extend it by enabling joint shrinkage of parameters, including those for
which inference is desired. We argue that this is essential for Bayesian multiplicity
correction. Shrinkage is effectuated by empirically estimating priors. We discuss
several parametric (mixture) and nonparametric priors and develop procedures
to estimate (parameters of) those. Inference is provided by means of local and
Bayesian False Discovery Rates. We illustrate our method on several simulations
and two data sets, also to compare it with other methods. Model- and data-based
simulations show substantial improvements in sensitivity at given specificity. The
data motivate use of the zero-inflated negative binomial as a powerful alterna-
tive to the negative binomial, which results in higher detection rates for low-count
data. Finally, compared to other methods, the results from small sample subsets
validate better on their large sample complements, illustrating the importance of
the type of shrinkage.

This chapter was published as:
Van De Wiel, M.A., Leday, G.G.R., Pardo, L.M., Rue, H., Van Der Vaart, A.W. and Van
Wieringen, W.N. (2013). Bayesian analysis of RNA sequencing data by estimating
multiple shrinkage priors. Biostatistics, 14(1):113-128.

4.1 Introduction. Technology to obtain digital expression data by sequencing
(of parts) of the transcriptome is quickly replacing microarray technology. The promises
are multi-fold including better coverage of the genome, higher resolution, less back-
ground noise and better dynamic range in particular at the low end of the spectrum.
RNA sequencing technologies differ a lot in coverage and targets, but they have in
common that the resulting data comprise of counts rather than (approximately) Gaus-
sian data. Therefore, RNA sequencing data require different analysis methodology
than RNA microarray data. Methodology for analyzing RNA sequencing data is rapidly
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expanding. Methods differ in terms of the count model, application of shrinkage, flex-
ibility of the designs and type of inference. Below we discuss these issues.

While there is no consensus on what type of count model fits best to RNA se-
quencing data, most methods focus on one specific model, even though the best count
model may depend on the technology used. The negative binomial (NB; i.e. Poisson-
Gamma) seems most popular (Anders and Huber, 2010, Hardcastle and Kelly, 2010,
Robinson and Smyth, 2007), but other generalizations of the Poisson, usually allow-
ing for overdispersion, are used as well (see e.g. Auer and Doerge, 2011). While we
focus on generalizing the NB model to allow for zero-inflation, our framework also
facilitates other types of overdispersion, e.g. Poisson-Gaussian.

The common unit of measurement in RNA sequencing data is tags: identified
strands of consecutive RNA bases. Alternatively, clusters of neighboring tags are con-
sidered. These clusters may represent many different genomic features such as promo-
tor regions, transcripts or exons. We generally refer to these as ‘features’. The number
of features measured is enormous, which creates an opportunity to shrink parameters.
This is useful, because RNA sequencing is still expensive, and hence sample sizes are
often small. Several methods for shrinking variance-related parameters are available,
such as: parametric (Robinson and Smyth, 2007), empirical Bayes (Hardcastle and
Kelly, 2010) and nonparametric (Anders and Huber, 2010). These methods consider
shrinkage of one parameter. In many designs, it may be desirable to shrink multiple
parameters. Our method provides such joint shrinkage.

Recently, Oshlack et al. (2010) noticed that “no general methods have been pro-
posed for the analysis of more complex designs, such as paired samples or time course
experiments, in the context of RNAseq data”. Hence, they extended their initial ap-
proach (Robinson and Smyth, 2007) to multifactorial (McCarthy et al., 2012) and
GLM (Oshlack et al., 2010) settings. While these settings provide much more flexibil-
ity, they do not allow for inclusion of random effects. Our method, presented in a GLM
setting, does allow for random effects.

In terms of inference, most methods focus on generating p-values, to which stan-
dard multiple testing corrections can be applied. Bayesian methods are also available
(Hardcastle and Kelly, 2010, Jiang and Wong, 2009), but without discussion of multi-
plicity corrections. We include estimation of local and Bayesian False Discovery Rate
to account for multiplicity.

In short, we develop a framework satisfying the following criteria: 1) Allows for
flexibility on the count model used; 2) Provides shrinkage of multiple parameters; 3)
Allows for flexible study designs, including random effects; 4) Addresses the multiplic-
ity problem; 5) Is reasonably fast.

Integrated nested Laplace approximations (INLA) for latent Gaussian models (Rue
et al., 2009) provide the means to satisfy criteria 1, 3 and 5: it covers a large variety
of Bayesian additive models, and the efficient use of numerical methods for sparse
matrices and of nested Laplace approximations avoid MCMC. However, it relies on
marginal models, so does not directly allow for estimating parameters that depend on
all features, as needed for shrinkage and multiplicity corrections (criteria 2 and 4). We
extend it using empirical Bayes-type shrinkage, which amounts to estimating (multi-
ple) priors. Algorithms to fit the prior(s) are presented. The method allows for flexible
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priors such as parametric mixture priors and nonparametric priors. Simulations illus-
trate that the estimation procedures perform well on a variety of designs and priors.
To deal with multiplicity we shrink posteriors towards the null-domain and discuss
how local and Bayesian False Discovery Rates are estimated. While we implement our
methods in the context of INLA, they apply to any approach that provides marginal
posteriors.

Finally, we discuss two specific data sets, and the potential of the zero-inflated neg-
ative binomial (ZI-NB) as a powerful alternative to the NB model. The two data sets
illustrate two different aspects of our method: capable of handling complex designs
and superior validation of small sample results by large sample ones in comparison
with other methods.

4.2 Setting. We focus on the (Bayesian) Generalized Linear Model setting. Since
we assume p> n, we denote variables (features; data rows) by i=1,.. . , p and samples
(data columns) by j= 1,.. . ,n. Then,

(4.1) Yi j =
d Fµi j ,γi

µi j = g−1(ηi j) ηi j = βi0+
K
∑

k=1

βik x jk,

where µi j represents the mean of distribution function F, g a link function, x jk is
the value of the kth covariate for sample j and γi = (γi1, . . . ,γiG) are parameters not
included in the regression on ηi j , possibly used for modeling overdispersion or zero-
inflation. For RNA sequencing data, F often represents (a generalization of) the Pois-
son distribution, such as the Poisson-Gamma (Negative Binomial; NB) model or a
zero-inflated version thereof (motivated in Section 4.7.2). We allow for Gaussian ran-
dom effects in the regression part. In a two-group setting, inference usually focuses
on one coefficient, say βi1, but very general regression settings are possible.

Parameters at the lowest hierarchical level are endowed with priors. Our method
allows for multiple, informative priors, which are estimated rather than assumed. To
select parameters with an informative rather than vague prior, the following consid-
erations guided us. First, for overdispersion or random effects parameters (φi = γi g

and τ2
i , respectively) we often use an informative prior to effectuate shrinkage of

dispersion-related parameters, leading to more stable estimates. Second, an informa-
tive prior is applied to the main parameter of interest to accommodate multiplicity.
Next, we discuss the estimation of those priors.

Denote a parameter corresponding to an informative prior by θi (e.g. θi =βi1) and
denote the parametric prior of θi by πα(θ) for i = 1,.. . , p, where vector α consists
of the unknown hyper-parameters (parameters of priors). The parametric form of
πα(θ) depends on the type of parameter. E.g. N(µ,σ2) gives α=(µ,σ). Furthermore,
denote the collection of all unknown hyper-parameter vectors by A, so α ∈ A. INLA
allows fitting model (4.1) for a fixed value of A, but does not facilitate estimation of
the elements of A itself. We first explain how α is estimated for parametric priors
complying with INLA, before discussing alternative priors. The methods below are
illustrated by an example in Appendix C.17.
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4.3 Estimation of priors.

4.3.1 Joint estimation of hyper-parameters. We propose an empirical Bayes-
type approach to estimate the elements of A. We first focus on one α∈ A and assume
A− = A\{α} to be known. Assume a common prior πα(θ) for all θi and denote the
posterior density of θi given data Yi = (Yi1, . . . ,Yin) and A by πA(θ|Yi). Hence, the
posterior may also depend on hyper-parameters in A other than α. Assume Yi , i =
1,.. . , p, to be independent samples from density fA(y). Both fA(y) and πA(θ|Yi = y)
may depend on i through different models or covariates, but for clarity we drop the
index. Then,

(4.2)

πα(θ) =

∫

πA(θ|y) fA(y)dµ(y)≈π
Emp
A (θ) =

1

p

p
∑

i=1

πA(θ|Yi) =
1

p

p
∑

i=1

π{α}∪A−(θ|Yi),

Hence estimation of α can be implemented using software like INLA that computes
marginal posteriors under given models for the priors and the data, by substituting the
posteriors in the right side of (4.2), and finding the value of α for which (4.2) holds. If
|A|> 1 and A− is not known, then (4.2) becomes a system of equations with respect to
the elements of A. We propose an iterative algorithm to find all α∈ A. Appendix C.1,
provides the approximate equivalence of (4.2) to conventional empirical Bayes, i.e.
maximization of the marginal likelihood. The crucial difference is that the method
based on (4.2) depends solely on marginal posteriors, whereas direct maximization of
the marginal likelihood with respect to A depends on joint posteriors.

To find α, we apply an ‘EM-like’ procedure: initialize all α∈A, compute posteriors
given the current values, re-estimate all α and iterate. We first discuss re-estimation of
one α. Let A(`) be the current estimate of A. Then, the new maximum likelihood-based
estimate αML,(`+1) is:

(4.3) αML,(`+1) = argmaxα L(zA(`) ;α),

where L(zA(`) ;α) =
∑S

s=1 log(πα(zs,A(`))) is the log-likelihood of the prior at zA(`) : a

large set of S independent samples from π
Emp

A(`)
(θ). Hence, ML is used atypically, be-

cause zs,A(`) is not an observation. Instead, it serves approximating an empirical mix-
ture by a specific parametric form.

Re-estimation of hyper-parameters, α ∈ A, is performed separately for each prior.
The marginal posterior of a parameter, however, may depend on priors of others.
Therefore, joint re-estimation of posteriors is required, which is accommodated by
INLA. Let B be the number of informative priors and α(`)b the bth element of A(`), con-
sisting of the estimates at iteration `. Then, the iterative joint procedure to estimate all
αb ∈A is:
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1. Initiate `= 0 and α(0)b , b= 1,.. . ,B;

2. Apply INLA to estimate posteriors πA`(θ|Yi) of parameters and construct an em-
pirical estimate π̂α(θ) of πα(θ) by averaging over posteriors of parameters;

3. Draw from π̂α(θ) and use MLE to obtain α(`+1)
b , b= 1,.. . ,B;

4. Reiterate from step 2 until convergence.

Next, we extend the algorithm above.

4.3.2 Refinement of marginal posteriors under an alternative prior. The nu-
merical approximations in INLA allow efficient integration of the full posterior to ob-
tain marginal posteriors. However, the above iterative procedure requires use of para-
metric priors that comply with INLA (or other full Bayes methodology). Often, one
particular central parameter of interest exists. In small sample settings, its prior may
have a considerable effect on the posterior and hence on inference. So, it may be
desirable to refine its marginal posterior by using a more suitable or flexible prior.
Next,we show how to refine a marginal posterior, as obtained from the iterative joint
procedure, when changing one particular prior while leaving the others unchanged.

Let πα∗b(θ) and πA∗(θ|Yi) be the prior and posterior of θi , given hyper-parameters

A∗, where θi corresponds to the bth component of A∗, α∗b. Moreover, the elements
of A∗ result from the joint iterative procedure, except for α∗b which may be chosen
differently, as discussed below. Write A∗−b = A∗ \α∗b. Under a new prior π′(θ) the
following provides re-estimation of the posterior:

(4.4) π′A∗−b
(θ|Yi)∝πA∗(θ|Yi)

π′(θ)
πα∗b
(θ)

.

The proportionality constant is computed by normalization using integration. Nu-
merically, (4.4) may be problematic when πα∗b(θ) is narrow. Therefore, we advise to
compute posteriors πA∗(θ|Yi) under a wider prior than the one resulting from the it-
erative joint procedure. In our experience, a prior with sd 2 to 5 times as large works
well, with very similar results in this range.

Equation (4.4) is the core of the iterative marginal procedure:

1. Initiate `= 0 and π′(θ) =π′`(θ) =π′0(θ);

2. Apply (4.4) to compute posterior π′`A∗−b
(θ|Yi);

3. Estimate the new prior π′`+1(θ);

4. Reiterate from step 2 until convergence.
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We recommend initiating π′(θ) by πα∗b(θ) (and skip step 2 once, because the posteri-
ors are known). Step 3 requires estimation of the new prior. We first cover nonpara-
metric priors.

Nonparametric priors provide maximal flexibility and adaptivity, an advantage for
the main parameter of interest, due to the consequences for inference. Although the
empirical mixture of current posteriors, π′`,Emp

A∗−b
(θ), defined analogously to (4.2), could

directly be used as an estimate of π′`+1(θ) in the iterative marginal procedure, impos-
ing some degree of smoothness seems reasonable. We use straightforward Gaussian
kernel density estimation on a large sample from this mixture. We offer two alterna-
tives with increasing stability, in particular of the tails: estimation under the restric-
tions of unimodality and log-concavity (Lutz and Rufibach, 2011).

Parametric mixture priors that allow a point-mass may be useful to model non-
differential effects. The above iterative marginal procedure can be used to estimate
the mixture hyper-parameters by fitting these to a sample from the empirical mixture
of current posteriors using an EM-algorithm. However, we provide a computation-
ally more efficient method in Appendix C.2, which explicitly maximizes the marginal
likelihood: the direct maximization procedure.

Combination of the iterative joint and the marginal refinement procedures provides
marginal posteriors of a parameter of interest under a flexible prior while respect-
ing dependencies on other parameters. The iterative algorithms need to be applied
to a limited subset of features only, which saves considerable computing time. Ap-
pendix C.3 contains details on efficiency and convergence.

4.4 Inference, parametric priors, and multiplicity. The large number of fea-
tures implies that one needs to account for multiplicity when inference is desired. We
first assume a one parameter, one-sided interval null-hypothesis setting before dis-
cussing extensions to two-sided inference and multiple comparisons. The hypotheses
are:

(4.5) H0i : βi ≤∆ (Null); H1i : βi >∆ (Alternative),

with parameter of interest βi =βi1 and∆ set a priori. Moreover, define π0i =P(H0i |Yi)
and π1i = P(H1i |Yi) = 1−π0i . Typically, those features for which π0i ≤ t, for small t,
are of interest. Note that βi may also be a contrast, e.g. to detect monotonic time
trends, see Appendix C.6.

4.4.1 Parametric priors. Scott and Berger (2006) extensively motivate the use
of (generally informative) priors to account for multiplicity in Bayesian inference. The
choice of the type of prior, nonparametric or parametric (and its form), is important.
In (4.5), there is no principal reason to use ∆= 0. Positive values may be useful to
avoid detecting statistically ‘significant’, but small, non-relevant effects.

Priors and posteriors that have positive mass on ∆= 0 are of interest, because
these reflect a believe in true non-differential effects. We turn to parametric priors
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in this setting. Natural extensions of the Gaussian prior are the Dirac-Gaussian prior
(Lönnstedt and Speed, 2002) and the Gaussian-Dirac-Gaussian mixture prior (Lewin
et al., 2007):

π(β) = p0δ0+(1− p0)N (β;0,τ2)(4.6)

π(β) = p−1N (β;µ−1,τ2
−1)+ p0δ0+ p1N (β;µ1,τ2

1),(4.7)

where δ0 is the dirac mass on 0 and N (β;µ,τ2) denotes the Gaussian density with
parameters (µ,τ2), p0= 1− p−1− p1 and µ−1< 0 and µ1> 0. In addition, we provide
implementation of the Gamma-Dirac-reverse Gamma mixture (Lewin et al., 2007) and
Dirac-central Laplace mixture priors. Priors for the precision of random effects are dis-
cussed in Appendix C.4.

4.4.2 Local fdr and BFDR. Use of informative priors accounts for multiplicity in
the sense that posteriors of βi ’s are typically more concentrated around zero than with
flat priors. As such one may directly use the posterior probabilities π0i for inference.
In fact, lfdri =π0i = P(H0i |Yi) is a version of the local false discovery rate (lfdr, Efron
et al. (2001)), based on conditioning on the data instead of on a statistic. Then, it
is clear that use of an (estimated) informative prior on βi is crucial, because π0i =
P(H0i |Yi) = P0/(P0+P1), with P0 =

∫∆
−∞P(Yi |βi = β)π(β)dβ and P1 =

∫∞
∆ P(Yi |βi =

β)π(β)dβ. Hence, when sample size is small, π0i may depend strongly on π(β).
Alternatively, Lewin et al. (2007), Ventrucci et al. (2011) suggest use of the Bayesian

False Discovery Rate (BFDR). Let di(t) = I{π0i<t}= I{π1i≥1−t}. Then, denoting I{H0i} by
Hi:

(4.8) BFDR(t) = E





∑p
i=1 Hidi(t)
∑p

i=1 di(t)

�

�

�

�

p
∑

i=1

di(t),Y



=

∑p
i=1π0idi(t)
∑p

i=1 di(t)
.

An estimator of BFDR(t) is obtained by replacing π0i and di(t) by their estimators. In
practical settings, BFDR(t) is used analogously to FDR: t is tuned such that BFDR(t)
is below a pre-specified level. Observe from (4.8) that BFDR(t) = E[lfdri |lfdri < t].

For two-sided inference we could replace βi by |βi |. However, directly applying
lfdri(t) and BFDR(t) may lead to counterintuitive results: π0i may be small due to
non-negligible posterior mass of βi on both sides of the (−∆,∆) interval. Therefore,
we develop alternative two-sided versions, lfdrII

i (t) and BFDRII(t). In addition, we in-
troduce lfdr∪i (t) and BFDR∪(t), which are multiple comparison counterparts of lfdri(t)
and BFDR(t) (see Appendix C.5).

4.5 Modeling RNA sequencing data: zero-inflation and overdispersion. As il-
lustrated in Section 4.7.2, accounting for zero-inflation may be useful. We use the fol-
lowing parametrization: the density of Yi j =d NB(µi j ,φi) is g(yi j) =

�yi j+ni−1
ni−1

�

pni
i j (1−

pi j)
yi j , with ni = 1/νi = exp(−φi). This implies E(Yi j) = µi j = (1− pi j)/(νi pi j) and

V(Yi j) = µi j(1+µi jνi). For φi→−∞≡ νi→ 0≡ ni→∞ and µi j constant, the above
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density converges to a Poisson with mean µi j . For modeling zero-inflation, let h be the
ZI-NB(µi j ,w0i ,φi) density. Then,

(4.9) h(yi j) =w0iδ0+(1−w0i)g(yi j).

The regression involves only the second component of (4.9) by log-linking µi j to co-
variates x j1, . . . , x jK. An alternative parametrization attributes all mass on 0 to the
point mass and uses a conditional negative binomial in the second part. Then, the
zeros have no impact on the regression parameters, whereas with (4.9) the zeros have
an impact up to the extent that the negative binomial accounts for it, which implies a
smoother transition from non-zeros to zeros.

Our approach allows parametric (mixture) priors on w0i (see Appendix C.8 for dis-
cussion) and on νi = exp(φi), e.g. a mixture of a dirac mass on zero and a log-Normal
distribution, which may be useful for νi (see Appendix C.7 and Appendix Figure C.13
for φi).

4.6 Simulation results.

4.6.1 Accuracy of estimation. We performed extensive simulations to validate
our estimation procedures. Appendix C.9, provides the details on four cases. Here, we
summarize the results. All cases are based on the NB model. Case 1 is a two-group
comparison (sample size: 2×8) with mixture priors on both the group-related param-
eter βi1 and overdispersion parameter νi . Case 2 is a multiple comparison (sample
size: 5×5) with a mixture prior on the pairwise differences and a Gaussian prior on
φi = log(νi). Case 3 is a two-group comparison (sample size: 2×8) with either a
t4 prior or a shifted Γ(2,1) prior on βi1 and a Gaussian prior on φi . Here, we non-
parametrically estimate the prior of βi1. Finally, Case 4 is a two-group comparison
(sample size: 2×9) including a random effect with 6 levels. Three priors are esti-
mated: Gaussian priors on βi1 and φi and a Γ-prior on log-precision of the random
effect. This case is challenging, because the latter two priors both model dispersion.
In all cases, the priors are very accurately estimated, both in terms of parameter val-
ues and Kolmogorov-Smirnov distance to the truth. Case 1 was also used to evaluate
the accuracy of BFDR. Appendix Figure C.4 shows that it is slightly conservative w.r.t.
FDR, but rather accurate for this case. More discussion on BFDR vs FDR is provided
by Ventrucci et al., 2011.

4.6.2 Comparison with other methods. We compare our method, which we
term ‘ShrinkSeq’, with: baySeq (Hardcastle and Kelly, 2010), NOISeq (Tarazona et al.,
2011), DESeq (Anders and Huber, 2010) and edgeR (Robinson et al., 2010). We
study the effect of 1) a Dirac-Gaussian mixture for overdispersion; 2) shrinkage of the
parameter of interest; 3) many zeros in the data for a two-group setting; 4) many
zeros in the data for a time-course setting. The first two simulations are based on the
NB model, the latter two are data-based, hence unbiased with respect to any of the
methods. Details are provided in Appendix C.10. Appendix Figures C.5 to C.8 show
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partial ROC curves, restricted to specificity larger than 80%. At specificity equal to
95% ShrinkSeq NP, which uses a nonparametric prior for the parameter(s) of interest,
has sensitivity 2 - 50%, 10 - 30%, >40% and > 15% higher than that of the others in
the aforementioned scenarios. Finally, Appendix Figure C.5 shows that a parametric
prior on this parameter (ShrinkSeq P) may further improve the ROC curve and Ap-
pendix Figure C.8 illustrates the ability of linear contrasts to better detect monotonic
time trends (ShrinkSeq monotone).

4.7 Data analysis. Below we illustrate our methods on two data sets. The first
corresponds to a fairly complex design and small sample size. We discuss the need to
include random effects and illustrate the effects of accounting for zero-inflation and
shrinkage of multiple parameters. Other methods provide some of these features as
well, but the combination is not covered. The second is a simple two-group compari-
son, the large sample size of which we utilize for sample splitting to compare methods.

4.7.1 CAGE data. The data were generated by Pardo et al. (2013) to profile
transcription start sites and promoter regions from aged human brain. Twenty-five
libraries from RNA isolated from 5 brain regions (caudate nucleus, frontal lobe, hip-
pocampus, putamen and temporal lobe) from 7 donors were prepared using CAGE
methodology. The design is unbalanced, because some individuals lack a measure-
ment for one or more brain regions and it includes two batches (see Table 4.1). Some
normalization methods attempt to remove batch effects, but, to guard against feature-
specific effects, we opt to include ‘batch’ in the model. To account for variation on the
individual level, individuals enter the model as levels of a random factor.

More details on the CAGE methodology and preprocessing of these data, including
tag clustering and filtering, are given in Appendix C.11. A set of 10.000 features (here,
tag clusters that represent promotor regions) is used for illustration of our approach.

Individual 1 2 3 4 5 6 7
Brain region

1 4 4 � 4 4
2 � � 4 � �
3 � � 4 4 �
4 � 4 � 4 4
5 � � 4 � �

TABLE 4.1. Design of the CAGE experiment. A symbol indicates that a sample from the concerning
individual and brain region is present in the study, measured either in batch 1 (square) or batch 2.
(triangle)



40 4.7 DATA ANALYSIS

4.7.2 Including Zero-Inflation. Anders and Huber (2010) observe that in the
NB setting, the overdispersion parameter φi and the mean µi j are related. This makes
univariate shrinkage of the overdispersion suboptimal. Anders and Huber (2010) solve
this by using a nonparametric regression curve that locally estimates the relationship
between the mean and the variance. They use the curve estimate as the final esti-
mate of the feature’s variance. We prefer to incorporate the feature’s own variability
and therefore provide shrinkage of the feature’s dispersion towards the curve estimate
(NB+ model; Appendix C.12). Here, another alternative is motivated: high overdis-
persion for low-count features could be caused by not accounting for ‘zero-inflation’ in
the NB model. Figure 4.1(a) shows that for the NB model with a Gaussian prior on φi ,
a strong residual trend is indeed apparent: low-count features generally correspond to
high overdispersion. However, when accounting for zero-inflation, this residual trend
disappears, as illustrated in Figure 4.1(b).
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FIGURE 4.1. Residual trend for overdispersion in NB (a) and ZI-NB (b) models after shrinking
φi to a common Gaussian prior. X-axis: log-mean count for feature i, Y-axis: Posterior mean of
overdispersion parameter φi
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4.7.3 Model and fitting strategies. Let G,B and I code for ‘group’ (brain region),
‘batch’ and ‘individual’, respectively. Regression parameters and the relevant columns
of the design matrix x are coded accordingly. Moreover, let ηi j = log(µi j). Then, our
model as used for joint estimation of priors and posteriors is:

Yi j =
d ZI-NB(µi j ,w0i ,φi)

νi =
d q0δ0+(1−q0)`N (µ,σ2)

ηi j = βi0+
5
∑

`=1

βG
i`x

G
j`+β

B
i xB

j +
7
∑

m=1

βI
im x I

jm

βi0 =
d βB

i =
d logit(w0i) =

d N (0,100)

βG
i` =

d N (0,(τG
i )

2), for `≥ 2

βI
im =

d N (0,(τI
i)

2)

(τI
i)
−2 =d Γ(α1,α2)

(4.10)

where βG
i1=0. The set of hyper-parameters is A= {α1,α2,α3}= {τG

i ,(q0,µ,σ),(α1,α2)}.
The model is fitted using the iterative joint procedure, which provides estimates of all
hyper-parameters and posteriors of all other parameters. In addition, posteriors of the
contrasts of interest, β′ik` = β

G
ik−β

G
i`, are computed. Finally, the marginal posteriors of

these contrasts are refined using parametric mixture priors and nonparametric priors.
Here, we present the results of the analysis with a nonparametric prior as estimated

by the iterative marginal procedure. The results from parametric mixture priors are
discussed in Appendix C.13. We used all three options for fitting a nonparametric
prior: unrestricted, unimodal and log-concave kernel densities. The latter two are
superior in terms of stability of the tails. Results for these priors are very similar in
terms of marginal likelihood, with the log-concave one somewhat smoother in the tails
and more symmetric. Hence, we show the results for this one.

For parameters w0i ,βi0 and βB
i we use vague priors instead of informative ones.

Partly because of computational efficiency, but also because an informative prior is not
likely to render a large advantage (these parameters are rather feature-specific; see
Appendix C.8).

In short, the complete procedure is: 1) jointly shrink βG
i`, φi and τI

i by estimating A
using the iterative joint procedure; 2) fit the model for all features using the shrunken
parameters, which requires (see Appendix C.7): a) fitting the ZI-NB model and the
zero-inflated Poisson (with overdispersion νi = 0); b) combining the two posteriors
for each parameter into one posterior; 3) shrink the group-related contrasts β′ik` to a
common nonparametric prior using the iterative marginal procedure; and 4) compute
posteriors and false discovery rates for the contrasts.

4.7.4 Results. Estimates of the hyper-parameters for νi are: q̂0 = 0.057, µ̂ =
−1.29 and σ̂=1.07. Appendix C.14 shows the strong stabilizing effect of shrinkage on
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the stability of the estimate of νi , as demonstrated by others in different settings (An-
ders and Huber, 2010, Robinson and Smyth, 2007). Estimates of the hyper-parameters
of the random effects parameter (τI

i)
−2 are α1= 12.7,α2= 1.01 (shape and rate), im-

plying E(τI
i)=0.29 and sd(τI

i)=0.04, hence a rather tight Gaussian prior on βI
im. This

aids in producing more stable results for these and other parameters. Finally, τ̂G
i =

0.27, which implies rather narrow N(0,(τ̂G
i )

2) and N(0,2(τ̂G
i )

2) priors for contrasts
β′i1` (because βG

i1 = 0) and β′ik`,` > k > 1, respectively. As discussed below equation
(4.4), we use much wider central Gaussian priors, namely those with 10-fold vari-
ances, to initialize the iterative marginal procedure for estimating the non-parametric,
log-concave prior.

The log-concave prior on β′ik` converges well (Appendix Figure C.15). Appendix
Figure C.14 displays its final shape, which is somewhat more heavy-tailed than the
corresponding Gaussian density. Its stabilizing effect on estimates of β′ik` compared to
a vague prior is discussed in Appendix C.14.

We computed BFDRII(t) and BFDR∪(t) (see Appendix 4.8). Table 4.2 displays the
number of detections for∆= 0.1,0.25,0.5 and BFDRII(t)≤BFDRmax= 0.05,0.10. Ob-
serve that the comparison group 1 (caudate nucleus) vs 4 (putamen) renders relatively
few detections. This is reasonable, given the underlying ontological and functional
‘proximity’ of striatal regions (Roth et al., 2006). Likewise, the two cortical regions,
namely frontal and temporal (groups 2 and 5, respectively), are relatively similar in
terms of differential expression.

∆ BFDRmax 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5 Joint
10 0.05 47 51 8 48 52 76 38 57 74 84 294
10 0.10 123 157 47 156 156 181 120 175 195 208 787
25 0.05 9 6 2 13 11 29 5 7 14 24 74
25 0.10 29 28 3 33 32 55 19 30 51 55 193
50 0.05 3 0 0 3 1 8 0 2 2 3 15
50 0.10 4 3 0 6 4 17 0 2 5 10 34

TABLE 4.2. Number of detections out of 10000 in the data for all 10 comparisons, using ∆=
0.10,0.25,0.50 (corresponding fold changes: 1.1, 1.3, 1.6), BFDRII(t) for pairwise comparisons
and BFDR∪(t) for multiple comparisons (Joint). BFDRmax = 0.05,0.10 are the thresholds used for
both criteria. The comparison involving groups i and j is denoted by i- j.

The complexity of the design complicates comparison of our ZI-NB model with
other methods, mostly because these do not yet allow for inclusion of random effects.
However, within our setting we do compare the ZI-NB model with the NB (using Gaus-
sian shrinkage for φi; in the spirit of edgeR) and NB+ model (curvature shrinkage;
in the spirit of DESeq). Assuming that in all three settings BFDRII(t) is correctly esti-
mated, it is reasonable to compare the number of detected contrasts at a fixed thresh-
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ZI-NB NB+ NB
µmax

ik` ≤ 12.6 41 1 0
12.6<µmax

ik` ≤ 37.6 127 13 28
37.6<µmax

ik` ≤ 82.4 54 41 20
82.4<µmax

ik` ≤ 299.4 79 65 33
299.4<µmax

ik` 34 29 19
Sum 335 149 100

TABLE 4.3. Number of detected differential contrasts with BFDRII(t)≤BFDRmax=0.1 and∆=0.25
using the ZI-NB, NB+ and NB models, where the posteriors are based on the nonparametric prior for
contrasts β′ik` (see Appendix Figure C.14). Rows 2-6 represent very low-count, low-count, medium-
count, high-count and very high-count contrasts, where µmax

ik` =max(µik ,µi`), with µih: mean
count for feature i and group h. Here, 12.6, 37.6, 82.4 and 299.4 are the 80%, 90%, 95% and
99% empirical quantiles of the vector containing all values of µmax

ik` , respectively.

old for BFDRII(t), which we report in Table 4.3. For this data set, both the ZI-NB and
NB+ model detect more than the NB model, probably due to the improved modeling
of overdispersion. The NB+ model gives fairly similar results to those of the ZI-NB
model for the very high-count contrasts, detects somewhat less medium and high-
count contrasts and detects much less low and very low-count contrasts. The latter is
probably due to relatively high overdispersion estimates for features corresponding to
those contrasts when a curvature estimate is used. Use of lfdr instead of BFDR leads
to the same conclusions (see Appendix Table C.6). Appendix Table C.7 shows five
illustrative contrasts, ranging from very low to very high counts. Note that the non-
parametric prior, rather concentrated around 0, has a strong ‘shrinkage-towards-zero’
effect on the posteriors of the contrasts, which is desirable in this multiplicity context.

4.7.5 HapMap RNA-seq data. The second data set contains exon read counts
for 60 samples of Caucasian (Montgomery et al., 2010) and 69 samples of Nigerian
(Pickrell et al., 2010) origin. Appendix C.15 discusses preprocessing and analysis
of these HapMap RNA-seq data. The large sample size and plain two-group design
facilitate further comparison of ShrinkSeq with DESeq, edgeR and baySeq. NOISeq is
excluded, because it did not render any detections at a 0.1 significance cut-off.

We first perform a balanced split: the last Nigerian sample is removed, and the
remaining 60 vs. 68 are split into two halves of 30 vs. 34. These are used to study
reproducibility. Appendix Figure C.16 shows the results: ShrinkSeq shows the highest
Spearman correlation between halves, but the other methods are close. The results per
half correlate well between methods (Appendix Table C.8), in particular for ShrinkSeq,
DESeq and edgeR. The similar performances are likely due to the relatively modest
effect of (the different types of) shrinkage for these fairly large sample sizes.

Next, we perform several unbalanced splits: the data set is split into a small part
(8 vs 8) and a large complementary one (52 vs 61). Splitting is repeated four times to
account for variability of the small part results. The small part mimics a realistically
sized two-group discovery study, whereas the large part serves as validation. We study
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to what extent detections in the small part are validated in the large part, and what
proportion of detections in the large part is also detected in the small part. To this end
we define the false self-validation rate (FSVR): the rate of detections in the small part
that are not validated in the large part by the same method; and the self-detection rate
(SDR): the rate of detections in the large part that are already detected in the small
part by the same method. Detections are defined by a (B)FDR cut-off equal to 0.1.

Table 4.4 shows the results. DESeq and baySeq seem fairly conservative, leading
to low FSVR, but also to much lower SDR than edgeR and ShrinkSeq. This is reflected
in the number of detections in the small data sets (range), for DESeq: 60 - 1021;
baySeq: 456 - 1232; edgeR: 578 - 2131 and ShrinkSeq: 1414 - 4033. For 3 out of 4
splits ShrinkSeq’s FSVR is smaller than 0.1.

Comparison of the results in Table 4.4 is somewhat disturbed by the different con-
cepts of (B)FDR used by the four methods to define a detection cut-off. Therefore, we
provide a comparison which uses the same benchmark for all 4 methods and depends
only on the ranking of the small set results. The common benchmark set includes all
features that are detected by at least 3 out of 4 methods in the large part. Then, for a
set of features ranked highest by a given method in the small part the false validation
rate (FVR) is defined as the proportion of features in this set not present in the bench-
mark set. Figure 4.2 illustrates the consistently superior performance of ShrinkSeq: its
FVR is uniformly lower than that of the others when selecting the top 1 - 20% features
from the small part. If one selects the 10% highest-ranked features from the small
part by ShrinkSeq, the FVR is 1.3 - 1.7, 2.5 - 4.8 and 2.0 - 2.9 times smaller than the
corresponding FVRs of DESeq, baySeq and edgeR, respectively. Hence, for such small
sample sizes (8 vs 8), the type of shrinkage and handling of zeros clearly has an effect.

DESeq edgeR ShrinkSeq baySeq
Split FSVR SDR FSVR SDR FSVR SDR FSVR SDR

1 0.014 0.037 0.070 0.191 0.092 0.355 0.043 0.082
2 0.081 0.245 0.150 0.340 0.134 0.518 0.076 0.183
3 0.081 0.029 0.153 0.115 0.078 0.203 0.136 0.060
4 0.033 0.015 0.109 0.094 0.057 0.187 0.057 0.067

TABLE 4.4. False self-validation rate (FSVR) and self-detection rate (SDR) for 4 methods in 4
unbalanced splits.

4.8 Discussion. Our method may be regarded as a hybrid full Bayes-empirical
Bayes method, because we estimate some priors while leaving others vague. In essence
it is empirical Bayes: priors of crucial parameters are estimated, where we allow for
arbitrary parametric and nonparametric priors.

We introduced parametric priors that allow point mass on 0. However, like Lewin
et al. (2007), we noted that data often prefer a smoother density close to 0. It is
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FIGURE 4.2. Validation of small data set results by large data set ones for four random splits of
the Montgomery-Pickrell data set into two parts containing 16 (8+8) and 113 (52+61) comple-
mentary samples. X-axis: percentage most differential features as selected separately by the four
individual methods from the small part. Y-axis: False Validation Rate (FVR), defined as the rate of
detections in the small part not validated by at least 3 out of 4 methods in the large part.

often unclear whether ‘true zero effects’ exist. Still, it may be interesting to extend our
method such that sparsity is enforced, e.g. by stronger penalization of non-zero effects
than that effectuated by the marginal likelihood (which prefers concentrated priors)
or by alternative parametric priors.

Shrinkage of priors may also be implemented by an MCMC-based full Bayesian ap-
proach, which would impose hyper-priors on the hyper-parameters. Such an approach
would have the advantage of providing joint posteriors. However, nonparametric pri-
ors are not accommodated. Moreover, MCMC may perform poorly on latent Gaussian
models, which include our models (Rue et al., 2009), and is computationally unprac-
tical in (very) high-dimensional settings. Finally, implementing MCMC often requires
considerable effort for a given study, while our software builds on INLA to easily han-
dle many different designs and count models.

The ZI-NB model treats zeros differently from positive counts. Zeros have an im-
pact on the regression (and hence on inference), but only to the extent that they fit
to the NB. Zeros may be ‘true zeros’: the feature is really absent, but may also reflect
failure to read such a feature. This reading failure is a technical artefact, hence inde-
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pendent of biological conditions, which supports condition-independent zero-inflation
as in our model. Also, if one includes condition-dependent zero-inflation one needs to
integrate inference of those parameters with that of the regression ones, which is not
trivial in terms of implementation and interpretation.

Other methods only provide shrinkage of dispersion parameters, not of regression
parameters. In a frequentistic setting the latter is not required for multiplicity cor-
rection. However, the non-shrunken estimates for the most ‘significant’ features are
biased, due to selection (Crager, 2010). Hence, for correct quantification of effect
sizes for those features, shrinkage of regression parameters is important.

We foresee several extensions, both in terms of application and methodology. We
aim to apply our approach to other high-dimensional count data, such as proteomics
data. In addition, it is straightforward to include feature-specific covariates in the re-
gression, such as DNA copy number variation to (partly) explain RNA counts. From
the methodology viewpoint, multivariate priors and posteriors are of interest to ac-
commodate dependencies between parameters and allow simultaneous inference on
parameters. INLA includes latent models, which are useful to model spatial or other
structural dependencies. We aim to apply these to account for known structures, in
particular genomic position of the feature. Such dependencies have been explored by
Hu et al. (2012), however not in a shrinkage context and by use of MCMC. As stated
by McCarthy et al. (2012), analysis methods for differential RNAseq-based gene ex-
pression can also be applied to isoforms, once these have been identified. However,
incorporating identification uncertainty and modeling the interdependency between
isoforms of the same gene may lead to more efficient inference.

Our method seems promising for detecting differential features across the entire
spectrum, including the lower counts. This is useful, because potential new targets
may hide in the lower part of the spectrum when microarray technology failed to
detect these due to higher background signal (’t Hoen et al., 2008). The novelty of
our method mostly lies in the combination of several aspects relevant to the analysis
of RNA sequencing data: large applicability (by allowing flexible designs and ran-
dom effects), enhanced power and reproducibility (due to incorporating zero-inflation
and shrinkage of dispersion parameters) and multiplicity-corrected inference (using
shrinkage of inference parameters). Hence, it provides a comprehensive analysis of
RNA sequence data in many settings.



CHAPTER 5

Regional differences in gene expression and promoter
usage in aged human brains

To characterize the promoterome of caudate and putamen regions (striatum),
frontal and temporal cortices, and hippocampi from aged human brains, we used
high-throughput cap analysis of gene expression to profile the transcription start
sites and to quantify the differences in gene expression across the 5 brain regions.
We also analyzed the extent to which methylation influenced the observed ex-
pression profiles. We sequenced more than 71 million cap analysis of gene ex-
pression tags corresponding to 70,202 promoter regions and 16,888 genes. More
than 7000 transcripts were differentially expressed, mainly because of differential
alternative promoter usage. Unexpectedly, 7% of differentially expressed genes
were neurodevelopmental transcription factors. Functional pathway analysis on
the differentially expressed genes revealed an overrepresentation of several sig-
naling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus
and striatum. We also found that although 73% of methylation signals mapped
within genes, the influence of methylation on the expression profile was small.
Our study underscores alternative promoter usage as an important mechanism for
determining the regional differences in gene expression at old age.

This chapter was published as:
Pardo, L.M., Rizzu, P., Francescatto, M., Vitezic, M., Leday, G.G.R., Sanchez, J.S.,
Khamis, A., Takahashi, H., van de Berg, W.D.J., Medvedeva, Y.A., van de Wiel,
M.A., Daub, C.O., Carninci, P., Heutink, P. (2013). Regional differences in gene ex-
pression and promoter usage in aged human brains. Neurobiol. Aging, 34(7):1825-
1836.

5.1 Introduction. The brain is the most complex organ of the human body, and
this complexity is a major landmark of human evolution (Konopka and Geschwind,
2010). The brain can be divided into different functional and anatomic regions that
are established during development and maintained throughout life. The mechanisms
that regulate normal brain function and differentiation are controlled by both genetic
(Johnson et al., 2009b) and epigenetic factors (Miller and Sweatt, 2007), and al-
terations in these mechanisms can lead to neurodegenerative diseases (Abdolmaleky
et al., 2005). There have been tremendous advances in our understanding of the
molecular mechanisms involved in brain function, and the regional differences in these
functions are beginning to be understood (Khaitovich et al., 2004, Roth et al., 2006).
Less is known about the genetic mechanisms that are responsible for establishing and
maintaining these differences throughout development, adulthood, and aging. In-
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sights into these mechanisms are required to understand the differential susceptibil-
ity of distinct brain regions to neuronal insults (Double et al., 2010). For example,
the genes for which mutations have been characterized in Alzheimer’s disease (AD)
(Joachim et al., 1989, Shen et al., 1997) and Parkinson’s disease (PD) (Bandopadhyay
et al., 2004) are often ubiquitously expressed whereas the observed pathology is re-
stricted to specific brain regions and specific cell types (Double et al., 2010). Dissection
of the molecular basis of this selective vulnerability will be pivotal to our understand-
ing of disease pathogenesis and the development of specific therapies.

Much of our current insight into the molecular basis of brain function results from
detailed studies of single genes or molecular mechanisms often initiated by the iden-
tification of genetic mutations (Hardy and Selkoe, 2002). However, unbiased ap-
proaches, where large numbers of genes are assessed simultaneously, are expected to
be more powerful to dissect the genetic mechanisms controlling brain function. Large-
scale analysis of gene expression in brain was pioneered by microarray experiments
(Khaitovich et al., 2004). In recent years, high-throughput sequence-based technolo-
gies have been developed to analyze the mammalian transcriptome in more detail and
at greater depth (Sandelin et al., 2007). These technologies have been decisive to
uncover a complex picture of the mammalian transcriptome (FANTOM Consortium,
2005) and to identify new mechanisms of gene regulation and control of gene ex-
pression in brain (Kang et al., 2011, Tollervey et al., 2011). Among sequence-based
technologies, tagbased approaches such as cap analysis of gene expression (CAGE)
have been used to comprehensively profile the transcription start sites (TSSs) and the
promoter regions (Takahashi et al., 2012). CAGE is a cap-trapping-based method that
profiles 50 capped transcripts of both coding and noncoding RNA classes and has been
pivotal in the discovery of alternatively regulated TSSs and novel regulatory elements
(Carninci et al., 2006, Valen et al., 2009).

To understand how different promoters and control elements of genes establish
and maintain region-specific expression patterns, we used CAGE in combination with
massive parallel sequencing to profile TSSs of brain regions in 7 aged healthy individu-
als, at a genome-wide scale. We selected 5 samples of caudate nuclei, putamen, frontal
and temporal cortices, and hippocampus, which are specifically vulnerable in the most
prevalent neurodegenerative disorders (Double et al., 1996). First, we characterized
the transcriptome of aged human brain and evaluated the extent of alternative pro-
moter usage. Second, we quantified differences in gene expression and promoter
usage across 5 brain regions. Finally, we analyzed the extent to which methylation
influenced the observed expression profiles.

5.2 Methods.

5.2.1 Brain specimens. The postmortem brain tissues were obtained from the
Netherlands Brain Bank (Amsterdam, The Netherlands). The donors were aged sub-
jects (age range: 70-91 years) without clinical signs of neurodegenerative or psy-
chiatric disorders. All brains were neuropathologically evaluated by an experienced
neuropathologist and classified for neurofibrillary tangles stage 0-VI (Alafuzoff et al.,
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2008), amyloid-beta plaques score 0-C, and Braak α-synuclein stage 0-VI using the
staging protocols of Brain Net Europe and Braak (Alafuzoff et al., 2009a,b, Braak
et al., 2006). The dissection of the caudate, putamen, hippocampus, middle frontal
gyrus (F2), and middle temporal gyrus regions was performed from snap frozen hu-
man brain sections. Tissue was stored at −80◦C until further processing. Pathologic
examination of the brain specimens showed changes consistent with the age of the
individuals. The age at death, cause of death, and postmortem delay until dissection
are provided in Appendix Table D.1.

5.2.2 CAGE library preparation. Total RNA was extracted and purified from
tissues using the Trizol tissue kit according to the instructions provided by the man-
ufacturer (Invitrogen). RNA quality per library was assessed using the RNA integrity
number with the Agilent Total RNA Nano kit (Table 5.1). The standard CAGE pro-
tocol (Kodzius et al., 2006) was adapted for sequencing on an Illumina platform. A
thorough description of the protocol to prepare CAGE libraries and to sequence CAGE
tags is presented in (Takahashi et al., 2012). Briefly, complementary DNA (cDNA) was
synthesized from total RNA using random primers, and this process was carried out at
high temperature in the presence of trehalose and sorbitol to extend cDNA synthesis
through GC-rich regions in 5′ untranslated regions (UTRs). The 5′ ends of messen-
ger RNA within RNA-DNA hybrids were selected by the cap-trapper method (Kodzius
et al., 2006) and ligated to a linker so that an EcoP15I recognition site was placed
adjacent to the start of the cDNA, corresponding to the 5′ end of the original messen-
ger RNA. This linker was used to prime second-strand cDNA synthesis. Subsequent
EcoP15I digestion released the 25- to 27-base pair (bp) CAGE tags. After ligation of
a second linker, CAGE tags were polymerase chain reaction amplified, purified, and
sequenced on the Illumina Genome Analyzer GLXII platform (Takahashi et al., 2012).
The data have been submitted to the Gene Expression Omnibus (GEO) public reposi-
tory (GSE43472).

5.2.3 DNA methylation microarrays. DNA isolation and purification to detect
methylation was carried out following standard protocols (online Supplementary data,
Methods1). Genome-wide amplified input and output samples were sent to Roche
NimbleGen where they were hybridized to DNA Methylation 2.1 Million Deluxe Pro-
moter Arrays. The arrays have a mean probe spacing of 99 bp and median probe
spacing of 100 bp. Each array has more than 2.1 million probes distributed in the fol-
lowing manner (1) promoter regions from 7250 bases upstream of each TSS to 3250
bases downstream; (2) micro RNA (miRNA) genes, starting from 15 kbp upstream of
the mature gene product to its 3′ end; (3) CpG islands; and (4) ENCODE regions.
Probes were chosen from the hg18 tiling database. Therefore, the probes targeted
mainly annotated promoter regions and CpG islands.

1all online supplementary materials are available at www.neurobiologyofaging.org/article/S0197-
4580(13)00023-7/addOns
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Individual Region Batch(a) RIN
Tag Unique Mapping Ribosome

counts(b) counts(c) rate(d) mapping(e)

1 Caudate 1 7.60 1,988,794 935,084 0.86 0.06
1 Frontal 1 7.00 3,453,682 1,531,751 0.87 0.05
1 Hippocampus 1 6.50 2,022,640 979,162 0.81 0.09
1 Putamen 1 7.70 3,814,753 1,627,659 0.83 0.07
1 Temporal 1 6.30 4,333,255 1,937,270 0.82 0.07
2 Hippocampus 1 6.50 1,682,943 310,481 0.84 0.07
2 Caudate 2 7.20 1,663,688 362,468 0.72 0.09
2 Frontal 2 6.90 1,745,155 801,757 0.82 0.04
2 Putamen 2 6.50 1,216,441 274,776 0.70 0.11
2 Temporal 2 6.80 936,396 259,968 0.75 0.10
3 Frontal 2 7.10 2,111,277 505,207 0.78 0.07
3 Hippocampus 2 8.80 1,785,386 413,336 0.82 0.04
3 Temporal 2 6.80 1,103,935 255,621 0.84 0.04
4 Temporal 2 5.90 1,199,974 356,84 0.71 0.13
4 Frontal 2 6.50 2,035,347 472,327 0.74 0.11
4 Hippocampus 2 6.40 1,251,589 335,644 0.73 0.11
4 Putamen 2 6.50 2,541,166 516,842 0.73 0.12
5 Caudate 1 7.90 3,096,524 1,144,105 0.88 0.06
5 Putamen 1 6.60 4,029,122 1,541,543 0.83 0.08
6 Caudate 1 7.40 3,587,220 1,296,765 0.88 0.05
6 Putamen 1 6.30 2,085,385 795,569 0.87 0.07
7 Caudate 1 6.80 4,875,578 1,625,317 0.86 0.06
7 Frontal 2 6.20 2,324,932 407,993 0.73 0.11
7 Hippocampus 2 6.20 3,158,604 597,669 0.78 0.03
7 Temporal 2 6.20 1,104,711 241,508 0.70 0.16

TABLE 5.1. Description of the tag counts per region/sample. (a) Refers to 2 main batch effects
corresponding to different period of times in which the cap analysis of gene expression libraries
were prepared; (b) Refers to the total tag counts after removal of sequencing artifacts; (c) Refers to
the tag counts that map to single positions in the genome unique regions; (d) Refers to proportion
of tags that mapped to less than 10 positions; (e) Refers to the proportion of tags that mapped to
ribosomal DNA.

5.2.4 Bioinformatics and statistical analysis.

5.2.4.1 CAGE data. Primary quality control analysis included the removal of
linker and barcode sequences as well as other sequencing artifacts to obtain raw
CAGE tags of approximately 27 bps. Next, raw CAGE tags were mapped to the human
genome (hg18 build) using Nexalign (http://genome.gsc.riken.jp/osc/english/dataresource/)
allowing for 1 mismatch and 1 indel. The above steps were carried out with scripts
and software (see Lassmann et al. (2009)) developed at the RIKEN. Following previous
approaches to analyze promoter activity based on CAGE data, we grouped raw CAGE
tags into CAGE clusters using a clustering pipeline from Omics Science Center bioin-
formatics at the RIKEN (De Hoon et al., 2010). In brief, the CAGE tags that mapped
to the same position in the human genome and were on the same strand were con-
sidered CAGE Transcription Start Sites (CTSSs) (level 1 [L1]). For tags that mapped
to multiple positions in the genome, a rescuing approach was applied (Faulkner et al.,
2008). L1 CAGE tags were clustered into level 2 tag clusters (L2 TCs) if they over-
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lapped within 20 bps and were on the same strand. L2 TCs were grouped into level 3
(L3) TCs if they overlapped within a region of 400 bps and were on the same strand.
For clarity, a CTSS marks the first nucleotide that is transcribed into RNA and is consid-
ered a putative TSS, whereas a L3 TC encompasses the region that is shared between
proximal TSSs (online Supplementary data, Methods) (Sandelin et al., 2007). After
cluster analysis, we obtained 6,735,699 CTSSs (L1 clusters). To increase the probabil-
ity of capturing genuine promoter regions, we only selected L3 TCs that were present
in at least 2 CAGE libraries and with a minimum count of 5 tags per million (TPM)
(De Hoon et al., 2010) in at least 1 library; for example, only CTSS present at ≥5 TPM
in one library and ≥1 TPM in another were included. For all downstream analysis, we
used the L3 TCs. Unless stated otherwise, TCs refer to the L3 TCs.

Next, we annotated TCs to human genes by mapping the coordinates of the TCs
to all available transcripts from GENCODE version 3d. To do this, we downloaded
all GENCODE transcripts from the UCSC genome browser2 (hg18 build; University
of California, Santa Cruz, CA [UCSC]) at different levels of validation. Custom Perl
scripts and BEDTools (Quinlan and Hall, 2010) were used to map the coordinates of
the TCs to genomic regions corresponding to specific transcriptional units (Carninci
et al., 2006). TCs that did not map to a specific gene were considered intergenic.
Further, we divided the TCs into mutually exclusive classes according to the gene
region they mapped to. TCs that mapped to a 5′ UTR or -300/+100 bps of a known
TSS (core promoter region) were labeled as canonical. The remaining noncanonical
TCs were labeled as 5′ UTR antisense, 3′ UTR, 3′ UTR antisense, intronic, exonic,
intronic antisense, and exonic antisense.

We classified the genes to which the TCs mapped to according to the following
Biotypes: protein-coding gene (if it had an open reading frame), long noncoding RNA
(lncRNA), miRNA, pseudogene, processed transcript (no open reading frame, but tran-
scribed and not classified into any other category), and other ncRNAs using the defi-
nitions from GENCODE3 (Harrow et al., 2006).

Differential gene expression and promoter usage derived from CAGE data across
5 brain regions. To obtain an overview of the expression (count) profile of the CAGE
libraries, we first tested for differential expression across brain regions and subse-
quently identified patterns of differences between these regions by means of hierar-
chical clustering. We focused on autosomal TCs with a minimum of 9 tag counts per
TC because this is the minimum number of counts needed to get reliable estimate of
expression (Robinson et al., 2010). We built a model that takes into account both
biological and technical variations, as we found that tag expression was subject to
batch effects. The model assumes that CAGE tag counts follow a negative binomial
distribution (NB), which is standard for modeling read/tag counts.

Mathematically, for tag i and sample j: yi j =d NB(µi j ,φi), where µi j and φi re-
spectively denote the mean and dispersion parameters of the NB distribution, and

2http://genome.ucsc.edu/cgi-bin/hgTables
3http://www.gencodegenes.org/gencode_biotypes.html
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done, no current methodology or package for differential analysis of tag expression
allows extra covariates such as individual effects to be included. Therefore we built
on the glm function of R package MASS and used shrunken tagwise estimates of the
dispersion. We proceeded as follows. 1) We normalized raw tag counts using the
quantile-adjusted method of Robinson and Smyth (2008). 2) Using these pseudo-
counts, we obtained tagwise estimates of the dispersion parameter with the empirical
bayes strategy of Robinson and Smyth (2007) and implemented in R package edgeR
(version 1.6.15) (Robinson et al., 2010). 3) We fitted two models per tag using shrunk
dispersion estimates: a full model described above, which includes three factors and
a null model where the factor brain region is discarded. 4) The fit of the two models
is compared via a likelihood ratio test (LRT) and the p-value obtained using the chi-
squared approximation. Because the model fitting is not reliable with lowly expressed
tags, we also calculated p-values via parametric bootstrapping. 5) Chi-squared based
and bootstrapped p-values are corrected for multiplicity (Benjamini and Hochberg,
1995). Finally, a tag is considered differentially expressed (DE) across regions if both
adjusted p-values are smaller than 0.1. This is very conservative but also more reliable
as it avoids dependence on a single procedure.

To identify differentially expressed TCs (DETC) showing similar differences among
(a subset of) groups, we carried out hierarchical clustering (with Euclidean distance)
based on the coefficients of brain regions, which are lower than 3 in absolute value.
This was carried out with the R function hclust from package stats (with default ag-
glomeration method). We chose the partition that maximized the average silhouette
index width.

Functional enrichment analysis was subsequently done on clusters (modules) of
DETCs using the PANTHER version 7.0 database. All further functional pathway anal-
yses were carried out using this database. We first looked for overrepresentation of 146
functional pathways in the dataset of non- DE TCs (Thomas et al., 2003). Next, we
took the most significantly overrepresented pathways in the group of non-DE TCs as a
reference to test for an overrepresentation in the group of DE TCs. The most significant
functional pathways were selected after correction for multiple testing (Benjamini and
Hochberg, 1995) using a p-value≤0.05. The p-values of the pathways we tested in the
group of DE TCs are presented in a heatmap in Appendix Figure D.9.

5.2.4.2 Methylation data. The log2 ratio of the probe intensity in the experi-
mental sample against control DNA was determined. The log2 methylation signals
were converted into methylation peaks (MPs) using the NimbleGen software (Roche)
with default parameters (online Supplementary data, Methods). Further, we removed
MPs that mapped to X and Y chromosomes as well as those that overlapped with
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centromeres, telomeres, and segmental duplications. MPs overlapping with regions
in which more than 1 segment was detected for a single sample were also removed.
Next, we selected consensus MPs that were shared in a minimum of 2 samples. For
this, we used the plink software version 7 (Purcell et al., 2007) and identified shared
methylated “segments” with the command: plink file segment group. Next, we used
BEDTools (Quinlan and Hall, 2010) to map the MPs to annotated human genes (hg18)
using GENCODE version 3d at different levels of annotation. We also mapped the MPs
to CpG islands downloaded from UCSC browser (Fujita et al., 2011). Details of the
experimental protocol and the downstream analysis are presented in online Supple-
mentary data.

Differential methylation analysis. We modeled the log2 ratios of the probe inten-
sities taking both biological and technical variations into account and assuming that
the ratios followed a normal distribution. Brain group (here we used the caudate as
reference group), batch, and individual factors were covariates. We fitted 2 models
per methylation probe: a full model, which included all 3 covariates and a null model
where the factor brain group was discarded. We tested for differences in the mod-
els using a one-way analysis of variance, implemented in R version 13, and adjusted
for multiple testing using the Bonferroni correction. Differentially methylated peaks
(DMPs) were defined as differentially methylated probes occurring at a minimum over-
lap of 300 bps (R script provided by K. Lo at Roche, k.lo@roche.com).

Correlation between methylation signals and expression. First, we calculated the
average methylation for every MP, adjusting for both biological and technical varia-
tions as mentioned previously. Next, we overlapped the genomic coordinates of the
MPs with the genomic coordinates of the TCs (-1500/+500) using BEDTools (Quinlan
and Hall, 2010) and estimated the Spearman correlation between the average mean
intensity of methylation and the average expression of the overlapping TCs (geometric
mean).

To test whether the expression of individual TCs were affected by methylation,
we used the same statistical framework that we used to identify DETCs but included
the methylation covariate as the variable of interest. Briefly, for each TC, we fitted
2 models. A full model with brain group, batch, and methylation as covariates, and
a null model where methylation was removed. Because of the small number of MPs
overlapping TCs, we could not fit the individual covariate. Significant differences were
calculated as above.

5.3 Results. Appendix Figure D.1 shows a schema of the main steps of exper-
imental procedure and the data analysis we carried out in this study. We prepared
25 CAGE libraries from total RNA isolated from the caudate nuclei, putamen, frontal
and temporal lobes, and hippocampus from the 7 donors. In total, we sequenced 72
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million CAGE tags (1-2 million per library approximately) in 5 sequencing rounds. Ta-
ble 5.1 summarizes the tag count and mapping rate per library after quality control
(online Supplementary data, methods). The final set of L3 TCs that were available for
analysis numbered 70,202.

5.3.1 Features of brain transcriptome of aged individuals. We mapped the
TCs to 16,888 human genes from the GENCODE database (Raney et al., 2011). Fig-
ure 5.1a shows that 31.2% of TCs mapped to the 5′ UTR or promoter regions of previ-
ously annotated transcripts (canonical TCs), whereas the remaining 68.9% mapped to
other regions including introns, exons, and 3′ UTRs (noncanonical TCs). In addition,
13.6% of TCs did not map to any known transcript and were considered intergenic. Of
these TCs, 559 (6%) mapped to lncRNAs (Jia et al., 2010) (online Supplementary Ta-
ble 2). Although canonical TCs represented less than one-third of all TCs (Figure 5.1a),
their expression was high and accounted for most of the overall TC expression. In con-
trast, the expression of most noncanonical TCs was low (Appendix Figure D.2).

Of all the expressed genes, 14,479 (87%) had canonical TCs (online Supplemen-
tary data, Data set 1). As shown in Figure 5.1b, 90% of these genes encode proteins.
The remaining 10% consist of ncRNA, of which annotated pseudogenes account for
33%. We compared the list of genes that were expressed in our data set with those
from RNASeq data from brain and other tissues (Ramsköld et al., 2009). We found an
overlap of 77% (Appendix Figure D.3a). Genes expressed in brain according to (Ram-
sköld et al., 2009) that were not present in our CAGE data set included both mitochon-
drial (e.g., MT-ATP6, MT-ND3, and MT-CO2) and ribosomal genes. In contrast, there
was a larger proportion of ncRNA in our brain CAGE data set (24% more compared
with RNASeq, Appendix Figure D.3b), with a particular enrichment for pseudogenes
and lncRNAs.

We looked at the expression profile of 1909 highly expressed genes with canon-
ical TCs (90th percentile of the log geometric mean of expression distribution; on-
line Supplementary Table 3) in more detail. This group included genes involved in
brain aging (e.g., GPAFP, SPARCL1, and B2M, Starkey et al., 2012), calcium homeosta-
sis (CALM1e3), neurodegeneration (CLU and PICALM, Mengel-From et al. (2011)),
and oxidative stress (e.g., PTGD2, CA11 and SOD1, Pareek et al. (2011)). We car-
ried out functional enrichment analysis using PANTHER version 7.0 Mi et al. (2010),
Thomas et al. (2003) on the group of highly expressed genes. Although many genes
could not be classified, the most significant molecular pathways identified included the
ubiquitin-proteasome pathway, synaptic transmission pathway, Huntington’s disease,
and PD (Appendix Figure D.4). The overrepresentation of the PD pathway was medi-
ated through genes encoding components of the ubiquitin-proteasome pathway (e.g.,
PSMA1 and PSMA2), heat shock proteins (e.g., HSPA2 and HSPA5), cell cycle com-
ponents (e.g., SEPT2, SEPT4, and SEPT5), and synaptic genes (e.g., SNCA) among
others. This shows that genes, for which mutations and/or variants that have been
associated with PD, are components of cellular pathways that are highly expressed in
the cortical and subcortical brain regions.
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FIGURE 5.1. Annotation of level 3 (L3) cap analysis of gene expression (CAGE) tag clusters (TCs)
to human genes. (a) Barplot showing the percentage of TCs (y-axis) that map to different gene
regions: promoters, 5′ untranslated regions (UTRs), 3′ UTRs, antisense, introns, exons, antisense
introns, antisense exons, antisense 5′ UTR, antisense 3′ UTR, and outside genes (intergenic). Pro-
moter regions were defined as -300/100 base pairs relative to the 5′ UTR. We defined canonical TCs
those that mapped to promoters or 5′ UTRs. The TCs that mapped to other regions were classified
as noncanonical. The proportion of canonical TCs represents one-third of all TCs we identified. (b)
Distribution of biotype classes for genes with canonical L3 CAGE TCs. Pie chart showing the per-
centage of genes with at least 1 canonical TC classified by biotype class: proteincoding genes (gene
with open reading frame), long noncoding RNAs (lncRNAS), pseudogenes, micro RNAs (miRNA),
small nucleolar RNAs (snoRNA), and processed transcripts (no open reading frame but transcribed
and not classified into any other category).

5.3.2 Extent of alternative promoter usage in brain transcriptome. We de-
fined alternative TCs (ATCs) as those that mapped to the same gene but were sepa-
rated by a distance of >300 bp. TCs that were unique for a single gene were defined
as “dominant TC” (DTC). Compared with DTCs, ATCs were mostly noncanonical and
at least 34% of them mapped to introns.

In our data, 60% of genes (10,205 of 16,888 expressed genes) used ATCs (mean
5, range of 2-356, Figure 5.2). Most genes with ATC had at least 1 canonical TC. We
noted that the number of ATC per genewas above 10 for 10% of the genes (Figure 5.2).
Because some of the genes were quite large, we used linear regression to model the
number of ATC per gene (for genes with at least 16 ATCs-5% of the genes with large
number of ATCs) against gene size. We found a correlation of about 0.3 (R= 0.28,
p-value <2.2e16). This shows that gene length does not account to a large extent for
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the excess of ATC in genes. Outlier genes included KCNIP4, PCDH9, CADM2, BAI3,
NRG3, LSAMP, NRXN1, LRRTM4, and FGF14, each with at least 100 ATCs. Functional
enrichment analysis on genes with more than 16 ATCs (469 genes) showed an over-
representation of glutamate receptor signaling and synaptic plasticity although most
of the genes remained unclassified.

FIGURE 5.2. Distribution of the number of alternative tag clusters (ATCs) per gene. (a) The
empirical cumulative distribution (y-axis) of the number of ATCs per gene (x-axis) and (b) number
of ATCs per bin category. The number of genes with 2 or more ATCs is shown at the top of every bin
category.

5.3.3 Regional differences in TC expression across brain regions. To identify
signatures of gene expression across different brain regions, we sought CAGE clusters
that were differentially expressed in one or more of the brain regions. We modeled the
expression of the TCs using the number of counts and tested for significant differences
in expression because of “regional effects” (see Section 2).We identified 7412 DETCs.
Of these, 6037 were ATC of genes with a main canonical promoter. We identify nei-
ther any major differences in biotype between the differentially and nondifferentially
expressed groups nor an excess of antisense TCs.

Figure 5.3 presents the results of the hierarchical clustering for the 7412 DETCs.
We identified 3 main branches: one connecting the striatal regions (caudate and puta-
men), one connecting the cortical regions (frontal and temporal), and a third that
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separated the hippocampal region from the other 2 groups. Figure 5.3 also shows that
the TCs were grouped into different clusters. We separated the DETCs into nonoverlap-
ping modules (groups of TC that were differentially expressed in one or more regions)
and identified 29 modules (Table 5.2). The largest module (M13) was characterized
by small differences in expression across regions, and no regionwas clearly separated
from the rest (Appendix Figure D.5). The other modules were characterized by more
obvious differences in the average counts in 1 or 2 brain regions relative to the others
(Appendix Figures D.6-D.8). These included M18 (lower expression in striatum vs.
cortical regions and hippocampus), M4 (decreased expression in the caudate nucleus
vs. the rest), M27 (lower expression in hippocampus), and M2 (increased expression
in the cortex).

FIGURE 5.3. Unsupervised clustering of differentially expressed tag clusters (DETC). The graph
depicts the unsupervised clustering of the β coefficients of the factor “region” derived from the statis-
tical analysis of differences in expression because of regional effects (see Section 2). The dendrogram
at the top shows that basal ganglia cluster together and that frontal and temporal cortices cluster
together. The dendrogram at the left of the graph was used to split the DETCs into functional
modules (see Results).

We evaluated whether specific signaling, metabolic, and disease pathways were
enriched in the differentially expressed modules with at least 100 TCs.We used all
the genes that were expressed in our data and that could be annotated in PANTHER
version 7.0 as a reference set (online Supplementary Table 4a shows the pathways
that were significantly enriched in the reference group). Compared with the refer-
ence group, few pathways were enriched in the set of differentially expressed modules
(Appendix Figure D.9). The most significant pathway was the fibroblast growth fac-
tor (FGF) signaling pathway in M27 (lower expression in hippocampus) (p- value
<0.0005). Several genes from the FGF pathway were differentially expressed, includ-
ing FGF12, FGF14, RASA1, MAPK6, MAPK10, PPP2R2B, and PPA2. All these genes
had a main canonical TC that was uniformly expressed across brain regions and an
ATC showing reduced expression in hippocampus. Other significant pathways (p-value
<0.005) included platelet-derived growth factor signaling in M6 (lower expression in
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caudate compared with all other regions); synaptic trafficking in M2 (higher expres-
sion in cortex than in striatum and hippocampus) and M27 (lower expression in hip-
pocampus); and glutamate receptor type I (metabotropic glutamate receptor group
I [mGluRI]), Wnt signaling, and Huntington’s disease pathways in M18 (lower ex-
pression in striatum compared with cortex and hippocampus). These significant path-
ways mediate many cell functions including proliferation, differentiation, and survival
(Goldbeter and Pourquié, 2008, Moon et al., 2004, Peng et al., 2010a). A list of en-
riched pathways per module and genes with TC in each of the pathways is presented
in online Supplementary Tables 4a and b, respectively.

Module
Nb TCs Caudate Putamen

Hippo-
Frontal Temporal

%
ID campus DETCs
13 3190 0.43
18 1063 0.14
6 683 0.09

27 295 0.04
2 273 0.04

20 256 0.04
23 170 0.02
4 163 0.02

19 164 0.02
10 155 0.02
16 119 0.02
8 116 0.02

11 107 0.01
3 107 0.01
9 91 0.01
7 74 0.01

22 51 0.01
1 41 0.01

25 45 0.01
17 43 0.01
5 38 0.00

12 39 0.00
26 38 0.00
15 28 0.00
28 12 0.00
21 18 0.00
29 12 0.00
24 11 0.00
14 10 0.00

TABLE 5.2. Number of DE clusters identified for differentially expressed tag clusters (DETCs). Dark
gray represents higher expression relative to other regions. Light gray represents lower expression
relative to other regions. Black represents similar expression profile for all regions.
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5.3.4 Expression of neurodevelopmental transcription factors. To investigate
whether differential promoter usage across brain regions can be explained by differ-
ences in the manner in which they are regulated, we searched for transcription factors
(TFs) that were differentially expressed across the 5 regions. We mapped all DETCs
to a manually curated list of TFs (Vaquerizas et al., 2009).We identified 519 DETCs
that mapped to 320 TF genes, although only 20% mapped to the promoter or 5′ UTR
region (online Supplementary Table 5). The DETF with the highest expression in-
cluded those involved in neuronal postmitotic differentiation and laminar integrity in
the cortex (e.g., TBR1, Bedogni et al. (2010), NR2F1, Naka et al. (2008), NEUROD1,
NEUROD2, BHLHE22, and MEF2C) and neuronal plasticity (e.g., NR4A1) (Table 5.3
presents the top 20 most highly expressed TF per module). Most of the DETCs that
mapped to TF were ATCs. One exception was a DTC that mapped to the promoter re-
gion of the KLF5 gene and was differentially expressed in M27. KLF5 has been shown
to regulate survival and apoptosis through the regulation of MAPK kinase pathway.
Other TFs that are module specific are presented in online Supplementary Table 5.

TC ID Start End TF Module
Mean

(geometric)
L3_chr2_+_161981068 161980893 161981527 TBR1 (tbx family) 13 28.72
L3_chr5_+_92946017 92945793 92946068 NR2F1(COUP-tf1) 13 6.66
L3_chr12_+_50731491 50731420 50731653 NR4A1 13 6.04
L3_chr7_+_39092007 39091721 39092121 POU6F2 13 5.52
L3_chr8_+_65655474 65655301 65655790 BHLHE22 13 5.04
L3_chr19_-_41561943 41561901 41561975 ZFP14 13 4.98
L3_chr5_-_88155431 88155327 88155565 MEF2C 13 4.96
L3_chr1_-_925340 925274 925452 HES4 13 4.74
L3_chr2_-_182253487 182253446 182253729 NEUROD1 13 4.27
L3_chr2_-_242205564 242205419 242205632 THAP4 13 3.99
L3_chr17_-_35017699 35017598 35017742 NEUROD2 13 3.95
L3_chr3_+_69871321 69871264 69871369 MITF 13 3.94
L3_chr13_+_72531139 72531098 72531259 KLF5 27 3.85
L3_chr4_+_146623601 146623337 146623645 SMAD1 13 3.75
L3_chr9_-_37455447 37455266 37455461 ZBTB5 13 3.75
L3_chr13_-_73606569 73606482 73606578 KLF12 13 3.59
L3_chr1_+_13977672 13977542 13977772 PRDM2 13 3.45
L3_chr19_+_60846825 60846530 60846828 ZNF581 13 3.40
L3_chr7_+_38984037 38983927 38984054 POU6F2 13 3.38
L3_chr2_+_45022343 45022302 45022747 SIX3 3 3.37

TABLE 5.3. List of 20 most highly differentially expressed TF

To identify specific TFs that were coexpressed with (and possibly regulate) the
DETCs, we screened proximal (-300/+100 bp) and distal (-1500/+500 bp) promoter
sequences of all TCs for transcriptional factor binding sites (TFBS) using remote de-
pendency models (see online Supplementary data, Methods). Overall, we identified 3
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classes of TFBS that were significantly overrepresented in the promoter regions of the
DETC, namely, BPTF (FAC1), the TBX family, and CUX1 (CDP). These TFs stand out
as regulators during neurodevelopment including dendritogenesis (CUX1) (Cubelos
et al., 2010), cortical formation (Tbr1-TBX) (Bedogni et al., 2010), and neurite out-
growth (BPTF) (Rhodes et al., 2003). On the other hand, we found that 15 classes of
TFBS were significantly underrepresented including E2F, EGR (KROX), the Sp family
(Sp1 and Sp3), Elk1, ATF6, CREB1, and MYC, and KLF5. These TFs are known to be
involved in apoptosis (E2F and KLF5) and synaptic plasticity (EGR1-2, CREB, KLF5,
and Elk).

We also screened every module separately. We identified significant over/under-
representation of TFBS in 19 out of the 29 modules (online Supplementary Table 6a
and b). The TBX binding site was overrepresented in most of the modules, whereas
the BPTF binding site was significantly overrepresented in M13 and M27. Other TFBS
were overrepresented although they did not reach statistical significance (online Sup-
plementary Table 6a and b).

5.3.5 Methylation in the brain transcriptome of aged individuals. DNA methy-
lation at CpG nucleotides is another crucial mechanism for the regulation of gene
expression (Jones, 2012). To investigate to what extent the patterns of expression
in our data correlated with methylation, we analyzed methylation signatures in all
25 samples. After quality control and filtering, we obtained 551,178 MPs distributed
and 95,715 of these were shared by at least 2 samples (of the 25 samples) and were
used for downstream methylation analysis. We first assessed how many annotated
genes from GENCODE were methylated and found that 73% of all methylation signals
mapped within genes (Figure 5.4), 43% to introns, 27% to exons, and 25% to pro-
moter regions. We also looked at the proportion of methylation signals that occurred
within CpG islands. We found that only 6% of methylated regions mapped within CpG
islands. Of the promoters that mapped within CpG islands (45% of total), only 38%
were methylated. Our data show that most of the methylated genomic regions occur
in gene bodies and outside CpG islands (the list of MPs we used for the analysis is
available on request).

5.3.5.1 Regional differences in methylation across brain regions. To identify
DMP, specific for specific brain regions, we modeled the MPs using a linear model for
regional effects, adjusting for both individual and possible methylation batch effects.
Using this approach, we identified 13,423 DMPs, and of these 75.9% were mapped
within gene bodies. Genes that were differentially methylated included NRXN1, ITPR1,
MADD, CNTNAP1, SRR, GABBR1, INPP5A, HTR1D, DLGAP1, and TIAM2, which have
been previously shown as methylated (Iwamoto et al., 2011) and that we found differ-
entially methylated in frontal cortex. We also compared the list of DMPs with MPs de-
rived from Davies et al. (2012), where differences in methylation across several brain
areas (mainly cortex and cerebellum) and blood were reported. We found that at least
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FIGURE 5.4. Percentage of methylation peaks mapping to different gene regions, within and outside
CpG islands

39% of the DMPs overlapped with these from Davies et al. (2012). Moreover, several
genes that we found differentially methylated showed also differences in methylation
between cerebellum and cortex (e.g., AACS, ADCY5, EPHB4, GALNT9, and GRM4)
and between brain and blood (e.g., CCDC85A, PCDH9, PDE4D, and PPP2R2B). This
analysis shows that as much as 39% of methylated regions in brain (as identified by
2 different approaches) exhibit differences in their methylation profile in the brain re-
gions we analyzed. The list of DMPs that we identified and that overlapped with MPs
from Davies et al. (2012) is presented in online Supplementary data, Data set 2).

5.3.5.2 Correlation between MPs and expression. To analyze the correlation
between expression and methylation in our data, we first overlapped the genomic co-
ordinates of both data sets considering promoter regions from -1500 to +500 bp rel-
ative to the most highly expressed TSS. We found that only 9% of all TCs overlapped
with at least 1 MP. Overall, there was no significant correlation between methylation
and expression (Spearman correlation: r=−0.05), most likely because of the large
variation in the methylation of TCs with very low counts (Appendix Figure D.10). We
also analyzed the correlation between methylation and expression for protein-coding
genes and noncoding genes separately (the number of ncRNA genes that overlapped
with the MPs was too small to be analyzed independently) and did not observe any
difference in their correlation coefficients (Spearman correlation of -0.06 and -0.07 for
ncRNAs and proteincoding genes, respectively). Therefore, we tested for significant
differences in expression because of “methylation effects” at individual TCs adjusting
the expression for brain region and batch covariates. For this analysis, we only consid-
ered MPs that were present in at least 5 libraries. After correcting for multiple testing,
we identified 312 TCs (5%) with differences in expression because of methylation ef-
fects. Of these, 34 TCs also exhibited differences in expression per region. Therefore,
the differential expression because of regional effects we observed earlier was not
driven by differences in methylation to a large extent. Genes with differences in ex-
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pression per region because of methylation status included CDK10, NRN1, PYCARD,
TIMP3, and UCP2. For these genes, promoter methylation has previously shown to
regulate expression (Gloss et al., 2012, Konishi et al., 2011).

5.3.6 Correlation between MPs and expression. We compared the methyla-
tion status of differentially and non- DETFs. We did not identify any significant dif-
ference in the proportion of methylated TFs between the 2 groups (7% and 10% for
differentially and non-DETFs, respectively). However, there was a significantly higher
proportion of MPs mapping to the 3′ UTR regions in the DETFs (50% vs.15%, Fisher
p = 0.0001), whereas in the group of non-DETFs, most of the MPs mapped to the
canonical promoter region (11% vs. 42%, Fisher p= 0.0058).

We also analyzed whether methylation could affect the expression of TCs by bind-
ing to their TFBS, presumably by modifying the spatial structure of binding sites (Choy
et al., 2010). We screened the TFBS identified previously for overlaps with differen-
tially MPs and found 304 TFBS in such locations (details of the statistical analysis are
provided in online Supplementary data, Methods). Out of all these TFBS, we only
selected those, which overlap with differentially MPs showing a negative correlation
between expression and methylation. Because of low number of high confident TFBS
predictions made by RDM, we only identified a few TFs having several binding sites in
such locations, namely, E2F group, Sp1:Sp3 complex, AP2alphaA, FAC1, and NHLH1
(for details, see online Supplementary data, Methods and Table 7). This coincided
with the underrepresentation of predicted TFBS for certain TFBS including E2F and
Sp1:Sp3 observed earlier (online Supplementary Table 6a and b), suggesting that the
corresponding TFs even being nondifferentially expressed may be involved in regula-
tion of differential expression.

5.4 Discussion. In this study, we used CAGE in combination with massive par-
allel sequencing to profile transcription initiation across 5 different brain regions of
aged, nondemented individuals and evaluated the extent of region specificity in alter-
native promoter usage and expression. At a sequencing depth of 1e2 million CAGE
tags per library, we found that 40% of all GENCODE genes were expressed in brain.
This estimate is probably conservative because it has been shown that deeper sequenc-
ing is needed to identify rare functional transcripts (Mercer et al., 2012). In addition,
we annotated 6% of intergenic TCs to 559 lncRNAs that had previously only been
predicted in silico.

We found that 77% of the genes with canonical TCs in our data set overlap with
another brain transcriptome data set derived from RNA-Seq methodology (Ramsköld
et al., 2009). Comparing the 2 data sets reveals that CAGE detects more ncRNA
transcripts (e.g., lncRNAs and pseudogenes) whereas the proportion of proteincoding
genes was higher with RNA-Seq. These differences could be the result of differences in
sequencing depth or due to marked differences in the experimental design of both ap-
proaches. Indeed, although CAGE and RNA-Seq can be used to quantify the amount of
gene expression and that there is a high correlation of gene expression between these
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2 approaches (0.57, see Dong et al. (2012)), RNA-Seq libraries are commonly enriched
for poly A+ transcripts (Mortazavi et al., 2008) of which protein-coding genes are an
abundant class. In contrast, CAGE method captures capped RNA transcripts of both
poly A+ and poly A- classes (Carninci, 2007). This also may explain why some genes
that appeared highly expressed in brain in the RNA-Seq data set were not identified
with CAGE including mitochondrial and ribosomal genes because they are uncapped
and, therefore, not well covered by the CAGE approach.

Recent studies show that ncRNAs regulate gene expression in brain and play a role
in the development and in the onset of neurologic diseases (Schonrock et al., 2012).
Most research has focused on deciphering the functional role of lncRNAs and miRNAs,
but other classes of ncRNAs may also be important. We found that more than 4.7%
of the total RNA pool (and 24% of the ncRNA) consisted of annotated pseudogenes.
The contribution of this ncRNA class to the transcriptome is currently unknown, with
estimates ranging from 5% (Frith et al., 2006), which is consistent with our data,
to 20% (Pink et al., 2011). Although the functional impact of ncRNA classes was
not assessed in this study, our findings demonstrate that pseudogene expression is a
pervasive feature of the transcriptome in aged brain.

We found expression patterns consistent with aging, including high expression of
GPAFP (Starkey et al., 2012) and SPARCL1, which are markers of gliosis, and high ex-
pression of genes involved in protection against oxidative stress and amyloid aggrega-
tion. This group includes CLU, the gene for clusterin, an extracellular chaperone that
maintains stressed proteins in a soluble state, thereby preventing their precipitation
(Poon et al., 2002). Clusterin colocalizes with amyloid plaques and neurofibrillary
tangles, and it has been suggested that it protects neurons from aggregate-induced
damage (Yerbury et al., 2007). The ubiquitin-proteosome pathway was overrepre-
sented in the group of highly expressed genes. This pathway has been shown to be
downregulated in disorders such as AD and PD (Dennissen et al., 2012), and this de-
crease correlates with a failure of neurons to remove toxic protein aggregates. In this
regard, it is important to stress that despite some pathologic findings consistent with
aging, none of the 7 donors used for this study showed any overt AD or PD pathol-
ogy (Braak tangle stages ≤3 and Braak α-synuclein stage 0-IV; online Supplementary
Table 1). These results suggest that increased expression of genes involved in the
ubiquitin-proteosome pathway and neuroprotection (e.g., CLU) may help to protect
against overt protein aggregation in aged healthy individuals.

It has been recently shown that alternative promoter usage and alternative splic-
ing can explain differences in gene expression across brain regions (Pal et al., 2011,
Tollervey et al., 2011). Our data support the role of alternative promoters in causing
expression differences between brain regions.We found that 81% of the DETCs were
putative alternative TSS of genes with a main promoter that was similarly expressed
in all the regions analyzed. This shows that the major transcripts were more often
uniformly expressed whereas alternative transcripts were more likely to be region spe-
cific. Alternative promoters can alter the expression of a main transcript by competing
for the cell’s transcription machinery (Davuluri et al., 2008) or by antagonizing the
effects of the main transcript (Tschan et al., 2003). For example, we found a DETC in
M18 (online Supplementary Table 5) mapping to the promoter region of a short iso-
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form of DMTF1, which has been shown to antagonize the effects of the main DMTF1
transcript in myeloid lines (Tschan et al., 2003). Whether the expression of the shorter
isoform leads to the same changes observed in other cells cannot be ascertained here,
but it suggests an interesting mechanism by which alternative promoter usage might
lead to differences in expression.

In our data, most of the ATCs that were differentially expressed were located in
noncanonical gene regions (Figure 5.1a), particularly in introns. Although there is ev-
idence that CAGE tags can also mark post-transcriptional events (Mercer et al., 2010),
we provide several lines of evidence indicating that a proportion of transcription is ini-
tiated from noncanonical gene regions. First, we only included CAGE clusters present
in at least 2 biological replicas, which makes it unlikely that a tag identified twice is
the result of an artifact. Second, we found that at least one-third of noncanonical TCs
overlapped with other signatures of promoter activity derived from H3K4me3 histone
marks (data not shown). In addition, we confirmed with RACE the existence of capped
products for 4 putative alternative TSSs in the CNP, RTN4, NRG3, and AUTS2 genes
(online Supplementary data, Results), which may represent novel isoforms for those
genes. Indeed, we confirmed experimentally the presence of an alternative TSS in the
intronic region of AUTS2, which is associated with a shorter transcript that was previ-
ously only in silico predicted. Our results indicate that at least one-third of alternative
TSS map to intronic gene regions.

Several growth factor signaling pathways have been implicated in the alterations
that render neuronal cell populations susceptible to neurodegeneration. Our data
showed that the FGF, epidermal growth factor (EGF), insulin growth factor (IGF), and
platelet-derived growth factor pathways were overrepresented in several differentially
expressed modules (Appendix Figures D.5 to D.8 and online supplementary Table 4a).
Common to these pathways is the mitogen-activated protein kinase (MAPK) cascade
that has a broad range of effects on cellular function including survival and differenti-
ation (Thomas and Huganir, 2004). The FGF signaling pathway was the most signif-
icantly overrepresented pathway in module M27, where a reduced expression in hip-
pocampus was observed. The hippocampal region is a primary target of the neurode-
generative changes that lead to cognitive impartment and AD. Several mechanisms
have been suggested to lead to hippocampal dysfunction, including decreased neu-
ronal plasticity and increased calcium toxicity. The FGF pathway can influence neural
plasticity through several mechanisms including MAPK/ERK activation (Thomas and
Huganir, 2004), and its expression was reduced in the hippocampus relative to other
regions. These findings suggest that the FGF pathway could be an important target for
pharmacologic treatments to combat neurodegeneration.

The caudate and putamen regions (striatum), which are components of the cortical-
subcortical circuits of motor functions, are particularly susceptible to neurodegener-
ation in disorders such as Huntington’s disease and PD (DeLong and T., 2007). In-
terestingly, functional enrichment analysis based on several DETCs showed that genes
encoding components of the Wnt signaling pathway and the mGluRI were signifi-
cantly overrepresented in the modules where coexpression in the striatal regions was
observed (M18; Table 5.2). Both Wnt signaling and mGluRI have been implicated in
the development or progression of PD (Johnson et al., 2009a, L’Episcopo et al., 2011).
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Moreover, mGluRI modulates neurotransmission throughout the basal ganglia, and its
deregulation can contribute to neuronal damage (Johnson et al., 2009a). Our results
suggest that in the absence of a clear genetic risk, pathways other than those associ-
ated with classical mutations are important determinants of the regional vulnerability
in the aging brain.

We investigated whether differences in expression could be attributed to differen-
tial TF expression. We found that 7% of TFs were differentially expressed, and many
of these have been shown to be involved in the neurodevelopment, which is unex-
pected given that neurons are postmitotic cells. The TFBS analysis also showed an
overrepresentation binding sites for TFs involved in neurodevelopment. There are few
explanations for this finding including a bias in the literature toward functional anno-
tation of neurodevelopmental TFs. Another plausible explanation is that, as the brain
ages, these genes may become derepressed because of, for example, damage in their
promoter regions. Although we did not find decreased methylation in the group of
DETFs, we found decreased methylation in the promoter region of this group and in-
creased methylation in the 3′ UTRs. Methylation marks at both ends of transcriptional
units could affect the expression of the group of DETFs (Jones, 2012).

Our analysis of methylation indicated that most of the methylation signals in our
samples mapped to gene bodies and outside CpG islands. This is consistent with recent
evidence that in brain most methylation signals occur within gene bodies, most likely
in association with alternative promoters (Maunakea et al., 2010). However, we did
not find an overall correlation between methylation and TC expression. Several fac-
tors could account for the lack of correlation. For example, batch effects were evident
in the CAGE data set. In addition, only 9% of the methylated regions colocalized with
a TC, which means that most of the expression in our data remained uninvestigated.
The lack of overlap between the MPs and the CAGE clusters could also be because of
the fact that the arrays we used to profile methylation were biased toward annotated
promoters and CpG islands, whereas our CAGE clusters mapped to a large extent to
noncanonical regions. Last, as a result of the small sample size, most of MPs were
identified in less than 5 samples and were removed from the statistical analyses. De-
spite this drawback, we identified several gene-associated TCs that were affected by
methylation, some of which were already documented (Iwamoto et al., 2011).

Our study is far from being comprehensive because of our small sample size and
the limited number of brain regions analyzed. In addition, because of the diverse cel-
lular composition of the brain, one might argue that the expression we observed is
not exclusive to neuronal populations, although neurons and glia cells represent most
of the cellular pool in human brain. A separate issue is that most of our bioinfor-
matics analysis used public databases, which are still incomplete. For example, many
protein-coding genes that we found differentially expressed could not be assigned to
any functional pathway because of a lack of annotation. Therefore, inferences about
functional pathways are based on a limited number of genes. Nonetheless, our data
set provides an important addition to existing data on spatial expression patterns in
brain.

In summary, our study shows that despite the absence of neuropathologic hall-
marks of neurodegenerative disease, genetic signatures related to neurodegeneration
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were already present in brain regions that are highly vulnerable to neurologic disor-
ders.We showed that differences in transcription initiation and hence gene expression
between brain regions are partly explained by alternative promoter usage and that
specific signaling pathways are affected by the differential patterns in gene expression
that we observed. Our data are a starting point to investigate regional susceptibility to
brain aging and neurodegeneration.



CHAPTER 6

Graphical modeling using structural equation models with
shrinkage priors

We study the problem of recovering an undirected graph structure using a sys-
tem of (nodewise) regressions or a structural equation model (SEM). Adopting a
Bayesian approach, we argue that regularization by means of Gaussian (ridge) pri-
ors coupled with a posteriori edge selection is a simple and attractive alternative to
sparse priors. Model simplicity facilitates the use of shrinkage priors, which depend
on all regression equations. This type of prior creates the opportunity to borrow
information across equations and improves inference when the number of features
is not small, which is typical in modern data sets. In this chapter, we present a
computationally attractive Bayesian SEM with shrinkage priors and an empirical
Bayes procedure to estimate parameters of those. We show that such priors may
substantially improve graph structure recovery with SEMs. In simulations, we also
demonstrate that the approach can outperform popular (sparse) methods.

6.1 Introduction. Gaussian graphical models are an important tool to describe
the dependence structure among multiple variables. In recent years, these models
have attracted much attention due to the emergence of complex and high-dimensional
data sets, genomics data being a prime example. Among the many approaches that
have been advanced, structural equation models (SEMs) have been found to be partic-
ularly valuable. In this chapter we develop a computationally attractive Bayesian SEM
that uses shrinkage priors to borrow information across equations and take advantage
of the dimensionality of the problem. We show that such priors may substantially
improve graph structure recovery.

Gaussian graphical modeling aims to characterize the conditional dependencies
between random variables as measured by partial correlations. Consider the p-di-
mensional gaussian random vector Y= {Y1, · · · ,Yp}∼N (0p,Ω−1

p ) with positive definite
precision matrix Ωp =(ωi j)i, j∈I , I = {1, · · · , p}. The statistical distribution of Y defines
a graphical model over the undirected graph G = {I,E} of conditional dependencies
between the nodes indexed by I. The edge set E is determined by Ωp such that edge
(i, j)∈E ifωi j 6=0. This is because partial correlations may be expressed in terms of the
elements of Ωp. Precisely, corr(Yi ,Y j |YI\{i, j}) =−ωi j/

p

ωiiω j j , ∀ i 6= j. This property
is at the center of most modern inference techniques that focus on estimating or only
recovering the support of the precision matrix. Below, we discuss penalized precision
estimation and SEMs. For the sake of brevity we only cover the frequentist perspective,
which is most popular in practice and used as a benchmark in our simulations.
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Penalized (inverse) covariance estimation amounts to maximizing the penalized
log-likelihood `(Ωp) = log |Ωp|− t r(SΩp)−λJ(Ωp), where S is the sample covariance
estimate, J a penalty function and λ an unknown scalar parameter. The penalty J
may serve two purposes: (1) improve the quality of estimation and, (2) discriminate
zero from non-zero entries in Ωp. Because it simultaneously achieves (1) and (2), the
`1-norm penalty (or versions thereof) is a popular choice (Friedman et al., 2008). Al-
ternatively, a ridge-type penalty (Ledoit and Wolf, 2004, Warton, 2008) may be used
in combination with a selection procedure (Schäfer and Strimmer, 2005). An obvi-
ous critical issue is the determination of the penalty parameter λ. Various solutions,
usually based on resampling or cross-validation, have been proposed towards the se-
lection of an ‘optimal’ value (Foygel and Drton, 2010, Gao et al., 2012, Giraud, 2008,
Lian, 2011, Meinshausen and Bühlmann, 2010, Yuan and Lin, 2007).

SEMs are a powerful approach to graphical modeling. It consists in modeling
the full conditional distribution of each node and results in the following system of
nodewise regressions:

(6.1) Yi =
∑

j∈I\i
Y jβi, j+εi , i ∈ I,

where εi ∼N (0,σ2
i ). By (repeatedly) partitioning the covariance Ω−1

p and using prop-
erties of the mutivariate normal distribution, it can be shown that regression param-
eters in (6.1) are functions of the elements of Ωp. Precisely, βi, j =−ωi j/ωii . This in-
dicates that the problem of identifying zero entries in Ωp can be recast into a variable
selection problem in p Gaussian regression models. This approach to graphical mod-
eling has been popularized by Meinshausen and Bühlmann (2006) who introduced an
`1-penalty to each regression problem. Other penalties are also used (Krämer et al.,
2009). A drawback of model (6.1) is that it misses the symmetry ωi j =ω ji in Ωp, so
estimation may lack efficiency. Peng et al. (2009) showed how to work directly on par-
tial correlations to overcome this. Alternatively, Meinshausen and Bühlmann (2006)
proposed a post-symmetrization step with an ‘AND’ rule: edge (i, j)∈ E if βi, j 6= 0 and
β j,i 6= 0. Despite the symmetry problem, graph structure recovery based on (6.1) per-
forms well and is widely used in practice. SEM (6.1) appears to also be a good model-
ing framework. For example, regularization may be node-specific and hence flexible;
additional covariates are, in principle, easily accounted for; and extensions to non-
Gaussian data are possible (Yang et al., 2012). It seems more difficult to achieve these
goals in penalized precision estimation.

In this chapter, we adopt a Bayesian approach to Gaussian graphical modeling us-
ing SEMs. We propose to use (6.1) in combination with Gaussian priors to effectuate
regularization. Then, variable selection is carried out using simple thresholding rules
on posteriors. A novelty of our approach is the use of shrinkage priors that allow
borrowing of information over equations. These priors have been successfully used in
statistical genomics, e.g. in differential gene expression analysis (Van de Wiel et al.,
2013). Here, we show that shrinkage priors can also substantially improve graph struc-
ture recovery with SEMs. To estimate parameters of priors, we employ the empirical
Bayes procedure of Van de Wiel et al. (2013). The proposed Bayesian SEM is compu-
tationally attractive: the estimation procedure is coherent and complete, so does not
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rely on resampling or cross-validation to estimate the regularization parameter(s). In
simulations, we show that the method can outperform popular (sparse) methods.

6.2 Methods. In this section we present a Bayesian SEM for graphical modeling
along with an empirical Bayes procedure to estimate parameters of priors. Finally, a
selection procedure for inferring the edge set E is introduced.

6.2.1 Model. Suppose the n by p matrix Y = [y1 . . .yp] are n independent real-
izations from Y. Then, we adopt the following Bayesian SEM for graphical modeling:

yi =
∑

j∈I\i
y jβi, j+εi , i ∈ I

βi, j ∼N
�

0,τ2
i

�

εi ∼N
�

0,σ2
i In

�

τ−2
i ∼ G

�

a1, b1
�

σ−2
i ∼ G

�

a2, b2
�

(6.2)

Here G (a, b) denotes a gamma distribution with shape and rate parameters a and b,
respectively.

In model (6.2), parameters at the lowest hierarchical level are endowed with Gaus-
sian priors. Specifically, a ridge-type prior is imposed on the (high-dimensional) vector
of regression parameters in each equation. This prior encourages coefficients to be
shrunken towards zero, placing an equal weight on each of them. Conjugate gamma
priors are additionnally placed on precisions. These are shrinkage priors that are
shared by all regression equations. Their roles are distinct in that they allow the bor-
rowing of information, on one hand, for precisions of regression parameters and, on
the other hand, for the error precisions. It seems natural here to employ shrinkage
priors for both types of precisions as they both have a prominent role in the regular-
ization. The estimation of such priors is discussed in next section.

Gaussian regularization in model (6.2) confers the method a certain computational
advantage over complex sparse priors. This is because approximations to posteriors are
readily available (Ormerod and Wand, 2010, Rajagopalan and Broemeling, 1983, Rue
et al., 2009), whereas sparse priors often require MCMC. Moreover, Gaussian priors
allow an SVD decomposition of the high-dimensional components (West, 2003). This
is computationally advantageous when p> n and results in greater numerical stability.
The resulting orthogonality of the components may also better accommodate multi-
parameter shrinkage than the original setting. The SVD results can then be back-
transformed to the original space (at least in our setting with approximately Gaussian
posteriors; see Section 6.2.3).

To recover the graph structure, variable selection is required. The Gaussian ridge
prior we use shrinks the vector of parameter towards the null vector, however, it does
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not explicitly project it on to a lower dimensional space. Hence, the regularization has
no intrinsic variable selection property and a separate procedure is needed. In Section
6.2.4 we discuss the use of simple thresholding rules on posteriors.

6.2.2 Estimation of hyperparameters. To estimate the set of hyperparameter
vectors θ = {(a1, b1),(a2, b2)}, we adopt the empirical Bayesian approach of Van de
Wiel et al. (2013). This consists in estimating each element θk of θ by the value for
which the approximation

(6.3) πθk
(αi)≈

1

p

p
∑

i=1

πθk
(αi |yi)

is most accurate. Here αi is the parameter to which the prior (that depends on pa-
rameter vector θk, k ∈ {1,...,card(θ)}) applies, e.g. αi =τ

−2
i or αi =σ

−2
i . Van de Wiel

et al. (2013) showed that (6.3) is an approximate solution to the likelihood equations
that ensure maximization of the marginal likelihood (conventional empirical Bayes).
Conveniently, equation (6.3) only requires marginal posteriors. In next section we
discuss their approximation.

The problem of estimating θ is solved iteratively by an EM-type algorithm, which
is sketched as follows:

1. Initiate m= 0 and θ(0)k , ∀k

2. Approximate posteriors πθk
(αi |yi)

3. Generate independent samples from πθk
(αi |yi)

4. Obtain θ(m+1)
k by best approximation of parametric prior πθk

(αi) to the empiri-
cal mixture of posteriors

5. Repeat steps 2 to 4 until convergence

In step 4, the approximation by a parametric prior (in our case a gamma distribution)
may be achieved by maximum likelihood or the method of moments. Note, however,
that these are being used in an unconventional manner since samples obtained in step
3 are not observations. Convergence can, e.g., be monitored using the parametric pri-
ors πθk

(αi) by means of a Kolmogorov-Smirnov-type metric (Van de Wiel et al., 2013)
or the (log) marginal likelihoods. The computational cost of the algorithm is low pro-
vided approximations in step 2 are fast. These are discussed in the following section.

In high-dimensional cases (n> p), we found that joint estimation of priors is a dif-
ficult task because the prior on τi tends to dominate the prior on σi , which is pushed
towards large precisions. To overcome this, we propose to first scale the prior on σi
by estimating it (and only it) using the intercept SEM. Next, we estimate the prior on
τi conditionally on the prior on σi with the procedure described above. This strategy
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connects to the idea that the prior on regression parameters should be defined con-
ditionally on noise variances (Park and Casella, 2008). In simulation 6.3.2, we adopt
this strategy when n≤ p.

6.2.3 Approximations of posteriors. In Bayesian SEM (6.2), the posteriors of
interest are π(βi |yi) (with βi = (βi,1, . . . ,βi,i−1,βi,i+1, . . . ,βi,p)T) for inferring the graph
structure, and πθ1

(τ−2
i |yi) and πθ2

(σ−2
i |yi) for empirical Bayesian estimation of prior

parameters. Here, we describe variational approximations to these posteriors. We ap-
ply a variational approximation because it is computationally efficient and provides an
analytic expression for the lower bound on the log-marginal likelihood, which is useful
for assessing model fit (see Section 6.2.4) and monitoring convergence of the above
algorithm. However, other approximations are possible (Rajagopalan and Broemel-
ing, 1983, Rue et al., 2009). In the following, we drop node index i and parameters
of priors θk for clarity reasons.

We consider variational approximations that estimate posteriors by the product
density that minimizes the Kullback-Leibler (KL) divergence to the true posterior.
These are attractive because our model uses conjugate priors, and therefore, given
a factorization form, the optimal product density is convenient to determine (Bishop,
2006, Winn and Bishop, 2005).

Consider the product density q that, we assume, factorizes as

(6.4) q(β,τ−2,σ−2) = q1(β)q2(τ
−2)q3(σ

−2),

then the product density that minimizes the KL divergence to π(β,τ−2,σ−2|y) is
(Ormerod and Wand, 2010):

q∗(β,τ2,σ2;y) = q∗1(β;y)q∗2(τ
−2;y)q∗3(σ

−2;y)

q∗1(β;y) =d N
�

β∗,Σ∗
�

q∗2(τ
−2;y) =d G

�

a∗1, b∗1
�

q∗3(σ
−2;y) =d G

�

a∗2, b∗2
�

(6.5)

where

Σ∗ =

�

a∗2
b∗2

XTX+
a∗1
b∗1

Ip

�−1

,

β∗ =

�

a∗2
b∗2

�

Σ∗XTy,

a∗1 = a1+ p/2,

b∗1 = b1+0.5
�

β∗Tβ∗+ tr(Σ∗)
�

,

a∗2 = a2+n/2, and

b∗2 = b2+0.5
�

(y−Xβ∗)T(y−Xβ∗)+ tr(XTXΣ∗)
�

.
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Here X refers to the appropriate design matrix, which for the ith equation equals Y−i =
[y1 . . .yi−1yi+1 . . .yn].

The joint density q∗ maximizes the lower bound L on the log-marginal likelihood
logπ(y):

L= 0.5p−(n/2) log(2π)+(1/2) log |Σ∗|+a2 log b2−a∗2 log b∗2+
logΓ(a∗2)− logΓ(a2)+a1 log b1−a∗1 log b∗1+ logΓ(a∗1)− logΓ(a1).

(6.6)

The optimal densities in (6.5) have the property that their parameters depend on
each other, apart from a∗1 and a∗2 that are deterministic. This motivates the following
algorithm to estimate Σ∗, β∗, b∗1 and b∗2 (Ormerod and Wand, 2010):

1. Initiate b∗1 and b∗2

2. Update Σ∗, β∗, b∗1, b∗2 and L in that order using their above expressions

3. Repeat step 2 until convergence of L

Upon convergence, (marginal) posteriors π(β|y), π(τ−2|y) and π(σ−2|y) are ap-
proximated by q∗1(β), q∗2(τ

−2) and q∗3(σ
−2), respectively.

This algorithm intervenes as the maximization step of the EM algorithm (step 2) in
Section 6.2.2. In this case, for computational efficiency, we only perform one iteration.
Note that the empirical Bayesian estimation procedure connects to other variational
EM algorithms in literature (Corduneanu and Bishop, 2001).

In high-dimensional setting, it is preferable to use an SVD decomposition of X=
UDVT = FVT and work with the n by n matrix F. Then, the posterior π(β|y) is ap-
proximated by a linear transformation of the Gaussian density q∗1(υ), where υ is the
parameter vector in the new space. Note that for the purpose of variable selection we
are interested in the posterior expectation Eπ

�

β|y
�

and standard deviation sdπ
�

β|y
�

of β, hence the (high-dimensional) posterior covariance needs not to be determined
in its entirety, only its diagonal.

6.2.4 Selection of edges. To recover the graph structure, variable selection is
required in SEM (6.2). We here describe a model-based approach, which connects to
the recent selection procedure of Bondell and Reich (2012). However, we use marginal
likelihood to compare the fit of models with well-informed priors.

Let us denote Eπ
�

βi, j |y
�

and sdπ
�

βi, j |y
�

the posterior expectation and standard

deviation of βi, j , and define κi, j = |Eπ
�

βi, j |y
�

|/sdπ
�

βi, j |y
�

, ∀i, j ∈ I with i 6= j. Our
method is to rank edges according to κ̄i, j = (κi, j+κ j,i)/2 and operate forward selec-
tion. Denoting mE

k the log-marginal likelihood of regression equation k (as measured
by the variational lower bound Lk) in the SEM determined by edge set E, then forward
selection is accomplished by the following iterative scheme:
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1. Initiate `= 0, Γ(0) = I2 and E(0) = ;

2. Determine (r,s) = argmax
k,l

(κ̄k,l), ∀(k, l)∈Γ(`)

3. Only if (mE(`)∪{(r,s)}
r +mE(`)∪{(r,s)}

s )> (mE(`)
r +mE(`)

s ) update Γ(`+1)=Γ(`+1)\{(r,s)},
E(`+1) = E(`)∪{(r,s)}, `= `+1 and go back to previous step

Note that m;k is determined by the SEM with intercepts only. We finally estimate E by
the last update of E.

Our method performs simultaneous selection of (the two) parameters that are as-
sociated with each edge. We found this is a good compromise which acts a smooth
transition between the post-symmetrization procedures based on ‘AND’ or ‘OR’ rule
(Meinshausen and Bühlmann, 2006), which are found to be either too conservative or
liberal.

6.3 Model-based simulations.

6.3.1 Accuracy of hyperparameter estimates. The simulation study examined
the accuracy of hyperparameter estimates obtained with the procedure described in
Section 6.2.2. To do so, we use the following simulation model:

Y j = Xβ j+ε j , j= 1,.. . ,q

β j ∼N (0,τ2
j Ip)

ε j ∼N (0,σ2
j In)

τ−2
j ∼ G

�

a1,1
�

σ−2
j ∼ G (5,1)

(6.7)

The n by p design matrix X was generated from a normal distributionN (0,Φ) where Φ
has entries φk,l =0.7|k−l|, ∀k, l ∈{1,.. . , p}. We consider a medium-dimensional model
and set n = 100 and p = q = 50. To study the accuracy of estimation when priors
are rather informative, we take hyperparameter a1 ∈ {5,10,50,100}. In other words,
different amounts of regularization are considered. For each case, precisions σ−2

j , τ−2
j

and β j were generated according to their prior and subsequently considered fixed. Our
simulation experiment consisted in generating ∀ j ∈ {1,.. . ,q} errors from N (0,σ2

j In)
and obtaining estimates of a1, b1, a2 and b2 using our procedure. This was repeated
100 times. Table 6.1 reports the mean and standard deviations of hyperparameter
estimates.

Clearly, estimates in Table 6.1 are in average close to the true values of parameters.
Hence, estimation is accurate. We also observe that when a1 increases the variance
of â1 becomes larger. This reflects a loss of efficiency when the prior on precisions
of regression parameters is more informative. In all, the present experiment confirms
that the estimation procedure of Van de Wiel et al. (2013) is appropriate for the type
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of model under study.

Estimates
a1 â1 b̂1 â2 b̂2
5 4.735 (0.059) 1.039 (0.011) 5.037 (0.177) 0.993 (0.027)

10 9.584 (0.285) 1.043 (0.011) 5.101 (0.198) 1.034 (0.029)
50 52.769 (4.359) 1.046 (0.005) 5.722 (0.253) 1.059 (0.027)

100 100.454 (16.285) 1.027 (0.003) 5.638 (0.247) 1.023 (0.026)

TABLE 6.1. Mean and standard deviation (in parentheses) of hyperparameter estimates

6.3.2 Graph structure recovery. We are interested in evaluating the perfor-
mance of the Bayesian SEM in recovering an undirected graph structure and com-
paring it to various popular approaches. To do so, we generate 100 samples from a
multivariate normal distribution with vector mean 0 and d×d covariance matrix Σ−1

d ,
where d ∈ {20,50,100,200}. Different patterns of non-zero entries are considered in
the precision matrix Σd = (σi j)i, j∈{1,...,d}, corresponding to different graph structures.
We consider popular band, cluster and hub structures (Zhao et al., 2012), which we
illustrate in Figure 6.1.

(a) Band 1 (b) Band 2 (c) Cluster (d) Hub

FIGURE 6.1. Structures considered for the precision matrix Σ50 in our simulation. Black and white
dots represent non-zero and zero entries, respectively. Only off-diagonal elements are displayed.
For precision matrices with block-diagonal structures (clusters and hubs), block sizes were set to 5
and 10 regardless of the dimension d. Hence, sparsity increases with dimension. Band 1 and 2 are
diagonal matrices with bandwidth 1 and 4, respectively.

We generate Σd as follows. We start with the null matrix and generate non-zero
entries independently from N (0.5,0.12). Then, to make the matrix positive definite
we increment its diagonal by |c|+0.1, where c is the lowest eigenvalue. Finally, the
matrix is subsequently scaled so to have unit diagonal. The simulation of sparse partial
correlations matrix is a difficult task mainly because the scaling step disrupts the range
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of generated values (Krämer et al., 2009). Entries are then greatly shrunk, which ren-
ders graph reconstruction harder. In our simulation setting, we found that generating
entries according toN (0.5,0.12) was giving reasonable ranges for partial correlations.
In Appendix E.1, we provide statistical summaries on generated partial correlations.

We compared the Bayesian SEM with shrinkage priors (SEMB_SHRINK) to the SEM
with `1-penalty (SEML) (Meinshausen and Bühlmann, 2006), the Graphical Lasso
(GLλ) (Friedman et al., 2008) and GeneNet (Schaefer et al., 2006) that uses a ridge-
type penalty with a posteriori edge selection. Additionally, we included SEML_STAB and
GLSTAB, the improved versions of SEML and GLλ (respectively) based on stability selec-
tion (Meinshausen and Bühlmann, 2010). In cases where d ∈ {20,50} (i.e, n> p), for
the purpose of comparison with SEMB_SHRINK, we also considered the Bayesian SEM
(SEMB) with non-informative priors G (0.001,0.001) on τ−2

i and σ−2
i .

Briefly, graph selection is as follows: for SEML and GLλ we use BIC for selecting the
optimal regularization parameter(s) and a threshold along with stability selection; for
GeneNet a cut-off on FDRs is taken; and for the Bayesian SEMs we use the approach
described in Section 6.2.4. In Appendix E.2, we provide for each method more details
as to how edge ranking is obtained and how edges are selected.

To evaluate the performance of methods in recovering the graph structure we show
partial ROC curves (which depict the true positive rate (TPR) as a function of the false
positive rate (FPR), when FPR<0.2) and average TPRs and FPRs on selected structures
as these provide complementary pictures on accuracies. The former gives information
on edge ranking (although it does not compare it to a true ranking) while the other
evaluates edge selection, which is often the most difficult problem. Results are re-
ported in Figures 6.2 to 6.5 and Tables 6.2 to 6.5. We now discuss these.

The relatively less sparse cases d ∈ {20,50} (i.e. n> p) are informative, because
they allow the comparison of SEMB and SEMB_SHRINK, and observing the effect of
shrinkage. The simulation results show that shrinkage priors can substantially improve
structure recovery with the Bayesian SEM. Indeed, partial ROC curves in Figures 6.2
and 6.3 indicate that for most structures shrinkage improves edge ranking. This is
particularly true with cluster structures. Shrinkage seems also beneficial for identifying
the graph. Tables 6.2 and 6.3 show that SEMB_SHRINK identifies more edges that are
true while keeping a low error rate. For hub structures, the shrinkage does not appear
to improve edge ranking and selected graphs seem to include too many edges, higher
TPR is achieved at the price of a higher FPR. This may suggest that the parametric
form of the shrinkage prior is not appropriate or flexible enough to accommodate the
particular structure of hubs.

The low-dimensional case where d = 20 shows that sparse methods can achieve
poor performance when the network is smaller and less sparse. In addition, it seems
that SEMB_SHRINK is preferable to GeneNet for most structures.

When the true precision matrix (d ∈{20,50}) is tridiagonal (band 1) most methods
perform well. However, when the bandwidth is larger results are rather idiosyncratic.
The graphical lasso seem to perform worse both for the ranking of edges and selection
of the graph. SEML is shown to be better. The Bayesian SEM with shrinkage performs
best but the selection of edges seems too conservative when d = 50. GeneNet shows
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good performance. Only when d = 20 the selection of edges is difficult.
In high-dimensional settings (d ∈ {100,200}), simulation results suggest that our

approach can recover sparse structures. It compares well with other methods for edge
ranking. Edge selection seem more difficult since TPRs are often somewhat lower
than others. However, it is interesting to see that SEMB_SHRINK usually achieves a fairly
low FPR (as opposed to the BIC-based methods). GeneNet has an even lower FPR,
but usually also a lower TPR. SEML performs well for edge ranking but BIC results in
high FPRs and too many selected edges. Stability selection improves performances,
especially for identifying the graph. The graphical lasso is shown to be inferior to
others (for all structures) for edge ranking and BIC can results in too many edges.
Again, stability selection enhances performance, sometimes quite dramatically. For
example, GLλ performs worse on hub structures but, combined with stability selection,
it does best for edge ranking and graph selection.

In all, none of the methods performed uniformly better than others. The Bayesian
SEM is shown to perform well on a variety of structures and in high-dimension situa-
tions where it is comparable to other sparse methods. In low- and medium-dimensional
problems, it can clearly outperform others, including resampling-based methods. The
use of shrinkage priors can substantially improve graph structure recovery. However,
we observed that the model meets difficulties in the presence of hub structures. For
the SEM with `1 penalty and the graphical lasso, simulation results suggest that they
are best combined with stability selection. Only then, good performance is achieved
for both ranking and selection. Graph selection based on the BIC criterion may not be
appropriate. Finally, edge ranking with GeneNet is often good, however, edge selec-
tion is rather conservative.

Note that, from a computational perspective, it seems most fair to compare SEMB_SHRINK
with SEML, GLλ and GeneNet only, because these together with our approach do not
require cross-validation or resampling. SEMB_SHRINK often outperforms those even for
the sparser settings.
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FIGURE 6.2. Partial ROC-curves for the different graph structures when d = 20. Each plot depicts
the average true positive rate (y-axis) as a function of the average false positive rate (x-axis) over
50 repetitions. For each network structure we indicate the density of true edges δ.

Band 1 Band 2 Cluster Hub
Method TPR FPR TPR FPR TPR FPR TPR FPR
SEMB 0.937 0.010 0.185 0.003 0.411 0.006 0.807 0.015

SEMB_SHRINK 0.965 0.032 0.265 0.007 0.590 0.013 0.881 0.064
SEML_BIC 0.958 0.019 0.618 0.142 0.502 0.069 0.952 0.022
SEML_STAB 0.185 0.000 0.180 0.008 0.144 0.000 0.093 0.000

GLBIC 0.998 0.282 0.905 0.622 0.563 0.147 0.996 0.351
GLSTAB 0.933 0.027 0.210 0.050 0.264 0.001 0.909 0.061

Genenet 0.903 0.007 0.030 0.001 0.312 0.001 0.662 0.012

TABLE 6.2. Average true and false positive rates of selected graphs over 50 repetitions, for each
method in case d = 20.
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FIGURE 6.3. Partial ROC-curves for the different graph structures when d = 50. Each plot depicts
the average true positive rate (y-axis) as a function of the average false positive rate (x-axis) over
50 repetitions. For each network structure we indicate the density of true edges δ.

Band 1 Band 2 Cluster Hub
Method TPR FPR TPR FPR TPR FPR TPR FPR
SEMB 0.800 0.001 0.186 0.002 0.296 0.002 0.480 0.002

SEMB_SHRINK 0.915 0.012 0.187 0.002 0.413 0.005 0.703 0.024
SEML_BIC 0.925 0.007 0.397 0.032 0.302 0.009 0.768 0.007
SEML_STAB 0.893 0.001 0.304 0.008 0.287 0.001 0.635 0.003

GLBIC 0.978 0.084 0.555 0.142 0.438 0.034 0.926 0.076
GLSTAB 0.929 0.007 0.353 0.028 0.280 0.001 0.773 0.013

Genenet 0.910 0.006 0.237 0.002 0.353 0.004 0.475 0.005

TABLE 6.3. Average true and false positive rates of selected graphs over 50 repetitions, for each
method in case d = 50.



6.3 MODEL-BASED SIMULATIONS 79

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SEMB_SHRINK

SEML

SEML_STAB

GLλ
GLSTAB

GeneNet

(a) Band 1, δ= 0.020

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SEMB_SHRINK

SEML

SEML_STAB

GLλ
GLSTAB

GeneNet

(b) Band 2, δ= 0.079

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SEMB_SHRINK

SEML

SEML_STAB

GLλ
GLSTAB

GeneNet

(c) Cluster, δ= 0.071

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SEMB_SHRINK

SEML

SEML_STAB

GLλ
GLSTAB

GeneNet

(d) Hub, δ= 0.017

FIGURE 6.4. Partial ROC-curves for the different graph structures when d = 100. Each plot depicts
the average true positive rate (y-axis) as a function of the average false positive rate (x-axis) over
50 repetitions. For each network structure we indicate the density of true edges δ.

Band 1 Band 2 Cluster Hub
Method TPR FPR TPR FPR TPR FPR TPR FPR

SEMB_SHRINK 0.886 0.005 0.211 0.003 0.301 0.007 0.730 0.005
SEML_BIC 0.915 0.143 0.516 0.288 0.479 0.322 0.791 0.117
SEML_STAB 0.928 0.004 0.331 0.007 0.264 0.005 0.827 0.005

GLBIC 0.949 0.038 0.399 0.039 0.230 0.007 0.859 0.024
GLSTAB 0.940 0.006 0.337 0.012 0.203 0.003 0.851 0.003

Genenet 0.939 0.005 0.208 0.002 0.174 0.001 0.653 0.005

TABLE 6.4. Average true and false positive rates of selected graphs over 50 repetitions, for each
method in case d = 100.
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FIGURE 6.5. Partial ROC-curves for the different graph structures when d = 200. Each plot depicts
the average true positive rate (y-axis) as a function of the average false positive rate (x-axis) over
50 repetitions. For each network structure we indicate the density of true edges δ.

Band 1 Band 2 Cluster Hub
Method TPR FPR TPR FPR TPR FPR TPR FPR

SEMB_SHRINK 0.876 0.005 0.269 0.005 0.283 0.005 0.750 0.006
SEML_BIC 0.933 0.094 0.592 0.201 0.584 0.214 0.852 0.120
SEML_STAB 0.919 0.004 0.310 0.006 0.301 0.004 0.769 0.005

GLBIC 0.908 0.013 0.317 0.012 0.264 0.006 0.765 0.010
GLSTAB 0.965 0.014 0.404 0.018 0.351 0.013 0.862 0.014

Genenet 0.929 0.003 0.217 0.002 0.222 0.001 0.623 0.002

TABLE 6.5. Average true and false positive rates of selected graphs over 50 repetitions, for each
method in case d = 200.
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6.4 Conclusion. In this chapter, we proposed a Bayesian SEM with shrinkage
priors for recovering the structure of an undirected (Gaussian) graph. The model
employs Gaussian priors to impose regularization. Because these are not sparse, a
selection procedure was presented that uses posterior thresholding to infer the graph
structure. The computational efficiency of the Bayesian SEM is accomplished by fast
variational approximations of posteriors and the help of SVD decompositions. The
empirical Bayesian estimation of prior parameters, which connects to a variational EM
algorithm, is also fast. In simulations, we have shown that the proposed approach is
competitive with popular sparse methods in high-dimensional cases and often superior
in low- and medium-dimensional ones. Our approach is computationally competitive
with frequentist methods. To illustrate this, in all simulations we have undertaken the
computing time of the Bayesian SEM was always less than a minute (and often less
than half a minute). This was found to be comparable to the frequentist approaches
included in the simulation study, provided the tuning procedure of regularization pa-
rameters is accounted for. An important practical advantage of our approach is that
the estimation procedure is coherent and complete, so does not rely on tuning, re-
sampling or cross-validation to estimate the regularization parameter(s). This is in
particular encouraging for extending the method to settings with multiple types of
high-dimensional covariates which would require different amounts of shrinkage. For
methods based on resampling or cross-validation this may become overly computa-
tionally burdensome.

A novelty of our work is the use of shrinkage priors that allow sharing of informa-
tion across regression equations. To our knowledge, few works go in that direction.
For example, Yuan et al. (2012) borrow information about the regularizing parame-
ters corresponding to `1-penalties by combining local and global searches. In Bayesian
SEMs for graphical modeling, the focus is often on studying the equivalence in between
the SEM and a proper joint distribution (Dobra et al., 2004, Geiger and Heckerman,
2002). We are not aware of any previous works using shrinkage priors. In this chapter,
we have shown that these could improve graph structure recovery.

The proposed method is particularly suitable for gene network reconstruction us-
ing expression data. This type of network aims at providing a picture of regulatory
mechanisms that act between genes. In practice, the interest often lies in a relatively
small subset of genes that are known to be functionally linked (e.g. a pathway). In
this context, the Bayesian SEM may be more appropriate than others, because such a
gene set is usually of moderate dimension and, hence, due to the functional link the
corresponding network is likely to be relatively less sparse. Therefore, strong depen-
dencies between genes are more likely to occur and this may be in favor of ridge-type
regularization. In addition, the coherence in functionality may render shrinkage to be
beneficial for parameter estimation in the SEM.

We have focused on only recovering the support of the precision matrix. How-
ever, it is also possible to obtain an estimate of it. An immediate approach is to use
the graph structure provided by the Bayesian SEM as a prior for precision estimation.
In a Bayesian setting, this happens naturally and literature refers to this step as pa-
rameter learning (Scutari, 2013). For estimation, versions of the conjugate Wishart
distribution, such as the G-Wishart (Dobra et al., 2011, Wang and Li, 2012), are com-
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putationally attractive. Other estimation strategies have been proposed outside the
Bayesian paradigm. These are usually based on the idea of thresholding. See, for
example, Zhou et al. (2011) and Yuan (2010).

We foresee several extensions. Motivated by simulations, which show a deterio-
ration of performance using shrinkage priors in the presence of hub structures, more
flexible shrinkage priors could be considered. For example, the particular form of hub
structures may suggests that a gamma mixture prior for precisions of regression pa-
rameters may be more appropriate. SEMs being appropriate for directed networks, it
would be interesting to investigate types of shrinkage priors that are suitable in this
context. For example, it may be more appropriate to shrink differently in- and out-
going edges. Extension to non-Gaussian data is possible. In this context, however,
it may be desirable to adopt a flexible likelihood model and other types of posterior
approximations may be considered (Rue et al., 2009).
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A.1 Overlap of model selection procedures. .

Carvalho et al. (2009) Neve et al. (2006)
AIC AIC

OSAIC INT LIN PLE PLI INT LIN PLE PLI
INT 14720 0 0 0 5081 0 0 0
LIN 1563 3352 0 0 504 4758 0 0
PLE 897 19 1751 0 770 58 1933 0
PLI 903 303 227 2134 613 1873 550 3084

BIC BIC
OSAIC INT LIN PLE PLI INT LIN PLE PLI

INT 14720 0 0 0 5081 0 0 0
LIN 3232 1683 0 0 1334 3928 0 0
PLE 1860 21 786 0 1623 79 1059 0
PLI 1888 339 208 1132 1341 2338 554 1887

BIC BIC
AIC INT LIN PLE PLI INT LIN PLE PLI
INT 18083 0 0 0 6968 0 0 0
LIN 1699 1975 0 0 889 5800 0 0
PLE 982 16 979 0 860 72 1545 0
PLI 936 52 17 1130 662 473 71 1884

TABLE A.1. Pairwise overlap comparison of model selection procedures for the two data sets. The
number of times a model is selected by the type of model (INT=intercept, LIN=linear, PLE=piecewise
level and PLI=piecewise linear) is displayed.

A.2 Simulation: precision of knots. We conducted a small simulation to de-
termine the standard deviation of knots α̂ j , j = 1,2,3. We randomly selected 1000
genes in both data sets. For each gene we sampled with replacement the copy num-
ber data and re-estimated knots using method I (both data sets) and II (only for the
breast cancer data set as call probabilites were not available for the other) ; this was
repeated 1000 times. Figure A.1 displays the distribution of the standard deviation
of the three knots over the 1000 genes in each data set using the different methods.
All boxplots show that standard deviations of α̂1 and α̂2 are very small (mostly be-
low 0.05). Standard deviations of α̂3 are larger (probably because amplifications may
be a rare event and only concern few individuals) but still very small (mostly below
0.1). Figures A.1(b) and A.1(c) suggest the difference between method I and II for
determining knots is negligible in the breast cancer data set.
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FIGURE A.1. Boxplots displaying the distribution of the standard deviation of α̂1 (knot between
states -1 and 0), α̂2 (knot between states 0 and 1) and α̂2 (knot between states 1 and 2) for (a)
the colorectal data set (1000 genes) using method I, (b) the breast cancer data (1000 genes) using
method I (c) and II.

A.3 Testing results. .

Linear OSAIC Full
p q p q p q

APC 2.49e-02 2.04e-01 2.26e-02 6.38e-02 2.49e-02 2.12e-01
ATP11A 7.34e-06 9.79e-04 5.88e-06 2.98e-04 2.08e-05 2.26e-03

C20orf24 1.71e-12 2.21e-08 3.06e-13 1.14e-09 3.68e-13 4.76e-09
JMJD6 5.44e-09 4.85e-06 1.78e-08 4.31e-06 2.99e-08 1.89e-05
MTUS1 6.83e-07 1.77e-04 6.38e-08 1.06e-05 1.72e-07 6.34e-05
RPRD1B 3.18e-06 5.45e-04 5.17e-07 5.02e-05 1.13e-06 2.67e-04
TCFL5 6.49e-06 8.88e-04 1.75e-08 4.31e-06 1.01e-07 4.22e-05
TH1L 1.06e-10 3.25e-07 2.72e-13 1.14e-09 7.14e-13 6.16e-09
TP53 6.54e-03 9.87e-02 9.42e-05 2.25e-03 2.55e-04 1.34e-02

ATMIN 1.12e-09 6.45e-08 1.13e-09 4.56e-08 5.24e-09 2.96e-07
CCND1 1.91e-08 5.71e-07 3.56e-08 6.88e-07 1.62e-07 4.15e-06
CEP350 8.55e-08 1.93e-06 3.07e-10 1.69e-08 5.74e-10 5.33e-08
EIF3H 1.70e-12 4.88e-10 8.22e-15 3.75e-12 1.05e-13 6.74e-11
ERBB2 4.46e-10 3.18e-08 4.34e-10 2.15e-08 2.48e-08 9.64e-07
FGFR1 1.62e-06 2.03e-05 3.99e-10 2.02e-08 8.90e-09 4.34e-07
PAK1 1.15e-10 1.21e-08 <2.2e-16 <2.2e-16 2.66e-15 3.94e-12

PITPNA 1.85e-06 2.25e-05 8.40e-10 3.66e-08 1.62e-08 6.93e-07
PTEN 7.27e-09 2.64e-07 9.10e-15 4.02e-12 9.55e-15 9.66e-12

TABLE A.2. P and q-values of the test when under the alternative hypothesis Ha the linear, OSAIC-
selected and the full models are successively considered. The top and bottom parts correspond
respectively to the selected genes from the colorectal and breast data.
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A.4 Simulation: PLRS as screening test. The simulation study aimed to deter-
mine and compare the performance of the PLRS testing procedure in detecting asso-
ciations of various functional shapes. The simulation is based on the recent work of
Louhimo et al. (2012), given some modifications.

A.4.1 Simulation settings. We were interested in simulating relationships of dif-
ferent parametric forms. To do so, we used real DNA copy number data (Neve et al.,
2006) of 80 randomly selected genes. As we aimed to build different models based
on segmented and called copy number data we selected genes which presented var-
ious types of copy number aberration affecting samples in different proportions (see
Table A.3). We selected 40 genes with only two aberration states (20 with loss and
normal; 20 with normal and gain) and 40 others with three states (20 with loss, nor-
mal and gain; 20 with normal, gain and amplification).

We built upon the copy number data different types of association with gene ex-
pression. Let’s define f (x ,s) the gene expression as a function of segmented and called
DNA copy number x and s, respectively; then, we considered the following parametric
forms for f :

• linear (LIN):
fLIN(x ,s) = ax+2, where a ∈ {0.4,0.6,0.8}

• piecewise linear with equal slopes (PLES):
fPLES(x ,s) = ax1{s 6=0}+2, where a ∈ {0.4,0.6,0.8}

• two-state stepwise (STEP2):

fSTEP2(x ,s) =







2− j if s=−1

2 if s= 0

2+ j if s= 1

where s ∈ {−1,0} or s ∈ {0,1} and j ∈ {0.2,0.3,0.4}

• three-state stepwise (STEP3):

fSTEP3(x ,s) =







2− j1 if s=−1

2 if s= 0

2+ j2 if s= 1

where s ∈ {−1,0,1}, j1 ∈ {0,0.2,0.4} and j2 ∈ {0.2,0.3,0.4}

• two-state piecewise linear with unequal slopes (PLUS2):

fPLUS2(x ,s) =







2+ax if s=−1

2 if s= 0

2+ax if s= 1

where s ∈ {−1,0} or s ∈ {0,1} and a ∈ {0.4,0.6,0.8}
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• three-state piecewise linear with unequal slopes (PLUS3):

fPLUS3(x ,s) =







2+a1 x if s=−1

2 if s= 0

2+a2 x if s= 1

where s ∈ {−1,0,1}, a1 ∈ {0,0.2,0.4} and a2 ∈ {0.4,0.6,0.8}

Above, we distinguished between two and three-state relationships as we noticed clear
differences in results depending on the complexity of the relationship. To make the
simulation realistic, the values of parameters {a, j, j1, j2,a1,a2} were motivated by
data. For example, we have observed that for most of the genes in the data set the
average difference in expression between samples presenting a loss and a normal copy
number was less than 0.4. This turned out to be similar between states gain and nor-
mal. Hence our choice of values {0.2,0.3,0.4} for jumps j, j1 and j2. Similarly, we
found that {0.4,0.6,0.8} were reasonable values for slopes a, a1 and a2. Together the
above functions and the parameter values yielded 30 different types of associations.
Note that apart from the linear function ( fLIN), a normal copy number is not allowed
to affect gene expression.

We also considered several nonlinear associations such as the cubic, sigmoid and
mixture of sigmoids. However, results appeared to be highly variable for each method
and highly dependent on the parametric form chosen. Since there is no biological
motivation to prefer either form, they were not included in the present simulation.

We compared the PLRS testing procedure with the LM test, the one-sided Spear-
man’s rank correlation test and the nonparametric test based on the stepwise model
proposed by van Wieringen and van de Wiel (2009), which is one of the top-ranked
methods according to Louhimo et al. (2012). For the latter test we used the R function
cisEffectTest() from the Bioconductor package sigaR (version 1.1.1) and nperm= 1000
permutations. Subsequently, we will refer to this test as “sigaR”.

We generated errors from a Gaussian distribution with mean zero and standard
deviation σ ∈ {0.2,0.35,0.5}. This resulted in 9 cases for fLIN, fPLES, fSTEP2 and fPLUS2;
and 27 cases for fSTEP3 and fPLUS3. In all, for each of the 90 cases we repeated the
simulation 100 times for each of the 80 genes.

To evaluate the different screening tests we show partial ROC-curves (which de-
pict the true positive rate as function of the type I error cutoff α when α≤ 0.2) as
for the purpose of testing only small cutoffs are relevant (Dodd and Pepe, 2003). We
also report the relative AUC, rAUC0.2=pAUC0.2/(0.22/2), where pAUC0.2 is the partial
AUC when α≤0.2 and 0.22/2 represents the expected pAUC for an uninformative test.

A.4.2 Results. Not surprisingly, when the true association only depends on seg-
mented copy number data and is linear ( fLIN; Figure A.3) the LM test is most appro-
priate and sigaR the least. PLRS, although slightly inferior, performs similarly to the
Spearman test. Linearity, however, assumes the effect to be identical over the entire
range of copy number values. In fact, this is unlikely to be true since typically a non-
negligible proportion of samples have a normal copy number (see Table A.3), which
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ID L N ID N G ID L N G ID N G A
1 5 45 21 21 29 41 12 34 4 61 22 27 1
2 4 46 22 22 28 42 7 33 10 62 22 27 1
3 6 44 23 22 28 43 7 38 5 63 21 28 1
4 7 43 24 42 8 44 17 32 1 64 21 28 1
5 8 42 25 44 6 45 20 28 2 65 21 28 1
6 9 41 26 44 6 46 3 34 13 66 20 29 1
7 18 32 27 43 7 47 2 35 13 67 20 28 2
8 17 33 28 41 9 48 2 33 15 68 19 29 2
9 24 26 29 41 9 49 3 28 19 69 20 29 1
10 24 26 30 40 10 50 4 28 18 70 20 29 1
11 23 27 31 40 10 51 9 30 11 71 18 31 1
12 23 27 32 39 11 52 9 28 13 72 19 30 1
13 26 24 33 39 11 53 23 21 6 73 19 30 1
14 27 23 34 37 13 54 17 28 5 74 9 31 10
15 28 22 35 37 13 55 15 29 6 75 9 31 10
16 26 24 36 38 12 56 2 38 10 76 8 30 12
17 20 30 37 44 6 57 15 25 10 77 6 31 13
18 19 31 38 44 6 58 19 28 3 78 14 34 2
19 14 36 39 24 26 59 34 13 3 79 14 34 2
20 15 35 40 24 26 60 6 23 21 80 14 33 3

TABLE A.3. Selected genes in the breast cancer data set (Neve et al., 2006). Displayed is the number
of samples by copy number aberration state (L=loss, N=normal, G=gain and A=amplification) by
gene ID (in bold).

is not expected to shift the gene expression. If we now consider the true association
to be linear for abnormal copy numbers only ( fPLES; Figure A.4), the PLRS procedure
is slightly superior to LM and rAUC(PLRS)

0.2 > rAUC(LM)
0.2 in all cases. Also, sigaR seems

preferable to Spearman. Note that PLRS and sigaR tend to suffer most from noise.
Assuming that the true association only depends on discrete genomic information

and is stepwise ( fSTEP2 and fSTEP3), the PLRS test is generally preferable. Consider the
situation where genes present only two types of DNA copy number aberration ( fSTEP2;
Figure A.5); then, PLRS and sigaR are clearly superior to others, with PLRS being
slightly better (rAUC(PLRS)

0.2 ≥ rAUC(SIGAR)
0.2 in all cases). Now consider genes with three

aberration states, the PLRS procedure clearly outperforms others when j1 = 0 ( fSTEP3;
Figure A.6), i.e. when only one of the two abnormal states alter gene expression
(partial effect). Surprisingly, in this situation sigaR performs rather badly. This may be
a consequence of the uncertainty of the method as to choose correctly which groups to
compare (sigaR compares expression of samples either with loss and normal, or with
normal and gain). In the situation where both abnormal states affect expression, i.e.
when j1= 0.2 and j1= 0.4 ( fSTEP3; Figure A.7 and A.8), it appears that all methods are
rather equivalent in detecting associations (though PLRS and LM tend to be slightly
superior). The presence of two jumps j1>0 and j2>0 may help in detecting non-zero
slopes and monotonic increasing trends, and improve the true positive rate of the LM
and Spearman tests.

Finally, when the true association is piecewise linear, results are similar to those
obtained when it is assumed to be stepwise: the PLRS test is preferable in general.
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Consider two-state associations ( fPLES2; Figure A.9), PLRS outperforms others. Also,
consider genes with three aberration states where only one is affecting expression
( fPLES2 and a1 = 0; Figure A.10), PLRS is clearly superior. In other cases where both
abnormal states alter expression ( fPLES2, a1 > 0 and a2 > 0; Figure A.10), methods are
rather comparable (although PLRS and LM are slightly superior).

A.4.3 Conclusion. In the present simulation study, none of the methods per-
formed uniformly better (or worse) than others. In general, the Spearman test was
inferior to others but as expected, it behaved well when strong noise is present. The
LM test was superior when the association between DNA and mRNA was assumed to
be linear. When this assumption was relaxed for normal copy number (only), it turned
out to be slightly inferior to the PLRS test. In other cases, when the relationship is
assumed to be stepwise or piecewise linear, it performed well only when the two ab-
normal states were affecting expression (strong effect). Otherwise, it is clearly inferior.
The test proposed by van Wieringen and van de Wiel (2009) (sigaR) was clearly infe-
rior when the true association was linear and piecewise linear with equal slopes. For
stepwise and other piecewise linear associations it showed good performance. How-
ever, for three-state relationships, when the effect on expression is partial (only one
of the two abnormal states alter gene expression), it had a poor performance. Finally,
the PLRS test yielded good performance in detecting associations of various functional
forms. Indeed, it achieved the highest rAUC0.2 in 68 out of the 90 simulation cases
(against 23 for the LM test; see Figures A.2). It was shown to perform reasonably well
when the true effect is linear and often better otherwise. It offered a clear advantage
over others when the effect is partial, i.e. when only one of the two abnormal states
alter gene expression. This suggests that PLRS accommodates well both continuous
and discrete genomic information.

The simulation results confirm that the PLRS procedure is superior to others in
identifying various types of relationships and hence is flexible.
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FIGURE A.2. Distribution of ranks based on rAUC0.2 over the 90 simulation cases for each test.
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A.4.4 Partial ROC curves.

A.4.4.1 Partial ROC curves for fLIN . .
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(a) a= 0.4, σ= 0.20
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(b) a= 0.4, σ= 0.35
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(c) a= 0.4, σ= 0.50
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(d) a= 0.6, σ= 0.20
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(e) a= 0.6, σ= 0.35
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(f) a= 0.6, σ= 0.50
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(g) a= 0.8, σ= 0.20
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(h) a= 0.8, σ= 0.35
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(i) a= 0.8, σ= 0.50

FIGURE A.3. Partial ROC-curves when the true association is linear ( fLIN). For each plot, the mean
true positive rate (y-axis) over the 80 genes is displayed as a function of the cut-off c≤ 0.2 (x-axis).
Each plot is function of the true slope a (rows) and noise σ (columns). ROC curves of the PLRS
(red), LM (blue), Spearman (black) and sigaR (green) tests are displayed.
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A.4.4.2 Partial ROC curves for fPLES . .
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(i) a= 0.8, σ= 0.50

FIGURE A.4. Partial ROC-curves when the true association is piecewise linear with equal slopes
( fPLES). For each plot, the mean true positive rate (y-axis) over the 80 genes is displayed as a
function of the cut-off α≤ 0.2 (x-axis). Each plot is function of the true slope a (rows) and noise
σ (columns). ROC curves of the PLRS (red), LM (blue), Spearman (black) and sigaR (green) tests
are displayed.
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A.4.4.3 Partial ROC curves for fSTEP2 . .
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(i) j= 0.4, σ= 0.50

FIGURE A.5. Partial ROC-curves when the true association is stepwise with two states ( fSTEP2). For
each plot, the mean true positive rate (y-axis) over the 40 genes is displayed as a function a the
cut-off α≤ 0.2 (x-axis). Each plot is function of the true slope a (rows) and noise σ (columns).
ROC curves of the PLRS (red), LM (blue), Spearman (black) and sigaR (green) tests are displayed.
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A.4.4.4 Partial ROC curves for fSTEP3 when j1 = 0 . .
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(i) j2 = 0.4, σ= 0.50

FIGURE A.6. Partial ROC-curves when the true association is stepwise with three states ( fSTEP3)
and j1 = 0. For each plot, the mean true positive rate (y-axis) over the 40 genes is displayed as a
function a the cut-off α≤ 0.2 (x-axis). Each plot is function of the true slope a (rows) and noise
σ (columns). ROC curves of the PLRS (red), LM (blue), Spearman (black) and sigaR (green) tests
are displayed.
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A.4.4.5 Partial ROC curves for fSTEP3 when j1 = 0.2 . .
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(i) j2 = 0.4, σ= 0.50

FIGURE A.7. Partial ROC-curves when the true association is stepwise with three ( fSTEP3) and
j1 = 0.2. For each plot, the mean true positive rate (y-axis) over the 40 genes is displayed as a
function a the cut-off α≤ 0.2 (x-axis). Each plot is function of the true slope a (rows) and noise
σ (columns). ROC curves of the PLRS (red), LM (blue), Spearman (black) and sigaR (green) tests
are displayed.
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A.4.4.6 Partial ROC curves for fSTEP3 when j1 = 0.4 . .
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(i) j2 = 0.4, σ= 0.50

FIGURE A.8. Partial ROC-curves when the true association is stepwise with three states ( fSTEP3) and
j1 = 0.4. For each plot, the mean true positive rate (y-axis) over the 40 genes is displayed as a
function a the cut-off α≤ 0.2 (x-axis). Each plot is function of the true slope a (rows) and noise
σ (columns). ROC curves of the PLRS (red), LM (blue), Spearman (black) and sigaR (green) tests
are displayed.
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A.4.4.7 Partial ROC curves for fPLUS2 . .
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(a) a= 0.2, σ= 0.20
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FIGURE A.9. Partial ROC-curves when the true association is piecewise linear with unequal slopes
and with two states ( fPLUS2). For each plot, the mean true positive rate (y-axis) over the 40 genes
is displayed as a function a the cut-off α≤ 0.2 (x-axis). Each plot is function of the true slope a
(rows) and noise σ (columns). ROC curves of the PLRS (red), LM (blue), Spearman (black) and
sigaR (green) tests are displayed.
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A.4.4.8 Partial ROC curves for fPLUS3 when a1 = 0 . .
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(i) a2 = 0.8, σ= 0.50

FIGURE A.10. Partial ROC-curves when the true association is piecewise linear with unequal slopes,
with three states ( fPLUS3) and a1= 0. For each plot, the mean true positive rate (y-axis) over the 40
genes is displayed as a function a the cut-off α≤ 0.2 (x-axis). Each plot is function of the true slope
a (rows) and noise σ (columns). ROC curves of the PLRS (red), LM (blue), Spearman (black) and
sigaR (green) tests are displayed.
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A.4.4.9 Partial ROC curves for fPLUS3 when a1 = 0.2 . .
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(i) a2 = 0.8, σ= 0.50

FIGURE A.11. Partial ROC-curves when the true association is piecewise linear with unequal slopes,
with three states ( fPLUS3) and a1 = 0.2. For each plot, the mean true positive rate (y-axis) over the
40 genes is displayed as a function a the cut-off α≤ 0.2 (x-axis). Each plot is function of the true
slope a (rows) and noise σ (columns). ROC curves of the PLRS (red), LM (blue), Spearman (black)
and sigaR (green) tests are displayed.
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A.4.4.10 Partial ROC curves for fPLUS3 when a1 = 0.4 . .
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(i) a2 = 0.8, σ= 0.50

FIGURE A.12. Partial ROC-curves when the true association is piecewise linear with unequal slopes,
with three states ( fPLUS3) and a1 = 0.4. For each plot, the mean true positive rate (y-axis) over the
40 genes is displayed as a function a the cut-off α≤ 0.2 (x-axis). Each plot is function of the true
slope a (rows) and noise σ (columns). ROC curves of the PLRS (red), LM (blue), Spearman (black)
and sigaR (green) tests are displayed.



APPENDIX B

B.1 The PLRS screening procedure. We applied PLRS to the TCGA Glioblas-
toma data set and created a list of genes for which the association between DNA copy
number and mRNA expression was found to be significant with type I error cutoff
α = 0.1 on adjusted p-values (Benjamini and Hochberg, 1995). This list was then
compared with the top 300 cancer genes as provided by the Gene Ranker TCGA GBM
6000 (http://cbio.mskcc.org/tcga-generanker/). We found that 71% of the cancer
candidate genes were detected by the PLRS testing procedure, hence providing evi-
dence that for most of these genes copy number aberrations induces differential ex-
pression. Below, figures B.1 to B.3 display 16 DNA-mRNA associations for such genes.
Figure B.4 reports cancer genes for which the effect of copy number aberrations on
expression appears more uniform accross samples and are not detected by the test.
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FIGURE B.1. Association between DNA and mRNA for different genes in the TCGA Glioblastoma
data set. Segmented copy number is on the x-axis while gene expression is on the y-axis. States
are indicated by different symbols: loss (5), normal (©), gain (4) and amplification (×). Grey
surfaces correspond to 95% uniform CBs. The top left values correspond to the p-values of the PLRS
test.
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FIGURE B.2. Association between DNA and mRNA for different genes in the TCGA Glioblastoma
data set. Segmented copy number is on the x-axis while gene expression is on the y-axis. States
are indicated by different symbols: loss (5), normal (©), gain (4) and amplification (×). Grey
surfaces correspond to 95% uniform CBs. The top left values correspond to the p-values of the PLRS
test.
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FIGURE B.3. Association between DNA and mRNA for different genes in the TCGA Glioblastoma
data set. Segmented copy number is on the x-axis while gene expression is on the y-axis. States
are indicated by different symbols: loss (5), normal (©), gain (4) and amplification (×). Grey
surfaces correspond to 95% uniform CBs. The top left values correspond to the p-values of the PLRS
test.
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FIGURE B.4. Association between DNA and mRNA for different genes in the TCGA Glioblastoma
data set. Segmented copy number is on the x-axis while gene expression is on the y-axis. States
are indicated by different symbols: loss (5), normal (©), gain (4) and amplification (×). Grey
surfaces correspond to 95% uniform CBs. The top left values correspond to the p-values of the PLRS
test.



APPENDIX C

C.1 Approximate equivalence of iterative procedures with maximum marginal
likelihood. Given latent variables (or parameters) θ1,θ2, . . . ,θp let Y1, . . . ,Yp be
independent observations such that the marginal distribution of Yi depends on θi only.
Hence, first assume a situation where the interest is in one prior only, parametrized
with hyper-parameters α. Now allow the density of Yi given θi =θ to depend on i, but
drop the index for clarity reasons: y 7→ f (y|θi = θ) = fi(y|θi = θ) (relative to some
measure µ). Furthermore, suppose that θ1, . . . ,θp are independent. Then Y1, . . . ,Yp are
(unconditionally) independent, and Yi has density

y 7→ fα(y) =

∫

f (y|θ)dΠα(θ).

Furthermore, the vectors (θ1,Y1), . . . ,(θp,Yp) are independent and the marginal distri-
bution Πα of θi can be disintegrated as

Πα(θ) =

∫

Πα(θ|y) fα(y)dµ(y),

for Πα(·|y): the conditional distribution of θi given Yi = y .
The right side is the expectation of Πα(θ|Yi) relative to Yi , for every i, and hence

the average of Πα(θ|Yi) over the data is a reasonable estimate of Πα(θ). In other
words, we expect

(C.1) Πα(·)≈
1

p

p
∑

i=1

Πα(·|Yi).

Next we may estimate the unknown α by the value for which this approximation
is most accurate, which is what our iterative procedures attempt. An alternative is
conventional empirical Bayes, which consists of maximizing the marginal likelihood:

(C.2) α 7→
p
∏

i=1

fα(Yi).

The equations (C.1) and (C.2) turn out to be approximately equivalent, depending
on how ≈ in (C.1) is made precise. To see this rewrite (C.1) in terms of densities as

πα(θ)≈
1

p

p
∑

i=1

πα(θ|Yi) =
1

p

p
∑

i=1

f (Yi |θ)πα(θ)
fα(Yi)

.

Cancel πα left and right to rewrite this as

(C.3) 1≈
1

p

p
∑

i=1

f (Yi |θ)
fα(Yi)

.
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On the other hand, in view of (C.2) the empirical Bayes estimator for α solves the
likelihood equation

(C.4) 0=
1

p

p
∑

i=1

ḟα(Yi)
fα(Yi)

=

∫

1

p

p
∑

i=1

f (Yi |θ)
fα(Yi)

π̇α(θ)dθ.

If (C.3) would hold exactly and identically in θ, then the right side would vanish,
because

∫

π̇α(θ)dθ = 0. Thus we can view (C.3), and hence (C.1), as a method to
find an approximate solution to the likelihood equation.

The above equations do not change much in the multi-prior situation, assuming
independent priors. Denote the collection of all unknown α by A, so each element of
A corresponds to one (type of) parameter (e.g. one would correspond to the prior of
regression parameter βi,1 and another to that of overdispersion parameter φi). In the
equations above, the posteriors πα(θ|Yi) should be replaced by πA(θ|Yi), the marginal
likelihoods fα(Yi) by fA(Yi) and the conditional likelihoods f (Yi |θ) by fA\α(Yi |θ). Fur-
thermore, (C.4) becomes a set of likelihood equations, for which the right sides also
vanish when (C.3) (with the above replacements) holds.

C.2 Proof of marginal likelihood maximization. A computationally attractive
alternative is the following. Let π′

α′
(θ) be an arbitrary parametric prior with hyper-

parameters α′ and let fα′(Yi) = fα′,A∗−b
(Yi) be the marginal likelihood given the prior

for θi and the hyper-parameters of the other priors. Finally, let fα′(Y) =
∏p

i=1 fα′(Yi)
be the product marginal likelihood, then fα′(Y) is maximized for

(C.5) α̃= argmaxα′
p
∑

i=1

log





∫

πA∗(θ|Yi)
π′
α′
(θ)

πα∗b
(θ)

dθ



 .

Proof
Let πα∗b(θ),πA∗(θ|Yi), f (Yi |θ)= fA∗(Yi |θ) and f (Yi)= fA∗(Yi) respectively be the prior,
marginal posterior, conditional likelihood and marginal likelihood as used in or result-
ing from the iterative joint procedure with hyper-parameters A∗, where we assume the
bth component of A∗ to correspond with the common prior of θi , i= 1,.. . , p. Likewise,
a new parametric prior for θi that replaces πα∗b(θ) is denoted by π′

α′
(θ). Finally, let

fα′(Yi |θ) = fα′,A∗−b
(Yi |θ) be the conditional likelihood, resulting from applying π′

α′
(θ)

instead of πα∗(θ) while keeping the priors for the other parameters unchanged.
Then,

fα′(Yi) =

∫

fα′(Yi |θ)π′α′(θ)dθ=
∫

f (Yi |θ)π′α′(θ)dθ,

because fα′(Yi |θ) does not depend α′. Apply Bayes’ rule to obtain

fα′(Yi) = f (Yi)

∫

πA∗(θ|Yi)
π′
α′
(θ)

πα∗b
(θ)

dθ.
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Then fα′(Y) is maximized at

α̃= argmaxα′
p
∑

i=1

log





∫

πA∗(θ|Yi)
π′
α′
(θ)

πα∗b
(θ)

dθ



 .

While the iterative marginal procedure easily applies to any parametric and non-
parametric prior, the direct maximization procedure requires a dedicated maximiza-
tion procedure for each type of prior. However, in particular for priors with few hyper-
parameters it is computationally superior. Note that (C.5) also provides estimation of
the total marginal log-likelihood for any prior.

C.3 Computational efficiency and convergence. The number of features, p,
can be enormous. This might hamper practical application of the iterative procedures,
in particular the iterative joint one: if the algorithm would be applied to all features
and would require L iterations, the total number of INLA calls is proportional to Lp.
Fortunately, the following heuristic decreases the required total number of INLA calls
tremendously, and is therefore computationally much more efficient: initialize t = 1
and p(1) <<< p, randomly select p(t) features, run the above algorithm and use the
final α-estimate as an initial value for a new loop using p(t+1) > p(t) features. We
propose to use the trajectory p= (p(1), . . . , p(T)) = (100,200,500,1000,2000,5000). In
fact, we monitor the convergence in p(t) using (C.6). In practice, we observe the
algorithms usually stops at p(t) ≈ 2000. This implies that for p very large (say in the
order 105 to 106) the computational cost for Bayesian shrinkage by estimating the
prior is relatively low with respect to that of the final fit to all features.

Our iterative methods require to monitor convergence of the estimates of the pri-
ors. We propose to do so by considering a Kolmogorov-Smirnov-type metric:

(C.6) KSα,` =max
x
|Fα,`(x)−Fα,`−1(x)|,

where Fα,` is the distribution function corresponding to the prior of α fitted at iteration
`. Then the algorithm stops when KSα,` ≤ v, where v is a user-defined threshold,
e.g. v = 0.005. If multiple parameters are shrunken, the latter inequality should hold
for each fitted prior. Monitoring changes in hyper-parameters directly may be less
suitable, because the impact of a change in hyper-parameters may depend on other
hyper-parameters. E.g. in a Gaussian mixture changes of the mean and standard
deviation hyper-parameters for a given component have very little impact on the shape
of the distribution when the corresponding mixture proportion is very small.

For the iterative marginal procedure, we also monitor the marginal likelihood,
because we know our iterative procedures are approximately equivalent to maximal
marginal likelihood (Appendix C.1). The marginal likelihood should initially increase
while iterating, then level off and ‘wiggle’ around the maximum when converging.
The algorithm is stopped when k (e.g. k = 2) consecutive estimates of the marginal
likelihood are smaller than the maximum observed so far.
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C.4 Priors for random effects. Our method accommodates inference for and
shrinkage of random effects. Suppose we have βik =d N(0,τ2

i ) for k= 1,.. . ,K. Then,
shrinkage focuses on τ2

i , or equivalently on precision, τ−2
i . The conjugate prior for

precision is the Gamma distribution, Γ(α1,α2), where α1 and α2 are the shape and
rate hyper-parameters. We also allow for fitting a nonparametric prior, which is prefer-
able when inference is desired using an interval null-hypothesis. However, the para-
metric option is particularly useful when one is not interested in inference for τ2

i (as
is often the case in studies with few replicates), but would still like to shrink τ2

i in
combination with other (e.g. fixed or dispersion) parameters using the iterative joint
procedure. When the prior of τ2

i is concentrated, shrinkage can be beneficial for better
disentanglement of parameter effects in non-balanced designs. Moreover, a concen-
trated prior close to zero effectively acts as intrinsic model selection, which may render
more effective inference for the other parameters.

C.5 BFDR and lfdr for two-sided inference and multiple comparisons. Below
we detail the modifications of lfdr and BFDR, as introduced in Section 4.4.2, for two-
sided inference and multiple comparisons.

Two-sided lfdr and BFDR. For two-sided testing we may reformulate Equation 4.5
as HII

0i : |βi | ≤∆. Directly applying the above definitions for lfdr and BFDR to HII
i

may, however, lead to counterintuitive results when posteriors are wide: π0i may be
small due to non-negligible posterior masses on both βi = β− <−∆ and βi = β+ >∆,
in particular for ∆ ≈ 0. One prefers not to select such cases as being ‘significant’.
Therefore, we adjust the procedure as follows. For lfdr, we simply define lfdr−i using
H−0i =H0i as in Equation 4.5, and analogously lfdr+i using H+0i :βi ≥−∆ instead. Then,
define the two-sided version:

lfdrII
i :=min(lfdr−i , lfdr+i )≥ P(|βi | ≤∆|Yi) = P(HII

0i |Yi).

So, lfdrII
i ≤α provides interpretability while also guaranteeing P(HII

0i |Yi)≤α.
To define a two-sided version of BFDR(t) we simply use the aforementioned cor-

respondence between lfdr and BFDR, the latter being a conditional mean of the first.
Moreover, let d II

i (t) =max(d−i (t),d
+
i (t)) where definitions of d+i (t) and d−i (t) (and

also π+0i and π−0i) are analogous to those of di(t) (π0i), replacing Hi by H+i or H−i ,
respectively. Then, analogous to Equation 4.5, we have

(C.7) BFDRII(t) = E[lfdrII
i |lfdrII

i < t] =

∑p
i=1 lfdrII

i d II
i (t)

∑p
i=1 d II

i (t)
.

BFDRII(t) is interpreted like BFDR(t) and avoids unwanted detections due to wide
posteriors.
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Multiple comparisons. In some studies, more than two groups are to be com-
pared with each other. Assume w.l.o.g. that βi = (βi1, . . . ,βiL) denote the parameters
in the regression model corresponding to the L groups. Methods that approximate
marginal posteriors, like INLA, generally do not return joint posterior intervals of
(functions of) parameters, which restricts the use of omnibus L-group comparisons.
INLA does provide an approximation of the marginal likelihood, so for each feature i a
Bayes’ factor can be computed for the full model versus the model with βi=0. This can
be useful as a ranking criterion. However, it does not render an inference statement.
Also, in our experience, results from omnibus comparisons often immediately lead to
the next question about the relevant pair-wise differences. Then, in a lfdr paradigm
those pairwise differences are the relevant discoveries. The INLA software is able to
provide posteriors of linear combinations. Hence, we focus on inference for pair-wise
differences by computing the marginal null-probabilities π0ik` = P(β′ik` ≤ ∆|Yi) for
each pair-wise difference:

(C.8) β′ik` = βik−βi`,

where k 6= `,k= 1,.. . ,L. In a one versus many comparison situation, the control group
` should be fixed to L. The choice of priors for β′ik` is the same as for βi in the two-
group situation. One may opt to use the same prior for all pairs (k,`), or fit a different
one for each pair.

In case one does desire a summary per data row (feature), we provide the fol-
lowing bound for lfdr. The null-hypothesis for all pairwise comparisons is: H∪0i :
maxk<` |β′ik`| ≤ ∆. Denote the vector containing all absolute differences by |~β′i | =
(|β′ik`|)k<`. Similarly, define the vector of all contrasts ~β′i = (β

′
ik`)k 6=`. Analogous defi-

nitions apply to ~π0i and ~1. Then, we have

lfdr∪i = P(H∪0i |Yi) = P(max(|~β′i |)≤∆|Yi) = 1−P(max(~β′i)>∆|Yi)

≤ 1−max(~1− ~π0i) =min(~π0i),

which is just the minimum over all pairwise lfdr’s. Finally, define a discovery on
the feature-level as any feature for which at least one contrast does not obey the
null and a false discovery as any feature for which all nulls of the rejected contrasts
are true. Then, extension of the BFDR to this context, is analogous to BFDRII(t):
BFDR∪(t) = E[lfdr∪i |lfdr∪i ≤ t], which can be interpreted as the mean ratio of total
posterior mass on the joint null (summed over the features detected at threshold t)
and the number of detections at threshold t. Substitution of the above upper bound
for lfdr∪i provides an upper bound for BFDR∪(t).

C.6 Monotonic time trends. Time-course experiments enable one to determine
trends over time. These can be performed on related or non-related samples. From
a design perspective, the first is often preferable over the latter, but sometimes not
practical (e.g. when animals have to be sacrificed to retrieve a sample). In this section,
we discuss how easily our method and software enable efficient analysis of time-course
data.
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First of all, when individuals correspond to multiple measurements over time, this
is trivially accommodated by our software by including a random effect on the individ-
ual level, as we did in our data example in Section 4.7.3. Other software for analysing
RNAseq data does not easily allow for such inclusion.

Second, while (unstructured) multi-group analysis can be applied to detect overall
time effects, researchers are often interested in monotonic effects. Of course, unstruc-
tured multi-group analysis is suboptimal for such cases. Here, we propose a simple
solution. More complex solutions are feasible in the context of INLA, but would usu-
ally require changing the regression model. Define a contrast of parameters that is
targeted to detect such trends:

(C.9) Ci =
∑

j<k

(βik−βi j),

where βi j is the parameter for feature i and time point j. Alternatively, pairwise com-
parisons can be weighted unequally depending on expected effects and spacing over
time. Our approach allows for shrinking Ci , after which the posterior of Ci is used for
inference. Note that inference for contrasts is also available in edgeR (Robinson et al.,
2010), but not in most other methods.

C.7 Inclusion of a mixture prior in the iterative joint procedure. When multi-
ple mixture priors are desired, or a combination of a mixture prior and a nonparamet-
ric prior, only one of these is accommodated by the marginal refinement procedures.
Below we assume a situation as in simulation Case 1 (Section C.9), where the prior of
the regression parameter is estimated by one of the two refinement procedures, and
the mixture for νi needs to be estimated within the iterative joint procedure. Extension
of the latter procedure is explained here.

The iterative joint procedure requires use of specific parametric priors that comply
with INLA. INLA does not allow mixture priors, but the following provides a solution.
Introduce the latent variable Gi = 0,1 for νi corresponding to the point mass on 0,
and non-negative log-Gaussian component, respectively. Then, the posterior of any
parameter θi (either νi or another one, e.g. βi), π(θi |Yi), depends on π(θi |Yi ,Gi)
and the likelihoods π(Yi |Gi). As opposed to their unconditional counterparts, these
conditional results can directly be obtained from INLA for every Gi , because Gi = 1
implies a Gaussian prior on φi = log(νi), whereas Gi = 0 implies a model without νi ,
hence a Poisson model instead of NB. The desired posterior equals:

(C.10) π(θi |Yi) =
1
∑

g=0

π(θi |Yi ,Gi = g)π(Gi = g|Yi),

with

(C.11) π(Gi = g|Yi) =
π(Yi |Gi = g)P(Gi = g)

∑1
h=0π(Yi |Gi = h)P(Gi = h)

=
π(Yi |Gi = g)qg

∑1
h=0π(Yi |Gi = h)qh

,
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where q1 = 1−q0, with q0 the current estimate of the prior mixture proportion. Note
that the procedure above comes at a computational price, because it requires two INLA
fits for each feature i.

C.8 Shrinkage of φi versus shrinkage of w0i . In the ZI-NB model both overdis-
persion parameter φi and zero-inflation parameter w0i have the ability to overdisperse
the Poisson distribution, albeit via very different mechanisms. However, for some fea-
tures the posterior means of either νi = exp(φi) or w0i are zero or extremely close to
zero. This is natural: for low-count features, posterior mean ν̂i ≈ 0 may result when
w0i sufficiently accounts for the increased variability with respect to the Poisson distri-
bution, while for the high-count features, ŵ0i ≈ 0 simply renders the best fit, because
no or very few zeros occur for these features. Shrinkage of φi and/or w0i is mostly
of interest when it robustifies the posterior intervals of the regression parameter(s) of
interest, say βi1. We noticed that the effect of shrinking w0i is very minor (standard
deviations of βi1 altered by less than 1%), whereas shrinkage of φi generally had much
more effect. The small effect of w0i shrinkage may be explained by the intercept of the
regression model, which can partly ‘repair’ the bias introduced by the shrunken esti-
mator of w0i . Therefore, we propose to use flat priors on w0i , although the software
accommodates informative priors as well.

C.9 Simulation results: accuracy of estimation. The following simulations are
used to determine the accuracy of the estimation methods for a number of situations.
In addition, we perform a comparison with edgeR (Robinson et al., 2010) for a case to
which both methods are applicable and assess the accuracy of BFDRII(t) as an estimate
of FDR.

We do not include zero-inflation here, simply because it has little impact on the
shrinkage results of the other parameters. Or, to put it differently, the results for data
that include a moderate amount of zero-inflation are extremely similar to those from
a somewhat larger (in terms of sample size) data set without zero-inflation, when the
same simulation hyper-parameters are used. For all simulations, the likelihood and
link part of the model are given by:

Yi j =
d NB(µi j ,φi),

log(µi j) =ηi j ,
(C.12)

Below we illustrate the results for a variety of specifications for the regression and
prior parts of the model. The fitting strategy always starts with iterative joint estima-
tion of all hyper-parameters, possibly followed by refining the prior for one central
parameter of interest using the refinement procedure. In all cases the regression inter-
cept is endowed with a flat N(0,(10)2) prior.
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Case 1: Two groups, Gaussian-Dirac-Gaussian mixture prior on fixed effects,
Dirac-log-Gaussian prior on dispersion. Model (C.12) is further extended by:

ηi j = βi0+βi1 x j

νi = exp(φi) =
d q0δ0+(1−q0)`N(µ,σ2)

βi1 =
d p−1N(µ−1,τ2

−1)+ p0δ0+ p1N(µ1,τ2
1),

where `N denotes the log-Normal distribution, sample size n= 2×8= 16, p= 10000
and x j = 0 for j ≤ n/2 and x j = 1, otherwise. The mixture prior for νi implies a Pois-
son - NB mixture for Yi j (C.12). True and estimated simulation hyper-parameters are
listed in Table C.1. Kolmogorov-Smirnov (KS) distances between the true and esti-
mated distributions of φi and βi1 are given in Table C.2. Figure C.1(a) displays the
true and estimated distribution function of βi1.

log(φi) βi log(τ−2
i )

Case q0 µ σ2 p0 (p−1, p1) (µ−1,µ1) (τ2
−1,τ2

1) (σ′)2 (α1,α2)

1, True .30 -.50 .25 .80 (.10,.10) (-.50,.50) (.20,.20) - -
1, Est. .30 -.47 .25 .80 (.09,.11) (-.53,.44) (.21,.24) - -
2, True - -1.50 .25 .80 (.10,.10) (-.50,.50) (.20,.20) - -
2, Est. - -1.51 .23 .79 (.10,.10) (-.47,.48) (.22,.20) - -
3, True - -.50 .25 t(4)-dist. -
3, Est. - -.50 .26 Emp. -
4, True - -1.50 .25 - - - - 2.00 (5.00, 1.00)
4, Est. - -1.48 .25 - - - - 1.91 (5.51, 1.01)

TABLE C.1. True hyper-parameter values and their estimates

Case KSφ KSβ KSτ
1 0.006 0.007 -
2 0.003 0.011 -
3 0.005 0.005 0.076
4 0.009 0.006 -

TABLE C.2. Kolmogorov-Smirnov (KS) distance between the estimated and true distribution func-
tions
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(a) βi1: Dirac-Gaussian mixture
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(b) βi`: Dirac-Gaussian mixture

FIGURE C.1. Results for Case 1 (a) and Case 2 (b): Estimated and true distribution functions

Case 2: Multiple groups, Gaussian-Dirac-Gaussian mixture prior on fixed effects,
Gaussian prior on log-dispersion. Model (C.12) is further extended by:

ηi j = βi0+
L
∑

`=1

βi`x j`

φi =
d N(µ,σ2)

βi` =
d p−1N(µ−1,τ2

−1)+ p0δ0+ p1N(µ1,τ2
1).

Here, n = 25, p = 5000 and the number of groups L = 5, which means that only
five measurements per group are available. True and estimated simulation hyper-
parameters are listed in Table C.1. KS distances between the true and estimated dis-
tributions of φi and βi` are given in Table C.2. Figure C.1(b) displays the true and
estimated distribution function of βi`.

Case 3: Two groups, t4-prior on fixed effects, Gaussian prior on log-dispersion.
Model (C.12) is further extended by:

ηi j = βi0+βi1 x j

φi =
d N(µ,σ2)

βi1 =
d t4,

where sample size n= 2×8= 16, p= 5000, x j = 0 for j ≤ n/2 and x j = 1, otherwise.
Here, we applied the iterative marginal procedure with log-concave nonparametric
prior for βi1. True and estimated simulation hyper-parameters are listed in Table C.1.
KS distances between the true and estimated distributions of φi and βi1 are given in
Table C.2. Figure C.2(a) displays the true and estimated distribution function of βi1.
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(a) βi1: t(4)-distribution
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(b) log(τ−2
i ): log-Γ(5,1)-distribution

FIGURE C.2. Results for Case 3 (a) and Case 4 (b): Estimated and true distribution functions

Case 4: Two groups, Gaussian priors on fixed effects and log-dispersion, log-
Gamma prior on log-precision of random effect. Model (C.12) is further ex-
tended by:

ηi j = βi0+βi1 x j1+
L
∑

`=1

βi`+1 x j`+1

φi =
d N(µ,σ2)

βi1 =
d N(0,(σ′)2)

βi` =
d N(0,τ2

i ) for `≥ 2

τ−2
i =

d Γ(α1,α2),

where sample size n = 2×9 = 18, p = 10000, the number of random effect levels
L = 6, x j1 as x j before, and for ` ≥ 2 : x j` = 1 for j = 3(`−1)−2,.. . ,3(`−1) and
x j` = 0, otherwise; hence, a random effects parameter with 6 levels and 3 observa-
tions per level. This case is particularly challenging, because it contains two types of
(over-)dispersion: one on the observation level (φi), one on the random effect level
(grouping only three observations). True and estimated simulation hyper-parameters
are listed in Table C.1. KS distances between the true and estimated distributions of
φi ,βi1 and τ2

i are given in Table C.2. Figure C.2(b) displays the true and estimated
distribution function of log-precision, log(τ−2

i ).

Results. In general, the results are very encouraging. From Tables C.1 and C.2
we observe that the hyper-parameters of the (Dirac)-Gaussian prior of log(φi) are
very accurately estimated in all cases. The hyper-parameter estimates of the mixture
priors of βi1 and βi` are generally slightly less accurate, but the KS distances to the
truth are still very small. This reflects that for mixture priors, which include many
hyper-parameters, several configurations of the hyper-parameters are very close in
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terms of distribution functions. Note that for case 2 the posterior of each βi` is based
on only 2×5 measurements. From Figure C.2(a) we conclude that the nonparamet-
ric prior closely approximates the t(4)-distribution, which is rather heavy-tailed. For
the same simulation setting, but with the t(4)-distribution replaced by a shifted Γ-
distribution, Figure C.3 illustrates that the nonparametric prior also performs well for
such a skewed distribution.

We obtain the least accurate result for the log-precision of the random effects pa-
rameter (log(τ−2

i )) in case 4. KS distance is notably larger than for the other hyper-
parameters (Table C.2), caused by a too narrow left-tail of the distribution (see Fig-
ure C.2(b) for log-precision). Apparently, the posteriors are rather insensitive to the
exact shape of the left-tail of the prior, which is reasonable because this tail concerns
low precision and hence high variance. Parameter estimates (Table C.1) are fairly
accurate though. Given that another dispersion-related parameter is present in the
model, and only three repeats per each of the six levels of the random effect are avail-
able, we believe the result is still good.
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FIGURE C.3. Simulation results for Case 3, with the t4 distribution replaced by a shifted Γ-
distribution with rate and shape equal to 2 and 1, respectively. Negative shift equals shape/rate to
enforce mean equal to 0. Empirically estimated and true distribution functions

Case 1 revisited: FDR. We used Case 1 to assess the accuracy of the FDR estimate,
BFDRII(t), when H−0i : βi1 ≤ 0 and H+0i : βi1 ≥ 0. Figure C.4 illustrates that the estimate
is slightly conservative, but very accurate over the entire range.

C.10 Simulation results: Comparison with other methods. We compare our
method (ShrinkSeq) with four others: edgeR (Robinson et al., 2010, version 2.2.6),
DESeq (Anders and Huber, 2010, version 1.6.1), baySeq (Hardcastle and Kelly, 2010,
version 1.8.1) and NOISeq (Tarazona et al., 2011, R-scripts). The first three are
based on the negative binomial distribution and all allow for shrinkage of overdisper-
sion. NOIseq is a nonparametric method that may be more robust against deviations
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FIGURE C.4. True versus estimated FDR (solid) and reference diagonal line (dashed). X-axis: true
FDR at cut-off t, y-axis: BFDRII(t)

from the negative binomial. We applied defaults settings. For edgeR, dispersion was
shrunken towards a common value; the results for a spline-based trend-estimate were
very similar.

For all comparisons we show partial ROC-curves and partial AUC, because in a
testing setting only large specificity (we use specificity > 0.8, hence False Positive Rate
(FPR) ≤ 0.2) is relevant (Dodd and Pepe, 2003). Partial AUC (pAUC) is expressed
in terms of relative AUC (rAUC), rAUC= pAUC/(0.22×0.5), where the denominator
is the expected AUC for a non-informative decision procedure. For the frequentistic
methods p-values are used to detect positives, while posterior null-probabilities are
used for the Bayesian methods. For baySeq, the latter are computed by comparing
models with and without the relevant parameter. For ShrinkSeq, we use lfdrII

i for two-
sided two-group testing and lfdr∪i for comparing multiple groups (time points). Note
that ROC-curves depend on the ranking of the features only, so the comparison is fairly
robust against the metric used for declaring a positive.

Model-based simulation: effect of mixture prior on overdispersion. Case 1 is
revisited to compare our results with the others in a setting without zero-inflation. The
main methodological difference is that the others do not accommodate the mixture
prior on the overdispersion. In order to create a fairer comparison, we did not generate
νi = exp(φi) from the above Dirac-log-Gaussian mixture, but instead from a Dirac-log-
Gamma mixture, with rate and shape equal to 2 and 1, respectively. This implies a
fairly skewed Gamma distribution for φi (mixed with point mass on −∞). Then, for
the actual analysis our method assumes a Dirac-log-Gaussian prior.

In this case, the main parameter of interest is βi1. For the simulated data, we ap-
plied our method with a unimodal nonparametric (NP) and a parametric (P) mixture
prior (Equation 4.7) for βi1. The latter renders a somewhat biased comparison, be-
cause this prior is also used to generate βi1 in Case 1. However, it is interesting as
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a benchmark for the nonparametric setting and may illustrate a potential gain when
using a parametric prior that contains a point mass.

Figure C.5 shows the partial ROC-curves for all methods: the two corresponding to
our method, ShrinkSeq, are clearly higher than those for other methods, with the ex-
ception of baySeq, which performs similar. For FPR=0.05 the sensitivity of ShrinkSeq
is 2% larger than that of baySeq and at least 50% larger than that of edgeR, DESeq
and NOISeq. Hence, even though the sample sizes are not very small in this simulation
(8 vs. 8), inclusion of a point mass in the prior on the overdispersion is relevant for
sensitivity. The parametric version of ShrinkSeq outperforms the nonparametric one,
but the difference is fairly small.
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ShrinkSeq, P; rAUC = 5.78
ShrinkSeq, NP; rAUC = 5.49
baySeq; rAUC = 5.43
DESeq; rAUC = 4.49
NOISeq; rAUC = 4.12
edgeR; rAUC = 3.94

FIGURE C.5. ROC-curves and relative AUC for βi1 in simulation case 1 with a Dirac-log-Gamma
mixture distribution of νi . X-axis: 1-specificity (false positive rate), y-axis: sensitivity (true positive
rate).

Model-based simulation: effect of shrinking the parameter of interest. The
second simulation is the same as the first one, except for φi being generated from
a simple Gaussian distribution, hence complying with the assumptions for overdis-
persion shrinkage in edgeR, DESeq and baySeq. Performances are now more similar
(see Figure C.6), although at FPR = 0.05 ShrinkSeq still detects 10-30% more than
the other methods. Also, in terms of rAUC, baySeq, edgeR and NOISeq are infe-
rior to ShrinkSeq. The better performance of ShrinkSeq illustrates that (nonparamet-
ric) shrinkage of the parameter of interest (βi1), which is not included in any of the
other methods, may also aid in terms of power, in addition to its beneficial effects on
Bayesian multiplicity correction and prevention of selection bias (Crager, 2010).
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ShrinkSeq, NP; rAUC = 3.96
baySeq; rAUC = 3.46
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NOISeq; rAUC = 3.55
edgeR; rAUC = 3.47

FIGURE C.6. ROC-curves for βi1 in simulation case 1 with a Gaussian distribution of φi = log(νi):
our method (solid) and edgeR (dashed). X-axis: 1-specificity (false positive rate), y-axis: sensitivity
(true positive rate)

Data-based simulation: effect of zeros. To compare our method with others
in a setting where the data contains a substantial proportion of zeros we performed
the following simulation. We use our data, consisting of 25 observations per feature
(see Section 4.7.1), as a template. We do so to a) avoid simulating from a specific
parametric setting (e.g. ZI-NB) that would a priori favor our or any other method and
b) assure that our simulated data reasonably mimic real data.

The two-group simulation is set up as follows. For each data row we randomly
sample 2×8 observations (hence two conditions) from the empirical feature-wise data
distribution (F̂i , as constructed from the 25 observation), which results in two sets
of observations which are drawn from the same null-distribution. Feature-wise batch
effects (which can be substantial) are accounted for in the design by sampling an
equal number (4) of observations from the two batches in both groups. In addition,
batch is incorporated as a covariate when the software allows for it (DESeq, edgeR,
ShrinkSeq). For 10% of the features a differential effect is enforced by multiplying the
data of the second group by ki , which implies a ki-fold effect and a distribution defined
by Ĥi(ki x)= F̂i(x). Moreover, for i= 1,.. . ,1000, βi1= log(ki) is drawn from a N(0,1)
distribution (βi1 = 0 for i = 1001,.. . ,10000). To avoid any bias in the comparison we
compare the other methods with ShrinkSeq NP only, which uses a nonparametric prior
for βi1.

Figure C.7 shows the partial ROC-curves for all methods. ShrinkSeq clearly out-
performs all the other methods. For FPR=0.05, sensitivity of ShrinkSeq is at least 40%
larger than that of the others. Hence, accounting for zeros is very relevant for the
purpose of increasing sensitivity.
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ShrinkSeq, NP; rAUC = 3.84
baySeq; rAUC = 1.67
DESeq; rAUC = 2.74
NOISeq; rAUC = 2.86
edgeR; rAUC = 3.12

FIGURE C.7. ROC-curves for βi1 in two-group data-based simulation. X-axis: 1-specificity (false
positive rate), y-axis: sensitivity (true positive rate)

Data-based simulation: monotonic time trend. This final simulation assumes a
time-course design, where measurements have been taken at four different time points
on non-related samples. Again, we use the data as a template to obtain a realistic and
fair comparison.

The time-course simulation is set up as follows. For each data row we randomly
sample 4×6 observations from the empirical feature-wise data distribution (F̂i , as con-
structed from the 25 observation), which results in two sets of observations which are
drawn from the same null-distribution. Tag-wise batch effects (which can be substan-
tial) are accounted for in the design by sampling an equal number (3) of observations
from the two batches for all time points. In addition, batch is incorporated as a co-
variate when the software allows for it (DESeq, edgeR, ShrinkSeq). NOISeq does not
accommodate this design, so is excluded from the comparison. For 10% of the features
a differential effect is enforced by multiplying the data of the jth time point ( j> 1) by
ki j , where βi j = log(ki j)∼N(0,σ2

j ) and (σ2,σ3,σ4) = (0.6,0.8,1). To avoid any bias
in the comparison we compare the other methods with ShrinkSeq NP only, which uses
a common nonparametric prior for contrasts βi j−βik.

Figure C.8 shows the partial ROC-curves for all methods. ShrinkSeq NP outper-
forms the other methods. The relative good performance of edgeR (with respect to
the two-group setting, Figure C.7) illustrates the efficiency of ANOVA-type tests for
multi-group differences. Still, for FPR=0.05, sensitivity of ShrinkSeq NP is around
15% better than that of edgeR and at least 50% larger than that of DESeq and baySeq.

In addition, we illustrate a potential gain in power for detecting monotonic trends
when using a simple linear combination of parameters of the components of βi =
(βi1,βi2,βi3,βi4), Ci = 3βi4+βi3−βi2−3βi1, see (C.9). This is trivial in the edgeR
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and our setting and does not require any additional development or programming (se
Appendix C.6). Figure C.8 displays two additional curves, ShrinkSeq monotone (using
a log-concave prior on Ci) and edgeR monotone. Note that here we restrict our atten-
tion to the features that correspond to simulated monotonic trends or no differential
effect at all. This does not alter the ROC curves for the other methods (apart from
some small fluctuations), because these are not using the time order. In both cases
we observe an improvement with respect to the same method without accounting for
monotonic effects. ShrinkSeq monotone, however, clearly outperforms the others, in-
cluding edgeR monotone.
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ShrinkSeq, NP; rAUC = 4.17
ShrinkSeq, monotone; rAUC = 4.91
baySeq; rAUC = 1.63
DESeq; rAUC = 2.73
edgeR; rAUC = 3.8
edgeR, monotone; rAUC = 3.98

FIGURE C.8. ROC-curves for βi in a multi-group data-based simulation. X-axis: 1-specificity (false
positive rate), y-axis: sensitivity (true positive rate)

C.11 Preprocessing of CAGE data. The CAGE methodology (Kodzius et al., 2006)
is a validated approach that has been extensively used to profile promoter activity in
mice and humans. CAGE tags are 21-27 nucleotides sequence features generated from
full length RNA transcripts and mark the transcription start site (TSS) and upstream
promoter regions. After sequencing, the CAGE tags were mapped to human genome
(Hg18 build). Further the CAGE tags were hierarchically clustered for downstream
analysis. Briefly, the CAGE tags that mapped to the same genomic position and on the
same strand were considered as CAGE-tag starting sites (CTS). CTSs that were on the
vicinity of 21 bps and on the same strand were grouped into a CAGE cluster. Finally,
CAGE clusters located within a region of 400 base pairs were grouped into a promoter.
A promoter region is then a genomic region comprising a distribution of nearby TSSs
that are expected to share the same transcription machinery. To increase the likelihood
of identifying real TSS, Pardo et al. (manuscript in preparation) only include CAGE
tags that are present (count larger than 0) in at least two libraries and that had a total
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count of at least 6 tags per million. A total of 45.000 tag clusters is available. Here, a
subset of 10.000 tag clusters is used for the illustration of our approach.

C.12 NB+: Embedding a trend-prior for φi into our framework. As detailed
by Anders and Huber (2010), overdispersion φi = log(νi) relates to the abundance in
a systematic way when using an NB model. They propose to estimate a nonparametric
function h, such that φi = h(ci)+ εi , where ci is the log of the total feature count.
Among many curve fitting methods, LOESS can be used to estimate h. Some initial
estimate of φi is needed to fit h. In our case we suggest to use the feature-wise
posterior mean estimates given a flat prior.

Then, assuming ĥ≈ h, shrinkage is implemented by assuming

φi− ĥ(ci) =
d N(0,σ2),

where σ2 is estimated by our iterative procedure. Then, effectively, the shrunken esti-
mate of φi pools between the curve estimate and the feature’s own overdispersion.

C.13 Results from parametric priors on contrasts in the CAGE data set. Be-
sides the nonparametric priors, we also applied the Dirac-Gaussian and the Gaussian-
Dirac-Gaussian mixture priors to the contrasts in the CAGE data set (see Equations 4.6
and 4.7). The parameters of these priors, which include a point mass on zero with
mixture proportion p0, were estimated by using the direct maximization procedure
(C.5). The results were not supportive for the use of a point mass: estimates of p0
were rather low in both cases, approximately 0.3. In fact, we also applied constrained
maximization, forcing p0 ≥ q for q> 0.5. However, the optimum was always achieved
at p0 = q, rendering the result too dependent of the imposed constraint. Alternative
parametric priors, Gamma-Dirac-reverse Gamma and Dirac-central Laplace, did not in-
crease the p0 estimate. The low estimates of p0 could be real in the sense that perhaps
many small, but non-zero, effects exist in this setting. However, note also that this
data set is very challenging, because the number of data points per condition is small,
5, and nuisance factors like ‘batch’ are present. Hence, as in deconvolution problems,
it is hard to recover the prior, in particular when it contains a point mass.

C.14 Stabilizing effect of the priors in the CAGE data. We first show that
shrinkage of νi has a large effect on the stability of the estimate of νi , as demon-
strated by others in different settings (Anders and Huber, 2010, Robinson and Smyth,
2007). For reasons of comparison, we also fitted model 4.10 using a simple vague
prior, log(νi) =φi =d N(0,(10)2). We evaluated the ratios of posterior standard devi-
ations of νi = exp(φi) obtained under the vague (V) and informative (I) prior (that
effectuates shrinkage): sdV(νi |Yi)/sdI(νi |Yi). Of those ratios, 74% were larger than 1,
48% were larger than 5 and 42% were larger than 25, which clearly indicates a strong
stabilizing effect of dispersion shrinkage in our setting as well.
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Next, we illustrate the strong stabilizing effect of the nonparametric prior with re-
spect to a fairly vague central Gaussian prior (variance equal to 5; results are more
dramatic for vaguer priors) we performed a leave-one-out analysis on 250 randomly
chosen features: every sample is left out once from the data and all contrasts are
re-estimated (posterior means) using 24 instead of 25 samples. Then, the stability
of the resulting estimates was evaluated. Figure C.9 clearly illustrates that the range
(over the 25 repeats) of the shrunken estimates is much smaller than that of the non-
shrunken estimates. This is not just a scaling effect: also the ranks of each parameter
estimate (w.r.t. parameter estimates for all features and contrasts) are more stable
(see Figure C.10).
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FIGURE C.9. Stabilizing effect of shrinking the contrasts β′ik`. Leave-one-out analysis was per-
formed: for 250 randomly chosen features, each contrast was repeatedly re-estimated from data
with one sample less. Each sample was left out exactly once, resulting in 25 estimates of each con-
trast. X-axis: range of estimate (posterior mean) computed from 25 instances when shrinkage of
the contrasts was not used. Y-axis: idem but with shrinkage. Box plots show the distributions of the
ranges.
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FIGURE C.10. Stabilizing effect of shrinking the prior of contrasts β′ik`. Leave-one-out analysis
was performed: for 250 randomly chosen features, each contrast was repeatedly re-estimated from
data with one sample less. Each sample was left out exactly once, resulting in 25 estimates of each
contrast. For each left-out sample, a contrast estimate (posterior mean) was ranked with respect to
the entire vector of 250×10=2500 contrast estimates. X-axis: range of rank (as assessed from 25
instances) when shrinkage of the contrasts was not used. Y-axis: idem but with shrinkage.



APPENDIX C.15 121

C.15 Details on the analysis of the HapMap RNA-seq data set. This data set
is a standard HapMap RNA-seq data set which consists of 60 samples of Caucasian
(Montgomery et al., 2010) origin and 69 samples of Nigerian (Pickrell et al., 2010)
origin. The data are available from the ReCount (Frazee et al., 2011) web site:
http://bowtie-bio.sourceforge.net/recount/. The data was normalized using edgeR’s
quantile-adjusted conditional maximum likelihood (qCML) method (Robinson and
Smyth, 2008).

For studying reproducibility, the data were first randomly split into two equal-size
splits after removing the last Nigerian sample. To avoid analyzing features with almost
only zeros, features with less than 5 non-zeros in either of the splits were filtered out,
rendering 10,369 features in total. For consistency reasons, the unbalanced splits,
described in 4.7.5, are applied to the same feature set.

DESeq and edgeR p-values were corrected using the Benjamini-Hochberg (1995)
FDR correction. baySeq provides an internal FDR correction which we use. ShrinkSeq
was used with BFDRII(t) (C.7) and∆=0.1. Cut-off 0.1 was used for all four methods.

Application of ShrinkSeq is straightforward for this simple design. First, the single
parameter of interest coding for the group difference, βi1, and the overdispersion pa-
rameter φ are shrunken using the iterative joint procedure. As for the CAGE data a
mixture prior was used for νi = exp(φi)=d q0δ0+(1−q0)`N(µ,σ2). For this data, the
iterative joint procedure rendered q̂0=0 for all splits, indicating that the ZI-NB should
be used for all features and highlighting automatic model selection properties of our
method. Next, posteriors are computed for all features using INLA. Finally, as for the
CAGE data, the posteriors of βi1 are updated by applying a log-concave nonparametric
prior determined by the marginal iterative procedure.

C.16 Software. All the methodology discussed in this paper is implemented in R.
The code and the data are available from www.few.vu.nl/̃mavdwiel. Parts of our soft-
ware rely on the INLA R-package (available from www.r-inla.org, in particular fitting
of the count models and the iterative joint procedure for estimating hyper-parameters.
Other parts, like the marginal iterative procedures and the BFDR/lfdr implementa-
tion, apply to any software or methodology that provides numerical representations of
marginal posteriors.

Computing time. As discussed in Section 4.1, one of the reasons to use INLA is its
computational efficiency with respect to MCMC. Still, our method usually takes more
time than p-value-based methods. However, we show in this section that, given the
amount of data, computing times are reasonable, and large, realistic data sets can be
processed.

Computing time depends on the complexity of the design, the count model, type of
shrinkage and convergence speeds of the iterative procedures. As a first indication: the
entire analysis of the presented data in Section 4.7.1 (10000 features, fairly complex
design) took 2 hours on an ordinary quad-core PC, 37% (45 min. = 0.75 hour) of
which was used for fitting the models on all features. Computing time scales up less
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than proportionally to the number of features, because, as explained earlier, the time
consumed by the iterative procedures does not increase with the number of features
exceeds, say, 10000. Hence, in this data setting computing time (in hours) for p >
10000 features approximately equals: Tp = 1.25+0.75p/10000. This was verified on
the entire data set from which our illustration data was extracted from and indeed
T70000≈ 1.25+0.75×7= 6.5 hours. Table C.3 provides computation times for several
values of p.

To illustrate how computing time depends on complexity of the design, we also
present computing times for the data-based simulation with two groups and no addi-
tional covariates (see Appendix C.10). On 10000 features, computations were twice
as fast as for the previous, more complex design: approximately one hour, 30% (18
min. = 0.3 hour) of which was used for fitting the model. Hence, computation time
for p > 10000 equals Tp = 0.7+0.3p/10000. Table C.3 provides computation times
for several values of p.

# features p I II
1×104 2.0 1.0
2×104 2.8 1.3
5×104 5.0 2.2
1×105 8.8 3.7
2×105 16.3 6.7
5×105 38.8 15.7
1×106 76.3 30.7

TABLE C.3. Computation times (hours) for ShrinkSeq on a quad-core PC for two settings: complex
design (I), simple two-group design (II). PC specifications: Intel R© Xeon R©, CPU E5530, 2.40GHz;
12GB RAM.

Our code allows for parallel computing. Since many of the functions parallelize
trivially (e.g. fitting the models for all features) computing time scales down nearly
proportionally when the number of computing cores increase. A 12-core cluster, with
the same clock speed as the quad-core, processes 106 features in just more than a day
(26 hours) for the complex design (I) and approximately 10 hours for the two-group
design (II).

C.17 Example. Below we provide an example of the methods for estimating pri-
ors that are presented in Section 4.3. The methods can be applied to any software that
provides approximations of marginal posteriors for given priors. Our implementation
is based on INLA (Rue et al., 2009), but, since our software provides wrappers that
invoke INLA for our setting, only limited knowledge of INLA is required. Note also
that www.r-inla.org provides many examples on INLA itself. In addition, Fong et al.,
2010 present examples of INLA in a GLM setting.
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For illustration purposes we use the simplest setting: the two-group comparison for
the HapMap RNA-seq data, discussed in 4.7.5 and Appendix C.15. We use the results
for a small subset (8 vs 8) to illustrate the effect of shrinkage. The number of features
equals p= 10,369. This example data set is available from www.few.vu.nl/̃mavdwiel,
including the R-scripts. For the posteriors we focus on three example features with
data:

Index Data group 1 Data group 2
4079 129 147 148 175 116 209 171 181 473 137 182 216 548 178 177 281
4004 114 338 698 589 1082 410 1036 161 4297 1681 1356 476 596 807 859 792
6080 0 0 0 0 0 0 2 2 21 2 4 1 2 1 7 5

TABLE C.4. Three example features.

Iterative joint procedure. We first use the iterative joint procedure to fit:

Yi j =
d ZI-NB(µi j ,w0i ,φi ,)

log(µi j) =ηi j

ηi j = βi0+βi x j

βi0 =
d logit(w0i) =

d N(0,100)

νi = exp(φi) =
d q0δ0+(1−q0)`N(µ,σ2)

βi =
d N(0,(σ′)2)

(C.13)

where x j = 0,1 codes for the two groups, w0i is the common zero-inflation parameter,
φi is the overdispersion parameter and βi , i = 1,.. . , p are the main parameters of in-
terest. Write the prior density of βi , corresponding to cdf N(0,(σ′)2), evaluated at β as
ψ(β;0,(σ′)2). The latter two equations in (C.13) contain the shrinkage priors that we
aim to estimate using our iterative algorithms. Hence, in the notation of Section 4.3,
the hyper-parameters that we aim to estimate are: A= {α1,α2}= {σ′,(q0,µ,σ)}. For
known A model (C.13) fits within the context of INLA, which provides marginal poste-
riors of βi and the other parameters. Below we illustrate the steps of the iterative joint
procedure.

STEP 1. We first initiate `= 0, σ′=α(0)1 = 10 (hence a large sd), (q0,µ,σ) =α(0)2 =
(0.2,0,10), and A(0) = {α(0)1 ,α(0)2 }. Let us, for illustration purposes, focus on α1 =σ′

and θ = β, implying for Equation 4.2: πα(θ) =πα1
(θ) =πσ′(β) =ψ(β;0,(σ′)2) and

A− = {α2}= {(q0,µ,σ)}.
STEP 2. Given A(0) and hence all priors, INLA is used to approximate marginal pos-

teriors of βi , πA0(β|Yi) for all features i= 1,.. . , p. It returns this posterior in a numeri-
cal matrix format which contains the support and the posterior density at the support.
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The resulting posterior density is displayed in light-blue (Iter. 0) in Figure C.12 for the
three example features.

STEP 3. The empirical mixture of the posteriors of all βi isπEmp

A(0)
(β)= 1

p

∑p
i=1πA0(β|Yi).

We sample say S= 100.000 observations from this empirical mixture rendering zA(0)

[see Equation 4.3] by simply collecting one or multiple samples from each posterior
πA0(β|Yi), i = 1,.. . , p. Then, we use MLE on zA(0) to re-estimate σ′ under the central

Gaussian prior, which results in α(1)1 . Steps 2 and 3 are repeated for α2 = (q0,µ,σ)
which results in α(1)2 .

STEP 4. The algorithm is iterated until the criteria based on Kolmogorov-Smirnov
distance, as explained in Appendix C.3, are satisfied, which is the case after 30 iter-
ations. In that section we also explain that for the purpose of estimating the hyper-
parameters smaller values of p (the number of features), p(t), may be used to reduce
computing time. For this data, the first 14 iterations used p(t) = 100, the next 5 on
p(t) = 200, the next 7 on p(t) = 500 and the final 4 on p(t) = 2000.

Table C.5 shows part of the subsequent estimates of A. The final result is Â =
{α̂1,α̂2} = {σ̂′,(q̂0,µ̂,σ̂) = {0.361,(0.000,1.579,0.974)}. Because q̂0 = 0 the ‘zero-
overdispersion’ component in (C.13) is not needed for this data. Figure C.11 shows
the iterative priors for βi and φi = log(νi) [the Normal component of it] in blue. Fig-
ure C.12 shows the iterative posteriors for the three example features. The shrinkage
effect is the strongest on β6080, both in terms of the location (mainly due to its own
prior) and variance (mainly due to the prior of φi). The strong effect of the priors
for this feature is likely due to the many zeros in group 1. This makes estimation of
the log-ratio, which is what this parameter represents, imprecise, and potentially also
inaccurate, when relatively vague priors are used.

Iteration α1 α2
σ̂′ q̂0 µ̂ σ̂

0 10.000 0.200 0.000 10.000
2 1.170 0.083 1.196 1.500
4 0.745 0.032 1.305 1.190
7 0.558 0.016 1.283 1.130

11 0.479 0.012 1.273 1.150
15 0.454 0.006 1.368 1.100
19 0.469 0.000 1.468 1.040
23 0.415 0.000 1.443 0.964
27 0.380 0.000 1.537 0.971
30 0.361 0.000 1.579 0.974

TABLE C.5. Estimates of the hyper-parameters in A from the iterative joint procedure
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Iterative marginal procedure. Since βi is our central parameter of interest as-
suming its prior to be central Gaussian may be too stringent. One may prefer to use a
non-parametric prior, but this is not allowed by INLA, which we need to (re-)estimate
the posteriors under given priors. However, INLA can be by-passed by using the itera-
tive marginal procedure outlined in Section 4.3.2.

We now show how to use Equation 4.4 to re-compute posteriors under a log-
concave prior π′(β). This is essential in the iterative marginal procedure: the old
prior and posteriors comply with INLA, the new ones need not to. Let A∗= {α∗1,α∗2}=
{
p

(10)σ̂′,α̂2}= {1.142,(0.000,1.579,0.974)}. Hence, for reasons mentioned below
Equation 4.4, first posteriors πA∗(β|Yi) are computed with INLA under a prior πα∗1(β),
which is a central Gaussian prior density with wider support than the one resulting
from the iterative joint procedure. Let us emphasize that, even though the estimate
from the iterative joint procedure α̂1 = σ̂′ is only indirectly used now, it is still impor-
tant to first jointly estimate α1 and α2 (as we did), due to their potential interdepen-
dency. Next, we illustrate the steps of the iterative marginal procedure.

STEP 1. Initiate `=0 andπ′(β)=π′0(β)=πα∗1(β)=ψ(β;0,10(σ̂′)2). One may also

initiate π′(β)=πα1
(β)=ψ(β;0,(σ̂′)2) (the Gaussian prior resulting from the iterative

joint procedure), but in our experience convergence occurs earlier with a ‘too wide’
prior than with a ‘too narrow’ one.

STEP 2. [This step may be skipped for `= 0, because π′0(β) =πα∗1(β)] Compute
the right-hand side of Equation 4.4: simply re-weigh the mass on posteriors πA∗(β|Yi)
by the ratio of prior masses. Then normalize the result to obtain proper posterior
densities. This is done by (univariate) numerical integration.

STEP 3. As before compute the empirical mixture of the posteriors of all βi (under
prior π′0) and sample from it. The best log-concave density (Lutz and Rufibach, 2011)
is then fit to this sample, which provides a new estimate of the prior π′1(β).

STEP 4. The algorithm is iterated until the marginal likelihood criterion, as ex-
plained in Appendix C.3, is satisfied. This typically requires somewhat more iterations
than the Kolmogorov-Smirnov-based criterion, but this is acceptable, because the re-
sulting prior is the final one used for the central parameter of interest, βi and hence
should be very accurate.

The final log-concave prior is displayed in black in the left display of Figure C.11.
The effect on the posteriors of the three example features is visualized in Figure C.12.
The differential shrinkage effect w.r.t. the final Normal prior is the strongest on β6080,
for which the log-concave prior implies a much more skewed posterior.
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FIGURE C.11. Estimated priors for βi and φi [Gaussian component]
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FIGURE C.12. Posteriors of β4079,β4004,β6080 under the corresponding priors of Figure C.11

C.18 Additional Figures and Tables. .
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FIGURE C.13. Motivation for use of mixture prior for overdispersion for the CAGE data. X-axis:
posterior mean of φi when an (initial) vague Gaussian prior is used. Y-axis: density. Because of the
log-scale, the left subpopulation corresponds to overdispersions νi = exp(φi) very close to 0. This
motivates a Dirac-logNormal mixture prior on νi .
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FIGURE C.14. The nonparametric prior density of the contrasts β′ik`, as obtained from the data
(solid) and the corresponding central Gaussian density with the same mean and standard deviation
(dashed).
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FIGURE C.15. Convergence of the nonparametric prior of the contrasts β′ik` for the data. X-axis:
iteration, y-axis: left and right 1% (solid), 5% (dashed), 10% (dotted) quantiles of the estimated
prior. Iteration 0 corresponds to the initial Gaussian prior.
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FIGURE C.16. Correlation of the results between two halves of the Montgomery-Pickrell RNA-seq
data set for four methods. X-axis: rank according to significance for the first half; Y-axis: rank
according to significance for the second half. Spearman’s ρ is also displayed.

ZI-NB NB+ NB
µmax

ik` ≤ 12.6 78 1 2
12.6<µmax

ik` ≤ 37.6 172 28 43
37.6<µmax

ik` ≤ 82.4 82 60 40
82.4<µmax

ik` ≤ 299.4 108 85 56
299.4<µmax

ik` 38 32 31
Sum 478 206 172

TABLE C.6. Number of detected differential contrasts with lfdrII(t)≤ lfdrmax = 0.2 and ∆= 0.25
using the ZI-NB, NB+ and NB models, where the posteriors are based on the nonparametric prior for
contrasts β′ik` (depicted in Figure C.14). Rows 2-6 represent very low-count, low-count, medium-
count, high-count and very high-count contrasts, where µmax

ik` =max(µik ,µi`), with µih: mean
count for feature i and group h. Here, 12.6, 37.6, 82.4 and 299.4 are the 80%, 90%, 95% and
99% empirical quantiles of the vector containing all values of µmax

ik` , respectively.



APPENDIX C.18 129

Index Data group 4 Data group 5 q5, ZI-NB q5, NB+ q5, NB
q10, ZI-NB q10, NB+ q10, NB
q20, ZI-NB q20, NB+ q20, NB

3937 2 3 0 3 5 7 2 10 6 4 -0.087 -0.261 -0.137
0.008 -0.162 -0.039
0.129 -0.044 0.081

176 0 1 4 3 9 30 17 3 27 27 -0.034 -0.118 -0.091
0.076 -0.019 0.011
0.227 0.106 0.146

3058 0 13 6 8 13 17 17 64 30 88 0.096 0.011 -0.199
0.211 0.120 -0.097
0.375 0.268 0.024

8067 80 4 26 2 3 120 253 9 204 36 0.007 0.004 -0.042
0.109 0.098 0.056
0.242 0.220 0.186

3173 221 12 79 18 17 928 869 168 466 345 0.757 0.720 0.654
0.908 0.860 0.811
1.078 1.025 0.997

TABLE C.7. Lower 5%, 10% and 20% quantiles of the posteriors of contrast β′i54 = β
G
i5−β

G
i4 for

i = 3937,176,3058,8067,3173 using the ZI-NB, NB+ and NB models, where the posteriors are
based on the nonparametric prior for β′ik` (depicted in Figure C.14). The five contrasts are represen-
tatives of very low-count, low-count, medium-count, high-count and very high-count contrasts (see
Table C.6). Quantile q5 >∆ indicates that the contrast would be detected when using H0 : β′ik` <∆
and lfdr+ < 0.05, (likewise for q10 and q20).

1st half Shrink- edgeR DE- bay- 2nd half Shrink- edgeR DE- bay-
Seq Seq Seq Seq Seq Seq

ShrinkSeq 1.000 0.964 0.941 0.765 ShrinkSeq 1.000 0.954 0.909 0.685
edgeR 0.964 1.000 0.957 0.751 edgeR 0.954 1.000 0.922 0.660
DESeq 0.941 0.957 1.000 0.659 DESeq 0.909 0.922 1.000 0.606
baySeq 0.765 0.751 0.659 1.000 baySeq 0.685 0.660 0.606 1.000

TABLE C.8. Spearman correlations between the results of four methods within two halves of the
Montgomery-Pickrell RNA-seq data sets.
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APPENDIX D

D.1 Supplementary Figures. .

FIGURE D.1. Schema of main experimental and data analysis procedures.

FIGURE D.2. Empirical cumulative frequency distribution of the expression (log geometric mean)
of Level 3 CAGE Tag clusters (TCs). The empirical cumulative distribution of expression (y-axis)
of the logarithmic geometric mean expression (x-axis) of TCs is presented in black. The empirical
cumulative function of canonical (red) and non-canonical TCs (intronic (blue), intergenic (purple)
and 3’UTR (green)) is also presented. The graph shows that canonical TCs expression accounts for
most of the overall expression. In contrast, most non-canonical TCs are expressed at low levels.
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FIGURE D.3. Comparison of genes identified by RNA-Seq and CAGE. a) Venn diagram showing the
number of genes expressed in brain and identified with CAGE and/or RNASeq (Ramsköld et al.,
2009); b) Biotype classes of the genes that were identified by CAGE (inner circle) or RNASeq (outer
circle). A larger proportion of ncRNA classes were identified by CAGE

FIGURE D.4. Functional pathway analysis of highly expressed genes with canonical Level 2 CAGE
Tag clusters. Comparative graph of the functional pathways showing significant overrepresentation
identified for the most highly expressed genes. The left y-axis presents -log p-value of the binomial
test. The right y-axis presents the number of genes per pathway. Asterisks represent significant
p-values (** p-value<10−5;*p-value<10−3)
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FIGURE D.5. Boxplots of β-regression coefficients (y-axis) for every brain region (x-axis) and for
each of the 29 DE modules.

FIGURE D.6. Boxplots of β-regression coefficients (y-axis) for every brain region (x-axis) and for
each of the 29 DE modules.
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FIGURE D.7. Boxplots of β-regression coefficients (y-axis) for every brain region (x-axis) and for
each of the 29 DE modules.

FIGURE D.8. Boxplots of β-regression coefficients (y-axis) for every brain region (x-axis) and for
each of the 29 DE modules.
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FIGURE D.9. Heatmap of -log p-values of overrepresented functional pathways per differentially
expressed module.

FIGURE D.10. Heatmap of the unsupervised clustering of TC expression profiles from 25 libraries.
Only data from chromosome 1 is depicted due to computer limitations.
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D.2 Supplementary Tables. .

Sample
Gender Age

Braak Braak Braak
Cause of death

Post-mortem
id staging Amyloid Alpha delay (hours)

score syn
1 M 91 1 B 1 Cardiac decompensation 08:00
2 M 87 3 A 0 Unknown 06:05
3 F 82 3 B 0 Cardiac failure 05:10
4 F 87 2 O 0 Cachexia and dehydration 07:00
5 F 89 2 0 0 Dyspnea 04:15
6 M 70 0 A 0 Pancreas carcinoma 06:55
7 F 97 1 C 0 Cachexia and dehydration 05:00

TABLE D.1. Demographic features of brain donors.
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E.1 Generated partial correlations. .

d Graph Min. 1st Qu. Median Mean 3rd Qu. Max.

d = 20

Band 1 0.2273 0.3773 0.4280 0.4252 0.4930 0.5368
Band 2 0.1038 0.2727 0.3106 0.3134 0.3549 0.4762
Cluster 0.1328 0.3710 0.4080 0.4113 0.4658 0.6274

Hub 0.1593 0.3031 0.3539 0.3385 0.3949 0.4630

d = 50

Band 1 0.1381 0.3420 0.4076 0.4069 0.4652 0.5821
Band 2 0.1082 0.2630 0.3044 0.3049 0.3475 0.5052
Cluster 0.1627 0.3895 0.4539 0.4536 0.5153 0.6871

Hub 0.1367 0.2371 0.2806 0.2902 0.3451 0.4440

d = 100

Band 1 0.1405 0.3586 0.4182 0.4140 0.4688 0.6214
Band 2 0.1396 0.2475 0.2862 0.2846 0.3212 0.4439
Cluster 0.1685 0.3606 0.4086 0.4135 0.4628 0.6764

Hub 0.1378 0.2555 0.2912 0.2929 0.3364 0.4768

d = 200

Band 1 0.1482 0.3497 0.3939 0.3995 0.4509 0.6300
Band 2 0.1334 0.2451 0.2825 0.2830 0.3204 0.4538
Cluster 0.1370 0.3891 0.4528 0.4546 0.5204 0.7236

Hub 0.1174 0.2362 0.2732 0.2786 0.3187 0.4610

TABLE E.1. Five-point summary on absolute values of the true (non-zero) partial correlations

E.2 Methodological details . For each method under comparison in Section 6.3.2,
we here describe how the edge ranking is obtained and how the graph structure is se-
lected.

1. SEML

Consider a single regularization parameter λ for all regression equations, then
for a given λ the graph is determined by the following heuristic: if βi, j 6= 0 and
β j,i 6= 0, then an edge is present between nodes i and j. Ranks of edges are
determined by the order in which they enter the graph when decreasing λ from
λmax to λmin, where λmax (resp. λmin) is high (low) enough so the null (full)
graph is obtained.
Graph selection: For each regression, variables are selected with BIC (hence λ
varies accross regressions) and the graph is determined with the above heuristic.

2. SEML_STAB

For each node-wise regression, stability selection is as follows. We first choose
a regularization parameter λ0 that includes about bπ0pc variables, where p is
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the total number of covariates and 0≤ π0 ≤ 1. The model is chosen so as to
‘overfit’ (the subset of true variables is believed to be smaller). Then, B random
samples of size bn/2c are taken without replacement from the data set and a lin-
ear model with an `1-penalty and fixed regularization parameter λ0 is fitted on
each of them. Variable importance is reflected by the empirical probability of se-
lection in the model. Now consider Pi, j the probability of selection of variable j
when it is regressed on variable i with all other variables, then for a fixed thresh-
old min

i, j
(Pi, j)≤π≤max

i, j
(P j,i) the graph is determined by the following heuristic:

if Pi, j ≥π and P j,i ≥ π, then an edge is present between nodes i and j. Last,
ranks of edges are determined by the order in which they enter the graph when
decreasing π from max

i, j
(Ri, j) to min

i, j
(Ri, j). In our simulations, we set π0 = 0.25,

B= 200 and used R package glmnet (Friedman et al., 2010). This approach
to stability selection is called “pointwise control” and described in Meinshausen
and Bühlmann (2010).
Graph selection: We first symmetrize the matrix P. Then, to determine the graph
structure, a probability threshold π is chosen so the expected proportion of
falsely selected edges is less than 10% (Meinshausen and Bühlmann, 2010).

3. GLλ
Ranks of edges are determined by the order in which they enter the graph when
the regularization parameter λ of the graphical lasso is decreased from λmax to
λmin, where λmax (resp. λmin) is high (low) enough so the null (full) graph is
obtained.
Graph selection: Select λ based on BIC

4. GLSTAB: Graphical lasso with stability selection

We first choose a regularization parameter λ0 that includes about bπ0
p(p−1)

2
c

edges, where p is the total number of variables and 0 ≤ π0 ≤ 1. The model
is chosen so as to ‘overfit’ (the subset of true edges is believed to be smaller).
Then, B random samples of size bn/2c are taken without replacement from the
data set and graphical lasso with fixed regularization parameter λ0 is fitted on
each of them. Ranks of edges are determined by their empirical probability of
selection in the model over the subsamples. Here, we set π0=0.20 and B=200.
R package glasso was used.
Graph selection: To determine the graph structure, a probability threshold π is
chosen so the expected proportion of falsely selected edges is less than 10%
(Meinshausen and Bühlmann, 2010).

5. GeneNet: Shrinkage estimation and a posteriori node selection

An estimate of the partial correlation matrix is first obtained (using function
ggm.estimate.pcor() of R package GeneNet; Schaefer et al. (2006), Schäfer and
Strimmer (2005)). Then, for each edge a two-sided test for the null hypothesis
of no correlation is realized. Edges are ranked according to their FDR.
Graph selection: cut-off on FDR (0.1)
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Summary

The face of biology has changed tremendously with the emergence of technologies
that allow for the parallel measurement of thousands of biological sequences (such as
DNA, RNA or protein sequences). These technologies (such as microarrays and next-
generation sequencing) have produced massive amounts of data that have proven in-
valuable to researchers in the understanding of (the causes of) complex diseases such
as cancer. The surge of ‘Big Data’ has raised questions regarding their organization
and utilization and, hence, has spurred substantive interest in fields such as computer
science and statistics.

In this thesis statistical models and inference procedures are developed that ad-
dress biological questions arising from the analysis of microarray and sequencing data.
We particularly treat the subjects of integration of DNA copy number and gene expres-
sion data (Chapters 2 and 3), differential gene expression analysis (Chapters 4 and 5),
and gene network reconstruction (Chapter 6). Chapter 1 introduces some aspects of
molecular biology and experimental molecular data generation in order to aid under-
standing of the remaining chapters.

In Chapter 2 piecewise linear regression splines is presented as a flexible class of
models to decipher how DNA copy number abnormalities in cancer cells alter messen-
ger RNA (mRNA) gene expression levels. This class of models aims to reflect the bio-
logical mechanism operating between these two molecular levels and helps in identi-
fying relevant disease markers. We thus utilize piecewise linear regression splines with
biologically-motivated parameter constraints to model associations. A novelty in this
model is the combined use of copy number data from various (standard) preprocess-
ing steps, namely the continuous segmented and discrete called data. Because model
estimation and selection is difficult in this context, the chapter provides methodology
for testing the effect of DNA on mRNA, identifying the appropriate model and ob-
taining uniform confidence bands that incorporate model uncertainty. Using two real
data sets, it is illustrated that flexible models may bring more insight in the interaction
between the two molecular levels.

In Chapter 3 the R package PLRS is presented, which implements the statistical
framework introduced in Chapter 2. The package is illustrated with an additional
data set from The Cancer Genome Atlas (TCGA). For these data, the need for flexible
models is particularly pronounced.

Chapter 4 presents a Bayesian approach to differential gene expression analysis us-
ing sequencing (count) data. The method is particularly useful for its large flexibility
of the likelihood count model and its ability to handle complex designs. It also accom-
modates multi-parameter shrinkage for the borrowing of strength in high-dimension.



An novel empirical Bayes procedure for estimating parameters of priors is introduced
and different types of (non-)parametric priors are discussed along with Bayesian cor-
rections for multiplicity. The chapter and its appendix present various model- and
data-based simulations that validate the performance of the approach in detecting
true differences. In particular, compared to other methods, results are shown to be
more reproducible on real data.

In Chapter 5 we study differences in gene expression between brain regions in el-
derly humans. In this work, our contribution lies in the differential expression analysis
of cap analysis gene expression (CAGE) data.

Finally, Chapter 6 introduces a computationally attractive Bayesian structural equa-
tion model (SEM) for gene network reconstruction. We argue that regularization by
means of Gaussian priors coupled with a posteriori edge selection is a simple and at-
tractive alternative to sparse priors. A novelty of this work is the use of shrinkage priors
that allow the borrowing of strength across regression equations. In simulations, it is
demonstrated that the empirical Bayes procedure of Chapter 4 is appropriate in this
context and that shrinkage priors can substantially improve graph structure recovery.
The Bayesian SEM is also shown to outperform popular sparse methods in various
settings.



Samenvatting

Statistische Modellering en Inferentie voor Genomica

Data Integratie, Shrinkage en Netwerk Reconstructie

De aard van biologisch onderzoek is enorm veranderd met de opkomst van technolo-
gieën die de parallelle meting van duizenden biologische sequenties (zoals DNA, RNA
of proteïne sequenties) mogelijk maken. Deze technologieën (zoals microarrays en
next-generation sequencing) produceren massieve hoeveelheden data welke van on-
schatbare waarde blijken voor het begrijpen van (de oorzaken van) complexe ziekten
zoals kanker. Deze golf aan ‘Big Data’ heeft vragen opgeworpen over de organisatie
en het gebruik van massieve datasets. Deze vragen hebben geleid tot hernieuwde,
biologisch-gemotiveerde interesse in informatica en statistiek.

In dit proefschrift worden statistische modellen en inferentie-procedures ontwikkelt
voor de biologische vraagstukken die voortkomen uit microarray en next-generation
sequencing data. In het bijzonder komen de volgende onderwerpen aan bod: de in-
tegratie van DNA copynumbervariatie en genexpressie data (hoofdstukken 2 en 3),
de analyse van differentiële genexpressie (hoofdstukken 4 en 5), de reconstructie van
genexpressie netwerken (hoofdstuk 6). Hoofdstuk 1 introduceert enkele aspecten uit
de moleculaire biologie en moleculaire-data productie om het begrip van de volgende
hoofdstukken te vergroten.

In hoofdstuk 2 worden piecewise linear regression splines gepresenteerd als een
flexibele klasse van modellen om te ontcijferen hoe DNA copynumbervariaties veran-
deringen teweeg brengen in de expressie van messenger RNA (mRNA) in kankercellen.
Deze klasse van modellen reflecteert expliciet het biologische mechanisme onder de
twee genoemde moleculaire niveaus en is behulpzaam bij de identificatie van rele-
vante biomarkers. De implementatie van piecewise linear regression splines maakt
gebruik van biologisch gemotiveerde restricties op de model-parameters. Een noviteit
van dit gerestricteerde model is het gecombineerde gebruik van meerdere, uit de dat-
apreparatie voortkomende, DNA copynumbervariatie datatypes, namelijk: continue
gesegmenteerde alsook discrete called data. Hoofdstuk 2 verstrekt dan de methodolo-
gie voor: het testen van het effect van DNA copynumbervariaties op mRNA expressie,
het identificeren van het best passende gerestricteerde model, het verkrijgen van uni-
forme confidence bands waarin modelonzekerheid is opgenomen. Aan de hand van
twee echte datasets wordt geïllustreerd hoe de flexibiliteit van de voorgestelde mod-
ellen meer inzicht oplevert in de interactie tussen DNA copynumbervariatie en mRNA
genexpressie.



In hoofdstuk 2 wordt het R pakket PLRS gepresenteerd, welke de methoden uit
hoofdstuk 2 implementeert. Het pakket wordt geïllustreerd met additionele data van
The Cancer Genome Atlas (TCGA). De behoefte aan de flexibiliteit die dit pakket biedt
is bijzonder uitgesproken voor deze data.

Hoofdstuk 4 ontwikkelt een Bayesiaanse aanpak voor de analyse van differentiële
genexpressie op basis van next-generation sequencing data. De methode is vooral van
nut door zijn flexibele omgang met de waarschijnlijkheidsfunctie en zijn vermogen
complexe designs te verwerken. Het raamwerk incorporeert ook ‘shrinkage’ in de zin
dat de parameterschattingen worden verbeterd door het gebruik van empirisch gemo-
tiveerde prior verdelingen. Verder geeft dit hoofdstuk een nieuwe empirical Bayes
procedure voor het schatten van de hyperparameters van prior verdelingen en be-
spreekt het verschillende soorten (niet-)parametrische priors alsook Bayesiaanse mul-
tipliciteitscorrecties. Verscheidene model- en data-gebaseerde simulaties valideren de
aanpak met betrekking tot de detectie van differentiële genexpressie. Een vergelijk-
ing met andere methoden op echte data laat zien dat de resultaten verkregen met de
voorgestelde methode beter reproduceerbaar zijn.

In hoofdstuk 5 bestuderen we verschillen in genexpressie tussen hersengebieden
bij senioren. Onze bijdrage ligt in de analyze van differentiële genexpressie op basis
van cap analysis gene expression (CAGE) data.

Tenslotte introduceert hoofdstuk 6 een computationeel aantrekkelijk Bayesiaans
structureel vergelijkingsmodel voor de reconstructie van genexpressie netwerken. We
stellen dat regularisatie door middel van Gaussische priors in combinatie met a pos-
teriori zijde-selectie een simpel en aantrekkelijk alternatief is voor het gebruik van
spaarzame priors. De vernieuwing ligt hier in het gebruik van shrinkage priors die in-
formatie ‘lenen’ uit de verschillende regressievergelijkingen van het structurele model.
Simulaties tonen aan dat de empirical Bayes procedure van hoofdstuk 4 ook in deze
context gebruikt kan worden en dat het gebruik van shrinkage priors superieure net-
werk reconstructie oplevert. Simulaties tonen ook aan dat het voorgestelde Bayesi-
aanse structureel vergelijkingmodel in verscheidene situaties beter presteert dan pop-
ulaire spaarzame methoden.



Résumé

Modélisation et Inférence Statistique pour la Génomique

Intégration de Données, Shrinkage et Reconstruction de Réseaux

Le visage de la biologie a énormément changé avec l’émergence de technologies
qui permettent de mesurer en parallèle des milliers de séquences biologiques (telles
que les séquences d’ADN, d’ARN ou de protéines). Ces technologies (comme par ex-
emple les puces à ADN ou le séquençage haut débit) ont produit d’énormes quantités
de données qui se sont avérées indispensables pour les chercheurs dans la compréhen-
sion de maladies complexes telles que le cancer. L’organisation et l’utilisation de ces
données massives sont très tôt devenues un défi, et par conséquent, ont soulevé un
intérêt certain dans des domaines tels que l’informatique et la statistique.

Dans cette thèse, nous développons des modèles et procédures d’inférence statis-
tiques qui répondent à des questions biologiques soulevées par l’analyse de données de
puces à ADN et de séquençage. Nous abordons notamment l’intégration des données
du nombre de copies d’ADN et d’expression génique (chapitre 2 and 3), l’analyse dif-
férentielle de l’expression des gènes (chapitre 4 and 5) et la reconstruction de réseaux
géniques (chapitre 6). Le chapitre 1 introduit certains aspects de biologie moléculaire
et les différents types de données expérimentales afin d’apporter une base nécessaire
à la compréhension des autres chapitres.

Au chapitre 2, la régression par splines linéaires est présentée comme une classe
flexible de modèles pour décrire la façon dont le nombre de copies d’ADN dans les
cellules cancéreuses modifient le niveau d’expression des gènes, c’est à dire les quan-
tités d’ARN messagers (ARNm). Cette classe de modèles vise à refléter les mécanismes
biologiques entre ces deux niveaux moléculaires et identifier les marqueurs impor-
tants de la maladie. Pour modéliser ces associations, nous utilisons donc la régression
par splines linéaires et imposons des contraintes sur les paramètres pour améliorer
l’interprétation biologique. La particularité principale de ce model est l’utilisation con-
jointe de différents types de données (standards) du nombre de copies d’ADN issues
des différentes étapes de prétraitement, à savoir les données segmentées et discrétisées.
Puisque l’estimation et la sélection de modèle est difficile dans ce contexte, le chapitre
décrit comment tester l’effet de l’ADN sur l’ARNm, identifier le modèle le plus ap-
proprié et obtenir des intervals de confiance pour la fonction de régression tout en
prenant en compte l’incertitude du modèle choisit. Sur deux jeux de données réels,
nous illustrons la pertinence de ce type de model pour décrire l’intéraction entre les
deux marqueurs.



Au chapitre 3, nous présentons le package PLRS pour R, qui met en œuvre le
cadre statistique introduit dans le chapitre 2. La méthode est illustrée sur un jeu de
données supplémentaire issue du The Cancer Genome Atlas (TCGA). Pour ces données,
la nécessité d’une une classe flexible de modèles est particulièrement prononcée.

Au chapitre 4, nous développons une approche bayésienne pour l’analyse différen-
tielle de l’expression des gènes à partir de données de séquençage (comptage). La
méthode est particulièrement utile au vu de la flexibilité du modèle de comptage et
de sa capacité à prendre en compte des designs expérimentaux complexes. Elle per-
met également la régularisation de multiple paramètres pour améliorer l’estimation
en grande dimension. Nous présentons une nouvelle procédure d’estimation bayési-
enne empirique pour les paramètres des lois a priori et discutons différents types de
lois (non-) paramétriques ainsi que l’approache bayésienne du problème de comparai-
son multiples. Le chapitre et son appendice contiennent de nombreuses simulations
réalisées à partir de modèles statistiques et de données reelles. Celles-ci valident la
performance de la méthode pour la détection de vraies différences. En particulier
sur données réelles, la reproductibilité des trouvailles semble meilleure que les autres
méthodes.

Au chapitre 5, nous étudions les différences d’expression géniques entre plusieurs
régions du cerveau chez des personnes âgées. Dans ce travail, notre contribution
réside dans l’analyse différentielle de l’expression génique en utilisant les données de
CAGE.

Enfin, au chapitre 6, nous introduisons un modèle bayésien d’équations struc-
turelles (MBES) pour la reconstruction de réseaux gèniques. Nous argumentons que
la régularisation au moyen de lois a priori gaussiennes avec une sélection des arêtes
a posteriori est une alternative simple et attrayante face aux lois dites ‘sparse’. Une
nouveauté de ce travail réside aussi dans l’utilisation de lois a priori qui permettent de
mettre en commun, pour chaque équation, l’estimation de certains paramètres. Nous
montrons à l’aide de simulations que la procédure bayésienne empirique du chapitre 4
est appropriée dans ce contexte et que ce type de lois a priori peuvent améliorer sen-
siblement la recouvrement de la structure du graphe. Le MBES apparait, dans divers
cas, être supérieur à certaines méthodes ’sparses’ couramment utilisées.
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