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The Knowledge-Remixing Bottleneck 
Paul Groth 
Network Institute, VU University Amsterdam 

Traditionally, the knowledge-acquisition bottleneck has been a core problem in intelligent systems. How 
do we get information into an intelligent system so that it can reason and operate over it? 

Over the past five to ten years, we’ve seen how the Web has been central to attacking this problem: for 
example, the use of Web corpora has enabled large-scale natural language processing,1 the emergence of 
community-derived knowledge bases such as DBpedia and Wikidata (see www.wikidata.org), and the 
application of Web-based data in order to play Jeopardy.2 However, to construct these knowledge bases, 
we purposely mix, munge, and clean the data. Indeed, in one study, analysts spent 60 percent of their time 
in data preparation.3 This remixing process is central to data science and is a key aspect of performing Web 
Science. In doing so, though, we remove nuance, context, and provenance. As Danah Boyd has pointed out, 
“working with Big Data is still subjective, and what it quantifies does not necessarily have a closer claim 
on objective truth.”4 

In trying to understand the Web and the feedback loop of social and technical constructs that creates it, 
it’s vital for us to be able to interrogate how the knowledge we make our assertions upon was created. This 
includes not just the computational methods used but also the decisions that underlie the use of those 
methods. However, transparency is only one part of the story; the ability to “pull apart” and reassemble our 
knowledge bases, revisiting and substituting the decisions that led to their creation, would allow us to reuse 
and repurpose them for new kinds of analytics. Here, I attempt to concretely formulate this problem and 
look at potential research directions for addressing it.  

Decisions Are Central 

One of the primary examples of Web Science is the study of political movements and how they’re mediated 
by the Web—in particular, through social media websites such as Twitter. The canonical example is the use 
of Twitter within the Iranian Elections in 2009—the so-called “Twitter Revolution.” Of the subset of 
papers that looked at Twitter usage during this event, Devin Gaffney’s work is of particular interest,5 as it 
argues for a Web Science methodology based on automated large-scale analysis as compared to prior 
studies, which adopt an anthropological methodology—choosing a curated subset of websites and 
analyzing these (almost) manually. To perform these automated analyses, a knowledge base is constructed 
from a corpus of tweets. For instance, a retweet network is constructed by extracting when a tweet was 
retweeted, either by querying the Twitter API or by doing text extraction using the convention of “RT” 
within a given tweet. Gaffney, like many other authors, interprets this retweet network as representing 
influence—the more people retweet your tweets and the more those tweets cascade through the network, 
the more influential you are. The influence of a given person can then be measured using handy network 
statistics such as centrality. For example, Gaffney found that “persiankiwi, mousavi1388, tedchris” were all 
influential on Twitter during the 2009 Iranian election using such statistics.5 

However, this result hinges, critically, upon the decision to interpret the retweet network as influence. 
Indeed, when we construct knowledge bases from Web data, such decisions are necessary to structure and 
make use of the data. But, we need to recognize that other decisions are possible. Indeed, a retweet can 
have many meanings.6 For example, one could interpret a retweet network as primarily a mechanism of 
communication—where the hubs are essential broadcast points. The point is not which interpretation is 
better; instead, it’s that the decision is often lost, not made explicit, or the justifications for it aren’t given.7 

This lack of transparency around the decisions made during knowledge base creation becomes even 
more pernicious as we move farther away from a single data source where a particular decision can be 

Copyright IEEE 
Groth, Paul, "The Knowledge-Remixing Bottleneck," Intelligent Systems, IEEE , vol.28, no.5, 
pp.44,48, Sept.-Oct. 2013 doi: 10.1109/MIS.2013.138 
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6732854&isnumber=6732793 



connected more readily back to its origin. 

Hidden Decisions: Integration Exacerbates the Problem 

When we construct a knowledge base from more than one dataset, we not only decide which part of the 
data we want to use and how to interpret it, but also how the integration algorithm performs. Because of the 
complexity of the preparation process, these decisions can easily become hidden both within the extraction 
and integration procedure as well as the data itself. An example is in the construction of large knowledge 
bases using Wikipedia, such as DBpedia. 

Extraction and Integration Procedures 
DBpedia relies on 10 different extractors for acquiring knowledge from Wikpedia. Each extractor makes 
different assumptions about the underlying data itself.8 For example, the mapping-based infobox extractor 
leverages a hand-built ontology based on the 350 most commonly used English-language infobox 
templates. The decisions about the arrangement of that ontology aren’t reported in the paper8 that describes 
the extraction process for DBpedia. 

Furthermore, DBpedia uses multiple external classification schemes to help make the extracted data 
queriable. Each of these classifications is based on its own construction techniques and processes. One of 
these, YAGO,9 is automatically constructed from the combination of Wikipedia infoboxes and another 
database, Wordnet.10 In YAGO’s extraction routine for constructing its class hierarchy, the authors use 
Wordnet synsets as upper classes. They then map Wikipedia classes (extracted from the Wikipedia 
category hierarchy) as subclasses of some Wordnet synset. This mapping relies on the frequency of word 
occurrences within a synset provided by Wordnet. The decisions to use this heuristic are described in the 
paper about YAGO, 9 but tracing this information back from DBPedia requires some effort. Also, it isn’t 
apparent from the YAGO paper how word frequency is calculated within Wordnet. None of these decisions 
are accessible when querying DBPedia, and even when reported in various papers or online, it requires 
some effort to track it back. 

I should point out that this isn’t a criticism of these projects—indeed DBPedia, YAGO, and Wordnet are 
extremely transparent—but it’s a clear indication that the state of the art in our work practice is far from 
ideal, and that many decisions remain hidden. 

Underlying Data 
Decisions aren’t just hidden within integration and extraction procedures, they’re lost in the data itself. 
Wikipedia clearly reflects the notions of the community that contributes to it.11 This community, as with 
most crowd-sourced sites, is dominated by a set of self-selected contributors. The top 10 editors by number 
of edits contributed 86 percent of the valuable content.12 Furthermore, most contributors don’t contribute 
equally across the site, instead focusing on a small number of interest areas.13 Likewise, the data within 
Wordnet reflects the views of the trained psycholinguists who built it. Finally, Wikipedia is also influenced 
by the tools that are used for its construction (that is, bots).14 All these contributors have their own unique 
biases and points of view, which impact their decisions about what to include and not include in Wikipedia. 

Thus, DBpedia is the consequence of layer upon layer of decisions and interpretation of underlying data 
sources. It combines self-selected community data, expert-produced linguistic information, and other 
integrated knowledge bases all using hundreds of decisions made in its integration procedure. Tracing back 
all the decisions and their interconnections that led to DBpedia is surely a difficult proposition. 

Is This a Problem? 

As a resource for analysis, DBpedia and other Web-sourced knowledge bases are extremely useful. For 
example, these resources are being integrated into text analytics pipelines (such as http://spaziodati.eu), 
which is a key technique for Web science, data science, and computational social science. Such 
incorporation has ramifications when analyzing a corpus of tweets using such text analytics; the resulting 
analysis would contain not just the interpretations and decisions of the analysis, but also all of the 



aforementioned decision points. This might hide particular biases or errors. For instance, in a political 
situation, a jurisdiction might not be recognized because of the decision of a community member not to 
include it in their classification. In other domains, such ramifications are also evident. In the biological 
sciences, the decision to map a protein entry in one database to a gene entry in another could improve recall 
but might lead to incorrect results.15 

This lack of transparency can, to some degree, be solved through careful and painstaking forensic work. 
From a systems perspective, the inability to revisit the decisions that were made in knowledge base 
construction and reuse portions of the creation pipeline is a more serious problem. Indeed, this lack of 
ability to revisit different decision strategies slows the process of analytics. For instance, if someone wants 
to reuse a retweet network but instead interpret it differently, does a person need to recreate that network or 
can it be used as is? 

The Knowledge-Remixing Bottleneck 

With these issues in mind, the knowledge-remixing bottleneck can be defined in two parts: 

• the difficulty in tracking the decisions by which a knowledge base was constructed from 
multiple data sources; and 

• the inability to repurpose parts of a knowledge base construction procedure. 

This is termed a bottleneck because these activities are feasible, but they’re far from being automated at 
any scale. The word remix is chosen intentionally, because it connotes not just reuse or repurposing of 
knowledge, but the ability to change decisions about how knowledge is integrated. In some sense, we can 
make an analogy to the way editors work with music or video—they can revisit their decision to cut, splice, 
select, and fade different sources together in a certain way. This ability to examine and adaptively modify 
their decisions is critical for an editor’s work practice.16 Currently, Web and data scientists are missing this 
capability. To revisit and remix knowledge bases requires extensive manual effort, ranging from reading 
papers to understanding someone else’s code—and we should work to eliminate this manual effort. 

Addressing the Bottleneck 
A first step to address this bottleneck is to look at our own work practices as Web and data scientists. We 
can be more faithful in documenting our design decisions and linking them to our analysis and integration 
code. Furthermore, we can publish the code we use and do our best to make it reusable. This approach has 
been advocated elsewhere17,18 and is surely an important part of Web science practices. However, 
documentation isn’t enough; instead, we should focus on the tools we create to build and remix knowledge 
bases. 

One area to look at is the use of explicit descriptions of our remixing pipelines in terms of computational 
workflows. Indeed, a common paradigm for construction and editing of video is termed node-based 
compositing, which arranges the process of editing in a workflow from inputs to outputs where each 
particular edit can be inspected and modified at runtime, thus changing the resulting video composition. 
David De Roure and Carole Goble have argued that in fact method, as expressed in a workflow, should be 
the central artifact in Web science research.19 However, our current tools (scripts) don’t yet have the 
affordances to quickly build analysis and integration pipelines. We do see some signs of the effectiveness 
of workflow in the growth of frameworks for data analysis, such as Hadoop and Signal/Collect, but we’re 
still a long way off from Nuke for knowledge base creation (Nuke is a node-based editor for video 
compositing; see www.thefoundry.co.uk/products/nuke). 

Workflows can be complemented by the automated collection of data provenance from the computing 
environment and exposed using standards such as World Wide Web Consortium’s Provenance 
specification (W3C PROV).20 This interoperability of data provenance is critical for being able to track 
back across systems. The ability to span systems begins to tackle the problem of aggregate knowledge 
bases being constructed from other aggregate knowledge bases (such as DBpedia). However, this approach 
is premised on the adoption of the standard. Luckily, examples are beginning to emerge. DBpedia has 
begun to assert which Wikipedia page its data was extracted from using PROV. The Git2PROV service 
(http://git2prov.org) allows any Git repository to be exposed as PROV-formatted provenance. A great 



example of provenance enabling the inspection of decisions is the Karma Data Integration tool (see 
http://isi.edu/integration/karma), which lets users investigate what automatic data integration decisions the 
tool made. This capability was used to hand curate links from the Smithsonian American Museum to 
Wikipedia.21 

Both workflows and provenance can help to better understand how knowledge bases are constructed and 
repurpose parts of the construction process. However, both focus on more algorithmic or computational 
decisions. Interpretation decisions are left to the side. Better systems for capturing the decision making of 
humans as it relates to knowledge base construction are needed. For example, in the construction of the 
Never-Ending Language Learning (NELL) knowledge base,22 human feedback is used to help guide 
decision making about what facts to include. The question is can we capture those decisions systematically 
and link them to the construction process? The encoding of such decisions (the “why”) is essential for 
understanding the context behind a knowledge base. Wikidata has begun to address this by enabling 
specific references to each of the facts included in its knowledge base. Here, an interesting task would be to 
connect a particular interpretative decision to the set of computational processes that implement it. This 
would allow a person to revisit these interpretive decisions and potentially replace them with a new set of 
computational processes that reflect a different interpretive decision. Capturing these sorts of decisions is 
challenging when those involved are non-experts or layman. 

A final area of interest is to combine the aforementioned transparency with opinion mining on the 
sources themselves.23 This would attempt to draw out the implicit biases with the underlying data and 
make them explicit.24 Obviously, this process would have to be documented again using approaches like 
the Knowledge Diversity Ontology (see http://kdo.render-project.eu). 

Web and data science often rely on knowledge bases constructed from the Web. By leveraging the sheer 
scale of the Web, we’re beginning to solve the problem of knowledge acquisition. However, the 
construction of these knowledge bases leads to a new problem—the opacity of the construction process 
itself. It’s difficult to determine the decisions made during the data preparation and integration process due 
to a lack of transparency. Moreover, the assumptions and interpretations embedded within a given dataset 
are rarely available in a structured fashion. This lack of transparency hinders repurposing knowledge bases 
and makes it more difficult to leverage the full capability of these Web-based knowledge acquisition 
systems. As we continue to perform Web science studies, it’s imperative that we’re clear about what 
knowledge those studies are based on and the decisions manifested in them. Beyond this awareness, as a 
community, we should look at developing intelligent tooling that helps us pull apart and remix our 
knowledge bases. 
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