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The aim of this study is to quantify the relative contributions of two muscle energy consumption

processes (the detachment of cross-bridges and calcium-pumping) incorporated in a recently

developed muscle load sharing cost function, namely the energy-based criterion, by using in vivo
measured glenohumeral-joint reaction forces (GH-JRFs). Motion data and in vivo GH-JRFs

were recorded for four patients carrying an instrumented shoulder implant while performing

abduction and forward °exion motions up to their maximum possible arm elevations. Motion

data were used as the input to the delft shoulder and elbow model for the estimation of
GH-JRFs. The widely used stress as well as the energy-based cost functions were adopted as the

load sharing criteria. For the energy-based criterion, simulations were run for a wide range of

di®erent weight parameters (determining the relative contribution of the two energy processes)
in the neighborhood of the previously assumed parameters for each subject and motion. The

model-predicted and in vivo-measured GH-JRFs were compared for all model simulations.

Application of the energy-based criterion with new identi¯ed parameters resulted in signi¯cant

(two-tailed p < 0:05, post-hoc power � 0:3) improvement (on average �20%) of the model-
predicted GH-JRFs at the maximal arm elevation compared to when using either the stress or

the pre-assumed form of the energy-based criterion. About 25% of the total energy consumption

was calculated for the calcium-pumping process at maximal muscle activation level when using

the new parameters. This value was comparable to the corresponding ones reported in the
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previous literature. The identi¯ed parameters are recommended to be used instead of their
predecessors.

Keywords: Shoulder; glenohumeral joint; musculoskeletal model; inverse dynamics; cross-
bridges cycling; calcium pumping.

1. Introduction

Detailed information about muscle function and forces in the human musculoskeletal

system is demanded for several applications such as improvement of the design and

preclinical testing of endoprostheses or design of the treatments of motor disorders.

Nevertheless, measuring the muscle forces in vivo is hardly possible by non-invasive

methods. This explains why biomechanical models of the neuromusculoskeletal

system have been invented to estimate muscle forces based on external measure-

ments. To date, biomechanical models are still the only means of estimation of

muscle forces, certainly outside laboratory conditions. In the last few decades, a

variety of models of the entire human musculoskeletal system from simple two-

dimensional1�3 to complex three-dimensional models,4�6 have been developed.

Inverse dynamics and forward dynamics modeling are two major approaches for

the estimation of internal loads within the musculoskeletal system. Although inverse

dynamics optimization is noticeably faster than forward optimization, it faces an

indeterminacy problem for the calculation of individual muscle forces from net joint

moment. More than one combination of muscle forces may produce the same given

net moment around a joint. It is not yet understood how the central nervous system

shares the loads among all muscles passing a joint. We attempted to approximate the

load sharing of the human by minimizing a \cost function" to ¯nd a relatively

arbitrary \optimal" solution.

Several cost functions have been introduced,7 among which two are being used in

this study. The ¯rst criterion, the quadratic stress cost function (SCF),8 is the most

widely used criterion in the inverse dynamics-based musculoskeletal models and

minimizes the summed muscle stress around a joint. The second criterion is called the

energy-based cost function (ECF).9 This criterion is based on two main energy

consuming processes in a muscle needed to produce a contraction, namely detach-

ment of cross bridges and re-uptake of calcium.10 Both cost functions have been

implemented and used in a comprehensive musculoskeletal model of the shoulder and

elbow, the delft shoulder and elbow model (DSEM),11 which is the core model in this

study.

In a previous study,10 the SCF and ECF were compared based on the muscle

oxygen consumption using near infrared spectroscopy, where the ECF was favored

due to its better qualitative consistency with the measured oxygen consumption,

speci¯cally for the elbow muscles. Later,12 it was shown that in comparison with the

SCF, the ECF results in better consistency between experimental results and the

DSEM predicted principal actions. In a recent study,13 the glenohumeral-joint re-

action forces (GH-JRFs) estimated by the DSEM were compared to those measured
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in vivo using an instrumented shoulder implant.14 Both SCF and ECF were used in

the inverse optimization process to calculate the GH-JRFs. The results showed that

the model generally underestimated the GH-JRFs for dynamic tasks like abduction

(Abd) and forward °exion (FF), but also that model estimations using the two cost

functions di®ered up to 8%.

There is no agreement either for techniques or results among various studies that

attempted to quantify the relative contributions of di®erent energy consumption

processes for single muscles. In vitromeasurements were carried out for maximal15�21

or submaximal22�26 isometric single ¯ber muscle contractions. As for maximal iso-

metric contractions, one may conclude from the literature that about 23�44% of the

total energy consumption is related to the ion (Ca2þ and/or Naþ) pumping and the

remainder is related to cross-bridges cycling. In a review study, Barclay et al.27

concluded that regardless of muscle contractile properties, the techniques used for

measuring the energy consumption, and experimental conditions, the contribution of

Ca2þ pumping is more or less the same (� 30�40% of the total energy consumption)

for muscles from mammals in isometric contraction. In the study byPraagmanet al.,10

the relative contribution of the two processes in the ECF was unknown and the two

terms were implemented based on the assumption of a 1:1 (cross-bridges to calcium

pumping) contribution at 50% activation during an isometric contraction.

In this study, we aim to estimate a separate contribution of the two energy

consumption processes in the ECF which

(1) coincides with the corresponding values in the literature, and

(2) can lead to a closer match between the model (i.e., the DSEM) and the experi-

ment as for the GH-JRFs.

To this end, the kinematic data from four patients with an instrumented shoulder

endoprosthesis were used as model input. The inverse dynamic simulation was per-

formed using the model (DSEM) and by recruiting both cost functions (SCF and

ECF) as the muscle load sharing criteria. For the ECF, the simulation process was

repeated for a variety of di®erent adjusting parameters of the ECF. All model-

simulated GH-JRFs were compared to those measured in vivo to identify new pa-

rameter sets. The new identi¯ed parameter sets were then applied to calculate the

relative contribution of the two energy terms and the results compared to the cor-

responding values in the literature. It was expected that by using the new identi¯ed

weight parameters of the ECF, more realistic model predictions of the glenohumeral

joint reaction forces can be obtained.

2. Methodology

2.1. Inverse dynamic musculoskeletal model

The DSEM is a comprehensive three-dimensional model of human shoulder and

elbow.11,28 The geometrical data for the model were obtained through detailed

Relative Contribution of Di®erent Muscle Energy
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cadaver studies.29 The model is basically inverse dynamics-based, although it o®ers

forward dynamics and combined inverse-forward dynamics options as well. The

recorded motions of the bony segments (i.e., joint angles) and external loads are used

as input to the model and muscle and joint reaction forces are calculated as model

outputs through an inverse dynamics analysis.

2.2. The energy-based muscle load sharing cost function

The energy-based muscle load sharing criterion is based on two main energy con-

suming processes in a muscle needed to produce a contraction, namely detachment of

cross bridges and re-uptake of calcium. This cost function (JE) was originally

introduced by Praagman et al.10 for isometric contraction as follows:

JE ¼
Xn
i¼1

_Ecbi þ _Ecai

� � ¼
Xn
i¼1

mi � c1
Fi

PCSAi

þ c2 �
Fi

PCSAi � �max

� �2� �� �
; ð1Þ

where i stands for the muscle element and n is the total number of muscle elements.
_Ecb and _Eca represent the two energy consumption processes including the detach-

ment of cross-bridges and calcium pumping, respectively. F is the muscle force (N),

m is the muscle mass (gr), PCSA is the muscle physiological cross sectional area

(cm2), and �max is de¯ned as 100N/cm2.30 c1 and c2 are constants indicating the

relative contribution of the two energy terms.

The relative contribution of the two processes ( _Ecb and _Eca) was unknown, and

the two terms were implemented based on the assumption of a 1:1 (cross-bridges to

calcium pumping) contribution at 50% activation during an isometric contraction.10

This assumption resulted in 1:2 ratio at 100% activation.

Following a detailed cadaver study on the shoulder,29 information about muscle

architecture and optimal ¯ber length (lopt) was obtained, which made it possible to

implement the muscle dynamics in the inverse optimization process. The original

form of the energy-based cost function was therefore, reformulated in order to take

the muscle force-length relationship into account9 as follows:

JE ¼
Xn
i¼1

_Ecbi þ _Ecai

� �

¼
Xn
i¼1

Fi � lopti þ wf1 �mi �
Fi

FimaxðlÞ
þ wf2 �

Fi

FimaxðlÞ
� �2� �� �

; ð2Þ

where lopt is the optimal muscle ¯ber length (cm).

FmaxðlÞ is the maximum muscle force (N) and is calculated as follows:

FmaxðlÞ ¼ fðlsÞ � PCSA � �max; ð3Þ
where fðlsÞ is the normalized muscle force-length relationship.31

wf1 and wf2 are adjustable weight factors. wf1 is an indication of the relative

contribution of the two energy terms. wf2 determines the shares of the linear and

nonlinear parts in _Eca, but also indirectly a®ects the relative contribution of the two

A. A. Nikooyan et al.
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energy terms. Due to the lack of existing physiological knowledge, the weight

parameters wf1 and wf2 were arbitrarily set as 100 and 4, respectively.9

2.3. Data recordings

Four patients (Table 1) carrying an instrumented shoulder hemi-arthroplasty14 were

used as subjects, and the data were recorded. Joint replacement was based on the

diagnosis of progressed osteoarthritis without serious rotator cu® damage. The

surgical approach was deltopectoral during which no nerve was damaged. The eth-

ical committee of the FreieUniversität and Charit�e-Universitätsmedizin Berlin gave

permission for the clinical studies where the instrumented endoprosthesis was used.

Before, surgery patients were informed about the aims and procedures of all mea-

surements after which they agreed to participate and signed an informed consent.

Measurements comprised the collection of motion data needed for model input, as

well as in vivo GH-JRFs. For motion recordings, marker clusters on bony segments,

including the thorax, scapula, upper arm, and forearm, were measured using four

Optotrak (Northern Digital Inc., Canada, accuracy to 0.3mm) camera bars at a

sampling frequency of 50Hz. In the calibration process, the spatial positions of

anatomical landmarks on bony segments (Table 2) were recorded relative to tech-

nical marker clusters on those segments. The anatomical landmark selection was

based on the ISB standardization protocol for upper extremity.32 The glenohumeral

joint rotation center, which was necessary for the reconstruction of the local coor-

dinate system of the humerus, but could not be palpated in vivo, was estimated using

the instantaneous helical axes (IHA) method.33 Measured tasks comprised standard

dynamic motions including Abd and FF up to maximum possible arm elevation. For

scapular motion tracking, an acromion sensor34 was used.

To measure the forces in the glenohumeral joint in vivo, a BIOMET Biomodular

shoulder hemi-prosthesis was equipped with six strain gages, a nine-channel teleme-

try, and a coil for inductive power supply.14 The in vivomeasured contact forces were

transferred to the external measuring equipment, and were then synchronized and re-

sampled with the motion recording frequency (i.e., 50Hz) to allow for further pro-

cessing. For synchronization, the trigger signal from the Optotrak system was used.

2.4. Modeling simulations

Calculated joint angles from measured marker data were used as DSEM inputs.

Model simulations were performed for Abd and FF motions and for four measured

Table 1. Detailed information of the measured subjects.

Subject Sex Age Weight (kg) Height (cm) Implant side

S1 Female 73 72 168 Left

S2 Male 64 85 163 Right

S3 Male 69 93 173 Right

S4 Male 74 83 173 Right

Relative Contribution of Di®erent Muscle Energy
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subjects. Both SCF and ECF served as the muscle load sharing criteria for inverse

optimization. When ECF was used for optimization, each task and subject simula-

tions were repeated for di®erent combinations of weight factors [wf1 and wf2,

Eq. (1)] in the ECF. The weight factors were changed in large ranges in the neigh-

borhood of the default values (i.e. wf1 ¼ 100, wf2 ¼ 4, see Section 2.2) as follows:

1 � wf1 � 200; step size ¼ 10

0 � wf2 � 20; step size ¼ 1; and wf2 ¼ 100:

�
ð4Þ

wf2 ¼ 100 was selected to study the e®ects of using a very high share of the nonlinear

term in the _Eca on the modeling outcomes. The selected ranges led to 638 series of

simulations for each motion and each subject. The muscle forces and GH-JRFs were

calculated as outputs of the inverse dynamics analysis.

2.5. Measure of goodness-of-¯t

For the evaluation of results, the model-calculated and in vivo-measured GH-JRFs

were compared for all sets of simulations. To measure the goodness-of-¯t, we used

two indicators including (1) the root mean squared error (RMSE) between the

model-estimated and measured GH-JRFs at all points, and (2) the error calculated

at the maximal arm elevation angle (�max) de¯ned as the di®erence between esti-

mated and measured GH-JRFs normalized to the measured force (E�max). For

E�max, a negative value means an underestimation of the model with respect to the

measured one, while a positive value indicates an overestimation.

For each subject and each motion, the contour graphs for RMSE and E�max were

plotted for di®erent values of the weight factors (Figs. 1 and 2). To ensure color

consistency between the subplots, the positive values of E�max (jE�maxj) are plotted.
Therefore, one should note that all values of E�max in Figs. 1 and 2 must be read as

negative.

Table 2. The palpated anatomical landmarks in the calibration process.

Bony segment Palpated landmark Abbreviation

Thorax Incisura Jugularis IJ

Processus Xiphoideus PX

Processus Spinosus of the 7th cervical vertebra C7
Processus Spinosus of the 8th thoracic vertebra T8

Clavicle Most ventral point on the sternoclavicular joint SC

Most dorsal point on the acromioclavicular joint AC

Scapula Angulus Acromialis AA
Trigonum Spinae TS

Angulus Inferior AI

Most ventral point of processus coracoideus PC
Humerus (upper arm) Most caudal point on medial epicondyle EM

Most caudal point on lateral epicondyle EL

Forearm Most caudal�lateral point on the radial styloid SR

Most caudal�medial point on the ulnar styloid SU

A. A. Nikooyan et al.
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The combination of wf1 and wf2 that resulted in the minimum value of RMSE

was selected as the best solution (ECFbest). Except for one case (i.e., S2 during FF,

Table 3), the best results were acquired when 1 � wf1, wf2 � 10 (Table 3). Based on

these results, three sets of weight factors were selected for more detailed follow-up

comparisons as follows:

(1) The mean of the values presented in Table 3, i.e., wf1 ¼ 4, wf2 ¼ 5 (ECFmean),

and

(2) The two extreme parameter sets, i.e., wf1 ¼ 1,wf2 ¼ 10 (ECF1;10) and wf1 ¼ 10,

wf2 ¼ 1 (ECF10;1).

The RMSE and E�max were calculated when using the three above-mentioned

combinations of weight factors for the ECF as well as the default form of the ECF

(wf1 ¼ 100, wf2 ¼ 4, ECFdef), and the SCF during both Abd and FF and for all

subjects (Fig. 3).

S1

S2

S3

S4

|Eαmax| (%)RMSE 

Fig. 1. The root mean squared error (RMSE) and absolute error at maximal arm elevation (jE�maxj)
calculated between model-estimated and in vivo-measured GH-JRFs at di®erent combinations of the

weight factors (wf1 and wf2) of the ECF and for the four measured subjects during performing Abd

motion.

Relative Contribution of Di®erent Muscle Energy
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2.6. Statistical analysis

For statistical analysis, a two-tailed paired Students' t-test was used. The threshold

for statistical signi¯cance was considered as 0.05. Post-hoc statistical power analysis

for two-tailed Student's t-test was also carried out in order to evaluate the power of

test with low number of subjects (n ¼ 4).

S1

S2

S3

S4

|Eαmax| (%)RMSE 

Fig. 2. The root mean squared error (RMSE) and absolute error at maximal arm elevation (jE�maxj)
calculated between model-estimated and in vivo measured GH-JRFs at di®erent combinations of the

weight factors (wf1 and wf2) of the ECF and for the four measured subjects during performing FF motion.

Table 3. The combinations of wf1 and wf2 that resulted in

the minimum value of RMSE between the model-estimated

and measured GH-JRFs (the best solution) for di®erent
subjects and motions.

Abd FF

S1 S2 S3 S4 S1 S2 S3 S4 Mean

wf1 3 3 1 1 1 9 10 1 4
wf2 2 1 1 6 3 19 1 9 5

A. A. Nikooyan et al.
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2.7. Relative contribution of two energy terms

Having values for wf1 and wf2, the relative contribution of the two energy terms

(Ecb/Eca) was calculated for di®erent muscle elements at the maximal arm elevation

angle (�max) for each motion. For each subject, motion, and force ratio (i.e., F/Fmax,

Eq. (2)), the calculated Ecb/Eca was averaged over a selection of muscle elements

(i.e., muscles passing the glenohumeral joint) and averaged across all subjects and

motions (Fig. 4).

0

50

100

150

200

250

300

350

400

ECFmean

ECF1,10

ECF10,1

ECFdef

SCF

RMSE

Abd FF Abd+FF

** *
* * *

* **

(a)

Abd FF Abd+FF
0

10

20

30

40

50

60

70

80

ECFmean

ECF1,10

ECF10,1

ECFdef

SCF

|Eαrmax| (%)

***

*
*** *

(b)

Fig. 3. The (a) RMSE and (b) absolute E�max calculated for selected combinations of the weight factors

of the ECF (ECFmean, ECF1;10, and ECF10;1), the default form of the ECF (ECFdef) and the SCF averaged
across all measured subjects during performing Abd, FF, and both AbdþFF motions.

*Signi¯cantly di®erent from either ECFdef or SCF (p < 0:05).
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3. Results

3.1. GH-JRFs

The generic model generally underestimated the GH-JRFs when compared to the in

vivo recordings (E�max, Figs. 1�3). The results (Figs. 1 and 2) revealed that when the

two weight factors simultaneously decreased, the magnitude of the RMSE and jE�maxj
decreased, indicating that the model estimations got closer to the measured data.

The highest deviations of the model calculations from the measurements occurred

around the zone in which 10 � wf1 � 80 and wf2 ¼ 20 (Figs. 1 and 2).

By increasing wf2 from 20 to 100 (giving a higher share to the nonlinear part of

the calcium pumping term), the RMSE and jE�maxj increased (on average �12 % for
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Fig. 4. (a) The relative contribution (Ecb/Eca) of the di®erent energy terms in the ECF vs. force ratio

(F/Fmax, Eq. (2)), for di®erent sets of weight factors averaged across selected muscles and all subjects. (b)

Zoom in of area in part-a in which Ecb/Eca � 5.

A. A. Nikooyan et al.
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jE�maxj) for wf1 � 30 but slightly decreased (on average � 3% for jE�maxj) for higher
values of wf1.

By using the three selected sets of weight factors for the ECF (i.e., ECFmean,

ECF1;10, and ECF10;1), the model predictions of the GH-JRFs signi¯cantly (p < 0:05,

post-hoc power � 0.3) improved (on average � 20% at �max) in most cases compared

to when using either the ECFdef or the SCF (Fig. 3).

3.2. Relative contribution of the two energy terms

Regarding the relative contribution of di®erent terms in the energy cost function

(Fig. 4), using the selected sets of weight factors led to Ecb : Eca equal to, respectively,

2.3:1, 5.1:1, and 2.9:1 for ECFmean, ECF1;10, and ECF10;1 at 100% muscle activation

(i.e., when F/Fmax ¼ 1). This implies that at maximal muscle activation, respec-

tively, about 30%, 16%, and 25% of the total energy consumption is related to

calcium pumping when using ECFmean, ECF1;10, and ECF10;1.

4. Discussion

The in vivo-measured GH-JRFs by instrumented shoulder endoprostheses were used

to identify the weight parameters of a previously developed energy-based muscle load

sharing cost function. The new identi¯ed weight parameters were di®erent from those

that were originally used. By applying the new parameter sets, the model could cal-

culate the GH-JRFs signi¯cantly closer (on average 20%) to in vivo measurements.

Similar to the results of our previous study,13 not only the generic model generally

underestimated the GH-JRFs compared to the in vivo measurements, but the pre-

dicted GH-JRFs were not identical for the default form of the energy cost function

(ECFdef) and the stress criterion (SCF). When using the ECFdef , the model predicted

GH-JRFs were slightly lower (� 6%) during Abd motion, but not notably higher

(� 4%) during FF motion.

Using all selected parameter sets for ECF (i.e., ECFmean, ECF1;10, and ECF10;1)

resulted in signi¯cant improvements in the modeling calculations; one would expect a

¯nal recommended parameter set for future applications. The cost function with this

selected parameter set not only should have the capability of considerably improving

the model predictions, but also should lead to a relative contribution of the energy

terms, which is in agreement with the corresponding values in the literature. Among

the selected solutions, the ECF1;10 had the lowest average values of both RMSE and

jE�maxj (Fig. 3). However, when using the ECF1;10, the relative contributions of the

energy terms at lower muscle activations (i.e., F/Fmax < 0:3) do not seem feasible.

Moreover, the contribution of the calcium pumping at maximal activation [� 16%,

Fig. 4(a)] does not coincide with reported values for single muscles that range from

23% to 44%.15�21,27 The other two parameter sets (ECFmean and ECF10;1Þ resulted in

contributions for calcium pumping (30% and 25%) that were more similar to the

range of these reported values. Although ECFmean gave slightly better results (� 3%)

Relative Contribution of Di®erent Muscle Energy
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than the ECF10;1 (Fig. 3), ECF10;1 showed a smoother pattern of the Ecb : Eca at

di®erent muscle activations (Fig. 4). We therefore recommend the ECF10;1 as

the new selected parameter set for the ECF for modeling standard tasks like Abd

and FF.

The increase in the magnitude of the model-predicted GH-JRFs when using the

new parameter sets compared to the default form of the ECF and/or the SCF is

related to the increase in model-predicted individual muscle forces (Fig. 5). For Abd,

using the new identi¯ed parameter set mostly a®ected the model prediction of the

trapezius scapular part, serratus anterior, supraspinatus, biceps (long and/or short

heads), and triceps medialis muscle forces. During FF motion, the model prediction

S4 - Abd: Trap. scap
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S1 – FF: Supraspinatus
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S1 – FF: Biceps short 
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Fig. 5. Comparing the model-estimated muscle forces using the best solution and the default set for the

ECF vs. arm elevation angle for subjects who could elevate their arm at angles above 90�.

Abd: abduction; FF: forward °exion; Trap. scap.: Trapezius scapular part muscle, Serr. ant.: Serratus

anterior muscle.
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of the serratus anterior, supraspinatus, biceps short head, and triceps medialis

muscle forces considerably increased when using the new identi¯ed parameter set.

As results showed (Figs. 1 and 2), by either directly (wf1) or indirectly (wf2)

decreasing the contribution of the calcium pumping with respect to the detachment

of cross-bridges in the energy cost function, the model-predicted GH-JRFs increased.

The role of wf2 (i.e., a nonlinear quadratic term in the calcium pumping part) is more

prominently highlighted at the lower values of wf1 (< 70). Praagman et al.9,10 found

less false-negatives for model-estimated forces to EMG comparisons when using a

nonlinear quadratic term in the calcium pumping part, however, there is no

(quantitative) proof about whether or not considering this nonlinear term leads to

improvements in the model predictions. It has been stated that the linear muscle load

sharing criteria generally favor discrete muscle action, while the nonlinear criteria

basically lead to synergism.8,35 Nevertheless, considering that by increasing the

share of the nonlinear term in the energy cost function decrease the model-predicted

GH-JRFs, it seems that this nonlinear term does not play a major role in changing

the synergism of muscle force sharing.

A generic inverse dynamics model was used for modeling purposes in this study.

The morphological di®erences between the cadaver from which the model para-

meters have been obtained and measured subjects could be a potential source of

di®erences between the model and experiments (i.e., the general GH-JRFs under-

estimation). The large interindividual variability in both the bony and muscular

anatomy can change many parameters such as the position of the joint rotation

centers, moment arms, and muscle strength parameters (e.g., PCSA and volume).

Moreover, replacing the physiological processes and/or complex anatomical struc-

tures by mechanical constraints and/or simpli¯ed geometrical shapes in the model

may have caused inconsistencies between the model and experiments. However, to

S2 – FF: Biceps short
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Fig. 5. (Continued)
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what extent such model simpli¯cations or morphological di®erences can a®ect the

modeling results is not a clear issue. Subject-speci¯c modeling36,37 is the most recent

technique which can be applied to quantify the e®ects of geometrical simpli¯cations.

Other than the general underestimation of the model, the estimated and mea-

sured GH-JRFs also behaved di®erently at arm elevation angles above 90� (in-

creasing measured vs. decreasing model-estimated). As previously proposed13 the

di®erent behaviors can be caused by muscle co-contraction based on either a stan-

dard or pathological (related to endoprosthesis) coordination pattern. Researchers

have developed and used advanced muscle load sharing cost functions in order to

consider the muscle co-contraction in the modeling procedure.38,39 Among the four

measured subjects in the current study, two subjects (S2 and S4) were able to elevate

their arms above 90� during both Abd and FF, while subject S1 could only do so

during °exion motion. Using the new identi¯ed parameters in the current study

demonstrated the potential to improve the pattern of the model-predicted GH-JRFs

for above 90� in three cases (Fig. 6). Nevertheless, this e®ect seems to be fairly

random considering that the tuned criterion did not have any e®ect on the pattern of

the model-predicted GH-JRFs above 90� for S2 during Abd (Fig. 6(a)) and S4 during

FF (Fig. 6(e)).

EMG-driven modeling is an alternative approach to account for possible antag-

onist co-contraction. The results of our recent study40 revealed that including the

EMGs as input to the model could considerably improve (up to 45%) the model

predictions of the GH-JRFs, especially for angles above 90�. ECFdef was used as the

muscle load sharing criterion in that study. One should, however, note that the

mechanisms that improve the pattern of the model-predicted GH-JRFs at angles
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Fig. 6. Comparing the model-estimated using the best solution (ECFbest, Table 3) and the default set
(ECFdef) for the ECF and the measured GH-JRFs vs. arm elevation angle for subjects who could elevate

their arm at angles above 90�.

Abd: abduction; FF: forward °exion.
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above 90� were not identical in the two approaches. In the EMG-driven model, the

force behavior above 90� was improved by forcing the model to mimic the recorded

activation pattern of the major antagonist co-contractors such as the pectoralis

major clavicular (during Abd) or deltoid posterior part (during FF). The tuned

parameter set for the ECF (ECFbest) a®ected the model predictions of the GH-JRFs

by giving an incremental load share for angles above 90� to muscles like the trapezius

scapular part, serratus anterior, supraspinatus, and/or biceps short (Fig. 5).

Other than the energy processes presented in the current energy-based criterion,

there are also several energy processes that have not been accounted for. Previously,

the sodium ion (Naþ-Kþ) turnover was not thought to have a contribution in total

energy turnover. However, some recent studies27,41 showed that during the ¯rst few

seconds of stimulation, about 5�10% of the total energy turnover can relate toNaþ-Kþ

S1 - FF

100

200

300

400

500

600

700

800

G
H

-J
R

F
 (

N
)

ECFdef

ECFbest

measured

10 30 50 70 90 110
Arm elev. angle (degrees)

(c)

S2 - FF

0

100

200

300

400

500

600

700

800

G
H

-J
R

F
 (

N
)

ECFbest

ECFdef

measured

10 30 50 70 90 110
Arm elev. angle (degrees)

(d)

S4 - FF

10 30 50 70 90 110

200

400

600

800

1000

1200

G
H

-J
R

F
 (

N
)

Arm elev. angle (degrees)

ECFbest

ECFdef

measured

(e)

Fig. 6. (Continued)
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pumping, indicating that Naþ-Kþ pumping could potentially have some impact on the

energy consumption of the skeletal muscle. Therefore, for the construction of a more

physiologically-oriented criterion, one needs to consider Naþ-Kþ pumping as a sepa-

rate energy process in the energy-based muscle load sharing cost function.

Another important aspect is the higher energy rate associated with shortening,

sometimes called the Fenn e®ect.42,43 Neglecting the Fenn e®ect may limit the im-

plementation of the ECF in high-speed dynamic movements. Given that some

muscles shorten at di®erent rates during fast dynamic movements, it is likely to have

an impact on the estimates of energy cost. Thus, for the application of the ECF in

fast dynamic movements (e.g., throwing ball in baseball), the Fenn e®ect should also

be taken into account.

5. Conclusions

The relative contribution of two muscle energy consumption processes including the

detachment of cross-bridges and the calcium pumping incorporating in the energy-

based criterion was quanti¯ed by using in vivo-measured GH-JRFs on four patients

carrying an instrumented shoulder implant. A set of new weight parameters which

determined the relative contribution of the energy term was identi¯ed. The energy-

based criterion with the new identi¯ed parameter set resulted not only in signi¯cant

improvements of the model calculated GH-JRFs, but also a relative contribution

of the two energy terms at maximal muscle activation, coinciding with the

corresponding values in the literature for isometric contraction. The new identi¯ed

parameter set is therefore recommended to be used instead of previously used

parameters.
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