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Abstract

An experimental evaluation of Bayesian positional filtering algorithms applied
to mobile robots for Non-Destructive Evaluation is presented using multiple
positional sensing data - a real time, on-robot implementation of an Extended
Kalman and Particle filter was used to control a robot performing representa-
tive raster scanning of a sample. Both absolute and relative positioning were
employed - the absolute being an indoor acoustic GPS system that required
careful calibration. The performance of the tracking algorithms are compared
in terms of computational cost and the accuracy of trajectory estimates. It is
demonstrated that for real time NDE scanning, the Extended Kalman Filter is
a more sensible choice given the high computational overhead for the Particle
filter.
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1. Introduction

Non-Destructive Evaluation (NDE) of engineering structures is an impor-
tant and challenging task which can help to locate the presence and extent of
structural defects before failure occurs. Regular NDE inspection of critical com-
ponents can thus reduce costly outages, negative environmental impact as well
as potential loss of life. A range of non-invasive NDE techniques are available
including ultrasonic, visual, electromagnetic and radiography which are used
to detect and characterise flaws in terms of their nature, size and position [1].
Through identification of anomalies, NDE can be used to replace only those
components quantified to be defective and can thus contribute to the exten-
sion of the operational life of the component/structure even perhaps beyond its
designed lifetime.
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Industrial sectors for which NDE is of major importance include aerospace,
nuclear and petrochemical extraction and processing. Such industries are a
source of particular challenges, often presenting inspection sites located in inac-
cessible locations or where environmental conditions are hazardous for human
operators working at height, exposed to radioactivity, proximity to high temper-
ature and/or pressure process plant. The financial impact of NDE inspections is
also significant, arising from both the intrinsic inspection costs and the associ-
ated cost of taking plant offline to conduct inspections [2]. Consequently in-situ
automated inspection where feasible, is highly attractive, and potentially allows
inspection of operational plant. The safety, environmental and financial bene-
fits for automating NDE measurements are clear, and applicable across a broad
range of NDE technology.

Automation is currently being addressed through deployment of sensor laden
remotely controlled robotic devices, well established examples being pipeline
inspection gauge (PIGS) systems [3] for internal pipe inspections or unmanned
aerial vehicles (UAV) [4] for visual inspection. The use of such technology is
very attractive in terms of safety, cost and the potential for minimal disruption
to the inspection site especially if they allow plant operations to remain online.

Robotic NDE inspection platforms are an active area of research, there are
numerous examples in the literature proposing devices for a broad spread of
application domains. A recent paper by Schempf et al [5] describes a robotic
device to conduct inspections of natural gas distribution mains. The system is
untethered and composed of interlocking modules allowing negotiation of pipe
bends and utilizes a camera as the primary inspection sensor. Positioning is
achieved through the use of encoders attached to the wheels of the modules and
also through the counting of welds connecting pipe sections of known length.
Shang et al [6] present a robotic system for inspecting non-ferrous aircraft wings
and fuselages. The described robot is a large vehicle making use of suctions cups
to adhere to the inspection surface. It has the capability of carrying a significant
payload mass in the form of eddy current and thermographic sensors as well as
a phased array probe and a solid coupled wheel probe. Fisher et al [7] developed
a prototype system for surface inspection of gas tanks in ships making use of
permanent magnets to adhere to the tank wall. The NDE sensor detected the
leakage of injected helium from holes in the tank. White et al [8] developed a
suction cup based system for inspection applications in the aerospace industry;
a Kalman filter was used to fuse measurements from a Leica laser tracker and
encoder data to determine the 6 d.o.f position of the robot.

The current work builds upon previous work by Fredrich and Dobie [9], [10],
[11], [12] in the development of a reconfigurable mechanical scanning system for
NDE composed of multiple miniature robotic vehicles termed Remote Sensing
Agents (RSA). The goal for this system is to provide an autonomous and rapid
structural scanning solution that is adaptable to the structure’s surface geom-
etry and capable of reconfiguration to optimise for specific measurement goals.
The RSA approach developed a the University of Strathclyde is characterised
such that the system is completely wireless, the robots are of a smaller size and
in the use of using multiple robots rather then a large single purpose type device.
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Figure 1: RSA with air-coupled ultrasonic transducers attached. For a detailed
description of the system architecture see [12]. Ultrasonic, magnetic flux leakage
and eddy current sensors may be attached to the chassis in order to test the
structure under investigation. Magnetic wheels are used to allow the robot to
adhere to and negotiate 3D ferromagnetic structures.

Central to accomplishing the required degree of cooperating behaviour between
multiple robots, is the is the accurate positioning of individual the RSA units.

Our requirement for integrating NDE measurements onto the robotic plat-
forms presents a significant challenge to the positioning problem. For useful
NDE images to be assembled from the RSA scanning, there are a number of
physical influences on the measurement process that can considerably degrade
the quality of the NDE images and thus their usefulness. For example in air-
coupled ultrasonic imaging applications, the separation and orientation of the
transducers to the sample is critical [13]. This is in addition to the basic degra-
dation of image quality from the gross RSA positional uncertainty. For example
it is not possible to assert defect presence or absence based upon comparison of
expected time-of-flight (ToF) and measured ToF due to delays caused by error
in location. As well as affecting the fundamental measurement principles used
to identify defects, positioning is of importance to register NDE measurements
from different sensors acquired from multiple scans conducted at different times.
It important that the robot is able to return to the same structural location re-
peatedly in order to monitor the time evolution of particular defects.

Probabilistic state estimation of robot position through fusion of multiple
sensor outputs is a strongly researched area in robotics. It is a long-standing
problem in the field and is considered a fundamental requisite of autonomous
systems [14]. A typical component of a wheeled robotic system is odometry
in the form of rotary encoders attached to the drive mechanism of the robot.
These devices return pulses resulting from discrete increments of rotation thus
providing a low-level source of positional information. Such sensors although
providing excellent short-term accuracy are subject to long term accumulation
of errors introduced by wheel slippage (driving on uneven terrain or slippery
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surfaces) and interaction with a priori unknown objects in the environment that
may perturb the course of the robot [15]. These accumulated errors eventually
lead to gross error between the true location and the encoder reported location.
The effect is illustrated by simulation in Figure 2 showing the increase in error
between the odometry reported path and actual path with trajectory length.

In order to reduce error in position the odometry must be supplemented with
some other form of sensing. There are two main ways in which this sensory in-
formation may be provided, firstly through a priori environmental information
in the form of fixed known location beacons placed in the environment aiding
the localisation of the robot. The second way is one in which no such external
information is available and the robot must utilise purely its own onboard sen-
sors to localise - the latter is known as Simultaneous Localisation and Mapping
(SLAM) [14]. Both approaches although applicable in different cases make use
of the same underlying filtering theory in order to combine sensor outputs. In
the present work the output of the encoders are fused with an acoustic based
GPS system for estimating the robot’s planar position [16].

Peralta-Cabezas et al [17] have investigated the first method in carrying out
a comparison of ten Bayesian filters comprising of several variants of the Kalman
and Particle filters as well hybrid filters that are composed of a combination of
the two. Filtering was applied to a camera based tracking system and it was
found that of all these filters the comparatively simple extended Kalman filter
(EKF) and Particle filter (PF) perform best in terms of Mean Square Error
(MSE) tracking error with respect to the true location of the robot. Tong and
Barfoot [18] carried out a comparison of an EKF and sigma point Kalman filters
for a 4-wheeled skid steer vehicle. The sigma point variant of the Kalman filter
was found to be more robust and provided higher overall accuracy in comparison
to the EKF. Bellotto and Hu examined the use of PF and Kalman filter based
techniques in tracking people using a camera and laser range finder mounted on
a robot.The authors showed that the Unscented Kalman filter performs as well
as the PF at less computational cost.

In the current paper, comparative experimental results applicable to NDE
measurements are presented for both EKF and PF tracking filters implemented
on the on-board processing hardware of a single RSA unit. The structure of
the paper is as follows, firstly the robotic hardware is presented followed by
a statistical characterisation of the acoustic beacon positioning system. The
filtering theory and implementation is then introduced followed by experimental
evaluation of the performance, conclusions and future work.

2. Remote Sensing Agent (RSA)

The RSA’s developed at the University of Strathclyde have been purpose
designed to integrate conventional robotics with NDE sensing applications [12].
A flexible hardware platform has been adopted to allow for multiple application
of the basic design to many different inspection scenarios. Figure 1 shows an
RSA unit with air-coupled Ultrasonic transducers attached. The robot uses dif-
ferential drive with the drive wheels directly coupled to the motors and makes
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Figure 2: Typical raster path for NDE. Uncertainty in the robot’s position grows
with time. The dashed line corresponds to the path reported by the odometry
while the solid line pertains to the actual motion of the robot that may have
resulted from wheel slippage on the corners of the path.

Figure 3: The (x, y) location of the robot (drive axis midpoint) in the plane of
motion and the angle of the centre with respect to the x-axis define the pose of
the robot.
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use of a Wi-Fi enabled 400 MHz Gumstix Connex [19] embedded processor to
execute user defined instructions and process incoming sensory data. Each RSA
individually constitutes an autonomous data acquisition and processing node.
Detailed descriptions of the hardware have been previously published [12]. The
integration of a flexible NDE measurement platform into the robot architecture
is a clear differentiator for the Strathclyde RSA technology. Typically NDE
sensors are not ”off the shelf” devices, but often complex instrumentation chal-
lenges all of their own. The reader is referred to previous publications that
discuss the actual development and operation of the NDE tools are detailed
in [11]. The following section describes the kinematic model used by the filter
algorithms.

2.1. Robot Model

The location of a robot in 2D space is defined in Figure 3, it is determined
by 3 variables - the (x, y) position of the drive axis midpoint and θ the angle
of rotation with respect to the defined coordinate axes. The number of pulses
pertaining to the left and right wheels available from the optical encoders, ∆r

and ∆l respectively, accrued in moving along the user specified line segment
allow prediction of the robot’s pose and is given by the following set of equations
[15]:

xk = xk−1 +





r cos(θk−1 +∆θ)
r sin(θk−1 +∆θ)

∆θ



 (1)

where xk−1 is the pose of the robot at the previous time step, ∆θ = c(∆r−∆l)
b

and r = c(∆r+∆l)
2 are the change in angle and the arc length traversed by the

wheels between time steps k and k−1, c is the conversion factor between pulses
and linear displacement and b is the distance between the drive wheels of the
robot. It is the recursive nature of the odometry that causes the cumulative
build of error evident in Figure 2: if at time step k − 1 the estimated position
differs by an error ϵ from the true state this is added to the subsequent estimate
at time step k.

3. Acoustic Beacon Location System

A commercially available indoor acoustic positioning system was used to
provide global position measurements. Developed by Priyantha [16], the Cricket
Indoor Location System (henceforth referred to as Cricket) provided an update
rate of 3Hz. The system comprises of a collection of modules each configurable
to be a transmitter (TX) or receiver (RX), a module is shown in Figure 4a. The
system performs multi-lateration through measurement of at least three inter-
module distances. The distances are estimated through measurement at the RX
of the time difference of arrival (TDoF) between the emissions of an ultrasonic
pulse (US) and radio frequency (RF) signal by the transmitter. Piezoelectric
transducers with resonant frequency 40KHz are used for transmission/reception
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(a) (b)

Figure 4: (a) A Cricket transceiver module. Inter-module distance is calculated
from the time difference of arrival of simultaneous ultrasonic and RF emissions.
(b)Arrangement of Cricket beacons. The RX’s are positioned on the corners of
a quadrant of a circle with radius r.

of the ultrasonic pulse. The 1cm aperture and operating frequency produces a
beamwidth at the -3dB point of ±26◦ with respect to the line perpendicular
to the transducer face. The RF signal encodes the module identifier while
the US serves to enable the TDoF calculation. The system compensates for
the temperature perturbation of the speed of sound by using the mean of the
temperatures measured at each module location.

Cricket may operate in 2 modes: the TX’s are fixed and the RX is mobile
such that the TX’s must use a round-robin approach (in order to avoid signal
interference amongst different modules) or the alternate mode where the TX is
mobile and the RX’s are fixed resulting in round-robin updating of the robots.
The former is preferred when multiple robots are in use allowing the platforms
to simultaneously update their locations. Assuming three RX to TX distances
have been acquired and given that the RX’s lie on a ring with radius r the
location of the TX is calculated by trilateration [16] as follows:





xtx

ytx
ztx



 =





1
2r (d

2
1 − d22 + r2)

1
2r (d

2
1 − d23 + r2)

±
√

(d21 − x2 − y2)



 (2)

where d1, d2 and d3 are 3 RX - TX distances output from Cricket. The distances
d1, d2 and d3 can be obtained very easily given a (x, y) robot location as follows:

db =
√

(x− xb)2 + (y − yb)2 + z2b (3)

where (xb, yb, zb) are the beacon locations for b ∈ {1, 2, 3}. The following section
quantifies the uncertainty in the Cricket estimated position/distance for use in
the filtering algorithms.
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3.1. Spatial accuracy and correction of Cricket Measurements

The accuracy of the distance measurements returned by a Cricket module
was experimentally measured in one and two dimensions. The 1D experiment
consisted of holding a TX static while a RX unit was moved in increments of
20mm along a measurement rail with 1mm resolution from 0 − 2000mm with
15 individual distance measurements being acquired at each increment. The
range of 2000mm was chosen because this fits within the inspection area used
in the experimental evaluation section. Plotting the mean Cricket measured
distance against the true distance (the line y = x) yields the graph shown
Figure 5 clearly showing an error in gradient and offset. This was due to the
clock frequency on the Cricket modules running at a frequency of 7.3728MHz
rather than 8MHz assumed in the Cricket software. The distance measurements
corrected to account for this error.
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Figure 5: Cricket measured distance vs True distance over a distance of 0 to
2000mm. Cricket distance is calculated as the mean point at each measurement
location where the points used to calculate the mean values are shown as dots.

The positional accuracy of the Cricket system in two dimensions was mea-
sured through the acquisition of 300 measurements at each intersection point
of a 7x7 grid with divisions of size 100mm x 100mm with and a resolution of
0.5mm; finer dimensions than considered in [16].

The spatial distribution of the Cricket measurements in the plane assumed
the form of the crossed points shown in Figure 6 where these points are the cen-
troids of multiple measurements. It is apparent from the graph that the Cricket
(x, y) estimates display a degree of radial distortion. A calibration procedure
was applied to correct this distortion in order to simplify the measurement equa-
tions of the filters described in the following sections. The calibration process
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Figure 6: Cricket uncertainty in the XY plane. The crossed points represent
raw measurements with the 1D correction applied while starred points result
from the spatial correction and the dots are the true location of the TX

consisted of measuring with Cricket known corner points of the rectangular
600mm x 500mm inspection area used in the experiments to form the following
matrix:

A =

(

BRx TLx

BRy TLy

)

−1

(4)

where (BRx, BRy), (TLx, TLy) were the bottom right and top left corners of
the inspection area respectively. A Cricket measurement pm = (x, y) then
undergoes a transform under A

P ′ = APm (5)

yielding the point P ′ = (x′, y′) which is subsequently passed through another
transformation to form the calibrated point Pcalib as follows:

Pcalib = (
x

1− ( y
y′
)(1− x′)

)(
y

1− ( x
x′
)(1− y′)

) (6)

This calibration procedure was chosen for its simplicity and speed as only
two points need to be recorded; it could subsequently be applied in online op-
eration very easily. Using the mean point of each raw measurement cluster as
input to the calibration process yielded the starred points in Figure 6. The
displacement on a per grid point basis is illustrated in figure 7 for both the un-
calibrated and calibrated cases. It is evident from these graphs that the spatial
calibration reduced the offset error apparent for the uncalibrated curve. This is
a critical consideration as the filtering algorithms employed assume a zero mean

9



0 10 20 30 40 50
−15

−10

−5

0

5

10

15

20

25

30

Grid Point Location

D
is

p
la

c
e

m
e

n
t 

(m
m

)

 

 
Raw

Corrected

Figure 7: Error in the calibrated (dashed line) and uncalibrated cases (solid
line)

distribution of noise. The uncertainty of the distance readings returned from
Cricket was evaluated after the spatial realignment and it was found that the
histogram of distances pertaining to each measurement location was a function
of the grid position and in the worst case followed a zero mean Gaussian density
with a variance of 23mm2

4. Recursive Bayesian Filtering

The recursive Bayesian filter provides a probabilistic framework to fuse mul-
tiple measurements in order to better estimate some variable of interest and in
doing so it takes account of the uncertainties associated with the measurement
sources [20]. A model of the system or process whose output x is to be tracked
is used to predict the distribution over x at time instant k − 1 using equation
7 in the absence of any measurement of the process. This prediction is sub-
sequently updated in light of a measurement z that has arrived at time step
k using Equation 8 to produce a posterior distribution over x. Because these
equations are in general computationally intractable this filter is not realisable
in practice therefore approximations are used: the Kalman and Particle filters
described in the following sections are such approximations.

p(xk|Zk−1) =

∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1 (7)

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
(8)
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4.1. Extended Kalman Filter (EKF)

The Extended Kalman filter [21], a state-space formulation, assumes zero
mean Gaussian distributed noise sources. It predicts and propagates forward
in time the covariance associated with the current estimate of pose. The state
estimate is represented as a 3-vector x whose components comprise the variables
defined in Figure 3, this estimate has an associated uncertainty which is encoded
in the covariance matrix Σ these quantities are shown in Equation 9:

x̄ =





x
y
θ



 ,Σ =





σ2
x σxσy σxσθ

σyσx σ2
y σyσθ

σθσx σθσy σ2
θ



 (9)

The state vector was modelled, using Equation 1, as a non-linear function,
f , of the previous state and odometry:

xk = f(xk−1,uk) + ϵk (10)

where xk is the pose of the robot, uk is the odometry measurement and ϵk
is a zero mean Gaussian noise source with covariance matrix R. A beacon
measurement is modelled as follows:

zk = h(xk−1) + δk (11)

where h is the function of Equation 3, zk = [d1, d2, d3]
T is a measurement con-

sisting of 3 beacons distances and δk is a zero mean Gaussian noise source with
covariance matrix Q. The entries of Q contain the experimentally derived vari-
ances in distance estimate from the acoustic location system. The Kalman filter
implements the prediction-update cycle as follows. Using the process model and
odometry only the prediction step estimates through Equations 11 and 12 the
state and uncertainty associated with this state yielding x̄k and Σ̄k respectively.
These predicted quantities are subsequently adjusted in light of the acoustic po-
sitional measurement by Equations 14 and 15 giving, xk and Σk respectively.
The influence of the acoustic measurement is controlled by the Kalman gain
matrix Kk computed by Equation 13. The sequence of equations is as follows:

x̄k = f(uk,xk−1) (12)

Σ̄k = GkΣk−1G
T
k +R (13)

Kk = Σ̄kH
T
k (HkΣ̄kH

T
k +Q)−1 (14)

xk = x̄k +Kk(zk − h(x̄k)) (15)

Σk = (I −KkHk)Σ̄k (16)

where Gk, Hk are Jacobian matrices - required to propagate the state uncer-
tainty - of the state and measurement equations differentiated with respect to
the state ∂f

∂xk−1
, ∂h

∂xk−1
and are given as follows:
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Gk =





1 0 r cos(θk−1 +∆θ)− r cos(θk−1)
0 1 r sin(θk−1 +∆θ)− r sin(θk−1)
0 0 1



 (17)

Hk =





(xb1 − x̄k−1)/d1 (yb1 − ȳk−1)/d1 0
(xb2 − x̄k−1)/d2 (yb2 − ȳk−1)/d2 0
(xb3 − x̄k−1)/d3 (yb3 − ȳk−1)/d3 0



 (18)

where db =
√

(x̄− xb)2 + (ȳ − yb)2 for b ∈ {1, 2, 3}.

4.2. Particle Filter

Particle filtering is a sequential Monte Carlo technique that uses a sample
based representation of the probability distribution associated with robot pose.
It does not make the Gaussian noise assumption of the EKF and so maybe
considered as being more generic than the EKF. This distribution is represented
as a collection of pose, weight pairs of the form {xi

k, w
i
k}Ni=1, where N is the

number of samples taken to approximate the true distribution, xi
k is the ith pose

sample and wi
k is its associated weight which is proportional to the probability

of being the true pose of the robot. The probability distribution over pose is
then represented as a weighted shifted sum of delta functions as follows:

p(xk|Zk) ≈
N
∑

i=1

wi
kδ(xk − xi

k) (19)

where Zk is the set of all measurements received up until time k. The PF
estimate of robot pose is simply the expected value of this distribution calculated
by:

xk =
N
∑

i=1

xi
kw

i
k (20)

Sampling from the posterior (19) is difficult because in general an analytic
representation is not readily available [22], therefore, another simpler distribu-
tion termed the proposal or importance distribution that shares the same sup-
port as the posterior is used instead. The conventional choice is the transitional
distribution [23] p(xk|xk−1) i.e. the robot motion model of Equation 1. The
prediction step of the predict-update cycle is implemented through sampling
from this distribution.

The integration of a measurement into the PF is implemented through com-
putation of the sample weights. The normalised weights (such that

∑N
i=1 w

i
k =

1) associated with the particles are calculated using Equation 3 implemented in
the likelihood function as follows:

wi
k = wi

k−1

p(zk|xi
k)

∑N
i=1 w

i
k

(21)
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in which, assuming independent and identically distributed samples, p(zk|xi
k)

is given by:

p(zk|xi
k) =

R=3
∏

b

1
√

2πσ2
beacon

e
(
(
√

(xi−xb)
2+(yi−yb)

2+z2
b
−db)

2

−2σ2
beacon

)
(22)

where (xi, yi) is the predicted location of the robot by the ith particle, σ2
beacon is

the variance of the TX to RX distance approximated by a Gaussian distribution
with the remaining variables as defined in Equation 3. The likelihood function
in effect assigns more weight to those particles closer to an incoming beacon
measurement, where the size of the weight is a function of the variance of the
distance measurements.

A key step in this algorithm is that of resampling the particles which involves
discarding particles with low weight and replicating those particles with higher
weights due to their higher probability of being the true location of the robot.
Resampling may be invoked every time the PF runs or when the number of
effective particles NEFF falls below a threshold calculated as follows:

NEFF =
1

∑N
i=1(w

i
k)

2
(23)

There are numerous resampling algorithms that maybe used, it was found that
stratified resampling [23] applied when NEFF dropped below 80% produced the
best results during the experimental evaluation.

5. Experimental Evaluation of EKF vs PF

Efficient C++ implementations of the EKF and PF were written for exe-
cution on-board the RSA. To comply with best practice, the UMBMark [24]
procedure was carried out to fine tune the wheel base and wheel diameters
to ensure optimal odometry estimation. Ground truth was measured using a
commercial state-of-the-art photogrammetry based dynamic motion tracking
system, Vicon MX. Using a calibrated 6 camera T160 system, the robot pose
(translation and orientation) could be tracked with sub-millimetre accuracy.
The following sections describe the method used to align the coordinate frames
of the different tracking systems used in the experiment followed by the evalu-
ation of the implemented algorithms on real world data representative of NDE
scanning.

5.1. Coordinate Frame Alignment

Three coordinate frames had to be aligned during the experiment to ensure
all systems involved were tracking the same point in space; the Cricket TX
transducer and Vicon markers were rigidly aligned to track the midpoint of the
axis defined by the drive wheels. In order to ensure maintenance of the radius,
r, of Equation 2, markers were additionally placed on the Cricket RX mod-
ules being located so as to avoid perturbation of the received ultrasonic pulse.
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The modules were then aligned using the Vicon reported locations. Alignment
between the Cricket and Vicon coordinate frames was achieved through the sin-
gular value decomposition (SVD) of the correlation matrix resulting from the
product of corresponding point pairs measured by both systems following the
method of Nüchter [25]. The systems were configured to track the same physical
point on the robot acquiring 300 measurements at 5 grid locations yielding the
point sets pv and pc for the Vicon and Cricket systems respectively solving the
correspondence problem by default. Equations 24 and 25 define the correlation
matrix and SVD procedure that allowed the relative rotation and translation,
R and t to be recovered respectively

H =

N
∑

i=1

p′T
vip

′

ci =





Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz



 (24)

H = UΛV T , R = V UT , t = p̄c −Rp̄v (25)

where p′

v and p′

c are the point sets with their respective means removed and p̄c

and p̄v are the point set centroids. The average displacement error between the
transformed Vicon points and the raw Cricket measurements was ϵ = −3.7mm.
This was the best error that could be achieved in practice and manifests as an
offset in the errors calculated in the following section.

5.2. Raster Scan Experiment

To simulate a typical course employed in a real NDE scan a robot was
instructed to execute a raster scan consisting of 600mm horizontal sweeps and
100mm vertical sweeps contained in the rectangle of dimension 600mm x 500mm
starting with the pose pstart = [300mm,−300mm, 180◦]T in the plane. This
scan was repeated multiple times to generate 5 different datasets for analysis.

The trajectory estimates from all estimation sources for dataset 1 are shown
in the graph of Figure 8a. The EKF and PF (using 200 particles) curves have
a stronger correlation with the Vicon curve than odometry which becomes in-
creasingly erroneous. The estimation squared errors of each source with respect
to ground truth is shown in Figure 9a while the numerical MSE errors are tab-
ulated in Table 1. It is clear from the graphs that the error in odometry grows
with path length, its oscillatory behaviour being due to the robot turning back
to ground truth on corner rotations thus reducing the accumulating error. The
filter estimates are essentially a smoothed version of the Cricket data where the
odometry fulfils the smoothing function. It is clear from Table 1 that the error
of both the PF and EKF is less than that of the positional sources used in iso-
lation. Inspection of Table 1 confirms the reduction of positional error enabled
through filtering for different datasets.

If filter error defined as MSE in only (x, y) is considered as function of the
number of particles, N , it is found that the PF error effectively saturates to the
level of the EKF, this is illustrated in Figure 10 for dataset 1. Each point on the
PF curve is calculated by averaging 5 runs of the robot embedded code which was

14



executed offline on a PC. From this result it maybe concluded that the system
is sufficiently linear within the system time-step defined by the odometry such
that the potential gains offered by the PF are cancelled out. This conclusion
was tested by considering the scenario in which the odometry arrives at a slower
rate. The encoder data was decimated by a factor of 10 in effect simulating a
larger time-step, 10 times greater than the raw data. The resulting N vs error
plot is shown in Figure 11 where the PF curve now intersects at approximately
50 particles and subsequently saturates below the EKF curve where each PF
point is again 5 runs averaged. The larger time-step means that the EKF has to
linearise a more non-linear region of the state-space which gives rise to greater
linearisation error and subsequently higher MSE. The saturation of the PF error
to the level of the EKF in Figure 10 suggests that the EKF is Bayes optimal
as when N becomes large the PF becomes Bayes optimal. It maybe said from
Figure 11 that the PF is more efficient in the sense that it produces an error in
the decimated-data case comparable to the case processing the raw data.

The computational cost of running the filters onboard the robot is an impor-
tant factor in practice since the robot has other processing tasks running during
operation. The EKF is less of a computational burden in comparison to the PF
in which execution time is a function of the number of particles N . Measuring
execution time resulting from running a single predict-update cycle for each
filter while varying N , yields Figure 12. The curve is valid for the particular
implementation on the specific hardware being used but gives an idea of the
trend that would be true given another implementation/hardware combination.
The PF curve displays a linear growth with N , reaching a value of approxi-
mately 17ms when using 3000 particles whereas the EKF approximately stays
constant with a value of 0.04ms. The EKF is more suited to realtime operation
particularly when more functions are added to extend the robots capabilities.

6. Conclusion

NDE plays a critical role in industry with regard to pre-empting component
failure and thus averting economic and human cost. This paper focused upon
methods to accurately localise a (purpose built) robotic vehicle proposed to
operate in a multi-robot NDE scanning system. The vehicle receives noisy
positional updates from onboard wheel encoders and an external acoustic based
GPS system at 100Hz and 3Hz respectively. The former is a relative system
that is subject to drift like all such methods of estimation, while the latter
provides absolute updates too infrequently for practical use. The use of EKF
and PF Bayesian filters was investigated for combining the available positional
estimates and an experimental comparison of the performance of these filters
was performed.

It was demonstrated that for a typical raster scan as used in NDE, both
methods yield lower path error than using each measurement source in isolation.
The EKF was expected to produce greater path error than the PF due to its
requirement for process/measurement model linearisation, however, this was not
found to be the case in practice. It is considered that the models are sufficiently
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Dataset Estimation XY MSE (mm2) θ MSE (◦2)

1

EKF 66.53 36.06
PF 67.86 33.17

Cricket 146.58 N/A
Odometry 774.51 51.07

2

EKF 119.18 8.76
PF 138.94 15.74

Cricket 178.61 N/A
Odometry 1537.55 20.94

3

EKF 50.36 20.99
PF 53.41 21.58

Cricket 111.90 N/A
Odometry 1320.73 42.68

4

EKF 69.29 17.95
PF 71.84 19.37

Cricket 133.69 N/A
Odometry 2072.62 45.91

5

EKF 57.75 27.55
PF 60.79 27.40

Cricket 114.77 N/A
Odometry 1379.57 56.43

Table 1: Pose error for each estimation source with respect to ground truth for
each dataset
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Figure 8: (a) The trajectory estimates from all positional sources (b) Estimate
of robot orientation
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Figure 9: (a) Error in (x, y) position of trajectory estimates with respect to
Vicon (b) Error of robot orientation

linear within the system time step (dictated by the encoders) that the potential
benefits of the PF do not become apparent. Indeed it also shown that if the
rate of the encoder data is reduced the EKF estimation error increases as a
consequence of larger linearisation error. Within the constraints of the described
system, the conclusion that can be drawn from this experiment is that there is
no benefit in using the PF. This, however, is not true in general and shows
that choice of filtering technique is dependent upon both the system setup and
the models employed in the algorithms. A practical aspect of importance for
resource limited systems such as the presented system is the computational cost
of algorithms running onboard. An attractive benefit of the EKF it is the ability
to compute the update in a fixed time period while the cost associated with the
PF is proportional to the number of particles used of which the optimal number
is not always clear.

Future work will incorporate multiple NDE scan results from a structural
inspection using similar filtering algorithms to enable data fusion.
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