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The spectrum and wave function of helical edge modes in Z2 topological insulator are derived on a square
lattice using Bernevig-Hughes-Zhang �BHZ� model. The BHZ model is characterized by a “mass” term
M�k�=�−Bk2. A topological insulator realizes when the parameters � and B fall on the regime, either 0
�� /B�4 or 4�� /B�8. At � /B=4, which separates the cases of positive and negative �quantized� spin Hall
conductivities, the edge modes show a corresponding change that depends on the edge geometry. In the �1,0�
edge, the spectrum of edge mode remains the same against change in � /B, although the main location of the
mode moves from the zone center for � /B�4, to the zone boundary for � /B�4 of the one-dimensional �1D�
Brillouin zone. In the �1,1�-edge geometry, the group velocity at the zone center changes sign at � /B=4 where
the spectrum becomes independent of the momentum, i.e., flat, over the whole 1D Brillouin zone. Furthermore,
for � /B�1.354, the edge mode starting from the zone center vanishes in an intermediate region of the 1D
Brillouin zone, but reenters near the zone boundary, where the energy of the edge mode is marginally below the
lowest bulk excitations. On the other hand, the behavior of reentrant mode in real space is indistinguishable
from an ordinary edge mode.
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I. INTRODUCTION

Insulating states of nontrivial topological order have at-
tracted much attention both theoretically and experimentally.
A topological insulator has a remarkable property of being
metallic on the surface albeit insulating in the bulk. Recently
much focus is on a specific type of topological insulators,1

which are said to be “Z2 nontrivial.”2 The latter occurs as a
consequence of interplay between a specific type of spin-
orbit interaction and band structure.3 Such systems are in-
variant under time reversal and show Kramers degeneracy.
From the viewpoint of an experimental realization, the origi-
nal idea of Kane and Mele �KM� �Refs. 2 and 3� was often
criticized for being unrealistic since it relies on a relatively
weak spin-orbit coupling in graphene. In order to overcome
such difficulty, Bernevig, Hugues and Zhang �BHZ� pro-
posed an alternative system,4 which is also Z2 nontrivial but
not based on graphene. BHZ model was intended to describe
low-energy electronic properties of a two-dimensional �2D�
layer of HgTe/CdTe quantum well. Conductance measure-
ment in a ribbon geometry5 showed that the system exhibits
indeed a metallic surface state, which is also called helical
edge modes.

This paper highlights the spectrum and wave function of
such helical edge modes in the BHZ model. Respecting ap-
propriately the crystal structure of original HgTe/CdTe quan-
tum well, one can safely implement it as a tight-binding
model on a 2D square lattice.1,4 Note, however, that in con-
trast to KM model which can be represented as a purely
lattice model, in BHZ an internal spin-1/2 degree of freedom,
stemming from the s-type �6 and p-type �8 orbitals, resides
on each site of the square lattice in addition to the real elec-
tronic spin. We also mention that in the continuum limit with
vanishing topological mass term, KM model has two valleys
�K and K�� whereas BHZ has a single valley �at ��. Another

idea which we can borrow from graphene study is the sensi-
bility of edge spectrum on different types of edge structure,
i.e., either zigzag of armchair type.6,7 This applies also to the
helical edge modes of BHZ topological insulator in a ribbon
geometry since the edge spectrum is predominantly deter-
mined by how the 2D bulk band structure is “projected” onto
the one-dimensional �1D� edge axis. Indeed, the structure of
BHZ helical edge modes has been extensively studied in Ref.
1 in the �1,0�-edge geometry and in the tight-binding imple-
mentation. However, in the practical experimental setup,5

this is certainly not the only one which is relevant to deter-
mine the transport characteristics at the edges. Here, in this
paper our main focus is on the other representative geometry,
the �1,1� edge. In the �1,1� geometry, as a consequence of the
specific way how “hidden” Dirac cones �or valleys� in the 2D
spectrum is projected onto the �1,1� axis, edge modes show
some unexpected behaviors.

In order to motivate further the present study, let us first
recall the importance of edge modes in the quantum Hall
state under magnetic field that exhibits a finite and quantized
�charge� Hall conductivity �xy

c . In realistic samples with a
boundary, quantization of Hall conductivity is attributed to
dissipationless transport due to a gapless chiral edge mode.
In contrast to charge Hall effect, a finite spin Hall current
does not need breaking of the time reversal symmetry. In the
quantized spin Hall �QSH� effect, the Chern number in the
bulk takes an integral value, and correspondingly there ap-
pears integral pairs of gapless edge modes. On the other
hand, the Z2 topological insulator is characterized by an odd
number of gapless modes per edge that are robust against
weak perturbations preserving the time-reversal symmetry.

The existence of such gapless edge states is generally
guaranteed by a general theorem under the name of bulk/
edge correspondence.8,9 The BHZ model has a convenient
feature that the location of the minimum energy gap can be
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controlled by changing the parameters in the model. In par-
ticular, the sign of spin Hall conductivity changes discontinu-
ously as the mass parameter of the model is varied. Hence,
the corresponding change in edge spectrum should provide
useful information on the bulk/edge correspondence. Fur-
thermore, understanding of the nature of edge modes under
specific edge geometries should serve as possible application
of topologically protected phenomena in nanoarchitectonics.
We take the representative cases of the �1,0� and �1,1� edges,
which we call also the straight and zigzag edges,
respectively.

This paper is organized as follows: in Sec. II, we clarify
our motivations to study the lattice version of a Z2 topologi-
cal insulator �BHZ model�, implemented as a nearest-
neighbor �NN� tight-binding model. Explicit form of the
BHZ lattice hamiltonian is introduced in Sec. III. It is dem-
onstrated that by considering a lattice model, one naturally
takes into account hidden Dirac cones, the latter lacking in
the analyses based on the continuum Dirac model. In Secs.
IV and V, we study the detailed structure of gapless edge
modes under two different edge geometries: straight and zig-
zag edges. Section V is the highlight of this paper, demon-
strating that the zigzag edge modes of BHZ lattice model
show unique features. We first point out that at �=4B, a pair
of completely flat spectrum appears at E=0; besides the edge
wave function can be trivially solved. We then show, in a
half-empirical way, that this analytic exact solution at �
=4B can be generalized to the case of an arbitrary � /B
� �0,8� �this idea is schematically represented in Fig. 1�.
Using the exact solution thus constructed, we highlight the
nature of reentrant edge modes, another unique feature of the
edge modes in the �1,1�-edge geometry. The reentrant edge
modes possess two contrasting characters in real and mo-
mentum spaces: though well distinguished in real space, they
live in an extremely small energy scale in the spectrum. Sec-
tion VI is devoted to conclusions. The gapless edge modes of
BHZ topological insulator are also treated in the framework
of continuum Dirac model in Appendix.

II. STATEMENT OF THE PROBLEM

It has been well recognized that the quantized spin Hall
conductivity is determined by wave functions of Bloch elec-
trons over the entire Brillouin zone �BZ�. On the other hand,

only the electronic states near the Fermi level are relevant to
the change in the Hall conductivity when the Fermi level is
shifted. Simplified effective models are useful for the latter
case since various theoretical techniques can be employed in
the low-energy range. In this paper, we work mainly with the
lattice version of the BHZ model and make some comments
in the low-momentum limit.

A. Continuum vs lattice theories

Why do we have to go back to a lattice model? First
because we need to recover the correct absolute value of spin
Hall conductance �xy

s . The latter is defined as the difference
of Hall conductance for up and down �pseudo� spins multi-
plied by −� / �2e�:

�xy
s = −

�

2e
��xy

↑ − �xy
↓ � . �1�

In QSH systems, the spin Hall conductance is quantized to
be an integer in units of e / �2��. This is completely in par-
allel with the quantization of charge Hall conductance in
units of e2 /h in quantized Hall system. In both cases, such
integers are topological invariants and protected against
weak perturbations.34

On the other hand, if one calculates, using Kubo formula,
the contribution of a single Dirac fermion, e.g., of the con-
tinuous Dirac model at the � point4 to spin Hall conductance,
then this gives half of the value expected from the topologi-
cal quantization.10–13 In order to be consistent, it is naturally
assumed that there must be even number of Dirac cones.18

However, the low-energy effective theory with which we are
starting contains obviously a single Dirac cone.27 As we will
see explicitly, such trivial discrepancy is naturally resolved
by considering a lattice version of the BHZ model.4

Another aspect motivating us to employ the lattice version
of BHZ model is the fact the idea of an edge states is a real
space concept and we need a priori to go back to real space
to give an unambiguous definition to it. In this paper, we
highlight the detailed structure of gapless edge modes under
a specific edge geometry. Clearly, introduction of the latter
needs a precise description in real space. Recall also here
that edge modes of graphene nanoribbon exhibit contrasting
behaviors in zigzag and armchair edge geometries: e.g., the
system becomes either metallic or semiconducting in the
armchair geometry, depending on Nr mod 3, with Nr being
the number of rows whereas a completely flat edge mode
appears in the zigzag geometry.6,7 Where does the difference
comes from? In momentum space, the question is how the
bulk Dirac cone structure look like when viewed from the
edge. Note that in the zigzag geometry the flat edge mode
connects the two Dirac points �DP�: K and K� whereas in the
armchair geometry these two points are projected onto the
same point at the edge. In a topological insulator, this bulk to
edge projection is even a more subtle issue since not all the
Dirac cones are explicit �see Table I�. In a sense, zigzag edge
in the square lattice BHZ model �see Fig. 8� plays the fol-
lowing double role: it resembles the zigzag edge in graphene
at �=4B whereas it may rather resemble the armchair edge
at �=0 and at �=8B.

trivial phasetrivial phase
topological phase

k

Δ/B

Δ/B=4

0

4

8

trivial phasetrivial phase

extraporate
no Δ/B dependence

flat edge mode
exactly soluble at each k

FIG. 1. �Color online� Recipe �conceptual� for constructing the
exact edge wave function in the zigzag edge geometry—a half-
empirical way.
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B. Continuous Dirac model and its boundary conditions

Spin Hall conductance is a topological quantity deter-
mined by the global structure of entire 2D Brillouin zone.
The helical edge modes, encoding the same information, is,
therefore, a priori not derived from a local description in the
2D Brillouin zone. One exception to such a general idea is
the study of Ref. 14 �see also Appendix�, in which gapless
edge modes are derived from the continuous model in a strip
geometry by simply applying the condition that all the pseu-
dospin components of wave function vanish at the
boundary.15 This implies that information about the helical
edge modes is actually encoded in the original �single� Dirac
cone. This seems to be rather surprising, if one recalls that in
the case of KM model, the distinction between trivial and
nontrivial phases is made by a relative sign of the mass gap
at K and K� points, which are, of course, macroscopically
separated in momentum space. Here, in the BHZ model, the
same distinction is made by relative sign between the mass
�k0� term and the k2 term added to the Dirac Hamiltonian.

Motivated by this observation, we investigate the struc-
ture of helical edge modes under different boundary condi-
tions for the periodic BHZ model, implemented as a square
lattice and NN tight-binding model. In parallel with the arm
chair and zigzag edges for graphene, we consider �a� usually
considered �1,0�-�straight� boundary,4 as well as �b� �1,1�-
�zigzag� boundary for the tight-binding BHZ model.

C. Explicit vs hidden Dirac cones

The idea of focusing on Dirac fermions in the description
of quantized Hall effect has appeared in the context of tran-
sitions between different plateaus. For describing the transi-
tions, half-integer quantization is not a drawback since the
difference of Hall conductance before and after the gap clos-
ing is quantized to be an integer in units of e2 /h: 1 /2−
�−1 /2�=1 or vice versa. A discrete jump in the Hall conduc-
tance across the transition is indeed consistent with counting
based on the emergence of massless Dirac fermions at the
transition.16,21

The absolute value of Hall conductance is, on the other
hand, a winding number, and determined by the vortices.17

Here, each vortex gives, in contrast to a Dirac cone, an inte-
gral contribution to the Hall conductance �in units of e2 /h�.
An interesting question is whether the total Hall conduc-
tance, often expressed as a topological invariant,17 can be
also written as a sum of contributions from emergent Dirac
electrons in the spectrum. Our empirical answer is yes,18

indicating that the number of Dirac electrons emergent in the
spectrum is always even, reminiscent of the no-go theorem
of Nielsen and Ninomiya in 3+1 dimensions.19 It should be
noted that here not only explicit Dirac electrons �gapless for
a given set of parameters� but also hidden Dirac electrons
�massive for that set of parameters� must be taken into ac-
count. Such massive Dirac electrons are called “spectators”
in Ref. 18, in the sense that they are inactive for the transi-
tion. Spectators are indispensable to ensure the correct inte-
ger quantization of the Hall conductance.

III. BHZ MODELS

A. BHZ model in the long-wavelength limit

Let us first consider the BHZ model in the long-
wavelength limit. The low-energy effective Hamiltonian, de-
scribing the vicinity of gap closing at �= �0,0�, is the mini-
mal model to capture the physics of a Z2-topological
insulator. This effective Hamiltonian is also contrasting to
the prototypical KM model, in that the former describes only
a single Dirac cone. The distinction between the Z2 trivial
and nontrivial phases is, therefore, made by adding a k2 term
to the usual Dirac Hamiltonian. The explicit form of BHZ
Hamiltonian is implemented by the following 4	4 matrix:

H�k� = �h�k� 0

0 h��− k� � , �2�

where k= �kx ,ky� is a 2D crystal momentum, here measured
from the � point. The lower-right block h��−k� is deduced
from h�k� by imposing time reversal symmetry.

TABLE I. Nature of four Dirac cones in the BHZ lattice model. The four Dirac cones appear at different
values of the tuning parameter �, and at different points of the BZ: �, X, X�, and M. Away from the gap
closing, such Dirac electrons acquires a mass gap. The sign of such mass gap, together with the chirality 
,
determines their contribution to �xy

�s�= �e2 /h. In the table, only their sign is shown. The symmetry of the
valence orbital is also shown in the parentheses, which is either, s �inverted gap� or p �normal gap�, corre-
sponding, respectively, to the parity eigenvalue: �s=+1 or �p=−1. The latter is related to Z2 index  as
�−1�=�DP�DP.20 We also assume B�0 with no loss of generality.

DP � X1 X2 M �DP�xy
�s� �DP�DP

k= �kx ,ky� at the DP �0, 0� �0,� /a� �� /a ,0� �� /a ,� /a�

Mass gap � �−4B �−4B �−8B

Chirality 
 + − − +

��0 −�p� +�p� +�p� −�p� 0 +1

0���4B +�s� +�p� +�p� −�p� 2e2 /h −1

4B���8B +�s� −�s� −�s� −�p� −2e2 /h −1

8B�� +�s� −�s� −�s� +�s� 0 +1
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The bulk energy spectrum: E=E�k� is then given by solv-
ing the eigenvalue equation for the upper-left block h�k� of
the 4	4 BHZ Hamiltonian, i.e.,

h�k���k� = E��k� . �3�

In order to represent h�k� in a compact form, we introduce a
d vector, d= �dx ,dy ,dz�, each component of which is either an
even or an odd function of k: dx,y,z=dx,y,z�k�, whose parity is
determined by symmetry considerations.4 As far as the low-
energy universal properties in the vicinity of � point is con-
cerned, we need to keep only the lowest order terms of
dx,y,z�k�, and in this long-wavelength limit, they read explic-
itly,

dx�k� = Akx, dy�k� = Aky

dz�k� = � − B�kx
2 + ky

2� . �4�

Other parameters which appear in Ref. 4, i.e., C and D are
set to be zero, which, however, does not lose any generality.
The bulk energy spectrum is thus determined by diagonaliz-
ing the following “spin Hamiltonian,” h�k�=d�k� ·�, where
�= ��x ,�y ,�z�, are Pauli matrices. Using the standard repre-
sentation for �, h�k� reads explicitly as,

h�k� = � dz dx − idy

dx + idy − dz
� . �5�

Each row and column of Eq. �5� represent an “orbital spin”
associated with the s-type �6 and the p-type �8 orbitals of
the original three-dimensional band structure of HgTe and
CdTe.22 Then, by choosing the “spin quantization axis” in the
direction of d-vector, one can immediately diagonalize the
Hamiltonian h�k�, i.e.,

h�k�	d�k��
 = � d�k�	d�k��
 , �6�

where the eigenvalue E�k�= �d�k� given by,

d�k� = 	d�k�	 = �dx
2 + dy

2 + dz
2. �7�

This implies,

E�k�2 = �2 + �A2 − 2B��	k	2 + B2	k	4, �8�

where 	k	2=kx
2+ky

2. When ��A2 /2B��0, the dispersion re-
lation Eq. �8� represents a wine-bottle structure, �Fig. 2� i.e.,
E�	k	� shows a minimum at a finite value of 	k	. At the critical
value �0=A2 /2B, the density of states shows van Hove sin-
gularity.

B. BHZ model on square lattice and Dirac-cone interpretation

Lattice version of the BHZ model is implemented as a
tight-binding Hamiltonian. To construct such a Hamiltonian
explicitly, we replace linear and quadratic dependences in
h�k� on kx and ky as in Eq. �5�, by a function which has the
right periodicity of the square lattice. This can be imple-
mented as,

dx�k� →
A

a
sin�kxa� ,

dy�k� →
A

a
sin�kya� ,

dz�k� → � −
2B

a2 �2 − cos�kxa� − cos�kya�� , �9�

where a is the lattice constant. Equation �9� corresponds to
regularizing the effective Dirac model on a square lattice
with only NN hopping. In this setup, i.e., Eqs. �2� and �5�
together with Eq. �9�, the lattice version of BHZ model ac-
quires four gap closing points shown in Table I, if one allows
the original mass parameter � to vary beyond the vicinity of
�=0. The new gap closing occurs at different points in the
Brillouin zone from the original Dirac cone �� point�,
namely, at X1= �� /a ,0�, X2= �0,� /a�, and M = �� /a ,� /a�.
The gap closing at M occurs at �=8B whereas the gap clos-
ing at X1 and X2 occurs simultaneously when �=4B.

Each time a gap closing occurs, one can reexpand the
lattice model with respect to small deviations of k measured
from the gap closing. The new effective model in the vicinity
of such hidden gap closing falls on the same Dirac form as
the original one at the � point, up to the k2 term. In order to
quantify the emergence of such hidden Dirac cones, one still
needs the following two parameters: �i� the mass gap � �es-
pecially, its sign� and �ii� the chirality 
. The latter is asso-
ciated with the homotopy in the mapping: k→d�k�. Note
that in the gap closing at X1 and X2 at �=4B, the role of
k�=kx� iky is interchanged compared with the original
Dirac cone at the � point. The former �latter� corresponds to

=−1 �
=+1�. The missing Dirac partner, in the sense of
Ref. 19, is found in this way. Once the explicit form of
effective Dirac Hamiltonian in the continuum limit is given,
one can determine its contribution to �xy

�c,s�. In systems with
TRS, i.e., of the form Eq. �2�, the contribution from h�k� to
�xy

�c�=�xy
↑ +�xy

↓ cancels with that of h��−k�. On the other hand,
their contribution to �xy

�s�=−�e /2����xy
↑ −�xy

↓ �, remains finite,
takes a half-integral value, �1 /2 in units of e /2� �2e2 /h in
conductance�. Contribution to �xy

�s� from a Dirac point with a
mass gap � and chirality 
 is,

FIG. 2. �Color online� Bulk energy spectrum: E=E�kx ,ky� �ver-
tical axis� of a BHZ lattice model, here, implemented as a NN
tight-binding model on a square lattice: cf. Eq. �9�. The spectrum is
shown over the entire Brillouin zone: −� /a�kx, ky �� /a �horizon-
tal plane�. Parameters are chosen such that A=B=1 and �=2, i.e.,
the system is in the topologically nontrivial phase: 0�� /B�8. The
spectrum shows a typical wine-bottle structure around the � point.
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�xy
�s� = 
 sign���

1

2

e

2�
, �10�

provided that the Fermi energy is in the gap. This can be
verified explicitly by applying the Kubo formula to the con-
tinuum model.

As mentioned earlier, such counting based on the con-
tinuum Dirac model, is known to describe correctly a dis-
crete jump of �xy

�c� in the quantum Hall case. Here, we apply
the same logic to QSH case. Imagine that one observes the
evolution of �xy

�s�, starting with the trivial insulator phase,
where �xy

�s�=0, and varying the mass parameter �. The Fermi
energy is always kept in the gap unless there appears a Dirac
cone. Each time such a gap closing occurs, �xy

�s� shows a
discrete change, which can be attributed to the above Dirac
fermion argument. In the present model, one can verify ex-
plicitly that this is indeed the case.

If one evaluates the spin Hall conductance from TKNN
formula,17 �xy

�s� allows for the following representation, in
terms of Berry curvature integrated over the entire Brillouin
zone:

�xy
�s� =

e

8�


BZ

d2k

4�

�d

�kx
	

�d

�kx
·

d

d3 , �11�

where d= 	d	 and d=d�k� is given, e.g., by Eq. �9�. For such
an explicit choice of d�k�, Eq. �11� is evaluated numerically,
and plotted as a function of � /B in Fig. 3. When d�k� is
given by Eq. �9�, the plotted curve �the solid curve shown in
blue in Fig. 3, which looks practically like steps� is compa-
rable with the column �DP�xy

�s� of Table I. Note that the ab-
solute value of �xy

�s� is susceptible of the concrete implemen-
tation of d�k� over the entire Brillouin zone whereas its
parity �whether it is even or odd� in units of e / �2�� remains
the same. As well known, the latter determines system’s Z2
property.2,20

We have seen that �xy
�s� takes a finite value �e /2� when

0�� /B�8, i.e., the system is in the topological �inverted
gap� phase. This is also consistent with the gapless edge
picture, in which the spin Hall conductance of twice the unit
of quantum conductance e2 /h is attributed to two channels of
edge modes, which form a pair of Kramers partners. The

apparent half-integer quantization at the � point, in the sense
of Eq. �10�, is compensated by the contribution from missing
Dirac partner�s�, and as a result, is indeed shifted by one-
half, replaced by an expected integral quantization.

IV. STRAIGHT EDGE GEOMETRY

Let us first review the behavior of gapless edge modes in
the straight edge geometry, the latter commensurate with the
square lattice, and can be chosen either normal to the �1,0� or
to the �0,1� direction �as in Fig. 4�. Introducing an edge leads
to breaking of the translational invariance in the direction
perpendicular to the edge, inducing a coupling between
Dirac cones.

A. Effective one-dimensional model

In the straight edge geometry shown in Fig. 4, electrons
are confined inside a strip between the rows at y=a and
y=Nra. The translational invariance along the x axis is still
maintained, allowing for constructing a 1D Bloch state with
a crystal momentum kx

	kx,J
 = �
I

eikxI	I,J
 , �12�

where kx is measured in units of 1 /a with a being the lattice
constant. 	I ,J
=cI,J

† 	0
 is a one-body electronic state localized
on site �I ,J�, and cI,J

† is an operator creating such an electron.
It is also convenient to introduce ckx,J

† , and express 	kx ,J
 as
	kx ,J
=ckx,J

† 	0
. Naturally, the two creation operators are re-
lated by Fourier transformation similarly to Eq. �12�, i.e.,
ck,J

† =�Ie
ikIcI,J

† .
In order to introduce the edges, it is convenient to rewrite

the BHZ tight-binding Hamiltonian in terms of the hopping
between neighboring rows. Let us first consider the BHZ
tight-binding Hamiltonian in real space

�2 0 2 4 6 8 10

�2

�1

0

1

2

��B

Οx
y

FIG. 3. �Color online� �xy
�s� in units of e /2�, obtained by numeri-

cally evaluating the k integral in Eq. �11�, plotted as a function of
� /B.

I

J

(0,0) (1,0)

(1,1)(0,1)

straight edge

FIG. 4. �Color online� Straight edge geometry. The two bound-
aries of the strip �=edges� are, here, chosen to be perpendicular to
the �0,1� direction. In this figure, the number of rows in the strip is
Nr=5.
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H = �
I,J

��� − 4B��zcI,J
† cI,J + ��xcI+1,J

† cI,J + �ycI,J+1
† cI,J + h.c.�� ,

�13�

where 2	2 hopping matrices, �x and �y, are given explicitly
as,

�x = − i
A

2
�x + B�z, �y = − i

A

2
�y + B�z. �14�

In order to rewrite it in terms of the Bloch state, Eq. �12�, or
equivalently, in terms of the corresponding creation and an-
nihiration operators, ckx,J

† �ckx,J�, we perform Fourier transfor-
mation in the �x-� direction along the edge. Equation �13�
thus rewrites,

H = �
kx,J

�D�kx�ckx,J
† ckx,J + ��J+1,Jckx,J+1

† ckx,J + h.c.�� , �15�

where D�kx�’s are diagonal �on row� components, which read
explicitly,

D�kx� = A�x sin kx + �� − 2B�2 − cos kx���z

� A�x sin kx + ��kx��z. �16�

�J+1,J represents a hopping amplitude in the y direction, i.e.,
between neighboring rows. Inside the strip, i.e., for J
=1, . . . ,Nr, these amplitudes take the same value as in the
bulk, given in Eq. �14�, i.e.,

�J+1,J = �y = − i
A

2
�y + B�z. �17�

In the tight-binding implementation, a strip geometry can
be introduced by switching off all the hopping amplitudes
connecting sites on the edge of the sample to the exterior of
the sample. In our straight edge geometry, such outermost
rows are located at J=1 and J=Nr. We turn off all the hop-
ping amplitudes from J=1 to J=0, and the ones from
J=Nr to J=Nr+1, i.e.,

�1,0 = �Nr+1,Nr
= 0. �18�

This boundary condition, �i� breaks the translational invari-
ance in the y direction, and �ii� restricts the Hamiltonian
matrix into Nr	Nr blocks.

B. Spectrum and wave function

Let us construct the eigenvector of the straight edge
Hamiltonian, Eq. �15�, with an eigenenergy E. Since Eq. �15�
is already diagonal with respect to kx, we diagonalize Eq.
�15� for a given kx, to find the energy spectrum E=E�kx�. The
corresponding eigenvector is thus specified by E and kx, and
takes generally the following form:

	E,kx
 = �
j

� j�E,kx�	kx, j
 , �19�

where � j�E ,kx� is a 2	2 spinor specifying the amplitude
and the pseudospin state of eigenvector on row j. One might
rather regard,

� = �
�1

�2

�3

]

� , �20�

as the wave function of the corresponding eigenstate. The
eigenvalue equation,

H	E,kx
 = E�kx�	E,kx
 , �21�

can be rewritten, in terms of the �J�E ,kx�’s, in the form of a
recursive equation

D�kx�� j + �y� j+1 + �y
†� j−1 = E� j . �22�

All the information on the spectrum and the wave func-
tion of both the extended bulk states and the localized edge
states is encoded in Eq. �22� and the boundary condition
which we will specify later. Since the recursive relation, Eq.
�22�, is linear, its eigenmodes take the form of a geometric
series

� j = � j�0, �23�

where � is a solution of the characteristic equation which we
will derive later. If 	�	�1, Eq. �23� may represent an edge
mode. Since the recursive relation, Eq. �22�, is of second
order, its characteristic equation becomes a quadratic equa-
tion, giving two solutions for �, say, �=�1,2. On the other
hand, our recursive equation has also a 2	2 matrix form, we
first have to solve a �reduced� eigenvalue equation for �0,
assuming that � is given. The reduced eigen value equation
for �0 reads,

�D�kx� + ��y +
1

�
�y

†��0 = E�0. �24�

Using Eq. �14� this can be also rewritten as,23

�D�kx� + i
A

2
�1

�
− ���y + B�1

�
+ ���z��0 = E�0, �25�

where D�kx� is given in Eq. �16�. This is a 2	2 eigenvalue
equation, and there are generally two solutions for E and two
corresponding eigenvectors for a given �. Recall here that for
0���4, our numerical data �Fig. 5� show that the edge
spectrum behaves as E→0 in the limit of kx→0. Hereafter,
we will focus only on such edge solutions. Since in the same
limit, D�kx�→��0��z, Eq. �25� reduces to,

���0� −
A

2
�1

�
− ���x + B�1

�
+ ����0 = 0. �26�

Note that we have multiplied both sides of Eq. �25� by �z. It
is clear from this expression that �0 can be chosen to be an
eigenstate of �x, i.e., �0= 	x�
, where

	x+
 =
1
�2
�1

1
�, 	x−
 =

1
�2
� 1

− 1
� . �27�

If one denotes the eigenvalue of �x by s, as �x�0= ��0
�s�0, then s=1 corresponds to �0= 	x+
, and s=−1 to �0
= 	x−
. Namely, s specifies the eigenspinors given in Eq. �27�.
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Based on these eigenspinors, one can construct the total
wave function. Of course, one still needs to do determine the
allowed values of �. For an eigenstate specified by s, � must
satisfy,

��0� −
A

2
�1

�
− ��s + B�1

�
+ �� = 0. �28�

For s=1,

� =
− ��0� � ���0�2 + A2 − 4B2

A + 2B
� �1,2�0� . �29�

In Eq. �28�, if � is a solution of this quadratic equation for
s=1, then 1 /� satisfies the same equation for s=−1.1 Thus
the general solution becomes a linear combination of the
following four basic solutions:

� j = �c+1�1�0� j + c+2�2�0� j�	x+


+ �c−1�1�0�−j + c−2�2�0�−j�	x−
 . �30�

Of course, at this point, this is just a solution at only one
single k point, kx=0. However, a solution in the form of Eq.
�30�, with �1,2�0� given in Eq. �29�, can be easily generalized
to satisfy Eq. �22� for an arbitrary, finite kx, after a simple
replacement of parameters. As for the eigenmode of the form
of Eq. �23�, one has to solve a reduced eigenvalue equation
for �0, and determine � such that Eq. �25� is satisfied. How-
ever, since D�kx� has the structure given in Eq. �16�, the
eigenmodes for �0 given as Eq. �27� remain to be valid for
an arbitrary kx. This might become clearer, if one decom-
poses Eq. �25� into the following set of equations:

A�x sin kx�0 = E�0 �31�

���kx��z + i
A

2
�1

�
− ���y + B�1

�
+ ���z��0 = 0, �32�

i.e., Eq. �25� is recovered by adding both sides of Eqs. �31�
and �32�. The first equation gives the energy dispersion, E
=Es�kx�, if �0 is chosen to be an eigenstate of �x, i.e., �x�0
= ��0�s�0, where

Es�kx� = sA sin kx = � A sin kx. �33�

Note that this is an exact edge spectrum valid over the entire
range of kx, as far as the edge solution is possible �see Fig.
5�. On the other hand, Eq. �32�, analogous to Eq. �26�, jus-

tifies the previous conjecture: �0= 	x�
. While, in the char-
acteristic equation for �, one has to make the simple replace-
ment: ��0�→��kx�, i.e., Eqs. �26� and �32� are identical up
to this replacement. For s=1, the solution for � reads,

� =
− ��kx� � ���kx�2 + A2 − 4B2

A + 2B
� �1,2�kx� . �34�

Correspondingly, a general solution for � j can be constructed
as,

� j = �c+1�1�kx� j + c+2�2�kx� j�	x+


+ �c−1�1�kx�−j + c−2�2�kx�−j�	x−
 , �35�

where the coefficients c�1,2 should be chosen to satisfy the
boundary conditions. Equation �35� is smoothly connected to
Eq. �30� in the limit: kx→0.

C. Illustration of edge spectrum

Three panels of Fig. 5 show the energy spectrum �edge
+bulk� for different values of � /B. As for the edge part of
the spectrum, only a part of Eq. �33� is realized. In order to
determine which part of the spectrum in Eq. �33� is indeed
activated, we discuss below the case of semi-infinite geom-
etry in some detail.

Figure 5 also demonstrates one of another specific feature
of straight edge mode that the main location of the mode
moves from the zone center for ��4B, to the zone boundary
for ��4B. Thus, the group velocity intersecting with the
Fermi level reverses its sign, reflecting the sign change in �xy

s

in the bulk. This can be regarded as the concrete expression
of bulk/edge correspondence in the present case.8,9

What kind of a boundary condition should we apply in
Eq. �35�? Suppose that here our system is semi-infinite, for
simplicity, extended from j=1 to j→�. Such a boundary
condition can be applied, by formally requiring that the wave
function �Eq. �35�� vanishes at j=0, i.e.,

�0 = �0

0
� . �36�

This means that the coefficients c�1,2 in Eq. �35� should be
chosen to satisfy,

FIG. 5. �Color online� Energy spectrum �numerical� in the straight edge geometry for different values of � �A=B=1�. The number of
rows Nr is, here, chosen to be Nr=100. The dotted curve is a reference, showing the exact edge spectrum given in Eq. �33�. Starting with the
left panel �=B �spectrum shown in red�, �=4B �center panel, spectrum in green� and �=5B �right, blue�.
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c+1 + c+2 = 0, c−1 + c−2 = 0. �37�

This turns out to be rather an important requirement for de-
termining the range of validity of the solution given in Eq.
�35� since the wave function � j must be normalizable. In Eq.
�35�, only the eigenmodes of the form of Eq. �23� with 	�	
�1 should be kept in the solution �to be precise, both 	�1	
and 	�2	 must be smaller than 1�. In a strip geometry, another
solution, consisting of both 	�	�1, describes the edge mode
localized at the opposite end of the system.

In Fig. 6, 	�1	 and 	�2	 are plotted as a function of � /B in
the limit kx→0. When 0�� /B�4, both 	�1	 and 	�2	 are
smaller than 1, namely, both 	1 /�1	 and 	1 /�2	 are larger than
1. This means that only the first two terms of Eq. �35�, both
corresponding to 	x+
�s=1�, should be kept in the solution,
i.e.,

c+1 = − c+2 � 0, c−1 = c−2 = 0. �38�

Outside this region, either 	�1	 or 	�2	 is larger than 1. When
	�	�1 since this implies automatically 	1 /�	�1, the eigen-
mode corresponding to the latter is still compatible with the
boundary condition at j→�. However, because of the
boundary condition at j=0, i.e., Eq. �37�, when 	�1	�1 and
	�2	�1, or vice versa, the only possible choice for the coef-
ficients c�1,2 is

c+1 = c+2 = c−1 = c−2 = 0. �39�

Namely, a solution of the type of Eq. �35�, or an edge mode
crossing at kx=0 is inexistent. This is consistent with the fact
that an edge mode crossing at kx=0 exists only in the region,
� /B� �0,4� in the straight edge geometry. �When � /B
� �4,8�, the edge modes cross at kx=�, i.e., at the zone
boundary, which is also time-reversal symmetric.�

Coming back to the regime in which edge modes are ex-
istent, i.e., � /B� �0,4�, one can clearly see in Fig. 6 that
there are two different behaviors—a flat region where 	�1	
and 	�2	 are degenerate, and the remaining part with two
branches. This is due to the fact that the two solutions for �
could be either both real, or a pair of complex numbers con-
jugate to each other. In the latter case, the two solutions have
the same absolute value, 	�1	= 	�2	 whereas in the present
case, one can verify that this degenerate value is independent
of �, i.e.,

	�1	 = 	�2	 =��A − 2B

A + 2B
� . �40�

This explains the existence of a flat region in Fig. 6. From
Eq. �29� we see that the square root becomes pure imaginary
for all k provided �−����+, where24

��

B
= 2�1 ��1 −

A2

4B2� . �41�

At 	�	=1, the edge solution is expected to merge with the
bulk spectrum. This happens, when

cos kx = 1 −
�

2B
. �42�

Such a behavior becomes clearer by plotting 	�	’s as a func-
tion of kx. Figure 7 illustrates this feature at �=2 for A=B
=1. One can indeed see that the edge spectra merge with the
bulk at kx=km, satisfying Eq. �42�. The latter reduces, at this
value of �, to cos km=1−� / �2B�=0, i.e., km= �� /2.

It is also instructive to investigate the nature of edge
modes in real space, i.e., the wave function, and compare it
with the general solution �Eq. �35��. In numerical experi-
ments, one has to diagonalize the 2Nr	2Nr Hamiltonian ma-
trix, equivalent to Eq. �15�. An eigen wave function is, there-
fore, obtained as a 2Nr-component vector; here, in the
straight edge geometry, the latter can be chosen to be real.
The edge wave function is easily identified if it exists, e.g.,
by choosing the lowest-energy eigenmode �0 in the upper
band. By investigating the structure of such an edge wave
function, one can explicitly verify that the eigenmodes are
spanned by two eigenspinors given in Eq. �27�. In repeating
such numerical experiments for different kx and � /B, one
can naturally distinguish an edge state from a bulk state by
focusing on the spatial distribution of the wave function.
Here, what deserves much attention is that one can recognize
a one-to-one correspondence between localizability of the
wave function �0 and its spinor structure.

V. ZIGZAG EDGE GEOMETRY

Let us turn to the case of a different edge geometry, the
zigzag edge geometry, shown schematically in Fig. 8. As
mentioned earlier, the zigzag edge geometry considered here
is, in a sense, analogous to a more popular edge geometry of
graphene ribbon, named in the same way, but defined on a
hexagonal lattice. Here, on a square lattice, a zigzag edge is
introduced, either normal to �1,1� or �1,−1� direction �as in
Fig. 8�. Electrons in the zigzag edge geometry are, therefore,
confined to a strip diagonal in the cartesian coordinates, say,
along the �1,1� direction as in Fig. 8.

Intuitively, say, because the zigzag surface is literally,
“rough,” one expects that this edge geometry might have a
stronger tendency to trap electrons in the vicinity of the
boundary. We show below, on one hand, that this intuition
from the macroscopic world is still valid in the microscopic
quantum mechanical world. But just as a result of this stron-
ger tendency to keep the electrons in its vicinity, on the other
hand, the zigzag edge shows various curious phenomena,

FIG. 6. �Color online� 	�1	 and 	�2	 plotted as a function � /B in
the limit kx→0.
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e.g., completely flat edge modes, and the reentrance of edge
modes in k space, etc.

Clearly, the translational invariance along the �1,1� axis is
maintained, on which x̃ axis is introduced, together with the
conserved momentum k=kx̃ in this direction. Accordingly, ỹ
axis is chosen to be in the �1,−1� direction. It may be also
useful to redefine the indices I and J such that the lattice
points in the original square lattice are located at �x̃ , ỹ�
= �Ia /�2,Ja /�2�, where I is an even �odd� integer for J: even
�odd�. In the zigzag edge geometry, the spectrum E=E�k�
and the wave function � are determined by the following
recursive equation:

�� − 4B��z� j + �� j+1 + �†� j−1 = E� j �43�

for � j, analogous to Eq. �22� in the straight edge geometry. In
order to derive Eq. �43�, we first rewrote the tight-binding
Hamiltonian �15� in the new labeling, and then considered a
Bloch state along the x̃ axis, analogous to Eq. �12� but with a
crystal momentum k conjugate to x̃, i.e., k=kx̃. As was the
case in Eq. �22�, � describes, here, in Eq. �43� the hopping
between adjacent rows, and reads explicitly as,

� = i
A

2
e−ik�x − i

A

2
eik�y + 2B�z cos k . �44�

Note that here the crystal momentum k is measured in units
of 1 / ��2a� so that the zone boundary is always given by k
=�.25 To find an edge solution, we first express the solution
of Eq. �43�, in the form of a geometric series, written for-
mally in the same as Eq. �23�. Recall that � is �generally� a
�complex� number of, for an edge mode, amplitude smaller
than unity �with the understanding that the edge mode is
localized in the vicinity of j=0�. �0 is a two component
eigenvector of the following reduced eigenvalue equation:

��� − 4B��z + �� +
1

�
�†��0 = E�0. �45�

From the analogy to the straight edge case, one may express
� as

� = i
A

2
ck��x − �y� +

A

2
sk��x + �y� + 2Bck�z �46�

and rewrite Eq. �45� into the following explicit form:

FIG. 7. �Color online� Upper panel: 	�1	 and 	�2	 plotted as a
function of kx at �=2 �A=B=1�. Reference lines are at kx /�
= �0.5, and at 	�	=1 and 	�	=1 /�3—as for the latter, cf. Eq. �40�.
	�	=1 corresponds indeed to the point at which the edge modes
merge with the bulk spectrum �central panel, Nr=50�. Lower panel:
an enlarged image of the central panel, plotted also for a system of
larger size: Nr=100.

0 (1,1)-edge

33
22

11

zigzag
edge

FIG. 8. �Color online� Zigzag or �1,1�-edge geometry �here,
chosen to be normal to the �1,−1� axis�, defined in terms of the
original square lattice, on which the new x̃ and ỹ axes are super-
posed in blue �online�. Numbers on these axes are redefined indices
I and J, i.e., �x̃ , ỹ�= �Ia /�2,Ja /�2�. The number of rows Nr is here
chosen to be, Nr=6. When Nr is even �odd�, the two edges are
inversion asymmetric �symmetric� with respect to the center of
strip.
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��� − 4B��z + �� +
1

�
��A

2
sk��x + �y� + 2Bck�z�

+ �� −
1

�
�i

A

2
ck��x − �y���0 = E�0, �47�

where we ck and sk are short-hand notations for, respectively,
cos k and sin k. Comparing this form with the straight edge
case, one can see that here one cannot use the same recipe
for solving the problem, i.e., solving the problem at, say, k
=0 and then extrapolate its solution to general k. It seems not
impossible to proceed in that direction and solve the problem
analytically but here, we choose to take another route, which
is much simpler, to find still an exact solution, but in a half-
empirical way.

A. Completely flat edge mode at �=4B

Some concrete examples of such energy spectrum are
shown Fig. 9. A pair of gapless edges modes always appear
iff 0�� /B�8. In contrast to the straight edge case, how-
ever, they appear always in the vicinity of k=0 and intersects
at k=0.

One of the last panels of Fig. 9 shows a unique feature of
edge modes in the zigzag edge geometry. At �=4B, the edge
modes become completely flat, apart from a small finite-size
gap around the zone boundary. We have already seen such
flat edge modes in graphene in the case of zigzag edge ge-
ometry �but on a hexagonal lattice�.7,26 In graphene, such flat

edge modes connect 1D projection of K and K� points via the
1D BZ boundary. This is a similar behavior to the present
case, if one regards the former as the limit of vanishing in-
trinsic coupling �or topological mass �� in the KM model.
One of the differences between the two cases is that here the
flat edge modes cover the entire 1D Brillouin zone.

In order to elucidate the nature of flat edge mode at �
=4B, first notice that at this value of � the diagonal terms of
�the diagonal blocks of the Hamiltonian matrix in� Eq. �43�
vanish. This implies, as in graphene nanoribbon in the zigzag
edge geometry, the existence of an eigenstate of the form

� = �
�1

0

�3

0

�5

]

� , �48�

i.e., an eigenvector satisfying �2j =0 �j=1,2 , . . .�. Here, a
semi-infinite geometry is implicit �for approximating a rib-
bon of sufficiently large width or Nr; our system extended
from j=1 to j=Nr�, with a boundary condition of �0=0.
Under this setup, and with the condition of vanishing diago-
nal matrix elements, Eq. �43� implies,

FIG. 9. �Color online� Energy spectrum in the zigzag edge geometry for different values of ��A=B=1�. Upper-left panel: �=0.2B
�spectrum shown in red�, upper-central: �=0.8B �spectrum in green�, upper-right: �=2B �spectrum in blue�, lower-left: �=3.2B �spectrum
in cyan�, and lower central: �=4B �spectrum in magenta�. At �=4B, the edge modes become completely flat and covers the entire Brillouin
zone �cf. case of graphene in the zigzag edge geometry �Refs. 7 and 26��. Notice that here the horizontal axe is suppressed to make the edge
modes legible. Note that at �=4B the bulk spectrum is also gapless; the completely flat edge modes indeed touch the bulk continuum at the
zone boundary �projection of 2D Dirac cones�. Compare this panel with the corresponding panel of straight edge case: Fig. 5. The number
of rows Nr is here chosen to be Nr=100. These five plots are superposed in the lower-right panel to show that the edge spectra at different
values of � are, in contrast to the straight edge case, not on the same curve. Even in the long-wavelength limit: k→0, their slopes are
different.
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��2j+1 + �†�2j−1 = 0�j = 1,2, . . .� . �49�

Simultaneously, it should also have a vanishing eigenenergy
E=0 for consistency.

Clearly, Eq. �49� has a solution of the form of a geometric
series, here, for �2j−1 �j=1,2 ,3 , . . .�

�2j+1 = � j�1. �50�

Note that here � plays, roughly, the role of �2 but their pre-
cise relation will become clearer when the entire problem is
solved. In order to proceed, we recall that � can be written
explicitly as,

� = � 2Bck
A

2
�1 − i��sk − ck�

A

2
�1 + i��ck + sk� − 2Bck

� . �51�

Then, by assuming a solution of the form of Eq. �50�, Eq.
�49� can be reduced to the following eigenvalue problem for
�1:

− �−1�†�1 = ��1, �52�

with the eigenvalues,

�� =
A2 + 8B2ck

2 � 2Ack
�A2sk

2 + 8B2ck
2

�2ck
2 − 1�A2 − 8B2ck

2 , �53�

and the corresponding eigenvector, u�, i.e.,

− �−1�†u� = ��u�, �54�

given explicitly as,

u� = ����1 − i�
1

� . �55�

The coefficient �� is a function of k, which takes precisely
the following form:

���k� = −
1

4B
�A tan k � �A2 + 8B2 tan2 k� . �56�

Notice that �−=−1 / �2�+�, and the two eigenspinors u� are
orthogonal: u−

†u+=0. A general solution in the form of Eq.
�48� can be thus constructed by applying −�−1�†, recur-
sively, to

�1 = c+u+ + c−u− �57�

and the result is,

FIG. 10. �Color online� �− plotted as a function of k at A=1 but
for different values of B, i.e., B=1,0.6,0.4,0.35,0.2 and B=0, cor-
responding, respectively, the colors: red, green, blue, cyan, ma-
genta, and orange �upper panel�. Edge spectrum at �=4B and B
=0.2 �A=1, Nr=100, lower panel�. Two reference lines are at k
= �0.438977. . ., the value of k at which �− vanishes at B=0.2. The
axes are suppressed in the lower panel so as to highlight the com-
pletely flat edge modes.

FIG. 11. �Color online� The ratio, � j =c2j+2 /c2j �j=1,2 ,3 , . . .�
plotted �red points with filling to the horizontal axis� at k=0.05 for
� /B=0.25 �upper panel� and � /B=0.30 �lower panel�. A=B=1,
Nr=100. In the upper panel, the blue line corresponds to the “the-
oretical” value, � j =0.759908. . . whereas in lower panel, the plots
are fitted by a curve, � j =r sin�j+1�� /sin j�, with the choice of
parameters, r=0.691189. . . and �=0.133449. . .
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�2j+1 = c+�+
j ��+�1 − i�

1
� + c−�−

j ��−�1 − i�
1

� . �58�

In this construction, the two eigenvectors u� always have the
form of Eq. �55�. This feature remains when � is away from
4B at which the edge modes are no longer completely flat, or
rather even in the regime in which the edge spectrum is not
flat at all.

Another remark, concerning the behavior of Eq. �58� is
that under the choice of signs in Eq. �53�, 	�+	 is always
larger than 1 whereas 	�−	�1 except at the zone boundary.
This can be easily verified either numerically, i.e., by plotting
�� as a function of k, or by showing �− =1 /�+ using di-
rectly the expression for �� in Eq. �53�. In numerical simu-
lation for systems of a finite number of rows, both of these
two solutions play a role giving rise to a pair of edge
solutions.28

In Fig. 10, the upper panel shows �− plotted as a function
of k at A=1 but for different values of B, naturally assuming
�=4B. When B is smaller than a critical value Bc=0.35. . . �−
changes its sign �has a zero� at intermediate k.29 This contin-
ues to be the case even in the limit B vanishes. The lower
panel shows the edge spectrum at �=4B, B=0.2, and A=1.
Note that the zero of �− corresponds to the value of k at
which the bulk spectrum focuses onto a single point.

B. Wave functions in special cases of parameters

As we will describe in detail in the next subsection, our
“recipe” for constructing the exact edge wave function and
simultaneously its spectrum, lies in “extrapolating” the exact
solution available at �=4B to a general value of � /B
� �0,8� �recall also Fig. 1�. To complete this program, we
need to refer to some results of the numerical experiments
performed for a system of finite number of rows. We have
already seen the spectrum of such systems in Fig. 9; here we
focus on the behavior of wave function, i.e., the behavior of
� j as a function of j.

In the zigzag edge geometry, it is remarkable that �not
only� the edge wave function �but also the bulk wave func-
tion!� has the following particular form:

� = �
c1�1 − i�

c2

c3�1 − i�
c4

c5�1 − i�
c6

]

� , �59�

when that eigenstate represents an edge mode, Eq. �A2� fur-
ther simplifies

�� = �
c2���1 − i�

1
�

c4���1 − i�
1

�
c6���1 − i�

1
�

]

� , �60�

i.e., for a given set of parameters A, B �and �� as well as for
a fixed k, � j =c2j−1 /c2j is a constant �=��. The ratio, on the
other hand,

� j =
c2j+2

c2j
, �61�

is a measure of, to what extent the edge mode is localized in
the vicinity of a boundary, say, at j=1.

We have extensively studied such characteristic behaviors
of the edge wave function in numerical experiments. In Fig.
11, results of such analyses are shown. For the choice of
parameters such that k /�=0.05, A=B=1 and two different
values of � /B: �=0.25 and �=0.30 for comparison. At this
value of k /�=0.05, we first verified that the wave function
� j takes indeed the form of Eq. �60�, with �� approximately
given by,

�+ = 0.687705 . . . , �− = − 0.727056. . . �62�

As in the straight edge case, for k corresponding to an edge
mode, i.e., for such a state that are localized in the vicinity of
either of the two boundaries, this value of �� is common
practically to all j in the strip, as far as a finite amplitude
exists. For bulk states which are well extended into the inte-
rior of the sample, the wave function takes no longer the
form of Eq. �60� but keeps still a characteristic form as Eq.
�59�.

In the two panels of Fig. 11, � j is plotted as a function of
j for two different values of � /B. At �=0.25, � j saturates at
rows away enough from the boundary at j=1 �but not too
close to the other edge, either�, to a value close to � j
=0.759908. . . �blue line�, a value which is later “derived”
�see Fig. 12�. Let us assume,30 as in the straight edge case,
that the wave function in the zigzag edge geometry takes the
following form:

� j = �c+1�1
j + c+2�2

j �u+ + �c−1�1
−j + c−2�2

−j�u−,

where the eigenspinors u� are always given by Eq. �55�, the
latter found analytically in the limit � /B→4. We have ex-
tensively verified the validity of this hypothesis in numerical
experiments. The coefficients c�1,2 are susceptible of sys-
tem’s geometry. Here, in a strip geometry, they satisfy,

c+1 = − c+2 � 0, c−1 = c−2 = 0. �63�

for one edge mode and

c+1 = c+2 = 0, c−1 = − c−2 � 0 �64�

for the other. Under this hypothesis, such a behavior as seen
in the upper panel of Fig. 11 ��=0.25� is interpreted as a
consequence of two “real solutions” for �, which are also
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both smaller than unity �cf. Fig. 12�.
On the other hand, at �=0.30 �in the lower panel of Fig.

11� � j shows an oscillatory behavior. This implies, with the
same hypothesis as above, i.e., the wave function, � j, given
as in Eq. �62�, with the choice of coefficients as Eq. �64�, a
pair of complex solutions for �. Indeed, the plots at �
=0.30 are nicely fitted by a curve, of the form,

� j = 	�	
sin�j + 1��

sin j�
= r�cos � + sin � cot�J��� , �65�

with the choice of parameters, 	�	=0.691189. . . and �
=0.133499. . ., which will be also �a posteriori� justified �see
Fig. 13�.

Comparing these two contrasting cases, notice that the
coefficients ��, estimated to be such as Eq. �62�, are com-
mon to the two cases, i.e., independent of � /B. One can
indeed verify �by changing the parameter � /B in numerical
experiments� that the eigenspinors u� remains always the
same, as far as the state describes an edge mode �see Fig.
14�; only � j changes as a function of � /B.

In Fig. 14, � j =c2j−1 /c2j �j=1,2 ,3 , . . .� is plotted for the
lowest-energy eigenmode �0 �in the upper band� at different
values of � /B. One can see that in the range of k at which
�0 is expected to represent an edge mode the plotted points
fall roughly on the theoretical curve for �−�k�—cf. Eq.
�56�—apart from a small disagreement close to the zone
boundary �k=��. This is indeed a key discovery allowing us
to proceed to the next step, of extrapolating the earlier exact
solution at �=4B to an arbitrary value of � /B.

C. Derivation of exact edge wave functions

Let us reformulate the recipe for constructing the exact
edge wave function and simultaneously its spectrum in the
zigzag edge geometry, which has already been briefly out-
lined in the introduction �recall also Fig. 1�. �1� We have seen
in the previous subsection that the edge wave function � in
the zigzag edge geometry always takes, as far as it describes
a localized edge mode, the form of Eq. �60� with a parameter
�� depending only on k �and A, B�. All our numerical data
agree with the hypothesis that ��, consequently the reduced
two-component eigenvector u�, is independent of �. �2� On
the other hand, we know that the problem can be solved
exactly at �=4B. We have seen, in particular, that the wave
function � can be constructed from the same set of spinors
u� with a choice of parameters �� given analytically as a
function of k in Eq. �56�.

Taking also into account the fact that the edge modes,
gapless at k=0 and characterizing the topological insulator,
evolves continuously to the completely flat edge mode at �
=4B, one can deduce, from these two observations, that the
solution of the eigenvalue equation for �0, i.e., Eq. �45� for
an arbitrary � should be given, indeed, by u�, defined as in
Eq. �55�, with the parameter ���k� obtained analytically in
the limit: �=4B �recall Fig. 14�.

Thus, for a general value of �, only � and E are unknown
�recall that the edge spectrum is no longer flat for a general
��. But, clearly, they are solutions of

FIG. 12. �Color online� Theoretical value �derived later� of � �its
magnitude, 	�	� plotted as a function k for � /B=0.25 �A=B=1�. At
k /�=0.05 there are two possible solutions for �: �−1=0.759908. . .
and �−2=0.628683. . ., the larger value of which determines large-j
behavior of � j =c2j+2 /c2j. Merger with bulk occurs when �−1=1,
i.e., at k /�=0.263808. . . Close to the zone boundary �k /�
�0.900237. . .�, reentrance of edge solution occurs �see Fig. 18 for
details�.

FIG. 13. �Color online� Same as Fig. 12 for � /B=0.3 �A=B
=1�. On the reference line at k=0.05, ��0.685038�0.0919993i
�	�	=0.691189. . . ,Arg���= �0.133499. . .�.

FIG. 14. �Color online� � j =c2j−1 /c2j �j=1,2 ,3 , . . .� calculated
in a strip geometry �here, Nr=100� is plotted against the theoretical
curve for �−�k� �shown in black� given in Eq. �56� up to j=Nr /4 for
the lowest-energy eigenmode at different values of � /B
=0.1,0.25,0.5,1 ,1.35 �A=B=1 fixed�, corresponding, respectively,
to the colors: red, green, blue, cyan, and magenta. Reference lines
indicate the regime of k in which the edge modes disappear at the
given value of � /B.
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��� − 4B��z + �� +
1

�
�†����1 − i�

1
� = E���1 − i�

1
� ,

�66�

where the 2	2 matrix � is given explicitly as Eq. �51�.31 To
find exactly the value of � and E, one has only to solve this
set of equations, and at the end of the calculation, substitute
the analytic expression for a, i.e., �� given in Eq. �56� ob-
tained in the limit of �=4B. Clearly, Eq. �66� are a set of
coupled equations, linear in E and quadratic in �. We expect,
therefore, two sets of solutions for �� ,E�, which are given as
a function of a. To each of these two sets of solutions, one
substitutes either �=�+ or �=�−. There exist, therefore, four
sets of solutions, in general.

Unfortunately, the analytic formula for these four sets of
solutions are too lengthy to be shown here. Instead, we plot-
ted these four solutions in Fig. 15, for different values of
� /B.

D. Reentrant edge modes

Reentrance of the edge mode is another characteristic fea-
ture of the edge mode of zigzag geometry and occurs close to
the zone boundary, k /�=1, when � /B is not too large:
� /B�1.354. . .. Very remarkably, the spectrum looks com-
pletely “innocent” when this occurs, i.e., the edge mode, say,
the lowest energy �=E0� mode in the upper band looks almost
completely degenerate with the bottom of the �bulk� spec-
trum �=E1�, in this regime of k �see Fig. 16�. Existence of an
edge mode of such specific character is, on the other hand,
nothing exceptional in the zigzag edge geometry. At a value

of �, e.g., � /B=0.25 or � /B=0.30 as in Fig. 11, such reen-
trant edge modes are indeed existent. If one focuses on the
wave function of, say, the lowest energy mode in the upper
band, after touching the lower band at k=0, it continues to be
spatially localized when k is small enough, but as the spec-
trum merges with the bulk continuum, the wave function also
starts to penetrate into the bulk. However, close to the zone

FIG. 15. �Color online� Four solutions for � �each curve corresponds to one solution�. Only the magnitude of such solution, which is
generally a complex number, i.e., 	�	 is plotted as a function k at different values of � /B=0.25,, 0.3, 1.35, and 1.45 �A=B=1�.

FIG. 16. �Color online� Merger of the edge mode with bulk
continuum and “absence” of reentrance in the spectrum. As for the
latter, it turns out later that binding energy of the edge mode is too
small to be seen at this scale �see Fig. 19�. This is an enlarged image
of the spectrum in the zigzag edge geometry as shown in Fig. 9.
Here, the parameters are chosen such that � /B=1.2, A=B=1, and
Nr=100. Two reference lines at k /�=0.643658. . . �kc1 /� and at
k /�=0.826568. . . �kc2 /� introduce three different momentum re-
gions: �i� k /�� �0,kc1 /��, �ii� k /�� �kc1 /� ,kc2 /��, and �iii� k /�
� �kc2 /� ,1�, corresponding, respectively, to �i� the ordinary edge,
�ii� the bulk, and �iii� the reentrant regimes.
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boundary, it starts to be localized again. This is what we call
the reentrance of edge modes.

Figures 17 and 18 highlight the behavior of such reentrant
edge modes, naturally in a different regime of k from, say,
Fig. 11. Figure 17 shows the behavior of � j at k /�=0.901
and k /�=0.903 for �=0.25. At this value of k, the wave
function � j takes always the form of Eq. �60� but with a
different set of parameters for �� from the case of Fig. 11,
upper panel since it still depends on k. The two plots for � j in
Fig. 17 show two typical behaviors of the edge wave func-
tion, i.e., one corresponding to real and the other to complex
solutions for �. As we have extensively studied in the case of
ordinary edge modes �appearing at k /��1�, the two con-
trasting behaviors of � j as a function j �in Fig. 11� are natu-
rally understood by referring to the theoretical curve of � as
a function of k, e.g., such as the one shown in Fig. 12.

What is rather remarkable here, in the case of Fig. 17, is
that this crossover between real and complex solutions oc-
curs within a tiny change in k, i.e., from k /�=0.901 in the
upper panel to k /�=0.903 in the lower panel. This drastic
change is, however, quite reasonable from the viewpoint of
Fig. 18. The upper panel of Fig. 17 shows a monotonic de-
cay, which converges asymptotically to a single exponential
decay. This is consistent with the behavior of theoretical
curve for � as a function of k in Fig. 18. The latter implies
two real solutions for � at k /�=0.901: �=0.783429. . . and
�=0.956432. . . The latter coincides with the value of � j in

Fig. 17 at which it saturates. At k /�=0.903, on the other
hand, the plots for � j are nicely fitted by the curve, � j
=r sin�j+1�� /sin j�, with the choice of parameters, r
=0.867804. . . and �=0.140687. . . �see the lower panel of Fig.
17�. This is a clear fingerprint that the reentrant edge mode at
this value of k corresponds to a pair of complex solutions for
�.

Does the reentrant edge mode really have zero binding
energy? In order to address this question, we �re�plotted the
energy spectrum �E1−E0, to be precise� but in an enlarged
scale roughly by one thousand times in Fig. 19. First, for an
“ordinary” edge state, occurring at 0� 	k	 /��0.289936
�kc1 /� the value E1−E0 is much above the threshold at this
scale. E1−E0 takes a value of order �1 for such ordinary
edge state. As for the reentrant edge mode, Fig. 19 reveals
that it has indeed an extremely small but still a finite binding
energy. Notice different behaviors of E1−E0 as a function of
Nr in the bulk and reentrant regions of k. The former �the
latter� corresponds to k /�� �kc1 /� ,kc2 /��0.8983. . .�
�k /�� �kc2 /� ,1��. In the bulk region E1−E0 is expected to
vanish in the thermodynamic limit. Figure 19 shows indeed
that the binding energy of reentrant edge mode, E1−E0
�0.001, is thousand times smaller than that of the ordinary
edge state. This implies the appearance of an extremely small
energy scale which was not existing in the original Hamil-
tonian �cf. Kondo effect�. The reentrance of edge mode is
indeed a unique feature, in its contrasting properties in real
and momentum space and in the appearance of an extremely
small energy scale.

VI. CONCLUSIONS

We have highlighted in this paper various unique proper-
ties of helical edge modes in Z2 topological insulator. We
have extensively investigated a lattice version of the BHZ
model, under different edge geometries. One of the specific
characters of BHZ model is that the spin Hall conductance in

FIG. 17. �Color online� Reentrant edge modes I: � j plotted as a
function of j=1,2 ,3 , . . . at A=B=1 and �=0.25 �as in Fig. 11,
upper panel� but for k /�=0.901 �upper panel� and k /�=0.903
�lower panel�. In the upper panel, the blue line corresponds to the
theoretical value, �=0.956432 whereas, in the lower panel the plots
�in red� are fitted by the curve, � j =r sin�j+1�� /sin j�, with the
choice of parameters, r=0.867804 and �=0.140687.

FIG. 18. �Color online� �Theoretical value of� 	�	 plotted as a
function k at �=0.25 �again, as in Fig. 11, upper panel�. Enlarged
picture for k close to the zone boundary: k /��0.9 The reentrance
of edge solution occurs at k /�=0.900237. . . whereas two real solu-
tions for � is possible when k /��0.901675. . . Two reference lines
are at k /�=0.901 and at k /�=0.903, on which � j was plotted in
Fig. 17. The value of � on these lines are, �=0.783429. . . and �
=0.956432. . . on k /�=0.901 �case of real solutions� whereas �
�0.859242�0.121601i on k /�=0.903.
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the bulk changes its sign in the middle of topological phase
�at �=4B�, i.e., �xy

�s�= �e / �2��, respectively, for 0�� /B
�4 and for 4�� /B�8, though both represent a nontrivial
value. From the viewpoint of bulk-edge correspondence, this
information should be also encoded in the edge theory. We
have seen that the change in �xy

�s� manifests in a very different
way in the �1,0�-�straight� and �1,1�-�zigzag� edge geom-
etries. In the �1,0�-edge case, the edge spectrum changes its
global structure in the two parameter regimes, i.e., the main
location of the mode moves from the zone center for � /B
�4, to the zone boundary for � /B�4. As a result, the group
velocity at the intersection with Fermi level reverses its sign,
leading to change in the sign in Landauer conductance at the
edge. In the �1,1�-edge case, on the other hand, the edge
spectrum is symmetric with respect to �=4B, i.e., neither
change in the position of gap closing, nor the reversal of
group velocity at �=4B. The change in �xy

�s� is here encoded
in the swapping of left- and right-going edge modes of the
same spin.

Much of our focuses has been on the analysis of the zig-
zag or �1,1�-edge geometry, the latter showing, as a conse-
quence of specific way in which the bulk topological struc-
ture is projected onto the 1D edge, a number of unique
features, such as the completely flat edge spectrum at �
=4B, and the reentrance of edge modes. We have also
shown, here in a half-empirical way, that the exact edge
wave function for zigzag edge geometry can be constructed,
by extrapolating the solution at �=4B. The reentrant edge
mode, though sharing much of its characteristics with the
usual edge mode in real space, introduces a new extremely
small energy scale which was absent in the original BHZ
model.
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APPENDIX: EDGE SOLUTION IN THE
LONG-WAVELENGTH LIMIT

Let us first recall that the eigenvector 	d�k��
, which has
appeared in Eq. �6�, is a standard SU�2� spinor, here chosen
to be single-valued.14,32,33 An eigenvector, corresponding to a
positive energy eigenvalue E�0, is 	d�k�+
 with k satisfying
E=E�k�, and represented as,

	d�k�+
 = �e−i� cos��/2�
sin��/2� � =

1

�2d�d − dz�
�dx − idy

d − dz
� .

�A1�

�, � are polar coordinates in d space, satisfying the relations
such as,

cos � =
dz

d
, cos � =

dx

�dx
2 + dy

2
. �A2�

In order to find an edge solution, we focus on a solution
of the form,14

��kx,y� = ���kx�e�y , �A3�

say, in a semi-infinite plane: y�0. The spatial dependence in
the y direction can be taken into account by applying Pierls
substitution: ky→−i� /�y to ky’s in h�k�.

The eigenenergy of such a solution is obtained by a
simple replacement: ky→−i� in Eq. �8�, i.e.,

E2 = �2 + �A2 − 2B���kx
2 − �2� + B2�kx

2 − �2�2. �A4�

This can be regarded as a quadratic equation with respect to
�2. Its two solutions are,

�2 = kx
2 +

A2 − 2B�

2B2 �
1

2B2
�A2�A2 − 4B�� + 4B2E2.

�A5�

For a given set of kx and E, there are two possible values for
�2, or equivalently, four possible values for �. Of course, in
a semi-infinite plane, say, y�0 the edge solution of the form,
Eq. �A3� should decay as y→−�, so only two of such solu-
tions are relevant.

We expect that the edge spectrum behaves as E→0 in the
limit of kx→0. Let us parametrize the two solutions in this
limit as

�2 = ���
�0��2 � P � Q , �A6�

where

P =
A2 − 2B�

2B2 , Q =
1

2B2
�A2�A2 − 4B�� . �A7�

When 0���A2 / �4B���1, P�0, and Q is real. Since 	a	
�b as far as b is real, Eq. �A5� represents two positive

FIG. 19. �Color online� Binding energy of the reentrant edge
mode: E1−E0 is plotted as a function of k at �=0.3B, A=B=1.
Different curves correspond to different size �width� of the system:
Nr=100 �blue�, 200 �green�, and 300 �red�. The two reference lines
are placed at k /�=0.289936�kc1 /� and k /�=0.8983�kc2 /� �k
� �kc1 ,kc2� corresponds to the bulk regime�. The plots reveal an
extremely small but still a finite binding energy of the reentrant
edge modes.
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solutions for �2, i.e., the wave function represented by Eq.
�A3� shows simple exponential damping. On contrary, we
expect a pure imaginary solution for � for an extended state
in the bulk. On the other hand, when �1����0=A2 / �2B�,
P is always positive but Q becomes purely imaginary. Thus
two solutions for � become complex numbers conjugate to
each other. In this case, the wave function represented by Eq.
�A3� shows damped oscillation.

The corresponding eigenvector is obtained by the same
replacement ky→−i�, here in Eq. �A2�, i.e.,

���kx� = �u�

v�
� = �A�kx − ��

E − dz��� � � 	d�kx,− i��+
 , �A8�

where dz���=�+B�kx
2−�2�. For a given value of kx and E

�0, we thus have identified two solutions characterized by
different values of �. In order to construct a general solution
in the presence of a boundary, we need to take a linear com-
bination of these two solutions, i.e.,

��y� = c+��+
e�+y + c−��−

e�−y � c+�u+

v+
�e�+y + c−�u−

v−
�e�−y ,

�A9�

where u�, v� are short-hand notations for u��
and v��

.
We now fix the boundary condition at y=0, which we

choose to be,

��y = 0� = �u+ u−

v+ v−
��c+

c−
� = �0

0
� , �A10�

which implies the following secular equation:

det�A�kx − �+� A�kx − �−�
E − dz��+� E − dz��−� � = 0. �A11�

This leads to,

E�kx� = � − B�+�− + Bkx��+ + �−� − Bkx
2. �A12�

We have thus identified the two basic equations, Eqs. �A5�
and �A12�, for determining the energy spectrum E=E�kx�.

Let us check whether this solution contains the edge
modes. We expect that the edge spectrum behaves, as kx
→0, E→0. Recall that in this limit, Eq. �A5� reduces to Eqs.
�A6� and �A7�. Equation �37� is also simplified in this limit,
as

E = E�0� = � − B�+
�0��−

�0�. �A13�

Focusing on the case, ���0��0 and B ,��0, and using the
parameterization in Eqs. �A6� and �A7�, one can readily
verify,

�+
�0��−

�0� = �P2 − Q2 =
�

B
. �A14�

Thus Eq. �A13� is safely satisfied.
How about the first-order corrections? That is, contribu-

tions of order O�kx� to the energy spectrum, E=E�kx�. First
note that there is no O�kx� correction to ��. One can, there-
fore, safely replace, at this order, ��’s in Eq. �37� with their
values at kx→0, E→0, i.e.,

E = E�0� = � − B�+
�0��−

�0� + Bkx��+
�0� + �−

�0�� . �A15�

We have already seen that the first two terms cancel whereas

��+
�0� + �−

�0��2 = 2a + 2�P2 − Q2 =
A2

B2 . �A16�

Thus, the edge spectrum in the continuum limit is deter-
mined to be,

E�kx� = � Akx + O�kx
2� . �A17�

Remarkably, the slope of the edge spectrum depends only on
a single parameter, A. An interesting question is to what ex-
tent this conclusion is general? If one calculates the edge
spectrum, using a tight-binding model, generally the results
depend on the way edges of the sample are introduced with
respect to the lattice. In the case of zigzag edge, in particular,
apparently the edge spectrum does not converge to Eq. �A17�
even in the long-wavelength limit: kx→0.
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