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Improved gauge actions on anisotropic lattices. Il. in the medium coupling region
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For improved actions composed of plaquette and rectangular six-link legpbge ratio of renormalized to
bare anisotropies, is calculated f6=2, 3, 4, and 6 in the3 region where numerical simulations such as
hadron spectroscopy are currently carried out. Btaependence of for the renormalization-group-improved
actions is quite different from those of the standard and Symanzik actions. In the lwasaki and (d8WdB/
blocked from Wilson action in two-coupling spacctions,» remains almost constant in a wide rangegof
which is also different from the one-loop perturbative results, while in the case of the Symanzik action,
increases ag decreases, which is qualitatively similar to the perturbative result, but the slope is steeper. In the
calculation of close to and in the confined phase, we have applied a link integration method to suppress the
fluctuation of the gauge field. Some technical details of the integration method are summarized.
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I. INTRODUCTION 1
sg=ﬁg(5—2 2 Pité2 > Pal. (2
Anisotropic lattices, with the temporal lattice spacing B 17 <!

smaller than the spatial one, provide an effective method fo\r/vhereﬁgz JB.B., and&g is a bare anisotropic parameter

precise Monte Carlo calculations of, for example, heaVythat controls the anisotropy in the space and time directions.

quark systems, glueball masses, and the .fm'te t.empe.raturlr:he anisotropy is defined as the ratio of the lattice spacings
properties of QCD. The properties of anisotropic lattices. the spatial 4,) direction to that in the temporala()

have been studied by several groups for a standard plaquef e _
action[1—3]. (g]lrectlon, ér=a,/a,.

On the other hand, improved actions have been proposeg P (€ T el <CReliote B B0° el Ble:
to obtain numerical results close to the continuum limit on P P

relatively coarse lattices. They are useful and effective unde?tart large-scale simulations on anisotropic lattices with im-

the restrictions of current computer resources. Therefore it igro_l\_/ﬁg jf(f:gc(:)tngf Lantum correction of ANISOTODY APDEArS in
worth studying the anisotropic properties of improved ac- q Py app

tions the » defined by
In our previous paper, we studied the properties of aniso-

tropic lattices for a class of improved actions in weak cou- n= %. 3
pling regions, mainly using the perturbative mettiddl The ép

improved actions considered are composed of plaguette and . )

six-link rectangular loops as In the weak coupling region, the results of one-loop pertur-

bative calculations have been very impressive in the sense
that, as—C; increases, a qualitative change is observed in

S= 2, [CoP(1%1),,+CiP(1X2),,], (1) the behavior ofy as a function of3 [4]. In the one-loop
perturbative calculationy is parametrized as

whereC, andC; satisfy the relatiorC,+8C,;=1. The im- N
proved actions frequently used in simulations correspond to _ 1. e
the following parameters:C,;=—1/12 (Symanzik’s im- 7(&8,C)=1+ B 71(&,C0)- @
proved actior{6]), C;=—0.331(lwasaki's improved action
[5]), and C;=—1.4088 [the QCD TARO Collaboration's The coefficient, decreases as C; increases. At approxi-
DBW?2 (doubly blocked from Wilson action in two-coupling mately—C;~0.18, , reaches zero and then becomes nega-
space action[7]]. tive. Therefore the dependencempbn g for the Iwasaki and
For these types of actions, we can formulate an anisoBBW2 actions is opposite to that of the standard and Syman-
tropic lattice in the same way as for the standard plaquetteik actions; for the formery decreases g8 decreases, while
action, for the latter it increases.
A natural question is what would be the behaviorrpin
a smallerg region, where the perturbative calculations break
*Electronic address: sakai@e.yamagata-u.ac.jp down. In this work, we will calculatey atég=2, 3, 4, and 6,
"Electronic address: nakamura@riise.hiroshima-u.ac.jp which will be denoted asy,, 73, 74, and 7, respectively,
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in intermediateB regions where most current numerical TABLE I. Estimation of 8. at Ny=8 for improved actions.
simulations will be carried out. The minimumg up to which we calculatey in this work is shown

In Sec. II, we discuss the regions gfused to evaluatgy ~ in the last column.
for the improved actions, and describe some details of theé

calculation: the matching of lattice potentials in the spatial Beiit(8)  Berie(8)  Minimum
and temporal directions, and a method for eliminating the Action InputBcrie  (method 3 (method 2 8
self-energy contributions fromy. Standard  B.(8)=6.05

In Sec. Ill, our results are presented. The behaviors of gymanzik ., (6)=4.31 457 4.56 4.5
7 in the intermediates regions are quite different among the |, -saki Beri(6)=2.52 278 2732 25

improved actions. For the Symanzik action, increases  pg\yo Ber(6)=0.936 1.28
monotonically as3 decreases. The behavior is qualitatively ot
similar to that of the one-loop perturbative results but the

slopes are steeper. In the case of the Iwasaki actiols  and 6[13], for the Iwasaki action, they have been calculated
close to unity in wide regions 9B=2.5. Particularly near atN;=4 and 6 by the Tsukuba grojp4] and atN;=8 by
B~2.5, it is very close to unity, and therefore a detailedthe Yamagata-Hiroshima Collaboratidi5], and for the
calibration of £z is not necessary except for very precise DBW2 action, they have been reported by the QCD-TARO
simulations. For the DBW2 actiom; is not close to 1, but  Collaboration[7] for Ny=3, 4, and 6.

has a weak3 dependence, which means that rough calibra- g_.. atN;=8 [B,,,(8)] is estimated using the two-loop
tions give a reasonable estimation of It is found that the asymptotic scaling relation for lattice spacing,

effects of self-energy terms on are not large for these im-

proved actions. This is consistent with the result of the 1 (6bg —by /(2b) B
Bielefeld group for the standard action. Section IV is devoted a(p)= X(?) XF( - E) ;
to discussion and conclusions. 0

In the calculation of, measurements of large Wilson \here b,=11/(47)2 and b,=102/(4w)*. We apply two

loops are required. Large Wilson loops suffer from hugemethods to determing,,;(8). In method 1, we us@.,i,(6)
fluctuations of the gauge fields, particularly in the confinedyf the same action and apply the relation

phase or very close to the criticgl of the finite temperature
transition. To suppress the fluctuations, a link integration 6
method has been proposggh-10. In this study, we applied a[ Berit(8)1= g al Berir(6)]. (6)
the link integration method to these smgallpoints. Here, it
is very important to choose an adequate radagimal ra- |, method 2, we Use3.(8) of the standard action and
diug) of integration in the complex plane. In the Appendix, evaluateB,,;(8) of the improved actions using the ratio
we will show the optimal radii for the Symanzik and lwasaki [4,18]. The results are summarized in Table I.
actions. In the case of the Symanzik action, the estimations of
Berit by the two methods coincide with each other. A similar
result for B.,:(8) was obtained from an analysis of string
Il. CALCULATION OF » PARAMETER tension[16,17).
A. Region of coupling constant to be studied For the lwasaki action, some discrepancy is observed be-
. . . tween the two estimations. Method 1 gives a closer result to
In this work, we calculaten in the region of 8 where that of Ref.[15], in which B,;,(8)=2.73—2.75.

most numerical calculations are currently carried out. In the For the DBW?2 action,3,,(8) estimated by method 2
case of the staqdaro_l action, hadron spectroscopy in thSsing theA ratio becomescrrl1egative. In thi@ region, the
qlulen(ihetcri] apprOX|m|§1t|on hastbeten r(a.porte?hfof.!iﬁ ?1'2 q deviation from the two-loop asymptotic scaling relation will
[11]. In these coupling constan rcoeg|ons, € light hadron,, quite large for this action. Therefore, for the estimation of
masses are reproduced at up to 10% accuracy, which may > (8), weplot B, atN,=3,4, and 6 and simply extrapo-

a limit of the quench_ed appr(_)ximation. Therefore, we Calcu'Iate it, which results irB~ 1.1 with large ambiguity. We will
late » near these lattice spacings for the improved actions. "&alculyaten until B~ 1.0 for this action

this subsection, we investigate the lattice spacings in the case
of an isotropic lattice, because even though there is little
corresponding information on anisotropic lattices, the differ-
ence inA ratio between isotropic and anisotropic lattices is

— ~1.0

®)

B. Subtraction of self-energy contribution
from lattice potential

small[4]. The renormalized anisotropik is defined by the ratio of
In order to estimate the lattice spacing for the improvedattice spacings in the spatial and temporal directiofs,
actions on the isotropic lattice, we use the critigabf the  =a_/a,. In the quenched approximation, the lattice poten-

finite temperature transitions(,;;). For the standard action, tial has been used as a probe of the lattice spacing, which is
B=16.05 corresponds to the finite temperature transition pointlefined in terms of the Wilson loop ratio,

for an Nt=8 lattice [12]. We estimate, thenS.,; at Nt
=8 for the improved actions. For the tree-level-improved
Symanzik actionf.,;; values are reported fad:=3, 4, 5,

W(p,r)

W(p+1r)/° @)

V(p,r)=log
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The lattice potentials in the spatiaV{) and temporal direc- R(p,r) at £,=2.1
tions (V;) are defined by Wilson loops in the space-space and o p=3
space-time planes, respectively. The lattice potential defined 1041 O p=4
by Eq. (7) will become independent of the positignwhen A A p=5
p becomes large. = v p=6

The matching of the potentials in the spatial and temporal 1029 4
directions[19] has been used, for the calculation »pf -

1.00+ é é S S
VS(%Blprr):Vt(gBipagRXr)- (8) '

We fix a renormalized anisotropdg, and then search for a 098 . . . . .
point of £g where Eq(8) is satisfied 2]. Using theseg and ' 1 2 3, 4 5
&g values, n is determined.

The lattice potential defined by Ef) suffers from self- FIG. 1. R(p,r) given by Eq.(11) at 8=4.5 andég=2.1 of the

energy contributions. In this study, we assume the simpledwasaki action.

parameterization for the lattice potential as o ) .
=1, the deviation from the asymptotic value is rather large,

Vy(ég,p.1)=V(&s.P) +Vs(&e.p0r), (99  which may be due to lattice artifacts. Therefore, we first
chooser,=3 and calculate the subtracted potentials of Eq.
whereV! is a lattice potential free from self-energy contri- (10). Using the subtracted potentials, we obtRim Eq. (11).
butions. The temporal potentisd,(¢ég,p,t) is treated simi- The results foég=2.0, 2.1, and 2.2 are shown in Fig. 2. The
larly. For an anisotropic latticey2(¢g,p) and V(ég,p)  Rratios are shown for eaghandr. We proceed to look for
may be different from each other due to the anisotropy.  the points where the ratios satisfy the relatiB(p,r,¢g)
In order to eliminate contributions from the self-energy =1. We fit the three data points &{(p,r,&g) by a second-
term V°, we define the subtracted potential as order polynomial ofég and find the solution

VSUB(£g,p.r T o) =Vi(£&5.P.r) — Ve(£5,P.To) R(&g,P,I)=Co+Ciép+Caés=1. (12

=V5(&g.p,r)—Vi(€g,p.rg). (10)  Using the solutiongg of Eq. (12), 7= &g/ &g is determined
for eachp andr, and the results are shown in Fig. 3.

Vf“b is defined in a similar manner. In order to avoid lattice artifacts, we employ data wjith

The subtraction points, andt, are chosen to satisfy the =3 andr=4. It is found that the values of(p,r) are al-
relation to=£gro, and matching of the potentiald/f(t, ~ most independent gf andr in this range.n at 5=4.5 and
= &rrg)=Vi(ro), should also be satisfied at these points;érR= 20is determ.ined by taking their average. The error is
namely, atro, the lattice potentials should be free of lattice €Stimated by the jackknife method; data after thermalization
artifacts. This condition is satisfied iif, is sufficiently large. ~ @re grouped into ten blocks and they are used as independent
data. In this way the result becomes=0.9755+0.0083
whenry=3.

The same analyses are carried out by changggrhe

As an example, we will show in detail the determinationresults are»=0.9764+0.0039 andz=0.9741+0.010 for
of » for the Iwasaki action aB=4.5 andég=2 on a 12 =2 and 4, respectively. The results change little among
X 24 lattice. theser, values. However, if we choosg,=1, the result

Let us start with the determination of the subtraction pointgiffers significantly from those of,=2, 3, and 4. Analyses

ro. In order to reduce statistical error, a smijlis prefer-  are carried out at other values gfand¢. There are cases in
able. In the case of a smal}, however, the systematic error

C. An example of determination of

due to lattice artifacts becomes large. On the other hand, in R(P,1Ep)
the case of a large,, the statistical error due to the fluctua- 159 o RG34
tions of the gauge field increases, and simulations with high 2 282;
statistics on larger lattices are required. Therefogeshould 1.107 v R@44)
be chosen to be as small as possible, where lattice artifacts 1.05- E A R@49)
are sufficiently small. The optimal choice Kf requires care- ' §  Rea
ful testing by trial and error. 1.004 ¥ R(55)

First we calculate the ratio ' § " RG6)

0.95-
BT V(&g P ErXT) 0.90+—— : : .
20 21 22 23

: - g
whereVg andV, include the self-energy contributions. Our ®

results are displayed in Fig. R(p,r) seems to approach an  FIG. 2. & dependences of tHe(p,r,¢B) ratios of the Iwasaki
asymptotic value with increasing On the other hand, at  action at3=4.5 using the subtracted potentials.
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n(p,r) TABLE Il. 5 for the Symanzik action afg=2, 3, 4, and 6. At
1.05- B=8.0 and 4.5 ofég=2, simulations are carried out on a®16
X 32 lattice to study the size dependence. They are shown in the
table with the symbol *.
1.004 én B 7 7"° sub
e 80 e ¢e § 2.0 10.0 1.022%0.0097 1.027%10.0031
0.95- 8.0 1.0393-0.0191 1.039%0.0020
6.0 1.038%0.0097 1.050€: 0.0029
4.5 1.098@:0.0255 1.101%+0.0021
0.90 : : , : 8.0" 1.0232+0.0039 1.0284 0.0021
10 15 20 pxr 25 30 4.5 1.1095+0.0122 1.1048 0.0062
FIG. 3. n(p,r) of the lwasaki action aB=4.5 and¢g=2. 3.0 10.0 1.034% 0.0146 1.0426 0.0058
8.0 1.026@:0.0150 1.03610.0042
which a slight difference is observed betWG%FFZ andro 6.0 1.0526: 0.0200 1.06670.0015
=3, and in the case ofy=4, the statistical error increases. 45 1.1482-0.0317 1.133% 0.0064
Therefore in the case of the lwasaki action we chonge
=3 for all yalues ofB andég in thi_s study. . 8.0 1.0336:0.0180 1.0382 0.0042
We carrled out the same studies for the Syman2|k and 6.0 1.0876-0.0294 1.07860.0058
DBW2 acfuo_ns._ln these cases, the _subtractlon point becomes 45 1140800336 11572 0.0058
ro=4. This indicates that lattice artifacts are larger for these
actions at very short distances. 6.0 8.0 1.054% 00403 1.0596 0.0088
6.0 1.1355-0.0482 1.1088 0.0081
Ill. » RESULTS 4.5 1.1542-0.0587 1.166€:0.0170

A. Simulation parameters, numerical results,
and self-energy contributions

tent with the result for the standard action obtained by the
The simulations are main|y carried out for a31@_2§R Bielefeld gI’OUp[3]. For the DBW2 action, the differences
lattice. For some values of and &z, 16°X16&y lattice  increase. They amount to approximately 5% but are still not
simulations are also carried out in order to study the sizdarge. Therefore, except for the case of simulations with a
dependence. It is found that the lattice size effect is small fofew percent accuracy, it is safe to uge® % as reported at
the improved actions in the range of parameters studied here XVIth and XVlith International Symposium on Lattice
Gauge configurations are generated by the heatbathield Theory at Colorado and Pisa, respecti@g,23.
method with over-relaxatiof20,21]. The typical number of
Monte Carlo(MC) data for the calculation dR(&g,p,r) is a
few tens of thousands after a thermalization of approxi-
mately 1d MC sweeps. However, a8 decreases and ap- at
proac_hes the f'F"te temperature transition poifit4) or spectively. The qualitative behavior gfas function ofg
goes into a confined p_has_e, both the r_1umber of MC data a the same in perturbative and numerical results; the slope of
thg number of thermalization sweeps increase. For_ the calcuﬁ' however, is steeper in the numerical results.
lation of » at é§g=2 and atB=2.5 of the lwasaki action, we

B. Symanzik action

The 7 results for Symanzik action are shown in Fig..4.
ér=2, 3, 4, and 6 is denoted ag,, 73, 74, and g,

n(§,p)=1+ (13)

; A In this case, the tadpole-improved one-loop perturbation
used 1.5¢10° data points after thermalization of 330° calculation (boosted perturbation[24,25 reduces the dis-
MC sweeps. . ., .crepancy a little. It is expressed by replacifgin Eq. (4)
In order to suppress the fluctuations of the gauge field in". "~
the calculations of large Wilson loops, we applied a link With =B VWs(1,1)W,(1,1); thus
integration method9,10]. It is used for calculations of lattice
potentials at3=2.5 and 2.56 of the lwasaki action and at & 71($) _
B=4.5 of the Symanzik action. Technical details will be pre- B JW4(1,)W,(1,2)
sented in the Appendix. Here we notice only that, in the case
of the improved actions, the effect of the link integration isIn this formula, sinceWy(1,1) andW,(1,1) decrease ag
reduced due to the rectangular six-link loops. decreases, th8 dependence of; is more enhanced. The fit
Our #n results are summarized in Tables Il, Ill, and IV. In of the numerical data by Eq13) is shown in Fig. 5. In this
order to show the effects of self-energy contributions#for  figure, we also compare our results with those of the standard
we present the results foy, that are obtained without sub- plaquette actiofi2]. In order to comparey at the same lattice
tracting self-energy terms in the"° SU® column of these spacing, we have shiftedl for the standard action to that for
tables. It is found that differences between them are less thathe Symanzik action using the asymptotic scaling relation
~1% for the Symanzik and Iwasaki actions. This is consisEqg. (5) and theA ratio.
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TABLE lll. % for the Iwasaki action afg=2, 3, 4, and 6. The n
data atB=3.5 of £{xg=2 with an asterisk are calculated on a®16 1241 ®
X 32 lattice to study the size dependence. 1'20
&R B 7 7" P 1.16
2.0 10.0 0.98110.0030 0.97420.0033 1.124
6.0 0.98310.0037 0.9784 0.0032 1081
4.5 0.9755-0.0083 0.97760.0044 1.04]
4.0 0.9806:0.0074 0.97820.0039
35 0.9761-0.0105 0.9767 0.0049 tey -
3.05 0.991%#0.0182 0.9881 0.0060 3 4 5 6 7 8 B 9 10 11 12
2.5 0.9998& 0.0145 0.983%0.0074
3.5¢ 0.9803F0.0070 0.9802 0.0036 FIG. 4. 5 for the Symanzik action. Perturbative results
[ 7(pert)] from Ref.[4] are shown to compare with the numerical
3.0 10.0 0.9714 0.0054 0.9647 0.0036 results.
6.0 0.966%0.0041 0.9554 0.0026
4.0 0.970@:-0.0118 0.964% 0.0063 The 5 behaviors for these two actions are qualitatively the
35 0.9715:0.0160 0.9702 0.0031 same, although the slope is gentler for the Symanzik action.
3.05 0.97250.0120 0.97760.0037
2.56 1.0067%0.0138 1.001%0.0071
C. lwasaki action
4.0 6.0 0.96480.0048 0.95630.0024 The results forp for the lwasaki action are shown in Fig.
4.0 0.9625-0.0105 0.9583 0.0039 6. Forég=2, 3, 4, and 6 remains close to unity in a wide
3.0 0.9851-0.0118 0.9852 0.0054 range of B8 for B=2.5. The deviation from unity is more
2.56 1.0046:0.0102 1.00420.0040 enhanced for largefr, but within approximately 6%. There-
fore, unless a precision simulation of a few percent accuracy
6.0 6.0 0.93730.0092 0.9346:0.0036 is required, detailed calibration afg is not necessary. In
4.0 0.9558 0.0055 0.9506 0.0032 particular, » is very close to unity at approximatelB
3.0 0.9796-0.0109 0.980% 0.0087 ~2.5, where most simulations take place. This is a good

TABLE IV. 7 for the DBW?2 action atg=2, 3, 4, and 6.

no sub

feature for the simulations, because detailed calibration is not
necessary until a very precise simulation is carried out.

n should have a dip betweeB~2.5 and«, because at
approximatelyB~2.5 it is close to unity, and decreases®s
increases and then approaches unity agaip approaches
. In Table Ill, we observe shallow dips at approximately
B~4.5 andB~6.0, for », and 73, respectively. It seems

ér B Ui U that the position of the dip moves to largeéraséy increases.
2.0 2.5 0.9084 0.0090 0.8626 0.0025

1.6 0.90110.0082 0.8616:0.0018 n, Symanzik and Standard action

1.4 0.8917-0.0122 0.8623 0.0024 128

1.2 0.8882-0.0115 0.86730.0032 124 i .

1.1 0.8868-0.0144 0.8753 0.0030 ) [} ® n

1.0 0.8781-0.01069 0.881F0.0092 1207 LI

1.161 = — n(Pert)

3.0 1.4 0.82830.0189 0.80820.0046 1.124 N n(b-Pert)

1.2 0.8157-0.0252 0.807€ 0.0055 1084 ¢ =

1.1 0.8122-0.0230 0.8216:0.0076

1.0 0.81230.0235 0.82620.0101 1.04

1.00 r T T ; .

4.0 2.0 0.827%0.0202 0.7888 0.0087 4 6 8 5 10 12

14 0.8068-0.0306 0.778%:0.0100 FIG. 5. 5 for the Symanzik §°? and standard£°'2"% actions

1.2 0.7787-0.0319 0.7866:0.01.9 at ég=2. For the standard action, we show the results obtained by

1.0 0.7842-0.0172 0.78940.0140 Klassen[2]. The B of the standard action is shifted using E§)

and theA ratio, in order to compare thg parameters at the same

6.0 2.0 0.731%+0.0183 0.72290.0103 lattice spacinga. The perturbative results, naivenp(pert)] and

1.4 0.7326-0.0170 0.734%0.0066 boosted 7(b— pert)] of Eg. (13), are also shown to compare with

the numerical results.
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n the rectangular term witl; <0 makesz decrease.
1.004 ? At C,=—1/12, the effects of rectangular loops are not so
é§ s ® large, and the slope af is smaller than that of the standard

§ action. As a result, at the same lattice spacing, the effects of
the quantum correction are reduced in the Symanzik action.
In the Symanzik and standard actions, phelependences of
n are qualitatively the same between the perturbative and
numerical results, but the slopes are steeper for the numerical
results.

At C;=—0.331, the effects om from the plaquette and
rectangular loops are almost in balance in a wide rangg, of
for 2.5< 8. However, the detailed contributions dependn
andég. 7 at B~2.5 is very close to 1, and decreasesBas

FIG. 6. 7 for the Iwasaki action. Perturbative resuits(pert)] ~ increases and should again approach unity at a Igrge
from Ref.[4] are shown to compare with the numerical results. ~ Therefore eachy should have a dip in the range 2%

<w; they are aroung3~4.5 andB~6.0 for », and 73,

For the Iwasaki action, the one-loop perturbative calcula/€SPeCtively. As a consequenogremains close to unity in
tion predicts a monotonic decreasesnas 8 decrease§4]. the range 2.5 8. These behaviors are qua_lltatlvely dlf_ferent
The numerical results are qualitatively different from those/T0m the results of the one-loop perturbative calculation.
of the one-loop perturbative calculation, as shown in Fig. 6, At C1=—1.4088, the contribution from the rectangular

In the continuum limit,7 should approach unity: there- loop becomes stronger than that of the plaquette loop, and
fore, as far asy is concerned, this action is close to the then# values become less than 1. They are, however, almost

continuum limit. inde_per_ldent o_B in the range 1.& B=< 2.5. This behavior is
qualitatively different from the perturbative result.
In the continuum limit, » parameters should approach
unity. Then the lwasaki action is close to the continuum limit
In Fig. 7, n values for the DBW?2 action are displayed. As in the region 2.5 8. Particularly at approximately~ 2.5,
&g increasesy decreases. The deviation gffrom unity is  the # values are close to unity. This means that calibrations
not small, and itg3 dependence is very weak. This is again aof £ are not necessary until a high-precision simulation is
good property for numerical simulation. Rough calibrationscarried out.
of » at a fewg points are sufficient to obtain a reasonable In the case of the DBW2 action, thevalues are not close
estimation ofég. As in the case of the Iwasaki action, the to 1. Then, as far ag is concerned, it is not close to the
numerical results are qualitatively different from those of thecontinuum limit in this3 region. However,, is almost in-
one-loop perturbative calculatiopd], which are also shown dependent of3. This is good for the simulation of physical
in Fig. 7. guantities on anisotropic lattices, because calibration&of
at a few points are sufficient for this action.

IV. DISCUSSION AND CONCLUSIONS For the Symanzik action, the deviation gf parameter
from unity is remedied compared with standard action, and
yet the 8 dependence of; is not sufficiently weak. It be-
comes~10% atB~5.0. Therefore some detailed calibra-
tions are necessary.
€ For the 8 and &g ranges that we have studied, the differ-
ences betweem and 7"° $'? are small for all the improved
actions. For the Symanzik and Iwasaki actions, the differ-

0.95-

0.90+

0.85-

0.80

D. DBW2 action

In this work, we studied the global structure gfas a
function of B, &g, and C; for the class of gauge actions
given in Eq.(1). The overall effects of the improved actions
on n are summarized as follows. The plagquette term in th
action makesy increase monotonically g3 decreases, while

1_011 ences are within~1%, and for the DBW?2 action, they are
within ~5%. Therefore it is safe to usg"® SU? except for
the case of very precise simulation. This is good news, be-
081 cause the calculation af requires much more CPU time.
For the Symanzik action, the tadpole-improved one-loop
0.6 perturbation calculatiofboosted perturbatigri24,25 given
by Eqg.(13) improves the agreement between the simulation
04- and perturbative results, but for the Iwasaki and DBW2 ac-
, tions it make the discrepancies larger.
0.2 . . Our results provide fundamental data for large-scale simu-

10 15 20 25 B 30 35 lations on an anisotropic lattice using improved actions. Fur-
ther results ony for larger £z and smalleiB will be reported
FIG. 7. 5 for the DBW2 action. Perturbative resultg(pert)] when they become necessary because the calculatigraof
from Ref.[4] are shown to compare with the numerical result. ~ smaller8 and largerég requires much more CPU time.
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APPENDIX: OPTIMAL RADIUS OF INTEGRATION 1.01
FOR IWASAKI AND SYMANZIK ACTIONS 054 ,oet; - ont
. r (min) r (max)
. If R is an exter_nal source f|_eId _for the link variablg 00l — “‘"‘“ purious Plateau
integration of the link variablé&J is given by 05 .
1E-4 1€-3 [ 001
D[U]U exd Tr(RUT+UR'"
_1dZ(R) f (V] HLTHC )] FIG. 8. Radius dependence @f ,(2,2)) for the Iwasaki action
(U)= 7 dR' - ' at 8=3.05 andég=2.0. An integrated link is located at the center

f D[U]exd Tr(RUT+UR™)] of the lattice, directed in the fourtftempora) direction, on a fully
(A1) thermalized configuration.

whereZ(R) is expressed by the modified Bessel functign chooseN=100 and proceed to determine the optimal region

[9,10], of r (r°PY for various combinations o8 and &g .

These plateaus shown in Fig. 8 are observed when Taylor

Z(R)= fﬁ —e"Q—Il(Zz) (A2)

given by Eqs(A2) and(A4). Therefore it is important to find
and the optimalr region.
12 For many sets of3 and ¢g, we have obtained the mini-
z=<lx)> mum of r°Pt [r°PYmin)] and its maximunyr°P{(max)] for
X ' spacelike and timelike links separately. Whér 1.0, the
roPt of timelike links (r°P") is smaller than that of spacelike
Q=2Rdde(R)], links (r2"). Examples of the differences are shown in Fig. 9.
P(x)=1+x Tr(RR)+ %xz{[Tr(RRT)]z—Tr[(RRT)Z]} ::trgzggns that the difference becomes largepaand &g in
+x3de( RR). (A3) We proceed to a parametrizationr@P(3,£). The 8 and
¢ ranges are 289 3<6.0, 1.8<¢5<6.5 for the Iwasaki ac-
Similarly, dZ(R)/dR" is written using the modified Bessel tion and 4.5< 3<8.0, 1.% £z=<5.8 for the Symanzik action.
functionl, andl, [9,10], The r2P'(min) and r2P(max) are shown in Fig. 10. They
decrease wittB and ¢ and seem to be parametrized as

dZ(R) dX o aQ
dR' - ﬁz_m e _Il(zz)ﬁ roPl=aexp(—bB—cég). (A5)
dx ex@ IP(X) Then we defing °P{(mid)
é ﬁ P(X) |2(22) aRT . (A4)

log[ r°P{(mid) ]={log[ r°P(min) ]+ log[ r°PY(max)]}/2
The path of the integration is a closed circle on the complex (A6
planex. In principle it is arbitrary, but numerical integration

requires an adequate radius. In the case of the standard ac- o lwasaki: £,=2.0  direction
tion, the adequate radius has been stufizs]. 0.14 v ™ max)
The arguments of the modified Bessgl functior)s become v v sﬁrecr;.r(‘mim
rather large and we apply an asymptotic expansion for nu- v v e
merical integration. In this article we use the Simpson 0.014 v v A ™ (min)
method for numerical integration and search for the region of A ¥ 5
r where(U) is stable under a change gfat a given number X
of divisionsN. 1E-31 &
An example of the dependence ofU) is shown in Fig. N
8. It is found that wherN=100 some spurious plateaus ap- A
pear and then disappear whiin=400. However, there is a 2 3 4 8 5 6 7
region ofr where(U) is stable under changes Wf which is
the optimal region of integration fol=100. The optimal FIG. 9. Examples of the difference betweeR" andr 2P* for the

region increases a little wheN=400. In this article we Iwasaki action atgz=2.0.
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Then they are due to the difficulty in numerical integrations
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H i i Opt - .
r.°"(min)lwasaki action r.**(max)wasaki action

0.01

@ °B° ) B°

FIG. 10. A compilation ofa) r2P(min) and(b) r*(max) of the
Iwasaki action in the range 208<6.0 and 2.6 ¢5<6.0.

and then fit them using EgA5). The coefficients, b, andc

PHYSICAL REVIEW D 69, 114504 (2004

0.003

0.001 | Without integration With integration

500 g\yep 1000 1500

FIG. 11. Example of the suppression of the fluctuation of Wil-
son loops for the Iwasaki action @t=2.5 andég=2.0.

space and time directions that is fully thermalized. However,

: _ . ns that I :
are determined by least squares. The results for the SymanZiRe fluctuation of the °" region is not large, compared with

and Ilwasaki actions are summarized in Table V.

We have checked that®°P(mid) with the parameters

given in Table V is located betweem®P{max) and

the width ofr°Pt, r°P{(mid), parametrized by EqA5) with
the coefficients given in Table V, was in the optimal region
of r for all link variables and configurations.

Let us proceed to discuss the effects of the link integration

roPY(min); namely, it stays within the optimal radius of inte- nethod. In the case of the improved actions, the number of

gration throughout the data points.

links U which are simultaneously integrated in a Wilson loop

Ther°P! region depends on the background field of eachbecomes much smaller than in the case of a standard action,
link variable. Thus it suffers from fluctuations of gauge field because in the case of the improved action the background
of links and configurations. The results shown in Fig. 10 ardields R of Eq. (A1) extend over a wider range due to the
obtained for a link at the center of a configuration in thesix-link rectangular loops in the action. Therefore the effect

TABLE V. The fit of r°P(mid) by Eq. (A5). 61 and 29 data

points are used to determine the coefficiemtb, c for the lwasaki
and Symanzik actions, respectively.

Action a b c
Symanzik  r2PY{(mid) 0.5563 0.5479 0.5336
(26 data rfp‘(mid) 0.06244 0.4213 0.6568

Iwasaki r‘s’p‘(mid) 0.08663 0.5507 0.4315
(61 data rfp‘(mid) 0.01682 0.5139 0.5261

of the link integration method is reduced for the improved
actions and it is not effective for the calculation of smaller
Wilson loops.

An example of the suppression of the fluctuation is shown
in Fig. 11. The suppression is marked #6,6) but not for
W(4,4). Similar properties are observed for the Symanzik
action of W(8,8) andW(4,4) at3=4.5 andég=1.9. The
link integration method requires much CPU time. Therefore,
when the fluctuation of the gauge field is not sufficiently
large, there are cases where a result is obtained with less
CPU time if the link integration method is not applied. Those
cases correspond t6 values far above3.,;; . However, in
the cases of a confined phase or very close to the transition
point, the link integration method is indispensable.
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