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Improved gauge actions on anisotropic lattices. II.h in the medium coupling region
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For improved actions composed of plaquette and rectangular six-link loops,h, the ratio of renormalized to
bare anisotropies, is calculated forj52, 3, 4, and 6 in theb region where numerical simulations such as
hadron spectroscopy are currently carried out. Theb dependence ofh for the renormalization-group-improved
actions is quite different from those of the standard and Symanzik actions. In the Iwasaki and DBW2~doubly
blocked from Wilson action in two-coupling space! actions,h remains almost constant in a wide range ofb,
which is also different from the one-loop perturbative results, while in the case of the Symanzik action,h
increases asb decreases, which is qualitatively similar to the perturbative result, but the slope is steeper. In the
calculation ofh close to and in the confined phase, we have applied a link integration method to suppress the
fluctuation of the gauge field. Some technical details of the integration method are summarized.
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I. INTRODUCTION

Anisotropic lattices, with the temporal lattice spacin
smaller than the spatial one, provide an effective method
precise Monte Carlo calculations of, for example, hea
quark systems, glueball masses, and the finite tempera
properties of QCD. The properties of anisotropic lattic
have been studied by several groups for a standard plaq
action @1–3#.

On the other hand, improved actions have been propo
to obtain numerical results close to the continuum limit
relatively coarse lattices. They are useful and effective un
the restrictions of current computer resources. Therefore
worth studying the anisotropic properties of improved a
tions.

In our previous paper, we studied the properties of an
tropic lattices for a class of improved actions in weak co
pling regions, mainly using the perturbative method@4#. The
improved actions considered are composed of plaquette
six-link rectangular loops as

S}( @C0P~131!mn1C1P~132!mn#, ~1!

whereC0 andC1 satisfy the relationC018C151. The im-
proved actions frequently used in simulations correspon
the following parameters:C1521/12 ~Symanzik’s im-
proved action@6#!, C1520.331~Iwasaki’s improved action
@5#!, and C1521.4088 @the QCD TARO Collaboration’s
DBW2 ~doubly blocked from Wilson action in two-couplin
space! action @7##.

For these types of actions, we can formulate an an
tropic lattice in the same way as for the standard plaqu
action,
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Pi j 1jB(
x

(
iÞ4

P4i D , ~2!

wherebj5Absbt, and jB is a bare anisotropic paramete
that controls the anisotropy in the space and time directio
The anisotropy is defined as the ratio of the lattice spaci
in the spatial (as) direction to that in the temporal (at)
direction,jR5as /at .

Due to the quantum correction,jR is not equal tojB ;
therefore it is important to know their relationship before w
start large-scale simulations on anisotropic lattices with
proved actions.

The effect of quantum correction of anisotropy appears
the h defined by

h5
jR

jB
. ~3!

In the weak coupling region, the results of one-loop pert
bative calculations have been very impressive in the se
that, as2C1 increases, a qualitative change is observed
the behavior ofh as a function ofb @4#. In the one-loop
perturbative calculation,h is parametrized as

h~j,b,C1!511
Nc

b
h1~j,C1!. ~4!

The coefficienth1 decreases as2C1 increases. At approxi-
mately2C1;0.18,h1 reaches zero and then becomes ne
tive. Therefore the dependence ofh on b for the Iwasaki and
DBW2 actions is opposite to that of the standard and Sym
zik actions; for the former,h decreases asb decreases, while
for the latter it increases.

A natural question is what would be the behavior ofh in
a smaller-b region, where the perturbative calculations bre
down. In this work, we will calculateh at jR52, 3, 4, and 6,
which will be denoted ash2 , h3 , h4, andh6, respectively,
©2004 The American Physical Society04-1
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in intermediate-b regions where most current numeric
simulations will be carried out.

In Sec. II, we discuss the regions ofb used to evaluateh
for the improved actions, and describe some details of
calculation: the matching of lattice potentials in the spa
and temporal directions, and a method for eliminating
self-energy contributions fromh.

In Sec. III, ourh results are presented. The behaviors
h in the intermediate-b regions are quite different among th
improved actions. For the Symanzik action,h increases
monotonically asb decreases. The behavior is qualitative
similar to that of the one-loop perturbative results but
slopes are steeper. In the case of the Iwasaki action,h is
close to unity in wide regions ofb>2.5. Particularly near
b;2.5, it is very close to unity, and therefore a detail
calibration of jB is not necessary except for very preci
simulations. For the DBW2 action,h is not close to 1, but
has a weakb dependence, which means that rough calib
tions give a reasonable estimation ofh. It is found that the
effects of self-energy terms onh are not large for these im
proved actions. This is consistent with the result of t
Bielefeld group for the standard action. Section IV is devo
to discussion and conclusions.

In the calculation ofh, measurements of large Wilso
loops are required. Large Wilson loops suffer from hu
fluctuations of the gauge fields, particularly in the confin
phase or very close to the criticalb of the finite temperature
transition. To suppress the fluctuations, a link integrat
method has been proposed@8–10#. In this study, we applied
the link integration method to these small-b points. Here, it
is very important to choose an adequate radius~optimal ra-
dius! of integration in the complex plane. In the Append
we will show the optimal radii for the Symanzik and Iwasa
actions.

II. CALCULATION OF h PARAMETER

A. Region of coupling constant to be studied

In this work, we calculateh in the region ofb where
most numerical calculations are currently carried out. In
case of the standard action, hadron spectroscopy in
quenched approximation has been reported for 5.7,b,6.2
@11#. In these coupling constant regions, the light had
masses are reproduced at up to 10% accuracy, which ma
a limit of the quenched approximation. Therefore, we cal
lateh near these lattice spacings for the improved actions
this subsection, we investigate the lattice spacings in the
of an isotropic lattice, because even though there is li
corresponding information on anisotropic lattices, the diff
ence inL ratio between isotropic and anisotropic lattices
small @4#.

In order to estimate the lattice spacing for the improv
actions on the isotropic lattice, we use the criticalb of the
finite temperature transition (bcrit). For the standard action
b56.05 corresponds to the finite temperature transition p
for an NT58 lattice @12#. We estimate, then,bcrit at NT
58 for the improved actions. For the tree-level-improv
Symanzik action,bcrit values are reported forNT53, 4, 5,
11450
e
l
e

f

e

-

e
d

e
d

n

e
he

n
be
-

In
se
e
-

d

nt

and 6@13#, for the Iwasaki action, they have been calculat
at NT54 and 6 by the Tsukuba group@14# and atNT58 by
the Yamagata-Hiroshima Collaboration@15#, and for the
DBW2 action, they have been reported by the QCD-TAR
Collaboration@7# for NT53, 4, and 6.

bcrit at NT58 @bcrit(8)# is estimated using the two-loo
asymptotic scaling relation for lattice spacing,

a~b!5
1

L S 6b0

b D 2b1 /(2b0
2)

expS 2
b

12b0
D , ~5!

where b0511/(4p)2 and b15102/(4p)4. We apply two
methods to determinebcrit(8). In method 1, we usebcrit(6)
of the same action and apply the relation

a@bcrit~8!#5
6

8
a@bcrit~6!#. ~6!

In method 2, we usebcrit(8) of the standard action an
evaluatebcrit(8) of the improved actions using theL ratio
@4,18#. The results are summarized in Table I.

In the case of the Symanzik action, the estimations
bcrit by the two methods coincide with each other. A simil
result for bcrit(8) was obtained from an analysis of strin
tension@16,17#.

For the Iwasaki action, some discrepancy is observed
tween the two estimations. Method 1 gives a closer resu
that of Ref.@15#, in which bcrit(8)52.73–2.75.

For the DBW2 action,bcrit(8) estimated by method 2
using theL ratio becomes negative. In thisb region, the
deviation from the two-loop asymptotic scaling relation w
be quite large for this action. Therefore, for the estimation
bcrit(8), weplot bcrit at Nt53,4, and 6 and simply extrapo
late it, which results inb;1.1 with large ambiguity. We will
calculateh until b;1.0 for this action.

B. Subtraction of self-energy contribution
from lattice potential

The renormalized anisotropyjR is defined by the ratio of
lattice spacings in the spatial and temporal directions,jR
5as /at . In the quenched approximation, the lattice pote
tial has been used as a probe of the lattice spacing, whic
defined in terms of the Wilson loop ratio,

V~p,r !5 logS W~p,r !

W~p11,r ! D . ~7!

TABLE I. Estimation of bcrit at NT58 for improved actions.
The minimumb up to which we calculateh in this work is shown
in the last column.

Action Input bcrit

bcrit(8)
~method 1!

bcrit(8)
~method 2!

Minimum
b

Standard bcrit(8)56.05
Symanzik bcrit(6)54.31 4.57 4.56 4.5
Iwasaki bcrit(6)52.52 2.78 2.32 2.5
DBW2 bcrit(6)50.936 1.28 — ;1.0
4-2
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The lattice potentials in the spatial (Vs) and temporal direc-
tions (Vt) are defined by Wilson loops in the space-space
space-time planes, respectively. The lattice potential defi
by Eq. ~7! will become independent of the positionp, when
p becomes large.

The matching of the potentials in the spatial and tempo
directions@19# has been used, for the calculation ofh,

Vs~jB ,p,r !5Vt~jB ,p,jR3r !. ~8!

We fix a renormalized anisotropyjR , and then search for a
point of jB where Eq.~8! is satisfied@2#. Using thesejB and
jR values,h is determined.

The lattice potential defined by Eq.~7! suffers from self-
energy contributions. In this study, we assume the simp
parameterization for the lattice potential as

Vs~jB ,p,r !5Vs
0~jB ,p!1Vs

L~jB ,p,r !, ~9!

whereVs
L is a lattice potential free from self-energy cont

butions. The temporal potentialVt(jB ,p,t) is treated simi-
larly. For an anisotropic lattice,Vs

0(jB ,p) and Vt
0(jB ,p)

may be different from each other due to the anisotropy.
In order to eliminate contributions from the self-ener

term V0, we define the subtracted potential as

Vs
sub~jB ,p,r ,r 0!5Vs~jB ,p,r !2Vs~jB ,p,r 0!

5Vs
L~jB ,p,r !2Vs

L~jB ,p,r 0!. ~10!

Vt
sub is defined in a similar manner.
The subtraction pointsr 0 and t0 are chosen to satisfy th

relation t05jRr 0, and matching of the potentials,Vt
L(t0

5jRr 0)5Vs
L(r 0), should also be satisfied at these poin

namely, atr 0, the lattice potentials should be free of lattic
artifacts. This condition is satisfied ifr 0 is sufficiently large.

C. An example of determination ofh

As an example, we will show in detail the determinati
of h for the Iwasaki action atb54.5 andjR52 on a 123

324 lattice.
Let us start with the determination of the subtraction po

r 0. In order to reduce statistical error, a smallr 0 is prefer-
able. In the case of a smallr 0, however, the systematic erro
due to lattice artifacts becomes large. On the other hand
the case of a larger 0, the statistical error due to the fluctua
tions of the gauge field increases, and simulations with h
statistics on larger lattices are required. Therefore,r 0 should
be chosen to be as small as possible, where lattice artif
are sufficiently small. The optimal choice ofr 0 requires care-
ful testing by trial and error.

First we calculate the ratio

R~jB ,p,r !5
Vs~jB ,p,r !

Vt~jB ,p,jR3r !
, ~11!

whereVs and Vt include the self-energy contributions. Ou
results are displayed in Fig. 1.R(p,r ) seems to approach a
asymptotic value with increasingr. On the other hand, atr
11450
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51, the deviation from the asymptotic value is rather lar
which may be due to lattice artifacts. Therefore, we fi
chooser 053 and calculate the subtracted potentials of E
~10!. Using the subtracted potentials, we obtainR in Eq. ~11!.
The results forjB52.0, 2.1, and 2.2 are shown in Fig. 2. Th
R ratios are shown for eachp andr. We proceed to look for
the points where the ratios satisfy the relationR(p,r ,jB)
51. We fit the three data points ofR(p,r ,jB) by a second-
order polynomial ofjB and find the solution

R~jB ,p,r !5c01c1jB1c2jB
251. ~12!

Using the solutionsjB of Eq. ~12!, h5jR /jB is determined
for eachp and r, and the results are shown in Fig. 3.

In order to avoid lattice artifacts, we employ data withp
>3 andr>4. It is found that the values ofh(p,r ) are al-
most independent ofp and r in this range.h at b54.5 and
jR52.0 is determined by taking their average. The error
estimated by the jackknife method; data after thermalizat
are grouped into ten blocks and they are used as indepen
data. In this way the result becomesh50.975560.0083
when r 053.

The same analyses are carried out by changingr 0. The
results areh50.976460.0039 andh50.974160.010 for
r 052 and 4, respectively. The results change little amo
theser 0 values. However, if we chooser 051, the result
differs significantly from those ofr 052, 3, and 4. Analyses
are carried out at other values ofb andj. There are cases in

FIG. 1. R(p,r ) given by Eq.~11! at b54.5 andjB52.1 of the
Iwasaki action.

FIG. 2. jB dependences of theR(p,r ,jB) ratios of the Iwasaki
action atb54.5 using the subtracted potentials.
4-3
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which a slight difference is observed betweenr 052 andr 0
53, and in the case ofr 054, the statistical error increase
Therefore in the case of the Iwasaki action we chooser 0
53 for all values ofb andjB in this study.

We carried out the same studies for the Symanzik
DBW2 actions. In these cases, the subtraction point beco
r 054. This indicates that lattice artifacts are larger for the
actions at very short distances.

III. h RESULTS

A. Simulation parameters, numerical results,
and self-energy contributions

The simulations are mainly carried out for a 123312jR
lattice. For some values ofb and jR , 163316jR lattice
simulations are also carried out in order to study the s
dependence. It is found that the lattice size effect is small
the improved actions in the range of parameters studied h

Gauge configurations are generated by the heat
method with over-relaxation@20,21#. The typical number of
Monte Carlo~MC! data for the calculation ofR(jB ,p,r ) is a
few tens of thousands after a thermalization of appro
mately 104 MC sweeps. However, asb decreases and ap
proaches the finite temperature transition point (bcrit) or
goes into a confined phase, both the number of MC data
the number of thermalization sweeps increase. For the ca
lation of h at jR52 and atb52.5 of the Iwasaki action, we
used 1.53106 data points after thermalization of 3.53105

MC sweeps.
In order to suppress the fluctuations of the gauge field

the calculations of large Wilson loops, we applied a li
integration method@9,10#. It is used for calculations of lattice
potentials atb52.5 and 2.56 of the Iwasaki action and
b54.5 of the Symanzik action. Technical details will be pr
sented in the Appendix. Here we notice only that, in the c
of the improved actions, the effect of the link integration
reduced due to the rectangular six-link loops.

Our h results are summarized in Tables II, III, and IV.
order to show the effects of self-energy contributions forh,
we present the results forh, that are obtained without sub
tracting self-energy terms in thehno sub column of these
tables. It is found that differences between them are less
;1% for the Symanzik and Iwasaki actions. This is cons

FIG. 3. h(p,r ) of the Iwasaki action atb54.5 andjR52.
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tent with the result for the standard action obtained by
Bielefeld group@3#. For the DBW2 action, the difference
increase. They amount to approximately 5% but are still
large. Therefore, except for the case of simulations with
few percent accuracy, it is safe to usehno sub, as reported at
the XVIth and XVIIth International Symposium on Lattic
Field Theory at Colorado and Pisa, respectively@22,23#.

B. Symanzik action

Theh results for Symanzik action are shown in Fig. 4.h
at jR52, 3, 4, and 6 is denoted ash2 , h3 , h4, and h6,
respectively. The qualitative behavior ofh as function ofb
is the same in perturbative and numerical results; the slop
h, however, is steeper in the numerical results.

In this case, the tadpole-improved one-loop perturbat
calculation ~boosted perturbation! @24,25# reduces the dis-
crepancy a little. It is expressed by replacingb in Eq. ~4!

with b̃5bAWs(1,1)Wt(1,1); thus

h~j,b!511
Nc

b

h1~j!

AWs~1,1!Wt~1,1!
. ~13!

In this formula, sinceWs(1,1) andWt(1,1) decrease asb
decreases, theb dependence ofh is more enhanced. The fi
of the numerical data by Eq.~13! is shown in Fig. 5. In this
figure, we also compare our results with those of the stand
plaquette action@2#. In order to compareh at the same lattice
spacing, we have shiftedb for the standard action to that fo
the Symanzik action using the asymptotic scaling relat
Eq. ~5! and theL ratio.

TABLE II. h for the Symanzik action atjR52, 3, 4, and 6. At
b58.0 and 4.5 ofjR52, simulations are carried out on a 163

332 lattice to study the size dependence. They are shown in
table with the symbol *.

jR b h hno sub

2.0 10.0 1.022760.0097 1.027160.0031
8.0 1.039360.0191 1.039160.0020
6.0 1.038160.0097 1.050060.0029
4.5 1.098060.0255 1.101160.0021

8.0* 1.023260.0039 1.028460.0021
4.5* 1.109560.0122 1.104060.0062

3.0 10.0 1.034160.0146 1.042660.0058
8.0 1.026060.0150 1.036160.0042
6.0 1.052060.0200 1.066760.0015
4.5 1.148260.0317 1.133160.0064

4.0 8.0 1.033060.0180 1.038960.0042
6.0 1.087660.0294 1.078660.0058
4.5 1.140860.0336 1.157260.0058

6.0 8.0 1.054760.0403 1.059660.0088
6.0 1.135560.0482 1.108860.0081
4.5 1.154260.0587 1.166060.0170
4-4
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TABLE III. h for the Iwasaki action atjR52, 3, 4, and 6. The
data atb53.5 of jR52 with an asterisk are calculated on a 13

332 lattice to study the size dependence.

jR b h hno sub

2.0 10.0 0.981160.0030 0.974260.0033
6.0 0.983160.0037 0.978460.0032
4.5 0.975560.0083 0.977660.0044
4.0 0.980660.0074 0.978260.0039
3.5 0.976160.0105 0.976760.0049
3.05 0.991160.0182 0.988160.0060
2.5 0.999860.0145 0.983760.0074

3.5* 0.980360.0070 0.980260.0036

3.0 10.0 0.971460.0054 0.964760.0036
6.0 0.966960.0041 0.955460.0026
4.0 0.970060.0118 0.964560.0063
3.5 0.971560.0160 0.970860.0031
3.05 0.972560.0120 0.977660.0037
2.56 1.006760.0138 1.001160.0071

4.0 6.0 0.964060.0048 0.956360.0024
4.0 0.962560.0105 0.958360.0039
3.0 0.985160.0118 0.985260.0054
2.56 1.004660.0102 1.004260.0040

6.0 6.0 0.937360.0092 0.934060.0036
4.0 0.955860.0055 0.950060.0032
3.0 0.979660.0109 0.980560.0087

TABLE IV. h for the DBW2 action atjR52, 3, 4, and 6.

jR b h hno sub

2.0 2.5 0.908460.0090 0.862660.0025
1.6 0.901160.0082 0.861660.0018
1.4 0.891760.0122 0.862360.0024
1.2 0.888260.0115 0.867360.0032
1.1 0.886860.0144 0.875360.0030
1.0 0.878160.01069 0.881760.0092

3.0 1.4 0.828360.0189 0.808260.0046
1.2 0.815760.0252 0.807060.0055
1.1 0.812260.0230 0.821060.0076
1.0 0.812360.0235 0.826260.0101

4.0 2.0 0.827760.0202 0.788860.0087
1.4 0.806860.0306 0.778960.0100
1.2 0.778760.0319 0.786660.01.9
1.0 0.784260.0172 0.789460.0140

6.0 2.0 0.731160.0183 0.722960.0103
1.4 0.732660.0170 0.734960.0066
11450
Theh behaviors for these two actions are qualitatively t
same, although the slope is gentler for the Symanzik act

C. Iwasaki action

The results forh for the Iwasaki action are shown in Fig
6. ForjR52, 3, 4, and 6,h remains close to unity in a wide
range ofb for b>2.5. The deviation from unity is more
enhanced for largerjR , but within approximately 6%. There
fore, unless a precision simulation of a few percent accur
is required, detailed calibration ofjB is not necessary. In
particular, h is very close to unity at approximatelyb
;2.5, where most simulations take place. This is a go
feature for the simulations, because detailed calibration is
necessary until a very precise simulation is carried out.

h should have a dip betweenb;2.5 and`, because at
approximatelyb;2.5 it is close to unity, and decreases asb
increases and then approaches unity again asb approaches
`. In Table III, we observe shallow dips at approximate
b;4.5 andb;6.0, for h2 and h3, respectively. It seems
that the position of the dip moves to largerb asjR increases.

FIG. 4. h for the Symanzik action. Perturbative resul
@h(pert)# from Ref. @4# are shown to compare with the numeric
results.

FIG. 5. h for the Symanzik (hSz) and standard (hstand) actions
at jR52. For the standard action, we show the results obtained
Klassen@2#. The b of the standard action is shifted using Eq.~5!
and theL ratio, in order to compare theh parameters at the sam
lattice spacinga. The perturbative results, naive@h(pert)# and
boosted@h(b2pert)# of Eq. ~13!, are also shown to compare wit
the numerical results.
4-5
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For the Iwasaki action, the one-loop perturbative calcu
tion predicts a monotonic decrease inh asb decreases@4#.
The numerical results are qualitatively different from tho
of the one-loop perturbative calculation, as shown in Fig

In the continuum limit,h should approach unity; there
fore, as far ash is concerned, this action is close to th
continuum limit.

D. DBW2 action

In Fig. 7,h values for the DBW2 action are displayed. A
jR increasesh decreases. The deviation ofh from unity is
not small, and itsb dependence is very weak. This is again
good property for numerical simulation. Rough calibratio
of h at a fewb points are sufficient to obtain a reasonab
estimation ofjB . As in the case of the Iwasaki action, th
numerical results are qualitatively different from those of t
one-loop perturbative calculations@4#, which are also shown
in Fig. 7.

IV. DISCUSSION AND CONCLUSIONS

In this work, we studied the global structure ofh as a
function of b, jR , and C1 for the class of gauge action
given in Eq.~1!. The overall effects of the improved action
on h are summarized as follows. The plaquette term in
action makesh increase monotonically asb decreases, while

FIG. 6. h for the Iwasaki action. Perturbative results@h(pert)#
from Ref. @4# are shown to compare with the numerical results.

FIG. 7. h for the DBW2 action. Perturbative results@h(pert)#
from Ref. @4# are shown to compare with the numerical result.
11450
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the rectangular term withC1,0 makesh decrease.
At C1521/12, the effects of rectangular loops are not

large, and the slope ofh is smaller than that of the standar
action. As a result, at the same lattice spacing, the effect
the quantum correction are reduced in the Symanzik act
In the Symanzik and standard actions, theb dependences o
h are qualitatively the same between the perturbative
numerical results, but the slopes are steeper for the nume
results.

At C1520.331, the effects onh from the plaquette and
rectangular loops are almost in balance in a wide range ob,
for 2.5<b. However, the detailed contributions depend onb
andjR . h at b;2.5 is very close to 1, and decreases asb
increases and should again approach unity at a largeb.
Therefore eachh should have a dip in the range 2.5,b
,`; they are aroundb;4.5 andb;6.0 for h2 and h3,
respectively. As a consequence,h remains close to unity in
the range 2.5,b. These behaviors are qualitatively differe
from the results of the one-loop perturbative calculation.

At C1521.4088, the contribution from the rectangul
loop becomes stronger than that of the plaquette loop,
thenh values become less than 1. They are, however, alm
independent ofb in the range 1.0<b<2.5. This behavior is
qualitatively different from the perturbative result.

In the continuum limit,h parameters should approac
unity. Then the Iwasaki action is close to the continuum lim
in the region 2.5<b. Particularly at approximatelyb;2.5,
the h values are close to unity. This means that calibratio
of jB are not necessary until a high-precision simulation
carried out.

In the case of the DBW2 action, theh values are not close
to 1. Then, as far ash is concerned, it is not close to th
continuum limit in thisb region. However,h is almost in-
dependent ofb. This is good for the simulation of physica
quantities on anisotropic lattices, because calibrations ojB
at a fewb points are sufficient for this action.

For the Symanzik action, the deviation ofh parameter
from unity is remedied compared with standard action, a
yet theb dependence ofh is not sufficiently weak. It be-
comes;10% at b;5.0. Therefore some detailed calibr
tions are necessary.

For theb andjR ranges that we have studied, the diffe
ences betweenh andhno sub are small for all the improved
actions. For the Symanzik and Iwasaki actions, the diff
ences are within;1%, and for the DBW2 action, they ar
within ;5%. Therefore it is safe to usehno sub except for
the case of very precise simulation. This is good news,
cause the calculation ofh requires much more CPU time.

For the Symanzik action, the tadpole-improved one-lo
perturbation calculation~boosted perturbation! @24,25# given
by Eq. ~13! improves the agreement between the simulat
and perturbative results, but for the Iwasaki and DBW2
tions it make the discrepancies larger.

Our results provide fundamental data for large-scale sim
lations on an anisotropic lattice using improved actions. F
ther results onh for largerjR and smallerb will be reported
when they become necessary because the calculation ofh at
smallerb and largerjR requires much more CPU time.
4-6
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APPENDIX: OPTIMAL RADIUS OF INTEGRATION
FOR IWASAKI AND SYMANZIK ACTIONS

If R is an external source field for the link variableU,
integration of the link variableU is given by

^U&5
1

Z

dZ~R!

dR†
5

E D@U#U exp@Tr~RU†1UR†!#

E D@U#exp@Tr~RU†1UR†!#

,

~A1!

whereZ(R) is expressed by the modified Bessel functionI 1
@9,10#,

Z~R!5 R dx

2p i
exQ

1

z
I 1~2z!, ~A2!

and

z5S P~x!

x D 1/2

,

Q52 Re@det~R!#,

P~x!511x Tr~RR†!1 1
2 x2$@Tr~RR†!#22Tr@~RR†!2#%

1x3det~RR†!. ~A3!

Similarly, dZ(R)/dR† is written using the modified Besse
function I 1 and I 2 @9,10#,

dZ~R!

dR†
5 R dx

2p i
xexQ

1

z
I 1~2z!

]Q

]R†

1 R dx

2p i

exQ

P~x!
I 2~2z!

]P~x!

]R†
. ~A4!

The path of the integration is a closed circle on the comp
planex. In principle it is arbitrary, but numerical integratio
requires an adequate radius. In the case of the standar
tion, the adequate radius has been studied@26#.

The arguments of the modified Bessel functions beco
rather large and we apply an asymptotic expansion for
merical integration. In this article we use the Simps
method for numerical integration and search for the region
r where^U& is stable under a change ofr, at a given number
of divisionsN.

An example of ther dependence of̂U& is shown in Fig.
8. It is found that whenN5100 some spurious plateaus a
pear and then disappear whenN5400. However, there is a
region ofr where^U& is stable under changes ofN, which is
the optimal region of integration forN5100. The optimal
region increases a little whenN5400. In this article we
11450
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chooseN5100 and proceed to determine the optimal reg
of r (r opt) for various combinations ofb andjB .

These plateaus shown in Fig. 8 are observed when Ta
expansions of the modified Bessel functions are appl
Then they are due to the difficulty in numerical integratio
given by Eqs.~A2! and~A4!. Therefore it is important to find
the optimalr region.

For many sets ofb and jB , we have obtained the mini
mum of r opt @r opt(min)# and its maximum@r opt(max)# for
spacelike and timelike links separately. Whenj.1.0, the
r opt of timelike links (r t

opt) is smaller than that of spacelik
links (r s

opt). Examples of the differences are shown in Fig.
It seems that the difference becomes larger asb andjB in-
crease.

We proceed to a parametrization ofr opt(b,j). Theb and
j ranges are 2.0<b<6.0, 1.8<jB<6.5 for the Iwasaki ac-
tion and 4.5<b<8.0, 1.7<jB<5.8 for the Symanzik action
The r s

opt(min) and r s
opt(max) are shown in Fig. 10. The

decrease withb andj and seem to be parametrized as

r opt5a exp~2bb2cjB!. ~A5!

Then we definer opt(mid)

log@r opt~mid!#5$ log@r opt~min!#1 log@r opt~max!#%/2
~A6!

FIG. 8. Radius dependence of^U4(2,2)& for the Iwasaki action
at b53.05 andjB52.0. An integrated link is located at the cent
of the lattice, directed in the fourth~temporal! direction, on a fully
thermalized configuration.

FIG. 9. Examples of the difference betweenr s
opt andr t

opt for the
Iwasaki action atjB52.0.
4-7
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and then fit them using Eq.~A5!. The coefficientsa, b, andc
are determined by least squares. The results for the Syma
and Iwasaki actions are summarized in Table V.

We have checked thatr opt(mid) with the parameters
given in Table V is located betweenr opt(max) and
r opt(min); namely, it stays within the optimal radius of inte
gration throughout the data points.

The r opt region depends on the background field of ea
link variable. Thus it suffers from fluctuations of gauge fie
of links and configurations. The results shown in Fig. 10
obtained for a link at the center of a configuration in t

FIG. 10. A compilation of~a! r s
opt(min) and~b! r s

opt(max) of the
Iwasaki action in the range 2.0<b<6.0 and 2.0<jB<6.0.

TABLE V. The fit of r opt(mid) by Eq. ~A5!. 61 and 29 data
points are used to determine the coefficientsa, b, c for the Iwasaki
and Symanzik actions, respectively.

Action a b c

Symanzik r s
opt(mid) 0.5563 0.5479 0.5336

~26 data! r t
opt(mid) 0.06244 0.4213 0.6568

Iwasaki r s
opt(mid) 0.08663 0.5507 0.4315

~61 data! r t
opt(mid) 0.01682 0.5139 0.5261
11450
zik
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e

space and time directions that is fully thermalized. Howev
the fluctuation of ther opt region is not large, compared wit
the width ofr opt. r opt(mid), parametrized by Eq.~A5! with
the coefficients given in Table V, was in the optimal regi
of r for all link variables and configurations.

Let us proceed to discuss the effects of the link integrat
method. In the case of the improved actions, the numbe
links U which are simultaneously integrated in a Wilson lo
becomes much smaller than in the case of a standard ac
because in the case of the improved action the backgro
fields R of Eq. ~A1! extend over a wider range due to th
six-link rectangular loops in the action. Therefore the effe
of the link integration method is reduced for the improv
actions and it is not effective for the calculation of smal
Wilson loops.

An example of the suppression of the fluctuation is sho
in Fig. 11. The suppression is marked forW(6,6) but not for
W(4,4). Similar properties are observed for the Syman
action of W(8,8) andW(4,4) at b54.5 andjB51.9. The
link integration method requires much CPU time. Therefo
when the fluctuation of the gauge field is not sufficien
large, there are cases where a result is obtained with
CPU time if the link integration method is not applied. Tho
cases correspond tob values far abovebcrit . However, in
the cases of a confined phase or very close to the trans
point, the link integration method is indispensable.

FIG. 11. Example of the suppression of the fluctuation of W
son loops for the Iwasaki action atb52.5 andjB52.0.
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