PHYSICAL REVIEW D, VOLUME 62, 034504

Width difference in the B¢-B, system with lattice nonrelativistic QCD
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We present a lattice calculation of tiﬁg-ﬁs transition-matrix element through a four-quark operatyy
= b(1— y5)sh(1— ys)s, which gives a leading contribution in the calculation of the width differente in
the 1my, expansion. The nonrelativistic QCD formulation is used to desdrigeark on the lattice. Using the
next-to-leading formula of Benelet al., we obtain AT'/1")=0.151(37)(45)(17), where the first error reflects
the uncertainty of thé8; meson decay constant, the second error comes from our calculation of the matrix
element ofOg, and the third represents an unknowmg/correction.

PACS numbeps): 12.38.Gc, 12.39.Hg, 13.20.He, 14.40.Nd

. INTRODUCTION plitude AM of the B(g)— B¢y mixing, if we assume the phys-
ics beyond the standard model such as the supersymmetric
The mixing and decays of thBS-gg system play a models[9].
complementary role to thB* and Bg-ﬁg systems in study- In this paper, we present a quenched lattice calculation of
ing flavor mixing andCP violation [1]. In particular, if the the matrix element ofOg using the nonrelativistic QCD
width difference of theB2-BY system is sufficiently large, (NRQCD) formalism [10] for heavy quark and the

the anglegs(y) of the unitarity triangle can be measured ©(&)-improved Wilson action[11] for light quark. The
through untagged modes such 3§—>D§*)K(*) or B NRQCD formalism is formulated as an inverse heavy quark

—.D* ¢ [2,3], which would be promising not only because Mass expansion, and our action and operators consistently
the method is theoretically clean but also feasible at futurdnclude entireO(p/mg) terms, wherep denotes a typical
hadron colliders. spatial momentum of a heavy quark inside a heavy-light me-

The width difference&FBs of the Bs'gs systems is calcu- SON- Higher-order contribution @(pzlmé) is Ialso studied
lated most reliably using the heavy quark expan$iinand by introducing all necessary terms, and we find those effects
the size of a ratio zlgl"/l“)BS is roughly estimated as are small for theb quark mass.

. In this work one-loop matching of the operat® be-
_ 0.1% S
(AF/F)Bs_ 0.16("g09- Now that the perturbative error has tween continuum and lattice regularizations is performed in

been reduced by the recent calculation of the next-to-leadinghe |imit of infinitely heavy quark mass, so that the system-
order(NLO) QCD correctiong5], the largest remaining un-  agic error ofO(as/(amg)) is not removed. Since thequark

certainty comes from the matrix elemerBOx(ub)|Bs)  mass in the lattice unit is not extremely lar@&a/(amg))

(X=L or §) of four-quark operators gives a non-negligible effect in our final result, which could
_ _ be as large as about 10% in a naive order counting argument.
O =by,(1-vys)sby,(1-1vys)s, ) Using the NLO formula of Ref[5] and our results for the
matrix elements of0g as well as ofO, [6], we obtain a
Os=b(1— y5)sb(1— ys)s. (2)  prediction AI'/T")g =0.151(37)(45)(17). The first error

originates in the By meson decay constanths

=245(30) MeV[7] used to normalize the matrix elements,
d the second is from our calculation of the matrix element
Os. The error fromB, is negligible, since it gives only a

Lattice QCD is one of the most suitable tools for the
nonperturbative computation of matrix elements such as th
decay constants and the bag parameters. In fact a number
extensive studies, including oUi], have already been done small contribution to the width difference. The last error is a

to obtainB, * [7], V\.’h'Ch IS a matrix element _Of the forr_ner crude estimate of th®©(1/m,) correction as discussed in
operatorO, normalized by its vacuum saturation approxima- Refs.[4,5]

tion. On the other hand, the matrix_ elemély for the latter This paper is organized as follows. We briefly summarize
operatorOs has been calculated in Refig] only for the o eyt leading ordefNLO) formula of Ref.[5] for the

heayy-hght meson around charm quark mass regime. It i§yidth difference in the next section. We present the pertur-
requwed to p?rf.o”“ athorough StUdYByn order to give & pative matching of the operatd@Ps in Sec. lll, while the
reliable predlc.t|on of theB§ wu;ith dlfference.. The matrix  jatail of the one-loop calculation is given in the Appendix.
element ofQs is also required in the evaluation of the am- \yie qescribe our simulation methods in Sec. IV. and our
results for the matrix element and the width difference are
given in Sec. V. In Sec. VI, we attempt to estimate the size
We use the notatioB, instead ofBg to explicitly indicate thatit ~ of the O(as/(amg)) error, which is specific to our work
represents a matrix element 6 . with NRQCD. Section VIl is devoted to a comparison of our
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result with a previous work by Guptt al.[8], who obtained  In the last expression in E¢6), we change the normalization

the same matrix element using the relativistic lattice actiorpf <§S|@S( wp)|Bs) with the decay constarft,_by factoring
. SO . s
around charm quark mass. Finally, our conclusion is given iNut the ratio

Sec. VIII. A preliminary report of this work is included in

Rpp)=| oo ——
o|P B
Il. WIDTH DIFFERENCE OF B4 MESONS < | ('u“b)| S>

In this section we briefly summarize the formula to give Using the equation of motion the ratio( ) is expressed in
the width difference oBs mesons, which was obtained by terms of the quark masses, andms as
Benekeet al. in Ref.[5].

. (7

The width difference in th®-B, system is given by Rl = Mp( tp) + Ms( ) ®
Mg '
1 s
ATg =—2-—(B Imifd"'x THeti(X) Het£(0)|Bg), _ _
Bs 2M BS< . et e1(0)|By) wheremy(up) andmg(uyp,) denote the quark masses defined

(3 with the MS scheme at scalgy, .

) . o Finally, 6;;, denotes Ihy, corrections, which may be es-
where Het is @ AB=1 weak transition Hamiltonian. The timated using the factorization approximatip.

main contribution comes from a transititrs— cc followed Numerically evaluating the coefficients in the right-hand

by cc—bs, and other contributions mediated by penguin op-side of Eq.(4), we obtain
erators are also includgé].

Using the 1, expansion, the transition operator AT fBS 2
Imi[d*x THer1(X)Het(0) is represented by the local four- T/ ~ 225 May/ |0-008L(my)
quark operatorg), and Og, which leads to the following B
formula at the next-to-leading ordgs]:
Bs(my)
+0.156————0.086, (9)
R(my)

8
G(Z)gBL(mb)

AT\ 167°B(B,—Xev) 6Me,
V| = |Vcs|
B

r Q(Z);}QCD mg

where we choose a recent world average of unquenched lat-
tice simulationsf B~ 245(30) MeV for the central value of
5 Bg(my)

VY 1= the decay constaff]. In the following sections we present a

TGsl2)3 R(m,)? e 4251””)' @ calculation of the parametdg(m;,)/R(m,)2. Our calcula-
tion of B (m,) is already available in Ref6].

Here, the quantityB(B;— Xev) is the semileptonic decay

branching ratio. The factorsg(z)=1-8z+ 83— 274 IIl. OPERATOR MATCHING

—122%Inz (z=m?/mf) and 7qcp represent the phase-space _ _ _ _

factor and the QCD correction, respectively. The coefficients [N this section, we present the perturbative matching of

G(2) andGg(2) are functions including the next-to-leading continuum operatoOs to the corresponding operators de-
QCD corrections, and their numerical values are given injin€d on the lattice. We follow the calculation method in Ref.

Table | of Ref.[5]. [13], where the one-loop matching of the operat@y is
B.(my) andBg(my,) are theB parameters defined with the presented. o -
modified minimal subtraction\S) scheme at the renormal- _Following the definition in Ref[5], we adopt modified

ization scalew,=my. Their definitions are minimal subtractio(MS) with the naive dimensional regu-
larization scheme for the continuum operat@g(up), in
Y Y which ys anticommutes with ally,’s. The subtraction of
B (pp)= (B<| Ou(pv)[Bs) — <BS|80"(’%)|BS>, evanescent operators is done with the definition given by
Z (BUAIOMOIAIB 52 M2 Egs. (13)—(15) of Ref. [5]. The renormalization scalgy, is
3(BslAcl0)(0lAo|By) 3B Bs set to theb quark massn,.
ile in the numerical simulations we apply the
5 While in th ical simulati ly the NRQCD
- formalism[10] to the heavy quarks, in the perturbative cal-
(Bg|Og(up)|Bs) culation the heavy quarks are treated as a static quiatk
Bs(p)=gz— More comments on this approximation will be given in the
§<BS|P(Mb)|0><0|P(Mb)|Bs> end of this section. The light quarks and gauge fields are

described by theO(a)-improved Sheikholeslami-Wohlert
(SW) quark action/11] and the standard Wilsofplaquette
R(wp)?. (6) action, respectively, in both of the perturbative calculation
and the numerical simulations.
The operators involved in the calculation are

_(BJOs(m)|Bs)

5
_ 2202
3stMBs
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OS=FPLS‘ EPLs", (10) where P, and Py are chirality projection operator® g
=1% yg. Color indices andj run from one taN for SU(N)
Os=b'P.sl bipPs, (11)  9auge theory and denotes lattice spacing. In the continuum,
in which the chiral symmetry for light quark is preserved, the
O =b'y,P.s'by,P. ¢, (120  operatorOg mixes only with Qg and O, . On the lattice,
. . ) . ) however, the chiral symmetry is explicitly broken with the
Op=2b"y,P s'0'y,Prs'+4ND'P s'b'Pgs/, SW action, so that additional operators with opposite chiral-

(13) ity, Op andOg, appear in the operator matching.
= g i Other operator®sp, O p, and Opp are higher dimen-
Or=D'"y,,Prs'd’y,,Prs/, (14 sional operators introduced to cancel a discretization error of

T N e S O(asa). However, we neglect this discretization error in the
= D! . Ih) J S
Osp=b'Pi(y-aD)sbP.s/, 19 umerical simulations. The result Gf(aas) matching coef-
O,5=b'y, P, (v-aD)sbly P, s, 16 ficients is presented only for future use.
Lo=b7,Pi(y-aD)sbly, P (16) Here we show the one-loop result of the matching. We
Opp=2b'y,Pr(y-aD)sbly, P s leave the detail of the calculations for the Appendix. The
’L__ o a _ continuum operato©g( 1) is expressed by lattice operators
+4Nb'PR(y-aD)s'biP s, (17 0%(1/a) as follows[15]:

2

n e
O ) = 3 #2’ ~3.86) |O8(1a)+ 2 +3.91/0(1/a)
b

2
a[4 ., 16 2,1 (4
1+ 477[?’In(a mg) + —-In 3In(a mg) + 3In m2
+ 2500.7710 % 1/a) + 210130 (1/a) + —2[ - 6.8810%(1/a) + —2[2.580"2 (1/a)
A4aq-—" P Aaq-—" R 4 ' SD A4aq-—" LD

+ Z—;[1.15]0'§;,(1/a). (18)

The operatoOs is eliminated from the right-hand side using Sion in as. Omitting the higher dimensional operators,
an identityOs= — Og— 1O, , which is valid up t00(p/my). which we neglect in the following numerical simulations, we

The heavy-light axial vector currert, is also necessary obtain:
to normalize the matrix element. The one-loop matching of 2
A, is already known af16,17,13 2 as| 8 o 5 16 [Mb
0 y =0 Bs(up)/ R(pp) = 1+ _§|n(a mb)*‘gln 2
Ao=Z(1/2) AL L/a) + Z,_(1/a) Alh(L/a) °
. a 2
o +29.26] B+ 4—5 —§In(a2m§)
=1+ (2 In(a®m?) — 16.561 |A(1/a) ™
o Ll #8) 4 50 s 210,778
- E[l&OﬂA'Sg(lla), (19 30 \m2) Tt Amt TP
whereA, andAp, are defined as s glat
- 4—477[0.13]8R , (22
Ao=byoysSs, (20 ~ _
whereB{' (X=S, L, P, or R) are “B parameters” defined
Apo=byoys(y-aD)s. 2y by
[
The higher dimensional operatdx,, is introduced to re- Blat_ (O3(1/a)) 23
move theO(asa) errors. X at )
In Egs.(18) and (19), we apply the tadpole improvement —3(Ag(1/a))
[18] usinguy=1/8«. as an average link variable. The nor-
malization of the light quark field i§/1— 3«/4k,. which we measure in the numerical simulations.
To obtain the matching coefficient f@g/R 2 we com- Before closing this section, we should clarify the remain-

bine Egs.(18) and(19), and linearize the perturbative expan- ing uncertainty arising from the static approximation in the
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matching coefficients. In the simulation, the heavy quarks 18—
are described by the NRQCD action including Bép/mg) - () B lar +
or O(pzlmé) corrections consistently. The quark field, 16k s ]
which constitutes the operators measured in the simulation, ' ¢+
is also improved through the same order as the action by the r Q i
inverse Foldy-Wouthuysen-Tani transformatign' as 1.4 % -
Q) i t ¢ |
b=R*! , 1.2 .
X' I %a# 4 |
whereQ and y" are the two-component quark and antiquark 10— 1. . . .

fields in the NRQCD action. Therefore, the truncation error
only starts fronO(pZ/mé) or O(p®mg), which depends on
the accuracy of our action and operators, even at the tree

level matching. On the other hand, the static approximation 10— N T

in the perturbative calculation only leads to a lack of finite - (b) BL’“’ ]

mass effects in the matching coefficients, but does not 1ok -

change the truncation error. Therefore, using the matching | |

coefficients derived in this section the result has the

O(as/(amg)) error. -4 % Zg? Ao H 7
IV. SIMULATIONS -1.61% |

The numerical simulations to extraBi' are almost the I |
same as in our previous papd], in which we calculated By Y- E—

B.. We carried out a quenched simulation on 256188 UM, [GeV™]
lattices atB=5.9. The inverse lattice spacing from the string i
tension is 1.64 GeV. We employ the SW action for light 81—
quark [11] with mean-field improvedc,,=1/uj with u, i © B at )
=0.8734. The heavy quark is treated by two sets of NRQCD L P N
actions and field$10] as was done in Ref6]: one is trun- -12 % 7]
cated atO(p/mg) and the other includes entil@(pz/mé) 3 #)* .
corrections. We use the difference between the results from 16 R ]
these sets to estimate the size of truncation error opth®, i + o 1
expansion. . X 5 ]

For the strong-coupling constant used in the perturbative -0~ A —+— 7
matching, we choose th€-scheme couplingr,(g*) with L © +
g*=1/a, 2/a, or w/a. Their numerical values are,(1/a) ol ,A Lo
=0.270, ay(2/a)=0.193, anday(m/a)=0.164. Other de- 0.0 0.1 0.2
tails of our simulations, such as the exact definition of the 1M, [GeV™']

NRQCD action and the mass parameters used, are found in )
the previous pap€i6]. FIG. 1. 1Mp_dependence ofa) BE', (b) B (=Bg), and(c)
B',S“. The results withO(p/mg) accuracy(circles are compared to
V. RESULTS those withO(p?/m3) (triangles accuracy. The vacuum saturation

. A approximation is shown by crosses.
Figure 1 shows the mass dependenc88f(X=S, L or

P) defined in Eq.(23). glgt is equal toB}f“ because of a O(pZ/m_ZQ) accuracy. It justifies the use of the nonrelativistic
symmetry under parity transformation. The light quark mas€XPansion for thé quark. .

is interpolated to the strange quark mass. Since the light AS We pointed out in the previous paré, the vacuum
guark mass dependence is very small, in the following analy-Saturat'on_ apprOX|mat|o(VSA)_g|\_/e§ a.good appr\%l\)matlon
sis we do not consider the error arising from the interpola0f the lattice data. In the static limit, it becomB§'>?=1,
tion. The inverse heavy-light meson masM3/, for which BEVSA): —8/5, and B(F,VSA)= —64/5. For the finite heavy

the light quark mass is also interpolated to the strange quarfUa’k mass, the axial current and the pseudoscalar density
mass, is used as a horizontal axis. involved in the VSA have different matrix elements. As a

The difference between two results with different accurafesult, a mass dependence appears in the VSB,af as
cies of thep/mq expansion does not exceed a few percent aplotted by crosseg flat line forB,) in Fig. 1. It is remark-
the b quark mass, as explicitly presented in the figure byable that the VSA explains theNl_dependence of the data
different symbols: circles folO(p/mg) and triangles for very nicely.

034504-4



WIDTH DIFFERENCE IN THEBS-gS SYSTEM WITH . .. PHYSICAL REVIEW D 62 034504

20— — T O(as/(amg))~15%,
8 % ] O(a?)~10%,
2udf- s ]
! g | O(a®Adcp)~O(aAgcpas) ~5%,
Sraf -
s | § i when we assumé ocp~300 MeV andag~0.3. Although
12 | a naive order counting yieldS(as/(amg))~10%, we take
L | a more conservative estimate15%, which is suggested in
qgob— v v the study of bilinear operators as we will discuss in the next

0.0 0.1 0.2

., section. The effect of the truncation of the nonrelativistic
1M, [GeV™']

expansion is negligible as we explicitly see in the difference

) _ between the two simulations of ti@(p/mg) andO(p?/mp)
FIG. 2. 1IMp_dependence dBs(m,)/R(m;,)°. Results with the accuracies

O(p/mg) (circles and O(p/mé) (triang_le_Q accuracies are shown. We finally obtain
The smaller error bars represent statistical errors, while the uncer-
tainties, obtained from a quadratic sum of the statistical uncertainty
and difference between the central values wity(1l/a) and Bs(m)
ay(/a), are shown by the larger error bars. The central values are R(mb)2
obtained withay,(2/a).

—1.543)(30), (26)

where the first error represents the statistical error, while the
second is obtained by adding the sources of systematic un-
certainty in quadrature.

Using this result and the result fd, (m,) previously
obtained in Ref[6], B, (m,)=0.752)(12), we find

We combine the results f@&2" to obtainBg(p)/ R ()2
using Eq.(22). The renormalization scalg,, is set to theb
guark pole masm,=4.8 GeV according to Ref5]. Figure
2 presents the MpS dependence oBg(m,)/R(m,)? ob-

tained with theO(p/mg) (circles andO(pZ/mé) (triangles AT
accuracies and usingy(2/a)=0.193 as a coupling constant (T) =0.15%37)(49(17), 27
in the perturbative matching. The typical size of the pertur- Bs

bative error may be evaluated by comparing the results ob- ] o
tained with different coupling constants. For this purpose, wérom Eq. (9). The first error comes from the uncertainty in
also calculate the results withay(m/a)=0.164 and the decay constarfy =245(30) MeV, which is taken from
ay(1/a)=0.270, which are considered in the larger errorthe current world average of unquenched lattice calculations
bars in Fig. 2. We find that they give at most 5% differenceq7]. The second reflects the error in the calculatioBgf R 2

at theb quark mass. presented above, and the last is obtained by assuming that
Our numerical results interpolated to the physiBalme-  the size of error in the i, correction dy, in Eq. (4) is
son masMp = 5.37 GeV are, foO(p/mg) accuracy, +20%. The current experimental bound YSK/F)BS<0.42
[19].

1513) at q*—nla The central value of our result in E€R7) is much larger
B<(my) : q° =mla, than the estimate 0.0%4 535 obtained by Beneket al. [5].
5= 1.543) at gq*=2/, (24 The main reasons are as follows. .
R(mp) 1.613) at gq*=1/a, The unquenched lattice result tbgs is about 15-20%
larger than the previously known quenched result.

The central value of our result f@s/R? is larger than
and, forO(p?/m%) accuracy, the previous value obtained from the relativistic lattice cal-
culation[8], which is used in Ref.5]. We will compare our
result with theirs in Sec. VII.

1.563) at g*=l/a,
Bs(my)

*
R(m? 1.593) at g7=2A, (25 VI. FINITE MASS EFFECTS
b 1.613) at q*=1/a, IN THE MATCHING COEFFICIENTS

In this section, we attempt to estimate the size of the
where the error represents the statistical error. The variatio®(as/(amg)) error arising from the lack of necessary one-
due to the choice of the coupling constant(g*) is explic-  loop correction, by taking the rati®(m,) defined in Eq(7)
itly shown. as an example. Although ttf@(«a</(amg)) errors in bilinear

We attempt to estimate the size of systematic uncertaintgperators and in the bag parameters are independent, it
in our result using an order counting of missing contribu-would still be useful to explicitly see the size of the error in
tions. As we found in the previous papé], the dominant a quantity, for which the correct one-loop coefficient is
uncertainties are known.
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FIG. 3. 1Mp_ dependence ofR(m,)* evaluated with the

method 1(circles and 2(sta). See the text for the detail. Open and

filled symbols are obtained with and without the dliff) correc-

tions in the one-lo

op coefficients.

We compare the values @(m,)? obtained with the fol-

lowing methods.

(1) The quantityR(m,)? may be explicitly calculated in
lattice simulation by measuring the matrix elements of axialtjon, we obtain
vector and pseudoscalar density. Results of the JLQCD Col-
laboration obtained with the NRQCD acti¢®0] are plotted
in Fig. 3 as a function of Mps. One-loop matching to the
continuum operator are calculated for two different latticewhich may be compared with our result B&(m,)/R(my)?
actions: static(filled circles and NRQCD (open circleg

[21].

(2) The equation of motion may be used to obtain

R(mb)zz(

My (Mp) + mMg(my)
M B,

)

(28)

For the phenomenological valugs,(m,)=4.1-4.4 GeV
andmg(2 GeV)=0.06-0.17 Ge\[22], which corresponds
to mg(m,)=0.05-0.14 GeV, we obtaiR(m,)2=0.6§5),

which is shown

The data obtained with the correct NRQCD matching co-

by a star in Fig. 3.

PHYSICAL REVIEW D 62 034504

which vyields Bg(2.33 GeV)=0.81 and ~BS(2.33 GeV)
=0.87. AB parameter for the operatdds, Eq.(11) is de-
noted asBs. With the renormalization-group evolution, it
becomesBg(m,)=0.75 andBg(m,) =0.85 atu,=m,. The
error was not quoted except for the statistical one, which is
0.01 for each quantity. In order to compare the results ob-
tained with different heavy quark mass, it is necessary to
remove a logarithmic dependence on the heavy quark mass.
We, therefore, defin@BS(mb) as

as(my) [ Mg
4’7T mg

1-2 Bs(my,)

Pp (mMp) =

5 T n F Bs(mb), (29)

2 a(my) (mé
b

wheremg denotes the heavy quark mass used in the simula-
tion. In the calculation of Guptat al. [8] it is about the
charm quark massg=m=1.4 GeV. Using the coupling
constantag(m,) =0.22 corresponding t(zh%= 0.327 GeV
and R(m,)? obtained with method2) in the previous sec-

cbg’SBS(mb)/R( my)2=1.20, (30)

in Eq. (26).

The central value of our result is significantly higher than
Eq. (30), which is one of the reasons for our larger value of
(AT'/T')g_ compared to that of Ref5]. We note, however,
that the calculation with the unimproved relativistic action
could suffer from largeD(amg) error, which is not even
estimated in Ref[8]. In our NRQCD calculation, on the
other hand, all possible systematic uncertainties are consid-

TABLE I. Numerical values of parameters appearing in the one-
loop lattice integrals.

efficients(open circleg show a nice agreement with the phe-
nomenological estimatgtan. This suggests that the error in
the calculation of the matrix element with correct matching
coefficient is under good control. On the other hand, the data
with the static matching coefficient$illed circles are sig-
nificantly lower, indicating large systematic errors of
O(as/(amg)). The difference ofR(m,)? between the two
matching calculations is around 15% for tBgmeson mass.
We use this number for the estimation of the systematic error
of O(a/(amy)) for Bg(my,)/R(mp)? in Sec. V.

VIl. DISCUSSION

It is instructive to compare our result with the previous
lattice calculation by Gupta, Bhattacharya and ShaGigS)
[8], who used the Wilson fermion action for the heavy quark
with the mass around the charm quark. Conversion of their
result to the definition used in this paper is given in R5f,

c 4,53
d; 5.46
d, -7.22
d' -4.13
e® 4.53
f 13.35
f! —3.64
v -6.92
v -6.72
w —-1.20
w! 0.82
J; —4.85
U 4.89
U -0.29
Y, ~7.14
V! 1.98
uf? (link) — a2

uf? (k) —8.00
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ered, but unfortunately the large systematic error officients with finite mass corrections. We used the one-loop
O(as/amg) is left to be removed. Thus, at this stage we coefficients for the static action instead, which introduces a
conclude that the present accuracy of both calculations is natystematic error of ordets/(amg)~15%.

enough for a detailed comparison. The large remaining uncertainty in our final result for
(AT'/T")s, Eq.(27), comes partly from the error in our cal-
VIIl. CONCLUSION culation of Bg(m,)/R(my)2. Another important source is

present in thdB; meson decay constah@s, as it appears as
The width differenceAT in the Bs— B mixing is ex- 2 in the formula.

ressed by the matrix elements of Iocal four uark operators®s
P y N b We also discussed a comparison of our result with the

in the 1My, expansion. The operat@s gives a dominant We found that th tral val ; iti
contribution among them and the nonperturbative calculatio"€Vious one. We found that the central value of our resultis
significantly larger. However, since both calculations suffer

of its matrix element is essential for a reliable calculation of
the width difference[4,5]. We calculated a parameter from Iarg_e systematic uncertainties, it WOUId. be fa|_r to say
Bo(m,)/R(m,)2, which is the matrix element normalized that the discrepancy between the two results is not significant
with a square of th&; meson decay constant as defined inat the present level.
Eq. (6), using lattice NRQCD formalism for the heavy quark.
From a quenched simulation aB=5.9 with the
O(a) improved light quark action, we obtain Numerical calculations have been done on Paragon XP/S
Bs(my)/R(my)?=1.543)(30), where statistical and sys- at Institute for Numerical Simulations and Applied Math-
tematic errors are given in that order. By explicitly perform- ematics in Hiroshima University. We are grateful to S. Hioki
ing two calculations with the different accuracies, we foundand H. Matsufuru for allowing us to use their program. S.H
that the O(p2/m ) corrections in the NRQCD action and and T.O. are supported by Grants-in-Aid from the Ministry
operators is only a few percent. One of the dominant sourcesf Education(Nos. 11740162, 10740125K-1.I. would like
of the systematic error is a lack of one-loop matching coef+to thank the JSPS for Young Scientists for financial support.
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APPENDIX

A matrix element of the continuum operat®x with free quark external states is expressed at one-loop order as

2

o _|4 13N?—18N+9 —3N2+2N+5| A2 3N2—4N—1I m o
< S(Iu')>_ +E AN + 2N n m_g +Tn _g < S>0
as| 1IN—9 N+1 (A2} 2(N— 2)I % (N 1) o as 2w 1 o
27 2N N m_ﬁ - (Og)o— —W (OL)ot 3 ax(Opp)os
(A1)

where{Ox), denotes a tree-level matrix element of operafgr, and the gluon mass is introduced to regularize the infrared
divergence. The evanescent operators are subtracted according {d&g6l5) of Ref. [5]. The expression is expanded in
1/m, and only the leading terms are written.

The corresponding expression for the lattice operatd23s24

O 1/a)) = —3N2+2N+5| 2,2 N2—1f (1 o® 4 @) N2—2d 1

< s ( a)}— +E Tn(a )+ 5N (f+f'+e™+uy”)+ N 1 mc
2N-1 . N+1
as[ N+ - 1 N- N+1
- ——In( A )+d1+ ¢+ BN (U+U)+ 3N Ot (Og)o+ [dz d'Op)o

as (N+1)(N 2)

N [_(l_csw)ln(az)\z)_(V+VI)]<OSD>O

ag N—
o D w0t

+——[(1 cswN(@®\?) +(V+VY(Op)ot =~ 5 =~ 5 (U+U ) {Opp)o, (A2)

where the constants d;, d,, e®, f, v, wd', f', v', w' U, U', V, V!, andJ; are defined in Ref§14,25,23,24,1Band their
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numerical values are tabulated in Table I. The coefficients with the superbdgutote the terms appearing with tB€a)

|mprovementu(2) comes from the tadpole improvement of the light quark wave-function renormalization, and is also given in
Table I.

Matching the above results and using a Fierz relafi®g),= —(Os)o— (O, ), Which is satisfied in the static limit, we
obtain forN=3

4% 4 oo 16 [pf) 4 L a®y @y Ty 2. 2 . 8 lat
Og(p)= 1+4W[1O+3In(a mg) + 3In mﬁ 3(f+f +eV+uy”) 3d1+3c g(v+v)+9\]1 Ogs(1/a)
as E——|n(a )+1|n » +1d +3c+i( + ')+EJ 'at(lla)— [d —d"OR(1/a)
2 3 3 g 2717 4% 36T )T g 2=
—;“—§[W+W]O'a‘(1/a)+ [(1 CswN(@®\2)+V+V'108 (1/a)
+4——[(1 CowIN(a\?2 )+V+V]O'at(1/a)+——[U+U 10 (1/a). (A3)

A result with cg,,= 1 is used in Eq(18).
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