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It is shown that a highly-phase-sensitive polarization-squeezed �2n−1�-photon state can be generated by
subtracting a diagonally polarized photon from the 2n photon component generated in collinear type II down-
conversion. This polarization wedge state has the interesting property that its photon number distribution in the
horizontal and vertical polarizations remains sharply defined for phase shifts of up to 1/n between the circu-
larly polarized components. Phase shifts at the Heisenberg limit are therefore observed as nearly deterministic
transfers of a single photon between the horizontal and vertical polarization components.
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I. INTRODUCTION

One of the most fundamental applications of nonclassical
light field states is the improvement of measurement preci-
sion beyond the standard quantum limits for classical light
sources. Of particular interest is the possible enhancement of
phase sensitivity in interferometry �1–7�, which could be
useful in a wide range of fields, from quantum lithography
�8–11� to atomic clocks �12,13�. It is well known that the
optimal phase resolution �� that can be achieved using a
nonclassical N-photon state is given by the Heisenberg limit
of ���1/N. Recently, few-photon interferometry at this
limit has been accomplished by new methods of generating
N-photon path entangled states using parametric down-
conversion �PDC� and post-selection �14–18�. Such path en-
tangled states are an equal superposition of the two N-photon
states where all photons are located in the same optical
mode, ��N ;0�+ �0,N�� /�2. They are therefore ideally suited
to obtain N-photon interference fringes with a period of
2� /N in the optical phase shift between the two paths. In
principle, the generation of path entangled states can be ex-
tended to higher photon numbers using the methods pro-
posed and realized in Refs. �15–18�. In practice, however, the
statistical bottlenecks in the post-selection �or heralding�
used to generate the path entangled states rapidly reduce the
probabilities of generating an appropriate output as photon
number increases. It may therefore be useful to consider al-
ternative few-photon states that can be generated more effi-
ciently from a given number of down-converted photon
pairs.

In this paper, it is shown that a highly-phase-sensitive
state can be generated by subtracting a single diagonally po-
larized photon from the �2n�-photon state generated in col-
linear type II down-conversion. Since single photon subtrac-
tion can be performed with equal efficiency for any number
of input photons, this method could be very helpful in
achieving phase resolutions at the Heisenberg limit for
higher photon numbers. Moreover, the coherence induced
between two adjacent photon number states ensures that the
narrowness of the photon number distribution is maintained

under phase shifts of up to 1/n. Phase shifts at the Heisen-
berg limit can therefore be observed as nearly deterministic
transfers of a single photon between the output modes.

II. GENERATION OF THE WEDGE STATE
SUPERPOSITION

The proposed experimental setup is shown schematically
in Fig. 1. The initial state generated by collinear type II para-
metric down-conversion is a superposition of photon number
states with equal photon number in the horizontal and verti-
cal polarizations,

�PDC� =
1

cosh r
�
n=0

�

�tanh r�n�n;n�HV. �1�

If it can be assumed that all of the emitted photons will
eventually be detected, it is possible to isolate a single
2n-photon component by post-selecting only outputs where a
total of 2n photons are detected �19�. Effectively, the input
state is then given by �n ;n�HV. This 2n-photon input compo-
nent is reflected at a beam splitter with a reflectivity of R
close to one, and one photon is detected in the transmitted
light. The components of the 2n-photon states in the beam
splitter output with exactly one transmitted photon are given
by

ÛR�n;n�HV � �0;0�HV 	 �n�1 − R�R2n−1��n;n − 1�HV

� �0;1�HV + �n − 1;n�HV � �1;0�HV�

+ ¯ . �2�

The beam splitter thus entangles the polarization of the trans-
mitted one-photon component and the polarization of the re-
flected �2n−1�-photon component. It is now possible to mea-
sure the diagonal polarization of the transmitted photon
using a � /2-plate set at 22.5° and a polarization beam split-
ter. This measurement projects the state of the transmitted
photon onto an equal superposition of horizontal and vertical
polarization, resulting in a conditional output state of

�wedge� =
1
�2

��n;n − 1�HV + �n − 1;n�HV� �3�
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Equation �2� shows that the probability of successfully
subtracting exactly one photon from the �2n�-photon input is
given by n�1−R�R2n−1. This value can be optimized indepen-
dently for any desired photon number by varying the reflec-
tivity R. The maximal efficiency of photon subtraction is
obtained at R=1−1/ �2n�. The probability of successful pho-
ton subtraction is then equal to �1−1/ �2n��2n−1 /2. Interest-
ingly, this maximal probability decreases only slightly with
photon number, from an initial value of 25% at n=1 towards
a value of 1 / �2e�	18.4% for extremely high photon num-
bers. By selecting an optimized reflectivity of R=1−1/ �2n�,
it is thus possible to achieve post-selection probabilities
greater than 18% for any number of input photons. The effi-
ciency of photon subtraction is therefore almost independent
of photon number.

It should be noted that this is quite different from the
photon bottleneck used to generate the path entangled state
��N ;0�+ �0,N�� /�2, where the corresponding post-selection
probability drops rapidly with increasing photon number as
more and more beam splitters become necessary to “bunch
up” the photons in the single mode bottleneck. In the basic
scheme introduced in Ref. �16�, the bottleneck efficiency is
2N! / �2N�N for an N-photon state. At five photons, this is an
efficiency of only 0.24%, almost 100 times less than the
optimal efficiencies of photon subtraction. It should therefore
be much easier to increase the output photon number of
wedge states than to achieve the same photon number for
path entangled states.

III. STOKES PARAMETER STATISTICS OF
„2n−1…-PHOTON WEDGE STATES

The complete polarization statistics of N-photon quantum
states can be expressed by the three Stokes parameters de-
scribing the photon number differences between horizontal
�H� and vertical �V�, plus �P� and minus �M� diagonal, and
right �R� and left �L� circular polarization,

Ŝ1 = n̂H − n̂V = âH
† âH − âV

† âV,

Ŝ2 = n̂P − n̂M = âH
† âV + âV

† âH,

Ŝ3 = n̂R − n̂L = − i�âH
† âV − âV

† âH� . �4�

As can be seen from Eq. �3�, the Stokes parameter Ŝ1 de-
scribing the HV-polarization takes on values of +1 or −1,

with a 50% probability each. The average of Ŝ1 is therefore
zero, and its uncertainty is �S1

2=1.

The low uncertainty in Ŝ1 is a direct consequence of the
quantum correlations in parametric down-conversion. In fact,

the original �n ;n�HV state is an Ŝ1 eigenstate with an uncer-
tainty of zero, which already provides phase sensitivities at
the Heisenberg limit in the photon statistics �1�. Photon sub-

traction actually increases the Ŝ1 uncertainty by one, thus
increasing the observed photon number noise in the HV ba-
sis. However, the essential effect of the photon subtraction
on the polarization statistics of the output state is the genera-
tion of coherence between the horizontal and vertical polar-
ization components. This effect can be observed in the sta-

tistics of the Stokes parameter Ŝ2, describing the photon
number difference between the diagonal polarizations P and
M. Due to the coherence between �n ;n−1�HV and �n
−1;n�HV, the expectation value of this Stokes parameter is


Ŝ2� = 
n̂P − n̂M� = n . �5�

Since the total photon number is N=2n−1, this means that
on average, more than 3/4 of all output photons are polar-
ized along the same diagonal as the transmitted photon �20�.
Since the wedge state polarization of 
Ŝ2�=n originates from

complete coherence between two adjacent eigenstates of Ŝ1,
it is the maximal diagonal polarization possible at an uncer-

FIG. 1. Sketch of the experimental setup generating the highly-phase-sensitive polarization wedge state. The �2n−1�-photon state is
generated by parametric down-conversion of n-photon pairs, followed by a reflection of 2n−1 photons at a beam splitter of reflectivity R and
detection of the transmitted photon in a diagonally polarized state using a � /2-plate set at 22.5° and a polarization beam splitter �PBS�.
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tainty of only �S1
2=1 in the difference between horizontally

and vertically polarized photons. As shown in Fig. 2, the
polarization distribution of the output state thus resembles a
quantum mechanically narrow “wedge” inserted between the

Ŝ1 eigenstates from the positive side of the diagonal polar-

ization Ŝ2—somewhat like the slice of an orange, with a
quantum limited thickness of 2�S1=2.

Due to the narrowness of its Ŝ1 distribution and due to its

comparatively high expectation value 
Ŝ2�, the wedge state is
very suitable for measurements of small phase shifts between
the right and left circular polarizations, which result in a
rotation of the Stokes parameters around the S3 axis. As in-
dicated in Fig. 2, the phase uncertainty of the polarization
wedge can then be estimated by

��2 =
�S1

2


S2�2 =
1

n2 . �6�

This phase uncertainty is close to the Heisenberg limit and
corresponds to the phase uncertainties of the various phase
squeezed states proposed for optimized phase estimation in
quantum interferometry �7�. The wedge state is therefore an
almost ideal phase squeezed N-photon state.

To clarify the application of this phase sensitivity in inter-
ferometry, it may be useful to consider the possibility of
converting the polarization modes âH and âV to spatial input
modes with equal polarization. As shown in Fig. 3, the two
paths inside the interferometer then correspond to the modes
âR/L= �âH± iâV� /�2, and the effect of a phase shift � between
the two paths is to rotate the original HV basis towards the

PM basis. In terms of the photon number difference Ŝ1�out�
observed in the two output ports, this effect can then be
expressed as the rotation of the Stokes vector around the S3
axis mentioned above, with

Ŝ1�out� = cos���Ŝ1�in� + sin���Ŝ2�in� . �7�

The phase shift � between the arms of the interferometer
thus corresponds directly to the rotation of the linear polar-
ization components obtained, e.g., by a half-wave-plate set at
�=	 /4. The phase sensitivity of the �2n−1�-photon wedge

state can then be described by the average 
Ŝ1�out�� and the
variance �S1

2�out� of the measurement result S1�out�=nH

−nV,


Ŝ1�out�� = n sin��� ,

�S1
2�out� = 1 + �n2 − 2�sin2��� . �8�

For phase shifts � smaller than 1/n, 
Ŝ1�	n� and �S1
2	1

corresponds to a phase resolution of ��=1/n, as given by
Eq. �6�. �2n−1�-photon wedge states can thus achieve phase
resolutions close to the Heisenberg limit for arbitrarily high
photon numbers. Moreover, the variance of the output pho-
ton number distribution at phase shifts � with n sin���
= ±1 is still smaller than two. Even at phase shifts that
change the average output photon number difference by one,
the photon number distribution is therefore sharper than the
difference of two between two adjacent measurement out-

comes of Ŝ1. This result indicates that phase shifts at the
Heisenberg limit are observed as nearly deterministic trans-
fers of a single photon between the horizontal and vertical
polarizations, with measurement probabilities greater than
50% of finding a measurement outcome equal to the expec-

tation value of 
Ŝ1�= ±1 at n sin���= ±1.
It is interesting to note that the above argument only relies

on averages and variances of the photon number differences

Ŝi. It is therefore straightforward to estimate the effect of
basic photon counting errors. In particular, a photon loss er-
ror may occur when the down-conversion actually generates
n+1 pairs, and two photons are subsequently lost due to
limited detector efficiencies. At low detector efficiencies, the
probability of such a photon loss error is of the order of
�tanh r�2, corresponding to the ratio of the n+1 pair probabil-

FIG. 2. Schematic illustration of the wedge state statistics in the
S1-S2 plane of the Poincare sphere. The scale chosen corresponds to
five photons �n=3�. The arrow indicates the average Stokes vector,

the thick vertical lines indicate the quantized eigenstates of Ŝ1. The
thin lines at angles of ±�� illustrate the phase uncertainty of the
wedge state. As photon number increases, the eigenstates with S1

= ±1 move closer together and the phase distribution of the wedge
state becomes narrower.

FIG. 3. Illustration of interferometry using the wedge state co-
herence. By modifying the phases of the RL modes, the original HV
input is rotated towards the PM basis. In polarization experiments,
the same effect can be achieved by a single half-wave-plate set at
�=	 /4 followed by a polarization beam splitter.

GENERATION OF A HIGHLY-PHASE-SENSITIVE¼ PHYSICAL REVIEW A 74, 013808 �2006�

013808-3



ity to the n pair probability in Eq. �1�. Since random
�=unpolarized� photon losses do not change the average po-
larization of the photons, the strong coherence between the H

and V polarization given by 
Ŝ2� is unchanged by this error.
However, the polarization fluctuations increase due to the
possibility that both of the photons lost had the same polar-
ization. Specifically, the increase in �S1

2 is equal to 2 times
the probability of the photon loss error. For reasonably low
error probabilities �e.g., for �tanh r�2
0.1�, this additional
uncertainty is much smaller than the pure state uncertainty of
�S1

2=1, and the effect on the phase resolution will be negli-
gible. These considerations indicate that the high phase reso-
lution of wedge states is rather robust against photon loss
errors. Again, this is an important difference to path en-
tangled states, where the loss of a single photon completely
destroys the quantum coherence responsible for the high
phase resolution. Due to this robustness against photon loss
errors, it may be interesting to investigate wedge state gen-
eration at high pump powers even if high detector efficien-
cies cannot be achieved �21�.

IV. PHOTON STATISTICS OF THE FIVE-PHOTON
WEDGE STATE

To illustrate the full implications of the phase sensitivity
of wedge states at the level of precise photon counting, it
may be useful to take a closer look at a specific example.
Here, a compromise is necessary between the experimental
difficulties and the increasing phase resolution permitted by
higher photon numbers. A good choice may be the five-
photon wedge state, generated by subtracting one photon
from n=3 pairs of down-converted photons, since it should
be just within reach of present technological possibilities. A
phase shift of � transforms this state according to


5;0�Û	�wedge� = −
�10

16
�cos�5

2
	 −

�

4
 + cos�3

2
	 +

�

4


− 2 cos�1

2
	 −

�

4
� ,


4;1�Û	�wedge� = −
�2

16
�5 cos�5

2
	 +

�

4
 − 3 cos�3

2
	 −

�

4


− 2 cos�1

2
	 +

�

4
� ,


3;2�Û	�wedge� =
1

8
�5 cos�5

2
	 −

�

4
 + cos�3

2
	 +

�

4


+ 2 cos�1

2
	 −

�

4
� ,


2;3�Û	�wedge� =
1

8
�5 cos�5

2
	 +

�

4
 + cos�3

2
	 −

�

4


+ 2 cos�1

2
	 +

�

4
� ,


1;4�Û	�wedge� = −
�2

16
�5 cos�5

2
	 −

�

4
 − 3 cos�3

2
	 +

�

4


− 2 cos�1

2
	 −

�

4
� ,


5;0�Û	�wedge� = −
�10

16
�cos�5

2
	 +

�

4
 + cos�3

2
	 −

�

4


− 2 cos�1

2
	 +

�

4
� . �9�

Each of these six amplitudes includes a five-photon interfer-
ence component oscillating at a rate of 5	 /2. This five-
photon interference effect is particularly strong in the �3;2�
and the �2;3� components. Figure 4 shows the interference
fringes observed in the �2;3� component. For comparison, the
dashed line shows the corresponding fringes of a five-photon
path-entangled state. The main difference between the two
fringes are the different peak heights of the wedge state in-
dicating the average diagonal polarization of the five-photon
state. The wedge state thus combines features of the maximal
five-photon interference of path-entangled states with the
well-defined polarization direction of a phase squeezed state.

The well-defined polarization direction is particularly vis-
ible at phase angles of �=0.288 �or 16.5°�, where the prob-
ability of measuring �3;2� has its maximal value of 75.2%,
and at �=0.623 �or 35.7°�, where the probabilities of mea-
suring �2;3� and �1;4� are both equal to 42.5%. Figure 5
shows these two probability distributions, along with a sche-
matic illustration of the corresponding quantized levels on
the Poincare sphere. As indicated by Fig. 5�a�, the output
photon number distribution can be “switched” between
75.2% S1=−1 ��2;3�� at �=−0.288 and 75.2% S1= +1 ��3;2��
at �= +0.288. Likewise, Fig. 5�b� indicates that the photon
number distribution at �=0 can be shifted by exactly one

FIG. 4. Probability of finding two photons in the horizontally
polarized mode and three photons in the vertically polarized mode
as a function of phase shift � between the circular polarizations for
the five-photon wedge state. The dotted line shows the same prob-
ability for a corresponding five-photon path-entangled state.
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photon with only 15% of the outcomes scattered to different
photon numbers. Considering the fact that the measurement
outcomes are discrete, this shift in the probability distribu-
tion is surprisingly smooth. Specifically, the high fidelity of
the �3;2� component at �= +0.288 shown in Fig. 5�a� sug-
gests a “polarization wedge” that is much sharper than the
photon number distribution at �=0 �22�. The quantum co-
herence between the adjacent photon number states induced
by the post-selected photon subtraction thus permits a sur-
prisingly high level of control at the single photon level.

Although the detailed calculations presented here only ap-
ply to the specific case of five photons, it should be remem-

bered that the basic features of the statistics for a general
�2n−1�-photon wedge state are defined by the Stokes param-

eter statistics given in Sec. III. Since the uncertainty of Ŝ1 is
always one, the photon number distributions will be limited
to only a few possible measurement outcomes close to S1
= ±1 for any number of photons. Specifically, the photon

number distribution at 
Ŝ1�	1 will always be similar to Fig.

5�a�, and the distribution at 
Ŝ1�	2 will be similar to Fig.
5�b�. For high n, we can therefore expect a maximal prob-
ability of S1= +1 at a phase angle of �	1/n, where, accord-

ing to Eq. �8�, 
Ŝ1�	1 and �S1
2	2. The “switch” from S1

=−1 to S1= +1 is therefore also observable at higher photon
numbers.

V. CONCLUSIONS

In conclusion, it has been shown that it is possible to
obtain highly-phase-sensitive �2n−1�-photon wedge states
by photon subtraction from n-photon pairs generated in col-
linear type II parametric down-conversion. Since the post-
selection condition for the generation of this state can be
higher than 18% regardless of photon number, the only limi-
tation in extending this scheme to high photon numbers is
the efficiency of the parametric down-conversion. The gen-
eration of five-photon wedge states should therefore be well
within reach of present technological capabilities. Quantita-
tively, the phase sensitivity of wedge states is comparable to
that of the recently realized path entangled states, with the
advantage that a phase shift can be related directly to a shift
in the photon number distribution observed in the output.
Specifically, phase shifts at the Heisenberg limit appear as
nearly deterministic transfers of one photon between the two
output ports. �2n−1�-photon wedge states should therefore
be highly suitable for the determination of phase shifts � of
about 1 /n. The generation of polarization wedge states by
down-conversion and photon subtraction thus provides a
simple and effective experimental approach to phase mea-
surements at the Heisenberg limit with nonclassical
N-photon inputs.
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