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It is shown that coherent superpositions of two oppositely polarizedn-photon states can be created by
postselecting the transmission ofn independently generated photons into a single-mode transmission line. It is
thus possible to generate highly nonclassicaln-photon polarization states using only the bunching effects
associated with the bosonic nature of photons. The effects of mode-matching errors are discussed and the
possibility of creatingn-photon entanglement by redistributing the photons inton separate modes is
considered.
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I. INTRODUCTION

The creation of highly nonclassical states is one of the
fundamental challenges in quantum optics. In particular,
multiphoton entanglement and superpositions of macroscopi-
cally distinguishable states(commonly referred to as cat
states, after Schrödinger’s famous cat paradox[1]) may be
very useful as resources for optical quantum-information
processes such as teleportation, cloning, or quantum compu-
tation [2–7]. Recently, it has been shown that multiphoton
entanglement can indeed be created and manipulated using
only single-photon sources, beam splitters, and postselection
based on precise photon detection[8–15]. In previous inves-
tigations, these methods have been applied to photonic qu-
bits, where the goal was to obtain exactly one photon per
spatial mode. In order to achieve this kind of output, it is
necessary to discard the cases where several photons bunch
up in a single spatial mode as unwanted errors. However, it is
also possible to specifically select cases where several pho-
tons bunch up in the same mode. In particular, this method
has been used to propose the generation of spatial mode en-
tanglement[16,17].

In the following, a related proposal is presented for the
generation of highly nonclassical polarization states. It is
shown that a coherent superposition of two oppositely polar-
ized n-photon polarization states can be obtained by trans-
mitting n independently generated photons with homoge-
neously distributed polarizations into a single spatial mode.
For large photon numbers, thisn-photon polarization state
has the nonclassical statistical properties of a cat state, since
the superposition is between two well separated regions of
the Poincaré sphere[18] and the two polarization states can
be distinguished by measuring only a few photons. On the
other hand, highly nonclassical interference effects between
the two components of the superposition will be observable
in the polarization statistics of the Stokes vector components

orthogonal to the polarization along which the superposition
is prepared[19].

Once a cat-state superposition of polarization states is re-
alized in a single mode, it is also possible to generate the
corresponding multiparticle entangled state by redistributing
the photons into separate channels, effectively transforming
the local state ofn photons in one spatial mode into an en-
tangled state ofn photons inn spatial modes. In the present
proposal, the photons are then transferred fromn input
modes ton output modes through a single-mode bottleneck.
The quantum interference effects associated with the bosonic
nature of photons leads to a superbunching effect in the po-
larization, resulting in maximaln-photon entanglement in the
output. It is thus possible to realize a strong interaction be-
tween an arbitrarily large number of photons by temporarily
bunching them into a single-mode channel. The superbunch-
ing effect at a photon bottleneck may therefore be a useful
tool in the realization of a wide range of multiphoton quan-
tum operations.

II. THE SUPERBUNCHING EFFECT

The bunching effect used to obtain the nonclassical polar-
ization state can be understood by considering the analogy
with two-photon bunching. If a horizontally polarized photon
and a vertically polarized photon are transmitted into the
same spatial mode, their circular polarizations will always be
the same—either both right polarized or both left polarized.
Quantum interference removes the component with different
circular polarization. This effect can be generalized ton pho-
tons by choosing a homogeneous distribution of linear polar-
ization angles. The quantum interference between the differ-
ent linear single-photon polarizations then removes all
components of the circular polarization, except for the two
components where all photons have the same circular polar-
ization. However, quantum coherence between the two maxi-
mally polarized cases is preserved since the bunching effect
does not distinguish between right or left circular polariza-
tion.

The validity of this argument can be verified by defining
the following n-photon input state:
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ucinl = 2−sn/2dp
l=0

n−1FâR
†sld + expS− i

2p

n
lD âL

†sldGuvacl, s1d

whereâR
†sld and âL

†sld are the creation operators of right and
left circular polarization in the spatial model. The rotation of
the linear polarization in the input portsl is thus represented
by the phases of 2pl /n in the superposition of the circular
polarization components. Linear optics can then be used to
transfer alln input modes into a single-mode output port
described by

b̂R =
1
În

o
l=0

n−1

âRsld,

b̂L =
1
În

o
l=0

n−1

âLsld. s2d

Each input modeâR/Lsld thus contributes equally to the cor-

respondingly polarized output modeb̂R/L. Photon losses to

output modes other thanb̂R/L can be avoided by postselection
using high-quantum-efficiency photon detectors in all unused
output ports. If any photon losses are detected, the output is
discarded. This postselection procedure can then be repre-

sented by a projection operatorP̂. The non-normalized post-
selected output state then reads

ucoutl = P̂ucinl = s2nd−n/2p
l=0

n−1Fb̂R
† + expS− i

2p

n
lD b̂L

†Guvacl.

s3d

Since the postselection condition represented byP̂ has made
the photons from different input ports indistinguishable in
the output, the terms with the same overall number of right
and left circular polarized photons now interfere with each
other. Because all sums over varying phase factors
expf−i2pl /ng are zero, the only two remaining terms in the
output are the component with only right circular polarized
photons and the component with only left circular polarized
photons,

ucoutl = s2nd−n/2hsb̂R
†dn + expf− ipsn − 1dgsb̂L

†dnjuvacl

=Î n!

s2ndnfun;0l − s− 1dnu0;nlg, s4d

where the final result is expressed in the photon number ba-

sis of the right and left circular polarization modes in the
output. Note that the elimination of all other components of
circular polarization can also be justified by a symmetry ar-
gument. Since the distribution of input polarizations has an
n-fold symmetry with respect to rotations of the Stokes vec-
tor around the circular polarization axis[or a s2nd-fold rota-
tion symmetry of the linear polarization], and since the op-
erations applied are not sensitive to the polarization at all, the
output state must also have thisn-fold symmetry. However,
any coherent superposition of the maximally polarized states
un;0l and u0;nl with other polarization states would reduce
this symmetry[19]. Therefore, the cat-state superposition of
un;0l and u0;nl is the only possible output state that pre-
serves then-fold symmetry of the input.

In postselection methods, the difficulty of generating
highly nonclassical states is directly reflected in the probabil-
ity of obtaining the postselection condition that indicates a
successful generation of the target state. In the present case,
this condition is given by the probability that no photons are
detected in any spatial modes other than the output modes

b̂R/L. The probability of success for this postselection proce-
dure is given by

psnd = kcoutucoutl =
2 n!

s2ndn . s5d

Since the probability of finding all photons in the same spa-
tial output mode rapidly decreases with increasing photon
number, the efficiency of generating highly nonclassical su-
perpositions is very low. However, the probability of success
is still significantly higher than the probability of finding all
of n independent particles in the output channel. For ex-
ample, the probability of finding three photons in the output
is ps3d=1/18. For three independent particles, the chance of
finding all three in the output channel would be only
s1/3d3=1/27. This enhancement of the postselection prob-
ability increases with increasing photon number and may
thus be helpful in the suppression of errors caused by imper-
fect mode matching between the input photons(see below).

Figure 1 shows an example of an optical setup to generate
a cat-state superposition of four-photon polarization. The
cascade setup shown can easily be generalized to arbitrary
photon numbers. Each input photon is generated by a single
photon source with a well defined linear polarization, as in-
dicated in the figure. The postselection condition is that no
photons are detected in the three detectors set up at the
empty output ports. Note that it would also be sufficient to
postselect the arrival of all four photons at detectors in the

FIG. 1. Schematic setup for the generation of
a four-photon-polarization cat state. Each input
port receives one-photon with the linear polariza-
tion indicated above. The detectors ensure that no
photons are emitted into the empty output ports,
and the beam splitter reflectivities are chosen so
that each input component has equal weight in
the output.
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output. This may be useful to avoid errors due to the limited
quantum efficiencies of the detectors, although it might re-
strict the possibilities of further quantum operations on the
output.

III. POLARIZATION STATISTICS OF THE OUTPUT
STATE

The polarization statistics of the output can be character-
ized by the Stokes parameters, defined as the photon number
difference between a pair of orthogonal polarizations. The
properties of the quantized Stokes parameters then corre-
spond to the properties of the spin components of a spin-n/2
system[19]. The quantum statistics of four-photon polariza-
tion thus corresponds to a spin-2 system, and the five pos-
sible photon distributions between any two orthogonal polar-
izations correspond to the five eigenvalues of the respective
spin component.

The most impressive feature of the superbunching effect
is the accumulation of all photons in the two states with
maximal circular polarization, given by the circular polariza-
tion statisticspRLsnR,nLd,

pRLs4;0d = 1/2,

pRLs3;1d = 0,

pRLs2;2d = 0,

pRLs1;3d = 0,

pRLs0;4d = 1/2. s6d

However, the observation of this bunching effect aroundnR
−nL= ±4 does not indicate coherence between the two com-
ponents. To distinguish the quantum superposition from a
statistical mixture, it is necessary to consider the linear po-
larization statistics. These can be obtained from the coherent
overlap of the two componentsu4Rl and u4Ll with the basis
states of a linear polarization measurement rotated by an
angle off relative to the horizontal and vertical polarization
axes, where the individual basis states are defined by the
photon number differenceDnsfd between the two orthogo-
nal polarizations,

kDn = + 4u4Rl = 1/4 expf− i4fg,

kDn = + 4u4Ll = 1/4 expf+ i4fg,

kDn = + 2u4Rl = 1/2 expf− i4fg,

kDn = + 2u4Ll = − 1/2 expf+ i4fg,

kDn = 0u4Rl = Î6/4 expf− i4fg,

kDn = 0u4Ll = Î6/4 expf+ i4fg,

kDn = − 2u4Rl = 1/2 expf− i4fg,

kDn = − 2u4Ll = − 1/2 expf+ i4fg,

kDn = − 4u4Rl = 1/4 expf− i4fg,

kDn = − 4u4Ll = 1/4 expf+ i4fg. s7d

As the linear polarization is rotated, the interference terms in
the photon number distribution thus oscillate with a period-
icity of 8f,

pfs+ 4d =
1

16
s1 − cosf8fgd,

pfs+ 2d =
4

16
s1 + cosf8fgd,

pfs0d =
6

16
s1 − cosf8fgd,

pfs− 2d =
4

16
s1 + cosf8fgd,

pfs− 4d =
1

16
s1 − cosf8fgd. s8d

Figure 2 shows the characteristic polarization statistics of the
superbunched superposition state. Figure 2(a) shows the su-
perbunching effect in the circular polarization statistics; Figs.
2(b) to 2(d) show the linear polarization statistics for polar-
ization angles off=0, f=p /8, andf=p /16, respectively.
Note that the polarization angles are defined relative to the
four input polarizations, that is, the sensitivity of the output
statistics to the linear polarization direction originates from
the anisotropy caused by the selection of a particular set of
input polarizations. Specifically, the polarization statistics of
linear polarizations that coincide with one of the input polar-
izations(f=0 andf=p /4) always have exactly three pho-
tons in one polarization and one in the otherfDnsfd= ±2g, as
can be seen in Fig. 2(b). This distribution of photons can be
understood as a combination of the preservation of the input
polarization(one input photon in each of the two observed
output polarizations) and the conventional bunching effect
between the remaining two photons, which adds exactly two
photons to either one of the two output polarizations. On the
other hand, the polarization statistics of linear polarizations
that are exactly halfway between two of the input polariza-
tions (f=p /8 and f=3p /8) are clearly dominated by the
75% probability of finding equal numbers of photons in both
polarizationsfDnsfd=0g, as can be seen in Fig. 2(d). In this
case, the complete absence of photon distributions with
Dnsfd= ±2 indicates a strong quantum interference effect
between the circular polarization components. The linear po-
larization statistics that would also be expected for the maxi-
mally right or left polarized statesu4Rl or u4Ll are obtained
at angles off=p /16, f=3p /16, etc., as shown in Fig. 2(c).
These statistics correspond to the binomial distribution ex-
pected if each photon had a random linear polarization. The
deviations from this binomial distribution thus show that the
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polarization statistics cannot be explained in terms of a
simple combination of individual photon polarizations.

IV. EFFECTS OF MODE-MATCHING ERRORS

Experimentally, the superbunching effect requires that all
input photons can be matched into the same mode at the
beam splitters. Therefore, the most likely source of errors is
an imperfect mode matching at one of the input ports. Since
the effect of such errors is quite different from the decoher-
ence effects normally expected in spin systems, it may be of
interest to investigate the polarization statistics associated
with a mode-matching error in more detail.

The characteristics of a mode-matching error can be ob-
tained by assuming that one of the photons is in a different
mode from the other three. The output polarization state is
then a product state of a three-photon state with modified
bunching effects and a single-photon state with the un-
changed input polarization. If the mismatched photon is hori-
zontally polarized[represented by the contribution withl
=0 in Eq. (1)], the output state of the remaining three pho-
tons is given by

1

16Î2
sâR

† + iâL
†dsâR

† − âL
†dsâR

† − iâL
†duvacl

=
Î3

16
u3;0l −

1

16
u2;1l +

1

16
u1;2l −

Î3

16
u0;3l. s9d

Note that the circular polarization statistics of this state is
independent of the linear polarization of the mismatched
photon. Therefore, all mode-matching errors modify the cir-
cular polarization in the same way. However, the loss of
symmetry will be apparent in the linear polarization statis-
tics.

The total output state is obtained as a product state of the
bunched three-photon state given by Eq.(9) and the single

horizontally polarized photon transmitted to the output port
with a probability of 1/4. In the circular polarization basis,
this product state of three-photon and one-photon polariza-
tion in the output reads

uc3^1l =
1

32Î2
sÎ3u3;0l − u2;1l + u1;2l − Î3u0;3ld ^ su1;0l

+ u0;1ld. s10d

The total amplitude of this state describes the postselection
probability. It is interesting to compare this probability to the
perfectly mode-matched four-photon postselection probabil-
ity ps4d,

kc3^1uc3^1l =
1

128
=

2

3
ps4d. s11d

The mode mismatch thus reduces the postselection probabil-
ity for the four photons from 3/256 to 2/256. Experimen-
tally, this dependence of successful postselection on mode
matching could be observed by varying the delay time of one
of the input photons, thus varying the phase matching artifi-
cially [20]. It is then possible to evaluate the mode matching
from the rates of coincidence counts obtained in the experi-
ment.

The statistics of circular polarization obtained from a
single-photon mismatch error corresponding to the output
stateuc3^1l reads

p3^1s4;0d =
3

16
,

p3^1s3;1d =
4

16
,

FIG. 2. Illustration of the char-
acteristic polarization statistics of
a superposition state of the two
four-photon states with maximal
circular polarization u4Rl and
u4Ll. (a) shows the circular polar-
ization statistics,(b) shows the
linear polarization statistics along
the horizontal and vertical direc-
tions sf=0d, (c) shows the polar-
ization statistics at an angle of
p /16 relative to the horizontal
and vertical directions, and(d)
shows the polarization statistics at
an angle ofp /8. Note that the lin-
ear polarization statistics have a
periodicity ofp /4, that is, the sta-
tistics shown in(a) also applies to
an angle ofp /4, etc.
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p3^1s2;2d =
2

16
,

p3^1s1;3d =
4

16
,

p3^1s0;4d =
3

16
. s12d

This distribution sharply contrasts with the bunching effect
of the perfectly mode-matched case given by Eq.(6). The
main effect of the mode-matching error is thus to destroy the
bunching effect, while the coherence between the circularly
polarized components, which corresponds to the linear polar-
ization statistics, is affected much less.

To evaluate the effects of the mode mismatch on the lin-
ear polarization components, it is useful to transform the
output state into the horizontal and vertical basis statessf
=0d. In this basis, the state reads

uc3^1l =
1

16Î2
sÎ3u3Vl − u2H;1Vld ^ u1Hl. s13d

The horizontal and vertical polarization statistics thus still
includes only the two components withDn= ±2, correspond-
ing to three photons in one polarization and one in the other.
The only change compared to the statistics forf=0 given in
Eq. (8) is that the vertically polarized output is preferred.

Figure 3 shows a comparison of the polarization statistics
for the one-photon mode mismatch with the perfectly mode-
matched four-photon output. Note that the changed postse-
lection probability has been taken into account, so that the

sum over all probabilities shown is 1.5 times higher for the
perfectly mode-matched case. Most importantly, mode-
matching errors have more impact on the circular polariza-
tion statistics than on the linear polarization statistics which
depends on coherence between the circular polarization
eigenstates. The errors expected in the generation of a super-
position state ofu4Rl and u4Ll by superbunching are there-
fore quite different from the decoherence effects normally
associated with cat-state superpositions. In the case of a
small mode-matching error probabilitye, the expected circu-
lar polarization distribution can be derived by mixing the
ideal distribution of Eq.(6) with the error distribution given
in Eq. (12). Taking the different postselection probabilities
into account, this distribution is given by

perrorsn;4 − nd =
3

256
s1 − edpRLsn;4 − nd

+
1

128
e p3^1sn;4 − nd. s14d

It is thus possible to estimate the mode-matching error from
the experimental data obtained in measurements of the cir-
cular polarization output.

V. GENERATION OF MULTIPARTICLE ENTANGLEMENT

Once a highly nonclassicaln-photon polarization state is
generated in a single mode, this state can be converted into
an n-particle entangled state by distributing the photons into

FIG. 4. Schematic setup for the generation of
multiparticle entanglement using the photon
bottleneck. In this case, postselection by
polarization-sensitive detection in the four output
channels is necessary to redistribute the photons
into different modes.

FIG. 3. Illustration of the change in the polarization statistics caused by a one-photon mode-matching error.(a) shows the circular and(b)
shows the horizontal and vertical polarization statistics. The thick lines show the polarization statistics of the error component, corresponding
to three photons in the same mode and one photon in a different mode, as given by Eqs.(10) and (13). The thin lines show the output
probabilities for the ideal four-photon bunching. The difference in the total probability corresponds to the change of postselection probability.
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n separate channels. It is then possible to apply the criteria
for entanglement verification to quantify the nonclassical
features of the polarization statistics. Figure 4 illustrates a
possible setup for the generation of four-photon entangle-
ment using a photon bottleneck. In this setup, it is necessary
to post select the output by detecting exactly one-photon in
each output channel using polarization-sensitive detectors.
The redistribution of the photons into separate channels thus
makes the output condition symmetric to the input condition
and the operation of the photon bottleneck can be interpreted
as a collective four-photon interaction. In the absence of er-
rors, the output state of this interaction is the Greenberger-
Horne-Zeilinger(GHZ) state,

uGHZl =
1
Î2

suRRRRl − uLLLLld. s15d

Such four-photon GHZ states have recently been generated
by using entangled pairs generated in downconversion as
input [21–23]. The photon bottleneck provides an alternative
method of generating the same type of multiparticle en-
tanglement from previously unentangled input photons.

The analysis of mode-matching errors given above can
now be applied to determine the condition for successful
entanglement generation. Genuinen-particle entanglement
can be satisfied by the condition[24]

kGHZur̂outuGHZl
Trhr̂outj

ù
1

2
. s16d

Using the results of Eqs.(10) and(11), it is possible to quan-
tify the reduction in multiparticle entanglement caused by a
mode-matching error as follows:

ukGHZuc3^1lu2

kc3^1uc3^1l
=

3

8
. s17d

The overall reduction for small mode-matching error prob-
abilities e can then be determined using the different postse-
lection probabilites as

kGHZur̂outuGHZl
Trhr̂outj

=
12 − 9e

12 − 4e
< 1 −

5

12
e. s18d

For example, even if each of the four input channels contrib-
utes a mode-matching error of 5%, for a total error probabil-
ity of about 20%se<0.2d, the GHZ contribution would be
reduced by only about 8.3%. The generation of multiparticle
entanglement using a photon bottleneck thus appears to be
very robust against typical mode-matching errors.

VI. CONCLUSIONS

In conclusion, it has been shown that a highly nonclassi-
cal superposition state of oppositely polarizedn-photon
states can be generated by postselecting the transmission ofn
independently generated photons into a single spatial mode.
No initial entanglement is needed, and the postselection con-
ditions require only zero detection events. In principle, the
method can be applied to any number of photons. It can be
used to generate catlike superpositions in the polarization
statistics of single-moden-photon states, or to obtain GHZ-
typen-photon entanglement. The error analysis suggests that
the nonclassical correlations that can be generated by this
method are sufficiently robust with regard to experimental
imperfections. The photon bottleneck setup presented in this
paper may therefore provide a useful tool for the generation
and control of nonclassical states of light.
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