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Uncertainty characteristics of generalized quantum measurements
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The effects of any quantum measurement can be described by a collection of measurement operators$M̂m%
acting on the quantum state of the measured system. However, the Hilbert space formalism tends to obscure the
relationship between the measurement results and the physical properties of the measured system. In this paper,
a characterization of measurement operators in terms of measurement resolution and disturbance is developed.
It is then possible to formulate uncertainty relations for the measurement process that are valid for arbitrary
input states. The motivation of these concepts is explained from a quantum communication viewpoint. It is
shown that the intuitive interpretation of uncertainty as a relation between measurement resolution and distur-
bance provides a valid description of measurement back action. Possible applications to quantum cryptography,
quantum cloning, and teleportation are discussed.
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I. INTRODUCTION

One of the most intriguing problems of quantum mech
ics is the interpretation of the measurement process@1#. The
reason for this central role of the measurement process is
absence of fundamental ‘‘elements of reality’’ that would
multaneously characterize both the dynamics and the m
surement results@2–4#. It is therefore not possible to trac
the measurement interaction back to microscopic trajecto
Instead, only a summary of the total statistical effects o
measurement is available. Originally, this property of qu
tum mechanics was explained by Heisenberg in terms o
uncontrollable disturbance in one variable caused by
measurement of another variable@5#. However, this explana
tion was still based on a classical model of the measurem
interaction. Consequently, the general validity of Heise
berg’s original argument has been questioned by a numbe
researchers@6,7#. In particular, there appear to be some u
resolved issues concerning the derivation of uncertainties
ing correlations between the system and the measurem
device@8–10#.

On the other hand, the investigation of various method
prepare and control quantum states, especially in the fiel
quantum optics, has motivated the development of a ge
alized measurement theory based on the Hilbert space re
sentation of quantum states. This formalism allows an
pression of all relevant statistical properties of a quant
measurement in an extremely compact form@11#. Unfortu-
nately, this compact form tends to obscure the relations
between physical properties of the system and the meas
ment process. In particular, the relationship of this gene
ized formulation of measurement with Heisenberg’s origi
discussion of the uncertainty principle as a relation betw
measurement resolution and the disturbance of a conju
variable may not be entirely clear@6#.

In this paper, the measurement effects of a general
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measurement described by a set of operators$M̂m% are char-
acterized in terms of the physical properties of the measu
system. This characterization is based on the reliability
quantitative estimates for various physical properties of
system before the measurement. Using these definitions
uncertainty relations for measurement resolution and dis
bance can be derived, thereby establishing the validity of
uncertainty principle for generalized quantum measureme
It is then possible to translate Heisenberg’s original argum
into a form closer to present problems in quantum inform
tion theory. In particular, it is shown that the concept
disturbance can be understood in terms of a loss of infor
tion about the input state caused by the measurement
action. This interpretation can then be applied to proble
such as quantum cryptography, quantum cloning, and qu
tum teleportation.

II. QUANTITATIVE ESTIMATES AND MEASUREMENT
RESOLUTION

While classical physics allows a direct identification
measurement results with objective properties of the syst
the existence of which is thought to be independent of
measurement process, quantum mechanics is formulate
an abstract probabilistic space from which the measurem
statistics must be derived indirectly. Therefore, a spe
theory is necessary to identify and define the connection
tween a measurement outcomem and the quantum state o
the system. In general, this can be achieved by using a s
measurement operators$M̂m%. These operators describe bo
the measurement probabilitiesp(m) for each outcomem and
the change of the quantum state caused by the measure
back action. For an input density operatorr̂ in ,

p~m!5tr$r̂ inM̂m
† M̂m%,

r̂out5
1

p~m!
M̂mr̂ inM̂m

† . ~1!
©2003 The American Physical Society06-1
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Note that the properties ofM̂m are only restricted by the fac
that the sum of all probabilities must be one for any inp
state, that is,

(
m

M̂m
† M̂m51̂. ~2!

In this formulation, the information obtained about th
measured system is represented by the dependence o
measurement probabilityp(m) on the input stater̂ in . In or-
der to characterize the measurement information obta
about an observableÂ, it is necessary to examine how th
probability p(m) varies for different eigenstates ofÂ. Sup-
pose that the input state is an unknown eigenstate of
observableÂ. It is then possible to estimate the eigenval
of Â based on the measurement resultm. Assuming that each
eigenstate ofÂ is equally likely to be the input, the probabi
ity p(Aum) that m was obtained as a result ofA is given by

p~Aum!5
^AuM̂m

† M̂muA&

(A8 ^A8uM̂m
† M̂muA8&

5
^AuM̂m

† M̂muA&

tr$M̂m
† M̂m%

. ~3!

In order to provide a single quantitative estimate of the in
eigenvalueA, it is necessary to assign a measurement va
Am to each possible outcomem. The reliability of this esti-
mate can be characterized by the average quadratic erro
tained from the probabilitiesp(Aum),

dAm
2 5(

A
~Am2A!2p~Aum!5

tr$~Am2Â!2M̂m
† M̂m%

tr$M̂m
† M̂m%

.

~4!

The best possible estimate is then obtained by minimiz
this quadratic error. The result of this optimization is t
average value ofA in the input state distributionp(Aum),

Am5(
A

Ap~Aum!5
tr$ÂM̂m

† M̂m%

tr$M̂m
† M̂m%

. ~5!

The measurement outcomem can then be identified with a
quantitative measurement of the observableÂ, where the
measurement result is given byAm and the measuremen
resolution is given bydAm

2 .
This procedure can be applied to any observable.

measurement resultm, therefore provides information abou
all physical properties of the measured system. The infor
tion obtained from the measurement resultm can be summa-
rized by the normalized statistical measurement operatorR̂m
given by

R̂m5
M̂m

† M̂m

tr$M̂m
† M̂m%

. ~6!

This operator is essentially a time-reversed version of
density matrix. Instead of predicting future measurement
02210
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sults, it is used to ‘‘retrodict’’ properties of the input@12,13#.
In particular, the quantitative estimatesAm and the measure
ment errorsdAm

2 are now defined as expectation values of t

operator and fluctuations of the statistical operatorR̂m ,

Am5tr$ÂR̂m%,

dAm
2 5tr$Â2R̂m%2Am

2 . ~7!

The analogy between the statistical operatorR̂m and the den-
sity operator indicates that the same uncertainty relations
apply to quantum state preparation also apply to the sim
taneous measurement of noncommuting properties~see the
Appendix for a general derivation of uncertainty relation!.
Specifically, the uncertainty limit of the measurement err
dAm

2 anddBm
2 of two noncommuting observablesÂ andB̂ is

given by

dAm
2 dBm

2 >
1

4
utr$R̂m@Â,B̂#%u2. ~8!

This uncertainty relation applies to cases where the sa
measurement procedure is used to estimate both input ei
values ofÂ and input eigenvalues ofB̂ when no additional
information on the input state is available. An example
such a situation can be given in terms of a quantum crypt
raphy protocol, where a message can be either encoded i
eigenvalues ofÂ or in the eigenvalues ofB̂. Uncertainty
relation ~8! then defines a quantitative limitation on eave
dropping attempts. An important feature of this measurem
uncertainty is that it does not depend on the input state at
Instead, the uncertainty limit is defined by an expectat
value of the statistical matrixR̂m that characterizes the infor
mation obtained in the measurement. In general, this exp
tation value can itself be interpreted as an estimate o
physical property of the measured system. The characte
tion of measurement uncertainty is thus achieved entirely
terms of information obtained in the measurement, avoid
any ambiguities of assumptions about the physical rea
represented by the input state. Nevertheless, uncertainty
lation ~8! also has implications for the interpretation of th
measurement back action, as will be explained in the follo
ing section.

III. BACK ACTION AND DISTURBANCE

The measurement operatorM̂m not only describes the
measurement information obtained from the measurem
result m, but also the measurement back action effects t
change the input state into the output state. In order to c
acterize this change in terms of physical properties, it is n
essary to find a useful definition of the disturbance of
observableB̂ caused by the measurementM̂m . In the follow-
ing, the definition of disturbance will be based on the me
surement error obtained when the input eigenvalue ofB̂ is
estimated by the outcome of a precise projective meas
ment ofB̂ performed on the output of the measurementM̂m .
6-2
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The disturbance then corresponds to a loss of informa
about the propertyB̂ suffered as a consequence of the m
surement back action.

The measurement sequence defined by an initial meas
ment resultm followed by a final measurement result ofBf is
characterized by a statistical matrixR̂m f given by

R̂m f5ur m f&^r m fu with

ur m f&5
1

A^Bf uM̂mM̂m
† uBf&

M̂m
† uBf&. ~9!

This statistical matrix determines the optimal estimates
the input eigenvalues of bothÂ and B̂ obtained from the
measurement resultsm andBf ,

Am f5^r m fuÂur m f&,

Bm f5^r m fuB̂ur m f&. ~10!

The measurement errors are given by

dAm f
2 5^r m fuÂ2ur m f&2Am f

2 ,

dBm f
2 5^r m fuB̂2ur m f&2Bm f

2 . ~11!

The proper uncertainty relation for the estimates ofÂ andB̂

obtained from an initial measurementM̂m followed by a pre-
cise measurement ofB̂ therefore reads

dAm f
2 dBm f

2 >
1

4
u^r m fu@Â,B̂#ur m f&u2. ~12!

Since this uncertainty relation applies to the best estimate
Â andB̂, it is obvious that it is also fulfilled for estimates o
Â based only onm and estimates ofB̂ given directly by the
final measurement valueBf . In particular, the actual distur
banceDBm f

2 can be written as

DBm f
2 5^r m fu~Bf2B̂!2ur m f&5dBm f

2 1~Bf2Bm f!
2,

~13!

where the difference between the measurement resultBf and
the optimal estimateBm f5^r m fuB̂ur m f& corresponds to a sys
tematic error caused by the measurement back action.
disturbance can thus be separated into a random partdBm f

2

limiting the possibility to estimate the initial value ofB̂, and
a well-defined shift ofB̂ given by the difference between th
output valueBf and the best possible estimateBm f of the
unknown input value based on all the available measurem
informations.

With the definitions given above, it is possible to form
late Heisenberg’s uncertainty principle with respect to
measurement resolutiondAm f and the disturbanceDBm f

2

caused by the measurement back action. In this form
states that the errordAm f

2 of an estimate ofÂ obtained from
02210
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the measurement resultm is related to the disturbanceDBm f
2

of a noncommuting propertyB̂ by

dAm f
2 DBm f

2 >
1

4
u^r m fu@Â,B̂#ur m f&u2. ~14!

This relation takes into account the final measurement re
Bf and may include correlations between the error of
estimateAm and the final resultBf . Therefore, a complete
characterization ofM̂m requires the determination of mea
surement resolutionsdAm f and disturbancesB̂m f for each
final resultBf .

In order to obtain a single expression for the disturban
of B̂ caused by the measurementM̂m , it is necessary to
average over all final measurement resultsBf . For this pur-
pose, the statistical matrixR̂m for the measurement ofm
given by Eq.~6! can be expressed in terms of the eigenst
ur m f& of the statistical matrixR̂m f for the joint measuremen
given by Eq.~9!,

R̂m5(
Bf

wm~Bf !ur m f&^r m fu with

wm~Bf !5
^Bf uM̂mM̂m

† uBf&

tr$M̂m
† M̂m%

. ~15!

This decomposition shows that the statistical matrixR̂m can
be interpreted as an average over the statistical matr
ur m f&^r m fu of each possible final outcomeBf with the appro-
priate statistical weightswm(Bf). If no other information on
the input state is available,wm(Bf) is the conditional prob-
ability of obtaining the final resultBf following an initial
measurement result ofm. Since the errors of the estimateAm
obtained from the measurement resultm are given by an
expectation value of the statistical matrix, it follows fro
Eqs.~15! and ~4! that

dAm
2 5tr$~Am2Â!2R̂m%

5(
Bf

wm~Bf !^r m fu~Am2Â!2ur m f&

5(
Bf

wm~Bf !dAm f
2 . ~16!

The measurement errordAm
2 obtained forM̂m is therefore

equal to the statistical average over the measurement e
dAm f

2 obtained for the measurement sequences^Bf uM̂m .
Likewise, the averaged disturbance ofB̂ associated with the
measurement resultm can be obtained by

DBm
2 5(

Bf

wm~Bf !DBm f
2

5 (
Bi ,Bf

wm~Bf !u^r m fuBi&u2~Bf2Bi !
2

5 (
Bi ,Bf

u^Bf uM̂muBi&u2

tr$M̂m
† M̂m%

~Bf2Bi !
2. ~17!
6-3



s
al
t
ll
a

e
r-

ty
di-
ce

b

e
r

a

ck

e
an
i

u
n
o
he
i

al

er

b
n

en

-

that
tum

of
for-
the

nts
nts
ho-
ns.
nted

m
re-

r-

and
cted

m-
, it
nce

e or
ced
s-
hen
on-
ates
ise,
at

val-
n-

e a
In

n-
cer-
um

of
s

b

per
r-

HOLGER F. HOFMANN PHYSICAL REVIEW A67, 022106 ~2003!
This definition of measurement disturbance correspond
an average of the squared difference between the final v
Bf and the initial valueBi over all possible input and outpu
values of B̂. This average can be obtained experimenta
and corresponds well with the intuitive idea of disturbance
a random change ofB̂.

SincedAm
2 and DBm

2 can both be expressed as averag
over dAm f

2 andDBm f
2 , it is now possible to derive an unce

tainty relation fordAm
2 andDBm

2 from relations~14! for each
dAm f

2 andDBm f
2 . As shown in the Appendix, the uncertain

of a statistical mixture can be derived directly from the in
vidual uncertainties by averaging the corresponding un
tainties as well,

S (
Bf

wm~Bf !dAm f
2 D S (

Bf

wm~Bf !DBm f
2 D

>
1

4 S (
Bf

wm~Bf !u^r m fu@Â,B̂#ur m f&u D 2

. ~18!

The uncertainty limit on the right side of the equation can
simplified by noting that

S (
Bf

wm~Bf !u^r m fu@Â,B̂#ur m f&u D 2

>utr$R̂m@Â,B̂#%u2.

~19!

With this simplification, it is now possible to formulate th
uncertainty given by Eq.~18! without any explicit sums ove
the final resultsBf . For any measurement described by
measurement operatorM̂m , the measurement errordAm

2 of

the best estimate ofÂ obtained fromm and the disturbance
DBm

2 in the propertyB̂ caused by the measurement ba

action ofM̂m obey the uncertainty relation

dAm
2 DBm

2 >
1

4
utr$R̂m@Â,B̂#%u2. ~20!

This limit shows that the uncertainty principle does inde
apply to the relation between measurement resolution
disturbance, contrary to the statement found in the otherw
excellent book by Nielsen and Chuang@6#. Moreover, it sug-
gests that reports on possible violations of measurement
certainty@7,9,10,14# are based on definitions of measureme
resolution and disturbance that are not consistent with th
given here. The definition of uncertainties in terms of t
information obtained about unknown input states given
Eqs. ~4! and ~17! may therefore be closer to the origin
intention of Heisenberg’s argument than the alternatives.

A significant feature of uncertainty relation~20! is that it
characterizes the actual changes in a physical prop
caused by the measurement given by the disturbanceDBm

2 .
This disturbance is given in terms of information that may
available before and after the measurement, but it does
directly refer to the information obtained in the measurem
process itself. By relating this disturbance inB̂ to the mea-
surement resolution inÂ, uncertainty~20! establishes an in
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separable connection between physics and information
may be one of the most characteristic features of quan
mechanics. Consequently, a complete characterization
quantum measurements must always include both the in
mation aspects given by the measurement resolution and
dynamical aspect given by the disturbance.

Two simple examples of photon number measureme
may help to illustrate the different aspects of measureme
expressed by resolution and disturbance. Conventional p
ton detection usually requires the absorption of all photo
The detection of a single photon can therefore be represe
by the operatorM̂n515un50&^n51u. This operator has a
perfect measurement resolution ofdn250, but its distur-
bance is given byDn251. On the other hand, a quantu
nondemolition measurement of photon number is rep
sented by a measurement operatorM̂m5(nMm(n)un&^nu.
This operator commutes withn̂, and therefore has a distu
bance ofDn250. However, the coefficientsMm(n) are usu-
ally given by a slowly varying function ofn and the corre-
sponding measurement resolution is very low (dn@1).
These examples show that the measurement resolution
the disturbance of a single property are not usually conne
in any way. Interestingly, uncertainty~20! does establish
such a connection for noncommuting properties.

IV. APPLICATION TO PROBLEMS IN QUANTUM
COMMUNICATION

The application of quantitative concepts to quantum co
munication may appear to be a bit unusual. Theoretically
does not make a difference whether the eigenvalue differe
of two orthogonal states used in a quantum code is larg
small. However, the quantitative aspect may be reintrodu
by the specific physical implementation. In multilevel sy
tems, a reasonable choice of operator properties will t
represent the fact that weak interactions with the envir
ment are more likely to cause transitions between eigenst
if the eigenvalue difference is small. In the presence of no
it is then optimal to encode information in such a way th
the more likely errors causing small changes in the eigen
ues of Â or B̂ are less serious than the comparatively u
likely errors involving large changes. Such codes will hav
quantitative character similar to that of analog signals.
fact, this kind of situation is well known in the case of co
tinuous variable quantum optics, where the concept of un
tainty can be applied directly to implementations of quant
cryptography@15,16#.

A quantum cryptography protocol for the general case
noncommuting variablesÂ and B̂ may be implemented a
follows. Alice will randomly choose either an eigenstate ofÂ

or an eigenstate ofB̂ to send her information. Likewise, Bo
chooses randomly whether to measureÂ or B̂. By later ex-
changing data on their choices ofÂ or B̂, they can then
select the valid communication attempts. An eavesdrop
can now try to optimize the simultaneous extraction of info
mation about the eigenvalues ofÂ and of B̂ by choosing
various measurement strategies$M̂m% with the appropriate
6-4
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resolutionsdAm
2 anddBm

2 . However, this eavesdropping a
tempt will cause additional noise in the communication b
tween Alice and Bob. This noise is given by the disturban
DAm

2 and DBm
2 and may lead to the detection of the eave

dropper by Alice and Bob. In fact, Alice and Bob can det
mine the average disturbances by exchanging informa
about the initial eigenvalues sent by Alice and the final
genvalues received by Bob. From randomly selected sub
of the valid communication attempts, Alice and Bob can th
estimate the maximal resolutionsdAm

2 and dBm
2 that could

have been obtained by the eavesdropper. If these resolu
are sufficient to decode the information encoded in eig

states ofÂ and B̂, the line is not safe. On the other han
security can be established if the noise levels given by
disturbance are low enough to prevent the required meas
ment resolution.

Another application of measurement uncertainties is
quantum cloning problem. If it is known that the state to

cloned is either an eigenstate ofÂ or an eigenstate ofB̂, it is
possible to define a quantitative cloning error equal to

average quadratic deviation of the clone’s propertyÂ or B̂
from the eigenvalue of the original. This cloning error c
then be used to evaluate cloning strategies based on a q

tum measurement$M̂m% on the original and a quantum sta
preparationucm& for the clones. In this case, the disturban

caused by the measurement$M̂m% characterizes the unavoid
able damage done to the original in the cloning process,
sulting in an irreversible loss of information about the orig
nal properties of the cloned state. If the cloning proc
extracts the maximal amount of information from the orig
nal system by effectively projecting the system onto a p
state, it is also possible to define a set of cloning opera
Ĉ5ucm&^cmu for the optimal cloning procedure. This set
operators represents a projective measurement of the i
system followed by a preparation ofN copies of the corre-
sponding quantum state. Note that it is possible to prod
any number of clones in this manner, sinceucm& is precisely
defined by the classical measurement informationm. The
total output statistics of the cloning process is then given
a mixture of the product states ofucm& with the respective
statistical weight given by the measurement probabilit
p(m) for the original input state. However, the cloning erro
for each individual clone can be estimated directly from
disturbances caused by the cloning operatorĈ, since it rep-
resents both the sensitivity of the cloning process to the in
and the resulting output statistics of all the clones.

Finally, it is also possible to apply this quantitative cha
acterization to errors and information extraction in quant
teleportation. In this case, the measurement made on the
system of the input state and one part of the entangled
may be sensitive to properties of the unknown input sta
e.g., because the entanglement is nonmaximal. This e
can be described by a set of transfer operatorsT̂m with prop-
erties equivalent to the measurement operatorsM̂m

@16,17,18#. The measurement resolutiondAm
2 then character-

izes the information extracted about the input eigenvalue
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Â, while the disturbanceDBm
2 quantifies the teleportation

error in B̂. A particularly simple example is given by th
classical limit of continuous-variable teleportation, where
pair of uncorrelated vacuum fields is used instead of the
tangled pair@19#. The teleportation procedure then corr
sponds to a measurement projection on a coherent stateua&,
followed by the preparation of a corresponding state in
output. This method can also be used for quantum cloning
as an eavesdropping strategy. In all cases, the procedure
be represented by thea-dependent measurement operator

M̂ ~a!5
1

Ap
ua&^au. ~21!

These operators can now be characterized using the qua
ture components of the light field,x̂ and ŷ, with @ x̂,ŷ#
5 i /2, and the definitions of optimized estimates and unc
tainties given by Eqs.~7! and~17!. The results for the opera
tors M̂ (a) then read

xa1 iya5a,

dxa
25dya

251/4,

Dxa
25Dya

251/2. ~22!

These uncertainties now define the noise levels in the m
surements and in the transmitted signal. Note that the dis
bances are twice as high as the measurement resolut
This is a typical feature of the classical teleportation lim
@19#. In an eavesdropping scenario, this strategy there
extracts maximal information, but makes it easy for Ali
and Bob to detect the eavesdropping attempt.

V. CONCLUSIONS

The effects of quantum measurements described by
of measurement operators$M̂m% can be characterized in
terms of the physical properties of the measured system
evaluating the effects of the measurement on eigenstate
the corresponding Hermitian operators. It is then possible
define quantitative expressions for the concepts of meas
ment resolution and disturbance corresponding to the not
expressed in the earliest discussions of quantum meas
ment @5#. These definitions allow a derivation of Heise
berg’s uncertainty principle, demonstrating the general va
ity of uncertainty for all possible measurement strategies
particular, it can be shown that the back action of a gene
ized measurement is indeed uncertainty limited. A compl
characterization of generalized quantum measurement
terms of measurement resolutions and disturbances for
relevant physical property may therefore provide practi
insights into the nature of quantum measurements.

Since the definitions of measurement uncertainties h
been based on quantitative estimates of an unknown ei
state input, they can also be applied to evaluate error
various quantum communication scenarios. For exam
eavesdropping strategies for quantum cryptography may
6-5
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HOLGER F. HOFMANN PHYSICAL REVIEW A67, 022106 ~2003!
quire an optimization of both the measurement resoluti
dAm

2 and dBm
2 for simultaneous estimates ofÂ and B̂, and

the corresponding disturbancesDAm
2 andDBm

2 . Similar con-
siderations may also be useful in the discussion of quan
cloning and quantum teleportation.

ACKNOWLEDGMENTS

I would like to thank A. G. White for encouraging me t
write this paper and M. Ozawa and A. Furusawa for help
comments on the problem of disturbance in quantum m
surements.

APPENDIX: DERIVATION OF UNCERTAINTY
RELATIONS FOR STATISTICAL MIXTURES

Although the basic derivation of uncertainty relations f
quantum states and density matrices is well known@6#, it
may be useful to review it in the general context of statisti
mixtures in order to provide a more precise justification
the measurement uncertainties discussed in this paper.

The basic derivation of uncertainty relations for pu
states is obtained from the Cauchy-Schwarz inequalities
the two Hilbert space vectors given by

~Am2Â!uc& and ~Bm2B̂!uc&. ~A1!

Since the product of the squared length of these vectors m
be larger or equal to the squared inner product of the vect
it follows that

^cu~Am2Â!2uc&^cu~Bm2B̂!2uc&

>u^cu~Am2Â!~Bm2B̂!uc&u2. ~A2!

The uncertainty relations are then obtained by taking o
the imaginary part of the inner product into account. SinceÂ

and B̂ are the Hermitian operators, this imaginary part
given by one half of the commutation relation, and the res
ea

,
r-

n,

ie

02210
s

m

l
a-

l
f

or

st
rs,

y

lt

is the well-known formulation of uncertainty for pure state

~A3!

In order to generalize this result to density matrices or to a
other form of statistical mixtures, it is sufficient to examin
the case of a set of uncertainties given by

dAi
2dBi

2>Ui
2 , ~A4!

where the averaged uncertainties are given by

dA25(
i

p~ i !dAi
2 ,

dB25(
i

p~ i !dBi
2 . ~A5!

It then follows that:

dA2dB25(
i , j

p~ i !p~ j !
1

2
~dAi

2dBj
21dAj

2dBi
2!

>(
i , j

p~ i !p~ j !dAidBidAjdBj

>S (
i

p~ i !Ui D 2

. ~A6!

It is therefore possible to derive an uncertainty relation
the statistical mixture defined byp( i ) by averaging over the
uncertaintiesUi . This derivation can be applied to deriv
uncertainties for statistical operators such as Eq.~8! by rep-
resenting the statistical operator as a mixture of pure sta
However, it can also be useful in a more general context
seen in the derivation of the back action uncertainty~20!.
-

-
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