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Quantum control of atomic systems by homodyne detection and feedback
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We investigate the possibilities of preserving and manipulating the coherence of atomic two-level systems
by ideal projective homodyne detection and feedback. For this purpose, the photon emission process is de-
scribed on time scales much shorter than the lifetime of the excited state using a model based on Wigner-
Weisskopf theory. The backaction of this emission process is analytically described as a quantum diffusion of
the Bloch vector. It is shown that the evolution of the atomic wave function can be controlled completely using
the results of homodyne detection. This allows the stabilization of a known quantum state or the creation of
coherent states by a feedback mechanism. However, the feedback mechanism can never compensate the
dissipative effects of quantum fluctuations even though the coherent state of the system is known at all times.
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I. INTRODUCTION

Homodyne detection is a procedure that allows the m
surement of a quadrature component of the light field.
quantum optics, it has long been applied to investigat
squeezing effects of nonlinear optical systems. In that c
text it is not necessary to understand the time-resolved p
erties of the homodyne detection process itself, since
measurement is a time average over many photon emiss
from the light field source under investigation. If homody
detection is to be applied to the observation of individu
quantum systems, however, a time-resolved quant
mechanical treatment of the projective measurements
formed by a homodyne detection setup is necessary. Su
description not only helps to improve our understanding
the quantum mechanics of photon emissions, but also
vides new methods of controlling the dynamics of quant
systems.

A complete quantum theory of homodyne detection m
take into account both the quantization of the field mod
and the temporal evolution of the continuous light field e
tering the detector. The problem of quantization has b
addressed in a number of publications@1–4#. An approach to
the problem of measuring a system as it evolves in time
presented by Carmichael in@5#. It has been applied to a
number of measurement scenarios, including homodyne
heterodyne detection@6,7#, as well as to feedback scenario
@9#.

In Sec. II of this paper, we present an alternative deri
tion of this quantum trajectory approach to time-resolv
observation of quantum systems by homodyne detect
starting from the projective measurement postulate form
lated in @1–4#. In Sec. III this measurement theory is the
applied to a description of the spontaneous emission pro
based on Wigner-Weisskopf theory, which takes into
count the field dynamics of the electromagnetic continu
of modes. This derivation provides a shortcut to the form
lation of the backaction of the many photon measureme
on the two-level atom and illustrates the problems of ti
resolution and of nonlocality in quantum trajectories, whi
571050-2947/98/57~6!/4877~12!/$15.00
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are discussed in@5#. Once this control over the informatio
loss induced by spontaneous emission has been establi
the observed changes in the atomic wave function can
compensated by feedback. This is investigated in Sec. IV
Sec. V, the results are interpreted and conclusions are
sented.

II. A QUANTUM-MECHANICAL DESCRIPTION
OF TIME-RESOLVED HOMODYNE DETECTION

A. Time resolution and projective measurements
in the homodyne detection setup

If we know that the linewidth of the emission we wish
observe is much smaller than 1/t, then we can conclude tha
a time resolution oft will be sufficient to observe the dy
namics of photon emission from the system. We theref
assume that the detectors used provide us with reliable in
mation about the photon numbers that entered each of
detectors during a time intervalt. In fact this is much closer
to the experimental situation than the assumption of a c
tinuous measurement in which the arrival of a photon is
tected with infinite time resolution. For all time-resolve
measurements there is a time window of lengtht, which will
usually not be shorter than a femtosecond. We can then
scribe the homodyne detection as a projective measurem
on a system of two light field modes of frequencyv0. The
state to be measured is the product state of the input fi
stateuf& and the coherent stateua& produced by the loca
oscillator.a is the complex field amplitude of the local os
cillator mode emitted during the time intervalt. This ampli-
tude is related to the intensityI emitted by the local oscillator
via the relationI 5a* a/t. The measurement base is the ph
ton number base of the symmetric and antisymmetric lin
combinations of the input mode and the local oscilla
mode, un1 ,n2&. In terms of the input and local oscillato
fields, this state may be written as

un1 ,n2&5
1

An1!n2!
S â†1b̂†

A2
D n1S â†2b̂†

A2
D n2

uvacuum&,

~1!
4877 © 1998 The American Physical Society
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4878 57HOLGER F. HOFMANN, GÜNTER MAHLER, AND ORTWIN HESS
whereâ† is the creation operator of the local oscillator lig
field mode (̂ auâ†5a* ^au) and b̂† is the creation operato
of the input field.

The effect of this measurement on the input field stateuf&
is a projective measurement on a set of states that is ne
orthogonal nor normalized within the subspace of intere
The stateuP(n1 ,n2)& projected into by a measurement
n1 andn2 photons in the detectors is found by forming t
scalar product witĥau in the subspace of the local oscillato
field. Using the fact that̂ au is an eigenvector ofâ†, one
obtains

uP~n1 ,n2!&

5
e2uau2/2

An1!n2!
S a* 1b̂†

A2
D n1S a* 2b̂†

A2
D n2

uvacuum&.

~2!

Note that even though this state is not normalized, the pr
ability of a measurement ofn1 andn2 is nevertheless given
by

p~n1 ,n2!5 z^fuP~n1 ,n2!& z2. ~3!

The projection operators associated with these states fo
complete probability measure for the subsystem of the in
light field. It has been shown that the photon number diff
encen12n2 corresponds very well to the quadrature co
ponent of the input field, which is in phase with the loc
oscillator if the input field photon number is much smal
than a* a ~see, for example,@3#!. Therefore, the classica
interpretation of a homodyne detection as a measureme
a quadrature component of the input field also applies to
quantum-mechanical measurement.

B. Application to low-intensity light fields

The light field sources we wish to investigate in the fo
lowing will usually emit only zero or one photon (nin
50,1) during the time intervalt. If the input state is the
vacuum state, the measurement probability is given by

pvacuum~n1 ,n2!5 z^vacuumuP~n1 ,n2!& z2

5
e2uau2

n1!n2! S a* a

2 D ~n11n2!

. ~4!

For a fixed sum of photons,N5n11n2 , this probability
distribution is the binomial distribution, which results fro
the random scattering of the photons by the beam spli
For large photon numbersN@1, this probability distribution
may be approximated by a Gaussian. The probability of m
suring the photon number differenceDn5n12n2 regard-
less of the total photon number is then given by

pvacuum~Dn!5
1

A2pa* a
expF2

Dn2

2a* a
G . ~5!

This probability distribution represents the vacuum fluctu
tions of the in-phase quadrature of the incoming field. In
limit of very strong local oscillator fields, the measured val
er
t.

b-
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-
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e

of this quadrature corresponding to the photon number
ference ofDn is given byDn/2uau, reproducing the expecte
quantum uncertainty of 1/4 in the quadrature component

In the case of weak one photon contributions,

uFb&'uvacuum&1bunin51&, ~6!

the probability distribution is modified only slightly by th
contributions linear inb. To simplify the formalism, the
nonorthogonal measurement base of the homodyne dete
may be reduced to the components lying in the tw
dimensional subspace of zero or one photon and the am
tude factor corresponding to the binomial distribution for t
vacuum can be approximated by a Gaussian. The resu
measurement base depends only on the photon number
ferenceDn and is given by

uP~Dn!&5~2pa* a!21/4expF2
Dn2

4a* a
G

3S uvacuum&1
Dn

a*
unin51& D . ~7!

Note that the weak field condition can be fulfilled for an
input field intensity by choosing a time scalet that is much
smaller than the average rate of photons corresponding to
intensity of the input field. Therefore, the simplified proje
tion stateuP(Dn)& can describe the time evolution of an
homodyne detection scenario. Applying Eq.~7! to the weak
field stateuFb& results in a probability distribution of

pb~Dn!5
1

A2pa* a
expF2

@Dn2~a* b1b* a!#2

2a* a
G .

~8!

Effectively, the weak coherent field characterized byb shifts
the Gaussian distribution by just the amount expected fr
classical homodyne detection.

III. QUANTUM DIFFUSION OF A TWO-LEVEL ATOM

A. Description of the emission process

The coherent quantum dynamical evolution of an atom
system interacting with the light field continuum is given b
Wigner-Weisskopf theory. The spatiotemporal interpretat
of this theory shows that emission processes can be
scribed by a temporal evolution of the following type@10#:

^E;vacuumuC~ t !&5e~2 iv02G/2!t, ~9a!

^G;r uC~ t !&5H 2 iAG

c
e~G/21 iv0!~r /c2t ! for 0,r ,ct

0 otherwise,
~9b!

where uE;vacuum& is the state of the excited atom in th
light field vacuum anduG;r & is the state of the ground stat
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57 4879QUANTUM CONTROL OF ATOMIC SYSTEMS BY . . .
atom with a photon at a distance ofr from the atom.G is the
rate of spontaneous emission.

During a time intervalt, which is much shorter than 1/G,
the product state of the light field vacuum and an arbitr
linear combination of the excited stateuE& and the ground
stateuG&,

uC~0!&5cEuE;vacuum&1cGuG;vacuum&, ~10!

therefore evolves into an entangled state of the system
the light field, with the light field being in the vacuum sta
or in a single photon state. The single-photon wave funct
will be located within a distance ofct from the atom. Since
the emission has a well-defined frequency and angular
pendence, the mode into which the photon has been em
is a well-defined mode and the total state of atom and fi
can be written as

uC~t!&5cE@12~ iv01G/2!t#uE;vacuum&1cGuG;vacuum&

1cEAGtuG;n051&. ~11!

The amplitude factor ofAGt is found by normalizing the
rectangular mode emitted by the system after a time inte
of t. This is done by dividing the amplitude ofAG/c emitted
into the spatially continuous one-dimensional field by t
amplitude of the normalized rectangular mode of lengthct,
which is equal toA1/ct. Note that the amplitude of the emis
sion depends on the square root oft, reflecting the linear
increase of emission probability with time.

In homodyne detection, the frequency of the local os
lator is alsov0. Therefore, it is useful to transform to th
interaction picture using the time-dependent transformati

uẼ&5e2 iv0tuE&. ~12!

This effectively removes the terms oscillating withv0 from
the system dynamics by describing the phase relation
tween the excited-state component and the ground-state
ponent of the system state not in terms of an absolute p
but in terms of the phase relative to the local oscillator. N
that heterodyne detection may also be described by this
malism if the time scalet is chosen so that the detuningdv
between the local oscillator and the system dynamics s
fies the requirement thatdvt!1. The dynamical evolution
of the system phase relative to the local oscillator phase
then be included in the measurement scenario.

The equation for the evolution of the wave function du
ing short time intervalst is

uC~t!&5cE~12Gt/2!uẼ;vacuum&1cGuG;vacuum&

1cEAGtuG;n051&. ~13!

The projection postulate of homodyne detection can now
applied to the light field part of this correlated system-fie
state, resulting in an effective projection of the state of
atomic system into a state that depends on the measure
result of the homodyne detection.

Although the real physical measurement will take pla
many time intervalst later, after the light-field wave func
y
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tion has traveled the distance to the detectors, it is possib
interpret the measurement as an instantaneous projectio
the local light field state, since the light-field signal, on
emitted, will not interact with the atom again. This artifici
choice of the instant in which the state is projected is c
sistent with the basic theory of quantum measurement, s
it is not possible to distinguish between a projection at
time of a measurement and a projection that anticipates
measurement. It is only our subjective expectation of cau
ity that leads us to prefer placing the collapse after the m
surement.

Also the measurement described here is not continuou
the sense discussed in@6,7#. The discrete measurements pe
formed are measurements of properties of the total intervat.
For this reasont is not written asdt, which would suggest
the limit of infinite time resolution. The experimental resu
corresponding to the situation described here is a serie
photon numbers without any zero-photon time interv
separating the time windows of each measurement.

If the wave function is regarded as an epistemologi
tool describing not physical reality itself but only our know
edge of it, then the projective measurement at the atom
simply an expression of the information gained about
events at the atom, independent of the time at which
information is actually obtained. In a completely relativist
theory of measurement, this epistemological effect of fut
knowledge on the state of the past must be considered
was already pointed out by Einstein@11#. The arbitrary sub-
division of the flow of time into segments of durationt is
also an epistemological consequence as it represents the
aspect of the space-time measurement base defined b
experimental setup. Information about the atomic system
namics on shorter time scales is not obtained and canno
included in the evolution of the system wave function.

B. Influence of the homodyne detection on the system dynamic

For an arbitrary system with known initial wave functio
the measurement protocol of repeated homodyne detec
provides a complete description of the evolution of the s
tem wave function. In this sense, the method described h
is a generalized quantum trajectory approach. However,
stead of using a master equation approach, Schro¨dinger’s
equation of the system-field interaction is solved and
homodyne detection events are described as projective m
surements on the correlated system-field wave function.
detector simulated by this approach is not a single-pho
counting device but rather corresponds to a photodiode w
a high time resolution. Indeed, the measurement need
resolve single photon counts to achieve a useful precision
predictions about the quantum system.

To investigate the dynamics of the atomic wave functi
observed by homodyne detection, it is useful to examine
effect of a single projective measurement of photon num
differenceDn on an arbitrary system wave function after a
emission time segment oft. Before the projective measure
ment, the correlated system-field wave function is given
Eq. ~13!. After the projective measurement ofDn the system
is in a pure state described in the interaction picture by
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uc~t!&5^P~Dn!uC~t!&

5~2pa* a!21/4expF2
Dn2

4a* a
G

3FcE~12Gt/2!uẼ&1S cG1cEAGt
Dn

a D uG&G . ~14!

The squared length of this state vector is a measure of
probability of measuring (n1 ,n2). Proceeding as in the der
vation of Eq.~8! and assuming thatGt!1, it is possible to
represent the deviation of this probability distribution fro
the vacuum state distribution by a Gaussian distribut
shifted by a term linear inAGt:

p~Dn!'
1

A2pa* a
expF2

@Dn2uauAGt~cEcG* 1cE* cG!#2

2a* a
G .

~15!

Here and in the following, the phase relation between
local oscillator and the atomic dipole is defined so that i
zero if bothcE and cG are real and positive. The small de
viation from the quantum vacuum case is clearly related
the dipole expectation value of the atomic system. Con
quently, they indicate the dipole field emitted by the syste
The normalized change in the state of the system is ortho
nal to the initial stateuc(0)& for small changes. It is found
by projectinguc(t)& on the subspace orthogonal touc(0)&,
normalizing by dividing by the amplitude of the parall
component.

udc~t!&5
uc~t!&2uc~0!&^c~0!uc~t!&

^c~0!uc~t!&
. ~16!

The normalized expression for the system wave function
then given byuc(0)&1udc(t)&. Applying the condition that
Gt!1 we neglect all terms above second order inAGt. The
change of the wave functionudc(t)& within the time interval
t conditioned by the measurement ofDn is then given by

udc~t!&52AGt
Dn

uau
cE

2~cG* uẼ&2cE* uG&)

1Gt
Dn2

a* a
cE

3cG* ~cG* uẼ&2cE* uG&)

2
Gt

2
cEcG~cG* uẼ&2cE* uG&). ~17!

The dominant effect within one time interval is given b
the diffusion term proportional toAGtDn. The average of
he

n

e
s

o
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these diffusion steps is only proportional toGt however,
since the expectation value ofDn/a is of the order ofAGt.
On the measurement time scalet, the quantum fluctuations
therefore cause a random-walk-type diffusion of the atom
state, just as one would expect from classical noise. H
ever, the length and the phase of the diffusion step are fu
tions of the initial system state. On time scales of 1/G, the
nonzero average ofDn/a, the diffusion term proportional to
the square of the measurement, and the deterministic
terms contribute to the change in the system state. All
these terms give rise to a slow drift of the wave functi
towards the ground state. To illustrate the dependence o
diffusion constant on the state of the atomic system and
identify the drift terms we will now formulate this depen
dence of these processes in terms of the Bloch vector.

C. Quantum diffusion of the Bloch vector

The dynamics of two-level systems can be visualized
ing the Bloch vector representation. This three-dimensio
vector incorporates the excitation~population inversion!, the
dipole, and the dipole current of the two level atom as
orthogonal components. When the time-dependent trans
mation given in Eq.~12! is used, the two components o
thogonal to the excitationsz describe the in-phase and th
(p/2) out-of-phase components, respectively, of the dip
oscillations relative to the local oscillator:

sx52 Re~^cuẼ&^Guc&!, ~18a!

sy52 Im~^cuẼ&^Guc&!, ~18b!

sz5u^Ẽuc&u22u^Guc&u2. ~18c!

If a is a real number,sx is the in-phase component of th
atomic dipole andsy is the out-of-phase component. Th
diffusion step associated with a measurement result ofDn in
terms of the Bloch vector is derived fromuc(0)& and
udc(t)& by using

dsx52 Re@^c~0!uẼ&^Gudc~t!&1^dc~t!uẼ&^Guc~0!&#,

~19a!

dsy52 Im@^c~0!uẼ&^Gudc~t!&1^dc~t!uẼ&^Guc~0!&#,

~19b!

dsz52 Re@^c~0!uẼ&^Ẽudc~t!&2^c~0!uG&^Gudc~t!&#.

~19c!
The change in the Bloch vectords can be expressed in

terms of the Bloch vectors corresponding touc(0)&. The
result is the diffusion step of the Bloch vector,
S dsx

dsy

dsz

D 5AGt
Dn

uauS 11sz2sx
2

2sxsy

2sx~11sz!
D 2Gt

Dn2

a* a
sxS 11sz2sx

2

2sxsy

2sx~11sz!
D 1

Gt

2

Dn2

a* a
~11sz!S sxsz

sysz

sz
221

D 1
Gt

2 S sxsz

sysz

sz
221

D . ~20!
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As in the case of the state vector representation, the B
vector diffusion step is composed of a fast random w
diffusion on the time scale oft and drift terms on a time
scale of 1/G. What is more apparent in the Bloch vect
representation is the possible separation into phase-sen
and phase-independent changes.

D. Interpretation of the contributions to the diffusion step

To interpret the diffusion step, it is useful to analyze t
separate contributions in more detail. In particular it is he
ful to investigate the diffusion step component represen
the random walk caused by the fluctuating light field,

S dsx

dsy

dsz

D
fluctuation

5AGt
Dn

uauS 11sz2sx
2

2sxsy

2sx~11sz!
D . ~21!

Figure 1 illustrates this diffusion on the Bloch sphere.
order to analyze the diffusive motion of the Bloch vecto
one may separate the absolute value from the direction o
diffusion. The diffusion constant is then given by

^ds2&
t

5G~11sz!
2. ~22!

The magnitude of the diffusion is therefore independent
the phase relation between the local oscillator and the ato
dipole. It does depend on the excitation of the atom howe
It is maximal for the excited state and zero for the grou
state, indicating that the ground state will not interact w
the field vacuum. The direction ofds is given by

ds

udsu
5

1

11sz
S 11sz2sx

2

2sxsy

2sx~11sz!
D 5

sy

Asx
21sy

2
ê'1

sx

Asx
21sy

2
êi,

~23a!

whereê' is the unit vector perpendicular to boths and thez

axis andêi is the unit vector perpendicular to boths and ê'.

FIG. 1. Visualization of the diffusion step on the Bloch sphe
The diffusion is represented by lines oriented parallel to the dir
tion of the diffusion with a length proportional to the standard d
viation of the diffusion step.~a! shows the projection into the
(sy ,sz) plane and~b! the projection into the (sx ,sz) plane.
ch
k

ive

-
g

,
he

f
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d

ê'5
1

Asx
21sy

2S sy

2sx

0
D and êi5

1

Asx
21sy

2S sxsz

sysz

2sx
22sy

2
D .

~23b!
As can be seen from these results, a Bloch vector that i
phase with the local oscillator will show random rotations
the (sx ,sz) plane. A Bloch vector polarized out of phase wi
the local oscillator by6p/2 (sx50) will undergo phase dif-
fusion only, withsz remaining constant. The ratio betwee
the diffusion constant of pure phase diffusion and the dif
sion constant of excitation diffusion is given by (sy /sx)

2

5tan(f)2, wheref is the phase difference between the loc
oscillator and the dipole oscillations of the atom. Note tha
randomly varying classical in-phase field would give rise
Rabi oscillations aroundsy with a step length proportional to
A12sx

2. The properties that only phase diffusion occurs
sx50 and that the rotations in thesy50 plane preserve
phase are also properties of Rabi rotations induced by c
sical fields. However, the step length dependence of 11sz
clearly indicates a difference between the effects of quan
noise and of classical noise.

On a time scale of 1/G, the contribution of the random
walk is given by the nonvanishing expectation value of t
homodyne detection photon number difference. The pr
ability distribution of the measurement results is appro
mately given by a Gaussian with

K Dn

uau L 5AGtsx , ~24a!

K Dn2

a* a
L 51. ~24b!

On a time scale of 1/G a large number of measurements w
have been performed sincet!1/G. Therefore, the net
change of the system state can be evaluated using thes
pectation values. The random walk drift is then given by

S ^dsx&

^dsy&

^dsz&
D

fluctuation

5GtsxS 11sz2sx
2

2sxsy

2sx~11sz!
D . ~25!

This is exactly compensated by the other phase-sens
contribution effective on a time scale of 1/G,

S ^dsx&

^dsy&

^dsz&
D

compensation

52GtK Dn2

a* a
L sxS 11sz2sx

2

2sxsy

2sx~11sz!
D .

~26!

This compensation has a clear physical reason. The dyn
ics of the system should only depend on the incoming fie
However, the measurement is being performed on the fi
coming from the atomic system, which is a sum of the fie
passing the atom and the dipole field emitted by the ato
Although it is impossible to separate the contributions in
quantum-mechanical measurement, the long term aver
can actually be corrected by subtracting the averaged di

.
-

-
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field contribution from the measured fields. In effect, th
leaves only two drift terms that influence the 1/G time scale
dynamics.

The drift term that is not dependent on the measurem
resultDn is given by

S dsx

dsy

dsz

D
dipole

5
Gt

2 S szsx

szsy

2sx
22sy

2
D . ~27!

This term describes a reduction ofsz as a function ofsx
2

1sy
2 . Sincesz is the energy expectation value of the atom

system andsx
21sy

2 is the square of the atomic dipole, th
process describes a loss of energy corresponding to the e
sion of radiation from a classical oscillating dipole. It
therefore equivalent to the equations describing superr
ance@12,13#, as well as to a semiclassical textbook approa
to spontaneous emission@14#. Unlike the other terms, this
term is entirely free of quantum fluctuation effects. It is co
pletely deterministic and depends only on the expecta
values of the atomic system state. It is a fascinating fea
of the quantum theoretical formulation of spontaneous em
sion applied in this investigation that it automatically pr
duces such a semiclassical term from the simple pho
emission described by Eq.~11!.

The three terms discussed up to this point can be un
stood in terms of the action of the incoming quantum flu
tuations on the system and in terms of the semiclass
emission caused by the dipole oscillations. The fourth term
more difficult to understand since it depends on the quan
fluctuation measurements but is not sensitive to the phas
the local oscillator. It seems to be a mixed effect of dipo
emission and quantum fluctuations, possibly related to
quantum fluctuations of the atomic dipole. The contributi
of this mixed term to the dynamics is given by

S ^dsx&

^dsy&

^dsz&
D

mixed

5
Gt

2 K Dn2

a* a
L ~11sz!S szsx

szsy

2sx
22sy

2
D . ~28!

The sum of the drift dynamics to be expected on a time sc
of 1/G is given by the sum of the dipole contribution and t
mixed term. The total drift vectors resulting from this su
are shown in Fig. 2.

E. Contributions to the exponential decay
of the average excitation

At first it may seem confusing that a simple spontane
emission from an isolated atom should give rise to suc
complicated variety of dynamical effects. After all, the Blo
vector dynamics of an ensemble of atoms is described b

d

dtS ^sx&

^sy&

^sz&
D 52GS ^sx&/2

^sy&/2

^sz&11
D . ~29!

If one separates the time derivative of the Bloch vector int
component orthogonal to the Bloch vector and one paralle
nt
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it, however, the connection to the dynamics observed in
homodyne detection becomes apparent:

d

dtS ^sx&

^sy&

^sz&
D 5

G

2

~21^sz&!

^s&2 S ^sz&^sx&

^sz&^sy&

^sz&
22^s&2

D
2

G

2

~ u^s&u1^sz&!2

^s&2 S ^sx&

^sy&

^sz&
D . ~30!

For u^s&u51, the expected reduction of the length of th
Bloch vector is an effect of the diffusion caused by t
dsfluctuationsterm. Its rate is given by one-half of the diffusio
constantG(11sz)

2. The rotation of the Bloch vector is give
by the sum of the two drift terms,dsdipole and dsmixed. For
u^s&u51, the average expected change insz can be separated
into contributions related to the diffusion of the Bloch ve
tor, to the dipole emission, and to the mixed term,

d

dt
^sz&52G~^sz&11!~qdiffusion1qdipole1qmixed!,

~31a!

qdiffusion5
1
2 ~11sz!sz , ~31b!

qdipole5
1
2 ~12sz!, ~31c!

qmixed5
1
2 ~12sz

2!. ~31d!

Figure 3 shows this change in the relative contributions
the exponential decay of the atomic excitation as a funct
of sz . For the excited state,sz511, the exponential relax-
ation ofsz is a result of the diffusion of the Bloch vector du
to quantum fluctuations, while for states close to the grou
state,sz'21, the exponential relaxation tosz521 is domi-
nated by the semiclassical dipole emission. For maxima
polarized states,sz50, the emission contributions of the d
pole term and of the mixed term are equally strong, while
diffusion has no effect. Note that for21,sz,0, the diffu-

FIG. 2. Total drift on the Bloch sphere projected into the (sy ,sz)
plane. Since the drift is rotationally symmetric around thesz axis,
no extra figure is given for the (sx ,sz) plane.
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57 4883QUANTUM CONTROL OF ATOMIC SYSTEMS BY . . .
sion caused by the quantum fluctuations actually tends
excite the atom. However, this effect is compensated by
mixed terms and the dipole emission.

IV. COMPENSATING QUANTUM FLUCTUATIONS
BY FEEDBACK

A. Feedback setup

Section III describes the measurement of quantum fl
tuations propagating away from an atomic two-level syst
by homodyne detection and the implications of the meas
ment for the dynamics of the atomic state. Since maxim
knowledge is obtained about the field state, the atomic s
tem state is in a pure state after the measurement. This
gests the possibility of using feedback based on the meas
ment results as a means to manipulate the quantum sta
general formalism for this procedure based on the ma
equation approach to quantum trajectories has been
sented in@9# and was applied to light fields in an open cav
in @8#. In the following, we will discuss the possibility an
the physical problems involved in applying a feedba
scheme to the two-level atom.

On a time scale oft, the homodyne detection does n
give any information about the state of the atom.p(Dn) is
nearly equal to the vacuum probability distribution. The
formation obtained in a single field measurement is there
not information about the atomic system itself. Instead, i
information about the quantum fluctuations acting on
system. This sensitivity to the vacuum fluctuations~as op-
posed to the system state! is ideal for stabilizing quantum
states by reversing the effects of the measurement pro
@15#. If we were dealing with a classical system it would
possible to measure the exact forces involved. A feedb
mechanism could then compensate the forces, thereby
moving the effects of the incoming noise. In quantum m
chanics, however, the quadratures of the light field do
commute. Therefore the force acting on the atomic sys
can never be known completely. In the balanced homod
detection setup discussed here we only know the quadra
of the light field, which is in phase with the local oscillato
In a classical system, this lack of information would ma

FIG. 3. Relative contributions to the exponential decay of
atomic excitation foru^s&u51.
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control impossible. In the quantum system, however, we
still achieve perfect control of the atomic wave function.

In order to manipulate the known atomic state the elec
magnetic field at the atom may be modified. For example
resonant coherent driving field may be coupled to the ato
system. In order to ensure that this field has a fixed ph
relation with the local oscillator used in the measuremen
would be natural to utilize the same coherent light fie
source in the homodyne detection setup and in the feedb
loop. Since the local oscillator field is very strong, only
negligibly small portion needs to be redirected in order
achieve control of the system dynamics. In fact, since
strength of the field expectation value needs to compen
for quantum fluctuations only, the portion of the local osc
lator intensity used for this purpose is approximately giv
by 1/(4a* a). Note that it is possible to add the effect of th
Rabi rotations caused by the feedback field and the effect
the quantum fluctuations because the Heisenberg equa
of motion for the fully quantum-mechanical field-atom inte
action are linear in the field variables. The dynamical effe
of the feedback and of the diffusive evolution are therefo
separable.

A controllable reflector can be used to coherently mani
late the system depending on the measurement results o
homodyne detection. This feedback modifies the dissipa
dynamics of the atomic system. If the delay between em
sion and feedback is much shorter than 1/G, it is possible to
compensate the effects of fluctuations on a known sys
state. Note that this either requires a low decay rateG or a
very fast feedback loop. In an optical setup a typical unmo
fied lifetime of nanoseconds would require a feedback lo
much shorter than 10 cm in length, so the light field sign
can return in time, with the purely optical dissipative phot
detectors integrated into this loop.

The effect of a delay time ofDt5mt between the emis-
sion and the arrival of the corresponding feedback signa
the atom can be estimated by considering the numbe
uncompensated diffusion stepsm that occur during the delay
time. The probability distribution over the sum of the me
surement resultsdn accumulated within that uncontrolled in
terval is given by a Gaussian with a standard deviation
Amuau. This may be multiplied with the expected uncom
pensated diffusion step length at the stabilized point on
Bloch sphere in order to determine the reliability of feedba
stabilization with a nonvanishing delay time. In the follow
ing, however, we shall concentrate on the description of
fectively instantaneous feedback.

Because the total light field propagating away from t
atomic system is measured in the homodyne detection,
reflected control field will also be measured in the sub
quent time interval. This must be subtracted from the m
surement signal for further feedback, since the feedback
fect itself should not be compensated. Note that the linea
of the field dynamics involved actually allows this separati
despite the fact that the feedback field and the quantum fl
tuations interact with the system in a qualitatively differe
manner as described below. Intuitively, one would expec
complete compensation of the fluctuations if the avera
measurements ofDn are zero. However, we will see that th
is not so, owing to the fact that only one quadrature of
quantum fluctuations can be compensated.

e
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B. Effects of feedback on time scales shorter than 1/G

Although a number of feedback scenarios may be d
cussed even in the simple context of the two-level atom,
will now concentrate on the possibility of stabilizing
known state withsy50 by effectively instantaneous feed
back. The feedback is given by a coherent driving field
ducing Rabi rotations around thesy axis. The effect of this
feedback experienced by the system during the time inte
t can be written as

S dsx

dsy

dsz

D
feedback

52AGt f ~Dn!S sz

0

2sx

D , ~32!

wheref (Dn) is the feedback field describing the response
the coherent control to the most recent measurement re
Dn is the measurement result obtained from the quan
fluctuations acting on the system in the previous time in
val. Since the time intervals are small on the scale of
system dynamics, however, we will simplify matters by su
ming the effects of the diffusion step and its subsequ
feedback as if they occurred in the same time interval
obtain the effective total diffusion.

The homodyne detection measurement in the follow
time interval will be modified by the feedback field. Th
change in theDn measurement caused by the feedback in
next measurement,dnext, may be determined using Eq.~8!:

dnext52uau f ~Dn!. ~33!

In order to stabilize a given system states, f (Dn) must be
chosen to compensate the diffusion step, i.e.,

S dsx

dsy

dsz

D
fluctuation

1S dsx

dsy

dsz

D
feedback

50. ~34!

For sy50, this condition is fullfilled if

f ~Dn!52~11 s̄z!
Dn

2uau
, ~35!

where s̄z is the Bloch vector component of the stabilize
state. Note thatf (Dn) is not a function of the present state
the atomic system.

A particularly interesting case is obtained when the fe
back is chosen to compensate for the maximal fluctua
effects possible, stabilizing the excited state of the two-le
atom. If the system is not in the excited state, the diffus
step associated with a homodyne detection event ofDn is
now given by the sum of the original diffusion step and t
feedback,
-
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S dsx

dsy

dsz

D
effective

5AGt
Dn

uauF S 11sz2sx
2

2sxsy

2sx~11sz!
D 1S 22sz

0

2sx

D G
5AGt

Dn

uauS 12sz2sx
2

2sxsy

sx~12sz!
D . ~36!

As shown in Fig. 4, this effective diffusion step is the exa
inversion of the diffusion step without feedback. The roles
sz521 and ofsz511 have been reversed. Consequen
the sensitivity of the system to quantum fluctuations is n
maximal at the ground state,sz521. The diffusion constant
is proportional to (12sz)

2. The in-phase quantum fluctua
tions have been overcompensated in this case:

Dn1dnext52Dn. ~37!

This indicates that the reversal of the diffusion effect h
been achieved by answering the fluctuations of the in-ph
quadrature with an opposite field of double strength, eff
tively reversing the sign of that field component, while t
unknown fluctuations in the out-of-phase quadrature are
modified.

Another interesting scenario is the stabilization ofsz50,
because it corresponds to the simple minded compensa
of quantum fluctuations by choosing a feedback field w
the negative amplitude of the quadrature measured in
homodyne detection. The effective diffusion step now rea

S dsx

dsy

dsz

D
effective

5AGt
Dn

uauS 12sx
2

2sxsy

2sxsz

D . ~38!

As shown in Fig. 5, this diffusion law has rotational symm
try around thesx axis. The ratio ofsy /sz is a constant. The
diffusion is always directed towards one of the two stabiliz
poles withsx561. The absolute value of the diffusion con
stant for the stabilization ofsz50 is thus given by

^ds2&
t

5G~12sx
2!. ~39!

FIG. 4. Visualization of the effective diffusion step including

feedback stabilizings̄z511. The representation is as in Fig. 1.
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In the general case of a stabilization ofs̄z5cosu, whereu
is the angle between the stabilized Bloch vector and thesz
axis, the diffusion step is

S dsx

dsy

dsz

D
effective

5AGt
Dn

uauF syS sy

2sx

0
D 1~sz2cosu!

3S sz

0

2sx

D G ~40!

and the diffusion constant is given by

^ds2&
t

5G„12sx
222~cosu!sz1cos2u~sx

21sz
2!…. ~41!

By varying the feedback it is therefore possible to suppr
the diffusive dynamics for an arbitrary state in the (sx ,sz)
plane.

C. Effects of the drift terms on time scales of 1/G

Although the feedback described above can comple
suppress the random walk dynamics induced by the quan
fluctuations on a time scale oft for an arbitrary system state
it is necessary to consider the effects of the drift terms
stability on longer time scales is to be obtained as well. T
complete diffusion step, including a feedback field
f (Dn)52(11cosu)Dn/2uau, is given by

S dsx

dsy

dsz

D 5S dsx

dsy

dsz

D
0

2AGt
Dn

uau ~11cosu!S sz

0

2sx

D ,

~42!

where ds0 denotes the diffusion step without feedback,
given by Eq.~20!. The drift is consequently modified by th
nonzero average ofDn in the feedback term. The resultin
drift is the sum of the drift without feedback and the fee
back drift term. It may be written as the sum of a rotati
around thesx axis and a rotation around thesy axis,

FIG. 5. Visualization of the effective diffusion step including

feedback stabilizings̄z50. The representation is as in Fig. 1.
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S ^dsx&

^dsy&

^dsz&
D 51

Gt

2
~21sz!syS 0

sz

2sy

D
1

Gt

2
~sz22cos u!sxS sz

0

2sx

D . ~43!

For the stabilized state withs̄x5sinu,s̄y50,s̄z5cosu, the ef-
fective drift is equivalent to a Rabi rotation around thesy

axis of (Gt/2)sinu cosu per time intervalt. This effect can
be compensated by a constant driving field. The fi
strengthf 0 necessary for this purpose is given by

f 05
AGt

4
sin u cosu. ~44!

This driving field ensures that the stabilized state is a stat
ary solution of the drift-diffusion dynamics generated by t
feedback setup. However, the drift terms may also ca
problems if they amplify small deviations from this stab
lized state.

The stability analysis nearsx5sinu,sy50,sz5cosu can
be performed by linearizing the drift dynamics of small d
viations. The deviation in the (sx ,sz) plane is appropriately
described by the angular variablee, such thatsz5cos(u1e)
and sx5sin(u1e). The linear stability analysis then show
that for smalle, the drift ^de& per time intervalt is

^de&52
Gt

2
e. ~45!

Therefore the drift terms always stabilize the state with s
pressed fluctuations against rotations in the (sx ,sz) plane. In
the (sy ,sz) plane, the situation is different however. Th
linearized drift dynamics of smallsy is described by

^dsy&5
Gt

2
~21cosu!~cosu!sy . ~46!

This indicates stability for all cosu,0, i.e., any state that ha
a negativesz component. If states of higher excitation are
be stabilized, any small deviation fromsy50 in the initial
preparation is amplified exponentially on a time scale of 1G.
This indicates that long term stability of such inverted sta
cannot be achieved.

An interesting aspect of the quantum trajectories ass
ated with the measurement protocols obtained from the
modyne detection is revealed in this critical problem
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quantum control. If the initial state is only known within a
error margin, the trajectories may diverge and amplify t
error margin even though the trajectories are fully determ
istic functions of the initial state. Apparently, there is
aspect of deterministic chaos in this small quantum sys
when its dynamics is analyzed using homodyne detectio
seems that the fully polarized states,sx561,sy5sz50, are
ideal for stabilization, since they can be observed in the m
surement results. If the system drifts away from its stabiliz
state, this can be observed in the homodyne detection
may be corrected, either by applying static fields to shift
phase of the atomic system or by shifting the phase of
o
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local oscillator. In the following we will investigate the ex
ample of feedback stabilization for these maximally coher
states.

D. Stabilization of the dipole eigenstates

For cosu50, the stabilized states aresx561, the eigen-
states of the dipole component oscillating in phase with
local oscillator. Also, this case is special because it co
sponds to the classical idea of feedback compensation:Dn
1dnext50. At the same time, the average ofDn is a measure
of sx , indicating both the sign of the Bloch vector comp
nent stabilized and the success or failure of the stabiliza
attempt. The modified total diffusion step including feedba
is given by
S dsx

dsy

dsz

D 5AGt
Dn

uauS 12sx
2

2sxsy

2sxsz

D 2Gt
Dn2

a* a
sxS 12sx

2

2sxsy

2sxsz

D 2Gt
Dn2

a* a
sxS sz

0

2sx

D 1
Gt

2

Dn2

a* a
~11sz!S sxsz

sysz

sz
221

D 1
Gt

2 S sxsz

sysz

sz
221

D .

~47!
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The compensation term has been split into one part that c
pensates the drift of the total diffusion step and the rema
ing term, which modifies the effective drift. The nature of t
diffusion term has already been discussed in Sec. III. T
diffusion steps are directed towards thesx poles of the Bloch
sphere with a diffusion constant ofG(12sx

2). The average
drift is given by

S ^dsx&

^dsy&

^dsz&
D 51

Gt

2 S sxsz
2

sysz~21sz!

2sy
2~21sz!2sx

2sz

D . ~48!

Figure 6 shows the drift vectors on the Bloch sphere. T
change insx always has the same sign assx , indicating that
this drift will cause an increase in the dipole expectat
value sx until an eigenvector withsx561 is reached. This
implies that the feedback setup actually creates the stabil
coherent state regardless of the initial state.

If the initial state is the ground state, it is sufficient
examine the drift term forsy50, since neither the diffusion
nor the drift will create ansyÞ0. The drift term is then given
by

S ^dsx&

^dsy&

^dsz&
D

sy50

51
Gt

2
sxszS sz

0

2sy

D . ~49!

This drift equation has four stationary solutions, two unsta
ones atsz561, the ground state and the excited state, a
two stable ones atsx561, the dipole eigenstates. Cons
quently the system state will be drawn towards the clos
one of the two dipole eigenstates as soon as the diffusion
moved the state away from the destabilized ground stat
the phase of the local oscillator is changed, whether int
tionally or accidentally, this does create ansyÞ0 compo-
m-
-

e

e

ed

e
d

st
as
If

n-

nent. Since there will always be limits to the phase stabi
of the local oscillator, it is essential that the effects of su
deviations are understood as well. Forsz50, the system re-
acts with a diffusion in the (sx ,sy) plane and a drift reducing
sz . For small values ofsy , the system will relax exponen
tially to sz522sy

2 . This induces a drift insy corresponding
to

d

dt
sy522Gsy

3 . ~50!

This stabilization ofsy50 is very weak compared to th
exponential stability insz50. The dynamics of the relax
ation for small deviations is approximately given by

sy~ t !5
1

A4Gt1@sy~0!#22
. ~51!

Figure 7 shows a comparison of this relaxation with the
ponential relaxation ofsz . This comparison clearly demon
strates that the relaxation ofsy may indeed be separated fro
the fast relaxation ofsz . Note that since the relaxation ofsy
is very slow, its effect cannot be separated from the dif
sion. The diffusion constant ofGsy

2 is actually quite similar
to the drift term ofsy . Consequently, the trajectory of th
system dynamics will be more complicated and unpred
able than suggested by Eq.~51! and Fig. 7.

On time scales longer than 1/G, the expectation value o
the dipole variablesx can be observed in the averages ofDn.
This may serve as a control of the stabilization process
possibly as an additional tool to produce the correct ph
relation between the local oscillator and the atomic syste
Note that it is fairly safe to interpret small deviations fro
sx561 as phase mismatches between the local oscill
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57 4887QUANTUM CONTROL OF ATOMIC SYSTEMS BY . . .
and the atomic system since the phase stability given bysy is
so much weaker than the excitation stability given bysz .

E. Implications for coupled and multilevel atomic systems

The major part of this paper is concerned with the pos
bility of observing and manipulating the dynamics of
simple atomic two-state system interacting with the lig
field continuum. The theory of photon emission used m
also be extended to coupled and multilevel systems,
shown in@10# for a simple quantum beat scenario. One i
portant aspect of the effects of homodyne detection of li
field emissions from larger electronic systems, such as
works of coupled quantum dots, is that the contribution
the system dynamics must be considered in more detai
fact, the presence of different frequencies in the system
namics may effectively remove the difference between
modyne and heterodyne detection. In quantum beat scen
such as the ones considered in@10,16#, the homodyne detec
tion could be performed on only one of the emission ch
nels, with consequences for the probability of detecting
emission in the other channel. If the coupling strength of
transitions is very different@16#, the quantum fluctuations
coupling to the fast transitions will induce phase fluctuatio
in the dynamics of the system. Such phase fluctuations in

FIG. 6. Effective drift on the Bloch sphere including a feedba

stabilizing s̄z50. ~a! shows the projection into the (sy ,sz) plane
and ~b! the projection into the (sx ,sz) plane.
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quantum beats of a system could be measured by homo
detection. The resulting correlation between the meas
ment protocols of the homodyne detection and the proba
ity of an emission from a local part of the system can
predicted using quantum trajectory formalisms such as
one presented in this paper. The effective projective m
surement base of an eight port homodyne detection, wh
was discussed in@4#, may also be applied in place of th
simple balanced homodyne detection scheme used here.
would restore the symmetry betweensx and sy , increasing
the number of possible stabilization scenarios.

V. INTERPRETATION AND CONCLUSIONS

A. Interpretation of the light-atom interaction

In the usual photon detection measurement the quan
fluctuations of the vacuum field state seem to have no eff
This impression is a result of the particle picture interpre
tion associated with the photon measurement. If homod
detection is used instead, the information obtained is ma
information about the quantum fluctuations acting on
system, with only small contributions from the in-phase
pole component of the atomic system. While the informat
about the time of photon emission is lost completely, t
evolution of the atomic dipole oscillations may be reco
structed from the measurement protocols.

However, the Bloch vector does not react to the quant
fluctuations in the same way as it would respond to a cla
cal driving field. The fact that no energy may be absorb
from the quantum fluctuations of the light field vacuum r
quires that the ground state is not influenced by the fluct
tions. At the same time, the corresponding excited stat
much more sensitive to the fluctuations. This asymmetry
quired by energy conservation may also be understood
terms of a correlation of the atomic system and the field. T
atomic ground state is really a dressed state in which the fi
and dipole fluctuations are correlated so as to preserve
state of lowest energy. Consequently, there is a similar c
relation in the excited state, which enhances the interac
with the quantum fluctuations. Of course, this correlati

FIG. 7. Comparison of the approximate relaxation dynamics
sz(0)50.1 andsy(0)50.1 in the presence of a feedback stabilizin

s̄z50. sy does not change much while the exponential relaxat
effectively reducessz to zero.
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extends only to the quantum noise. Therefore, the cohe
fields used to control the atom interact in a different man
and can never compensate the dissipative effects. This
only be achieved by manipulating the electromagne
vacuum itself, for example, by putting the atom into a m
crocavity.

The peculiar nature of quantum states and quant
mechanical uncertainty is also apparent in the asymmetr
the diffusion step. If the quantum state is considered to be
objectively real description of the atomic system it is difficu
to explain the dependence of the diffusion step on the ph
of the local oscillator used in the homodyne detection, es
cially since the measurement could be performed a long t
after the emission and at an arbitrary distance. Thus
simple balanced homodyne detection scenario also highli
the epistemological nature of the wave function and the
sulting nonlocality.

The analysis of the contributions to the spontaneous em
sion process observed on time scales of 1/G reveals a sur-
prisingly complex structure of the process, with contrib
tions from quasiclassical dipole radiation and nonline
effects of the fluctuations. The interpretation of these ter
is far from complete and reveals new challenges to
physical understanding presented by this fundame
quantum-mechanical process.
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B. Conclusions

We have presented a completely quantum-mechan
theory of homodyne detection, simulating the time-resolv
observation of electromagnetic emissions from an ato
system at a quantum efficiency of 100%. The theory inclu
a model of the unitary evolution of the system-field corre
tion and applies projective measurements to the result
this temporal evolution. The information obtained about t
dissipative dynamics of the atomic system has been app
in feedback scenarios which demonstrate that the dissipa
dynamics can be modified by feedback to create and stab
excited or coherent states of the system. The dissipative
ture of the measurement cannot be compensated howe
and excited states show an instability with regard to sm
errors in the initial preparation on time scales of 1/G, the
natural lifetime of the excited state. In conclusion, we ha
shown that homodyne detection can be a useful tool in
tempts to observe and control individual quantum system
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