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Quantum control of atomic systems by homodyne detection and feedback
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We investigate the possibilities of preserving and manipulating the coherence of atomic two-level systems
by ideal projective homodyne detection and feedback. For this purpose, the photon emission process is de-
scribed on time scales much shorter than the lifetime of the excited state using a model based on Wigner-
Weisskopf theory. The backaction of this emission process is analytically described as a quantum diffusion of
the Bloch vector. It is shown that the evolution of the atomic wave function can be controlled completely using
the results of homodyne detection. This allows the stabilization of a known quantum state or the creation of
coherent states by a feedback mechanism. However, the feedback mechanism can never compensate the
dissipative effects of quantum fluctuations even though the coherent state of the system is known at all times.
[S1050-294{@8)03406-4

PACS numbds): 42.50.Lc, 03.65-w

I. INTRODUCTION are discussed if5]. Once this control over the information
loss induced by spontaneous emission has been established,
Homodyne detection is a procedure that allows the meathe observed changes in the atomic wave function can be
surement of a quadrature component of the light field. Incompensated by feedback. This is investigated in Sec. IV. In
quantum optics, it has long been applied to investigating>eC- V. the results are interpreted and conclusions are pre-

squeezing effects of nonlinear optical systems. In that cons€nted.
text it is not necessary to understand the time-resolved prop-
erties of the homodyne detection process itself, since the
measurement is a time average over many photon emissions
from the light field source under investigation. If homodyne A. Time resolution and projective measurements
detection is to be applied to the observation of individual in the homodyne detection setup
quantum systems, however, a ftime-resolved Qquantum- ¢ ..o that the linewidth of the emission we wish to
mechanical treatment of the projective measurements per-, .

. . observe is much smaller thanrlthen we can conclude that
formed by a homodyne detection setup is necessary. Such ftime resolution ofr will be sufficient to observe the dy-
description not only helps to improve our understanding oft 1M T y

) ey namics of photon emission from the system. We therefore
the gquantum mechanics of photon emissions, but also pro- ; ; . ;
vides new methods of controlling the dynamics of quantumassyme that the detectors used provide us with reliable infor-
svstems mation about the photon numbers that entered each of the

yA corﬁplete quantum theory of homodyne detection musEetectors during a time interval In fact this is much closer
take into account both the quantization of the field mOde%ionE:)?Jse)r(rf):a:lsm(reenrftlarftltilrj\a\s:/%?c;h'ﬁ]netgre}i\?:lsg;n apt'?]gtg:‘ ?Scdog_'
and the temporal evolution of the continuous light field en- IR . P
tering the detector. The problem of quantization has bee}]ected with infinite time resolution. For all time-resolved

scifesse 1 a nurber o publcatidis , An spproscto TSSSUIETENS e s tmewindowof englutich il |
the problem of measuring a system as it evolves in time is! y :

presented by Carmichael if5]. It has been applied to a scribe the homodyne detection as a projective measurement

number of measurement scenarios, including homodyne an a system of two light field modes of frequeney. The

: . state to be measured is the product state of the input field
F;]terodyne detectiof6,7], as well as to feedback scenarios state| ) and the coherent stafer) produced by the local

In Sec. Il of this paper, we present an alternative deriV‘,jl_oscillator.a is the complex field amplitude of the local os-

tion of this quantum trajectory approach to time—resolvedc'"at(.)r mode emltted.durmg the.t|me interval This a“.“p"'
observation of quantum systems by homodyne detectiorIrUde is related to the intensityemitted by the local oscillator

3. . % .
starting from the projective measurement postulate formuYia the refation = a™ /7. The measurement base is the pho-
lated in[1-4]. In Sec. lll this measurement theory is then

ton number base of the symmetric and antisymmetric linear
applied to a description of the spontaneous emission proce

§meinations of the input mode and the local oscillator
based on Wigner-Weisskopf theory, which takes into aci0de:[n.,n-). In terms of the input and local oscillator
count the field dynamics of the electromagnetic continuunfi€!ds. this state may be written as

of modes. This derivation provides a shortcut to the formu-

II. A QUANTUM-MECHANICAL DESCRIPTION
OF TIME-RESOLVED HOMODYNE DETECTION

. . 1 (aT+bT)"(aT-bt\"™
lation of the backaction of the many photon measurements In, .n_)= |vacuun)
on the two-level atom and illustrates the problems of time \/n+!n_!\ V2 2
resolution and of nonlocality in quantum trajectories, which D
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wherea' is the creation operator of the local oscillator light Of this quadrature corresponding to the photon number dif-

field mode (a|5.T=a*<a|) andb' is the creation operator ference ofAn is given byAn/2| «/, reproducing the expected
of the input field. quantum uncertainty of 1/4 in the quadrature component.

The effect of this measurement on the input field staie In the case of weak one photon contributions,
is a projective measurement on a set of states that is neither
orthogonal nor normalized within the subspace of interest. |® ) ~[vacuum + B|n;,= 1), (6)
The statglP(n, ,n_)) projected into by a measurement of
n, andn_ photons in the detectors is found by forming the the probability distribution is modified only slightly by the
scalar product witl{«| in the subspace of the local oscillator contributions linear inB. To simplify the formalism, the
field. Using the fact thata| is an eigenvector o&', one  nonorthogonal measurement base of the homodyne detection

obtains may be reduced to the components lying in the two-
dimensional subspace of zero or one photon and the ampli-
|[P(n,,n_)) tude factor corresponding to the binomial distribution for the
5 - - vacuum can be approximated by a Gaussian. The resulting
B gl /a* +b"\ [ a* —b" " measurement base depends only on the photon number dif-
N m\ V2 2 |vacuun). ferenceAn and is given by
(2) — * —1/4, Anz
Note that even though this state is not normalized, the prob- [P(An))=(2ma*a) *exy — do* o
ability of a measurement af, andn_ is nevertheless given
by An
X | |vacuum + —*|nm=1)). @)
p(n;.n)=Ke|P(n. .n_))P. (3) o

The projection operators associated with these states formnote that the weak field condition can be fulfilled for any
complete probability measure for the subsystem of the inpuinput field intensity by choosing a time scatethat is much

light field. It has been shown that the photon number differ-smajler than the average rate of photons corresponding to the
encen, —n_ corresponds very well to the quadrature com-intensity of the input field. Therefore, the simplified projec-
ponent of the input field, which is in phase with the localtjon state|P(An)) can describe the time evolution of any
oscillator if the input field photon number is much smaller homodyne detection scenario. Applying Ed) to the weak

than o™ « (see, for example{3]). Therefore, the classical field state|® ;) results in a probability distribution of
interpretation of a homodyne detection as a measurement of

a quadrature component of the input field also applies to the
guantum-mechanical measurement.

[An—(e* B+ B )P

1
Pa(Am= \/27Ta*aexr{ 20* a

B. Application to low-intensity light fields (8)

The light field sources we wish to investigate in the fol-
lowing will usually emit only zero or one photonng
=0,1) during the time intervat. If the input state is the
vacuum state, the measurement probability is given by

Effectively, the weak coherent field characterized@ghifts
the Gaussian distribution by just the amount expected from
classical homodyne detection.

— 2
Pvacuun N+ ,N-) =[(vacuumP(n, ,n_))| IIl. QUANTUM DIFFUSION OF A TWO-LEVEL ATOM
g lal? (a*a>(”++”—) @ A. Description of the emission process
ngin !l 2 The coherent quantum dynamical evolution of an atomic

) ] - system interacting with the light field continuum is given by
For a fixed sum of photond\=n, +n_, this probability \vigner-wWeisskopf theory. The spatiotemporal interpretation
distribution is the binomial distribution, which results from of this theory shows that emission processes can be de-

the random scattering of the photons by the beam splittelscribed by a temporal evolution of the following ty[FEO):
For large photon numbeid> 1, this probability distribution

may be approximated by a Gaussian. The probability of mea- (E;vacuumw (t))=el @02t (9a)
suring the photon number differenéen=n, —n_ regard-

less of the total photon number is then given by T
—i \ﬁe(r’z*“”o)(”co for O<r<ct
1 An? (Gir|w(t)= ¢
Pvacuunf AN) = N Tk 0 otherwise,

(9b)

This probability distribution represents the vacuum fluctua-
tions of the in-phase quadrature of the incoming field. In thewhere |E;vacuun) is the state of the excited atom in the
limit of very strong local oscillator fields, the measured valuelight field vacuum andG;r) is the state of the ground state
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atom with a photon at a distancerofrom the atomI” is the  tion has traveled the distance to the detectors, it is possible to
rate of spontaneous emission. interpret the measurement as an instantaneous projection on
During a time intervalr, which is much shorter thanl/  the local light field state, since the light-field signal, once
the product state of the light field vacuum and an arbitraryemitted, will not interact with the atom again. This artificial
linear combination of the excited stafe) and the ground choice of the instant in which the state is projected is con-
state|G), sistent with the basic theory of quantum measurement, since
it is not possible to distinguish between a projection at the
|W(0))=ce|E;vacuum +cg|G;vacuun),  (10)  time of a measurement and a projection that anticipates the

measurement. It is only our subjective expectation of causal-

therefore evolves into an entangled state of the system ang, ia¢ leads us to prefer placing the collapse after the mea-
the light field, with the light field being in the vacuum state ¢, .ament.

or in a single photon state. The single-photon wave function - »|q the measurement described here is not continuous in

will be I_ocgted within a d'Sta’F"e afr from the atom. Since the sense discussed[iB,7]. The discrete measurements per-
the emission has a well-defined frequency and angular def

pendence, the mode into which the photon has been emittiﬁrmed are measurements of properties of the total interval

is a well-defined mode and the total state of atom and field °" t_h'_s reasom 1S r_10t written ?Sdt’ which WO.UId suggest
can be written as the limit of infinite time resolution. The experimental result

corresponding to the situation described here is a series of
photon numbers without any zero-photon time intervals
separating the time windows of each measurement.
+cE\/F_7|G;n0=1>. (11) If the wave function is regarded as an epistemological
tool describing not physical reality itself but only our knowl-
The amplitude factor offT 7 is found by normalizing the edge of it, then the projective measurement at the atom is
rectangular mode emitted by the system after a time intervadimply an expression of the information gained about the
of 7. This is done by dividing the amplitude @f"/c emitted  events at the atom, independent of the time at which the
into the spatially continuous one-dimensional field by theinformation is actually obtained. In a completely relativistic
amplitude of the normalized rectangular mode of length  theory of measurement, this epistemological effect of future
which is equal toy1/c7. Note that the amplitude of the emis- knowledge on the state of the past must be considered, as
sion depends on the square root ofreflecting the linear was already pointed out by Einstdihl]. The arbitrary sub-
increase of emission probability with time. division of the flow of time into segments of duratianis
In homodyne detection, the frequency of the local oscil-a|so an epistemological consequence as it represents the time
|at0r iS a|SOw0. Therefore, |t iS Useful to transform to the aspect of the Space_time measurement base defined by the
interaction picture using the time-dependent transformationexperimema| setup. Information about the atomic system dy-
namics on shorter time scales is not obtained and cannot be
|E)=e"1o!|E). (120  included in the evolution of the system wave function.

| W (7))=cg[1—(iwe+T'/2)7]|E;vacuum + cg|G;vacuun)

This effectively removes the terms oscillating witly from

the system dynamics by describing the phase relation bes. Influence of the homodyne detection on the system dynamics
tween the excited-state component and the ground-state com- For an arbitrary svster with known initial wave function
ponent of the system state not in terms of an absolute pha?ﬁ y sy | of h !
but in terms of the phase relative to the local oscillator. Note e measurement protocol of repeated homodyne detections

that heterodyne detection may also be described by this forovides a complete description of the evolution of the sys-
malism if the time scale is chosen so that the detunidg tem wave function. In this sense, the method described here

between the local oscillator and the system dynamics satidS @ generalized quantum trajectory approach."prev’er, in-
fies the requirement thalwr<1. The dynamical evolution Stéad of using a master equation approach, Stthger's

of the system phase relative to the local oscillator phase ca@duation of the system-field interaction is solved and the

then be included in the measurement scenario. homodyne detection events are described as projective mea-
The equation for the evolution of the wave function dur-surements on the correlated system-field wave function. The
ing short time intervals is detector simulated by this approach is not a single-photon

counting device but rather corresponds to a photodiode with
= . a high time resolution. Indeed, the measurement need not
W (7)=ce(1=T'7/2)[E;vacuum + cq| G;vacuum reso?ve single photon counts to achieve a useful precision for
+ce\T'7|G;ny=1). (13)  predictions about the quantum system.
To investigate the dynamics of the atomic wave function
The projection postulate of homodyne detection can now bebserved by homodyne detection, it is useful to examine the
applied to the light field part of this correlated system-fieldeffect of a single projective measurement of photon number
state, resulting in an effective projection of the state of thedifferenceAn on an arbitrary system wave function after an
atomic system into a state that depends on the measuremearhission time segment af Before the projective measure-
result of the homodyne detection. ment, the correlated system-field wave function is given by
Although the real physical measurement will take placeEg. (13). After the projective measurement & the system
many time intervalsr later, after the light-field wave func- is in a pure state described in the interaction picture by
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|p(7)y=(P(An)|¥ (7)) these diffusion steps is only proportional Ior however,
since the expectation value afn/« is of the order ofyT .
On the measurement time scalethe quantum fluctuations
therefore cause a random-walk-type diffusion of the atomic
state, just as one would expect from classical noise. How-
ever, the length and the phase of the diffusion step are func-

. (14)  tions of the initial system state. On time scales df,lthe
nonzero average afn/«, the diffusion term proportional to

The squared length of this state vector is a measure of th'® square of the measurement, and the deterministic drift
probability of measuringr(, ,n_). Proceeding as in the deri- t€rms contribute to the change in the system state. All of
vation of Eq.(8) and assuming thaf 7<1, it is possible to these terms give rise to a sl_ow drift of the wave function

represent the deviation of this probability distribution from towards the ground state. To illustrate the dependence of the

the vacuum state distribution by a Gaussian distributiorfliffusion constant on the state of the atomic system and to
shifted by a term linear inT 7 identify the drift terms we will now formulate this depen-

dence of these processes in terms of the Bloch vector.

An?

da*

=(2ma* a)lmexr{ -

X |G)

-~ An
c;E(l—rT/2)|E)+(cGJrcEJr_T7

_ / * * 2
p(An)~ ! ex;{ — [An—|a|yT'7(ceCe +CECe)] C. Quantum diffusion of the Bloch vector
2ma” a 20" a The dynamics of two-level systems can be visualized us-

(15  ing the Bloch vector representation. This three-dimensional

Here and in the following, the phase relation between the/€Ctor incorporates the excitatiépopulation inversiop the
local oscillator and the atomic dipole is defined so that it isdiPele, and the dipole current of the two level atom as its
zero if bothce andcg are real and positive. The small de- orth.ogonfal components._When the time-dependent transfor-
viation from the quantum vacuum case is clearly related tdnation given in Eq.(12) is used, the two components or-
the dipole expectation value of the atomic system. Conseliogonal to the excitatios, describe the in-phase and the
quently, they indicate the dipole field emitted by the system(7/2) out-of-phase components, re_'specpvely, of the dipole
The normalized change in the state of the system is orthogdScillations relative to the local oscillator:

nal to the initial staté(0)) for small changes. It is found

by projecting|#(7)) on the subspace orthogonal |t6(0)), s=2 Re(YIEXG|y)), (183
normalizing by dividing by the amplitude of the parallel
component. Sy:2 |m(<i/I|E><G|l,b>), (18b)

| (7)) 1 4(0))($(0)| ¢ 7)) 16 s, = |(E[v) 2= (G| )|2. (189

(¥(0)|y(7))
) ] . _If ais a real numbers, is the in-phase component of the
The normalized expression for the system wave function ig;omic dipole ands, is the out-of-phase component. The
then given by ¢(0)) +|8y(7)). Applying the condition that jitrsion step associated with a measurement resultroin

I'r<1 we neglect all terms above second ordet/Thr. The  terms of the Bloch vector is derived fromy(0)) and
change of the wave functid@( 7)) within the time interval | 8y(7)) by using
7 conditioned by the measurement®h is then given by

|8y(7)=

8s,=2 RE(P(0)[ENG|8p(m)+(5¢(n)|ENG|$(0))],

A ~
[owt) =~ T cR(c5 E) - tlG) 193
An? . 88, =2 Im[(y(0)[E)(G|8y(7))+(ay(n)[ENG|(0))],
T cecg(cElB) ~cEl6)) (19b)
' _ 5s,=2 Re($(0)[E)(E|ov(r) —(s(0)|G)(G|y(m)].
- 7CECG(C€|E>_CE|G>)- 17 (190

The change in the Bloch vectdis can be expressed in
The dominant effect within one time interval is given by terms of the Bloch vectos corresponding td#(0)). The
the diffusion term proportional tq/T'7An. The average of result is the diffusion step of the Bloch vector,

1+s,—s? S4S; S.S,
't An? I'r

S| TSS | t+t5 ——(1+s)| &8 |+ 88 |. (20)

|| a*a 2 g*q 2 2

8, —s(1+s,) —s(1+s,) s;—1 s;—1
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o UM e == Sy S4S;
WO @ ZoN®
SN N //////_\\\\\\ \/Sx+sy 0 Sx—i_sy —P-g2
17 A\ X y
SNNN VN ) S s //////_\\\\

SzlsxN N\ | | /s osn ”////_\\\\ll (23b)
SNNN N s e e s S MU As can be seen from these results, a Bloch vector that is in
SNON N | [ A \\I/,,_\\\ll/ . . . N N
NN R oL s phase with the local oscillator will show random rotations in

A Seeee s the (s, ,S,) plane. A Bloch vector polarized out of phase with
LIt S the local oscillator by+ 7/2 (s,=0) will undergo phase dif-
Sy Sx fusion only, withs, remaining constant. The ratio between

the diffusion constant of pure phase diffusion and the diffu-
FIG. 1. Visualization of the diffusion step on the Bloch sphere.Sion constant of excitation diffusion is given bg,(s,)?

The diffusion is represented by lines oriented parallel to the direc=tan(¢)?, whereg is the phase difference between the local
tion of the diffusion with a length proportional to the standard de-o0scillator and the dipole oscillations of the atom. Note that a
viation of the diffusion step(a) shows the projection into the randomly varying classical in-phase field would give rise to
(sy,s,) plane andb) the projection into theg,s,) plane. Rabi oscillations around, with a step length proportional to

\/1—SX2. The properties that only phase diffusion occurs for
As in the case of the state vector representation, the Blocs,=0 and that the rotations in thg,=0 plane preserve
vector diffusion step is composed of a fast random walkphase are also properties of Rabi rotations induced by clas-
diffusion on the time scale of and drift terms on a time sical fields. However, the step length dependence 61
scale of 1II'. What is more apparent in the Bloch vector clearly indicates a difference between the effects of quantum
representation is the possible separation into phase-sensitim@ise and of classical noise.

and phase-independent changes. On a time scale of 1J, the contribution of the random
walk is given by the nonvanishing expectation value of the
D. Interpretation of the contributions to the diffusion step homodyne detection photon number difference. The prob-

_ o o ability distribution of the measurement results is approxi-
To interpret the diffusion step, it is useful to analyze themately given by a Gaussian with

separate contributions in more detail. In particular it is help-

ful to investigate the diffusion step component representing An\ JFr

the random walk caused by the fluctuating light field, Tal| = Lrs,, (243
55y An 1+s,— s AR » .
55y =rpl e |- @ o ke (24D
5SZ fluctuation _SX(1+SZ)

On a time scale of 1 a large number of measurements will
have been performed since<l1/Ml'. Therefore, the net
change of the system state can be evaluated using these ex-
%ectation values. The random walk drift is then given by

Figure 1 illustrates this diffusion on the Bloch sphere. In
order to analyze the diffusive motion of the Bloch vector,
one may separate the absolute value from the direction of th

diffusion. The diffusion constant is then given by (85, Lis,— sf(
(8sy) =TI'rs -5, _ 25
@=F(l+s)2 22) <5sy> TSy - £<+y (25

T “ 2/ 7 fluctuation Su( S;)

. S _ This is exactly compensated by the other phase-sensitive
The magnitude of the diffusion is therefore independent ofontribution effective on a time scale ofl1/

the phase relation between the local oscillator and the atomic

dipole. It does depend on the excitation of the atom however. [ (§s,) 1+s,—s2
It is maximal for the excited state and zero for the ground An?
e ) . N (8sy) =-Ir s —5,S
state, indicating that the ground state will not interact with Y atal " Y
the field vacuum. The direction afs is given by (652) / compensation —Sx(1+s,)
(26)
2
Ss 1 1+s,—s; A S This compensation has a clear physical reason. The dynam-
—=— xSy =—==€ 2X =€), ics of the system should only depend on the incoming field.
los  1+s, s (1+s) \/S,(JrSy \/SXJrSy However, the measurement is being performed on the field
X z

(233 coming from the atomic system, which is a sum of the fields
passing the atom and the dipole field emitted by the atom.
. Although it is impossible to separate the contributions in a
wheree, is the unit vector perpendicular to bastand thez  quantum-mechanical measurement, the long term averages
axis andé‘ is the unit vector perpendicular to bostande, . can actually be corrected by subtracting the averaged dipole
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field contribution from the measured fields. In effect, this e T U T -
leaves only two drift terms that influence thd ltime scale P2 B SRR W
dynamics. s 44 LV N NN\
The drift term that is not dependent on the measurement V2V B S U G U WA W W
resultAn is given by Y/ 20 B R L U G G WA N}
g S Uit trr 4
r
osy| == S8 | @27
2 5 5 O O L I I I
0S,/ . —S;—S
2/ dipole X Sy L\ U U Y T T Y Y B /4
. . . . 2 Wy VoV O) i [ Y A4
This term describes a reduction ef as a function ofs; WNNY N V4 4 4w
+s§. Sinces, is the energy expectation value of the atomic D it
system ands)2(+s§ is the square of the atomic dipole, this MRRAE A

process describes a loss of energy corresponding to the emis- S
sion of radiation from a classical oscillating dipole. It is y

therefore equivalent to the equ_ation; describing superradi- FIG. 2. Total drift on the Bloch sphere projected into thg,6,)
ance{12,13, as well as to a semiclassical textbook approacty|ane . since the drift is rotationally symmetric around theaxis,

to spontaneous emissidi4]. Unlike the other terms, this o exira figure is given for thes(,s,) plane.

term is entirely free of quantum fluctuation effects. It is com-

pletely deterministic and depends only on the expectation, however, the connection to the dynamics observed in the
values of the atomic system state. It is a fascinating featurgomodyne detection becomes apparent:

of the quantum theoretical formulation of spontaneous emis-

sion applied in this investigation that it automatically pro- (s) (s,0{(sy)
duces such a semiclassical term from the simple photon d (s.) T (2+(sy)) (s)(s.)
emission described by E¢lL1). dtl ‘™| 2 (92 ZATy
The three terms discussed up to this point can be under- (S2) (s?—(9?
stood in terms of the action of the incoming quantum fluc- (s)
tuations on the system and in terms of the semiclassical I ([{s)]+(s,))? X
emission caused by the dipole oscillations. The fourth term is 5 5 (sy) |. (30)
more difficult to understand since it depends on the quantum (9 (s,)

fluctuation measurements but is not sensitive to the phase of

the local oscillator. It seems to be a mixed effect of dipoleFor [(s)|=1, the expected reduction of the length of the
emission and quantum fluctuations, possibly related to th@loch vector is an effect of the diffusion caused by the
quantum fluctuations of the atomic dipole. The contributionss, . .ionst€rm. Its rate is given by one-half of the diffusion

of this mixed term to the dynamics is given by constani’(1+s,)2. The rotation of the Bloch vector is given
by the sum of the two drift termsisyipeie aNd SSpixeq- FOT
(85 I/ An2 S5« |(s)|=1, the average expected changesjrtan be separated
(5sy) :_T< _n> (1+s)| S5y |. (28 into contributions related to the diffusion of the Bloch vec-
2\ a*a tor, to the dipole emission, and to the mixed term,

2 2
< 5SZ> mixed ST Sy

d
The sum of the drift dynamics to be expected on a time scale  g;(S2)= ~I'({S2) + 1) (Quittusion™ Aatipole ™ Amixed)

of 1/T" is given by the sum of the dipole contribution and the (319

mixed term. The total drift vectors resulting from this sum

are shown in Fig. 2. Qaitusion= 2 (1+5,)S; (31D
E. Contributions to the exponential decay Udipole™ 1(1-s,), (319

of the average excitation

1 2
At first it may seem confusing that a simple spontaneous Gmixed=2(1=S). (31d
emission from an isolated atom should give rise to such
complicated variety of dynamical effects. After all, the Bloch
vector dynamics of an ensemble of atoms is described by

‘?Eigure 3 shows this change in the relative contributions to
the exponential decay of the atomic excitation as a function
of s,. For the excited states,= + 1, the exponential relax-

(S (s)12 ation ofs, is a result of the diffusion of the Bloch vector due
d to quantum fluctuations, while for states close to the ground
at (sy) |=-T| (syy/2 |. (29 states,~—1, the exponential relaxation &= — 1 is domi-

(s,) (sp)+1 nated by the semiclassical dipole emission. For maximally

polarized statess,=0, the emission contributions of the di-
If one separates the time derivative of the Bloch vector into gole term and of the mixed term are equally strong, while the
component orthogonal to the Bloch vector and one parallel tdiffusion has no effect. Note that for 1<s,<0, the diffu-
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control impossible. In the quantum system, however, we can
still achieve perfect control of the atomic wave function.

In order to manipulate the known atomic state the electro-
magnetic field at the atom may be modified. For example, a
resonant coherent driving field may be coupled to the atomic
system. In order to ensure that this field has a fixed phase
relation with the local oscillator used in the measurement it
would be natural to utilize the same coherent light field
source in the homodyne detection setup and in the feedback
loop. Since the local oscillator field is very strong, only a
negligibly small portion needs to be redirected in order to
achieve control of the system dynamics. In fact, since the
strength of the field expectation value needs to compensate
for quantum fluctuations only, the portion of the local oscil-
lator intensity used for this purpose is approximately given

Sz by 1/(4a* «). Note that it is possible to add the effect of the
Rabi rotations caused by the feedback field and the effects of

FIG. 3. Relative contributions to the exponential decay of thethe quantum fluctuations because the Heisenberg equations
atomic excitation for(s)|=1. of motion for the fully quantum-mechanical field-atom inter-
action are linear in the field variables. The dynamical effects

sion caused by the quantum fluctuations actually tends tgf the feedback and of the diffusive evolution are therefore
excite the atom. However, this effect is compensated by thgeparable.

0.8

0.6

0.4

0.2

mixed terms and the dipole emission. A controllable reflector can be used to coherently manipu-
late the system depending on the measurement results of the

IV. COMPENSATING QUANTUM FLUCTUATIONS homodyne detection. This feedback modifies the dissipative

BY FEEDBACK dynamics of the atomic system. If the delay between emis-

sion and feedback is much shorter thah it is possible to
compensate the effects of fluctuations on a known system
Section Ill describes the measurement of quantum flucstate. Note that this either requires a low decay fater a
tuations propagating away from an atomic two-level systenvery fast feedback loop. In an optical setup a typical unmodi-
by homodyne detection and the implications of the measuréfied lifetime of nanoseconds would require a feedback loop
ment for the dynamics of the atomic state. Since maximamuch shorter than 10 cm in length, so the light field signal
knowledge is obtained about the field state, the atomic syssan return in time, with the purely optical dissipative photon
tem state is in a pure state after the measurement. This sugetectors integrated into this loop.
gests the possibility of using feedback based on the measure- The effect of a delay time oAt=m7 between the emis-
ment results as a means to manipulate the quantum state.$%on and the arrival of the corresponding feedback signal at
general formalism for this procedure based on the mastdhe atom can be estimated by considering the number of
equation approach to quantum trajectories has been pré&ncompensated diffusion stepsthat occur during the delay
sented i 9] and was applied to light fields in an open cavity time. The probability distribution over the sum of the mea-
in [8]. In the following, we will discuss the possibility and surement resultén accumulated within that uncontrolled in-
the physical problems involved in applying a feedbackterval is given by a Gaussian with a standard deviation of
scheme to the two-level atom. JYm|a|. This may be multiplied with the expected uncom-
On a time scale ofr, the homodyne detection does not pensated diffusion step length at the stabilized point on the
give any information about the state of the atqmiAn) is  Bloch sphere in order to determine the reliability of feedback
nearly equal to the vacuum probability distribution. The in-stabilization with a nonvanishing delay time. In the follow-
formation obtained in a single field measurement is thereforéng, however, we shall concentrate on the description of ef-
not information about the atomic system itself. Instead, it isfectively instantaneous feedback.
information about the quantum fluctuations acting on the Because the total light field propagating away from the
system. This sensitivity to the vacuum fluctuatidias op- atomic system is measured in the homodyne detection, the
posed to the system states ideal for stabilizing quantum reflected control field will also be measured in the subse-
states by reversing the effects of the measurement procegsient time interval. This must be subtracted from the mea-
[15]. If we were dealing with a classical system it would be surement signal for further feedback, since the feedback ef-
possible to measure the exact forces involved. A feedbaciect itself should not be compensated. Note that the linearity
mechanism could then compensate the forces, thereby ref the field dynamics involved actually allows this separation
moving the effects of the incoming noise. In quantum me-despite the fact that the feedback field and the quantum fluc-
chanics, however, the quadratures of the light field do notuations interact with the system in a qualitatively different
commute. Therefore the force acting on the atomic systermanner as described below. Intuitively, one would expect a
can never be known completely. In the balanced homodyneomplete compensation of the fluctuations if the averaged
detection setup discussed here we only know the quadratureeasurements dn are zero. However, we will see that this
of the light field, which is in phase with the local oscillator. is not so, owing to the fact that only one quadrature of the
In a classical system, this lack of information would makequantum fluctuations can be compensated.

A. Feedback setup
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B. Effects of feedback on time scales shorter than I/

Although a number of feedback scenarios may be dis-
cussed even in the simple context of the two-level atom, we
will now concentrate on the possibility of stabilizing a Vs
known state withs,=0 by effectively instantaneous feed- Sz|.,
back. The feedback is given by a coherent driving field in- %

ducing Rabi rotations around tfe axis. The effect of this o/ wINSY - —

N\N~—_ T

feedback experienced by the system during the time interval ‘ /,,,/,/, I, \ \\\\\\_\ ' \Q\xj///;///
7 can be written as A TR FUR AR \\g.,,_/ ==
OSy s, Sy Sx
sy =2\I'f(Am)| O |, (32 FIG. 4. Visualization of the effective diffusion step including a
8s;, teedback — Sy feedback stabilizing,= + 1. The representation is as in Fig. 1.
_ _ N 55, 1+s,—s2 —2s,
wheref(An) is the feedback field describing the response of s An 0
the coherent control to the most recent measurement result.| 25 =\I'r Tal Sy [ F
An is the measurement result obtained from the quantum \ és;/ . . . —s,(1+s,) 2s,
fluctuations acting on the system in the previous time inter- )
val. Since the time intervals are small on the scale of the 1-s,—s;
system dynamics, however, we will simplify matters by sum- =Tr ﬂ —s.s (36)
ming the effects of the diffusion step and its subsequent |a| (1-s)
Sxl=s§;

feedback as if they occurred in the same time interval to
obtain the effective total diffusion.

The homodyne detection measurement in the followingAs shown in Fig. 4, this effective diffusion step is the exact
time interval will be modified by the feedback field. The inversion of the diffusion step without feedback. The roles of
change in the\n measurement caused by the feedback in thé,=—1 and ofs,=+1 have been reversed. Consequently,

next measurement,.,;, may be determined using E): the sensitivity of the system to quantum fluctuations is now
maximal at the ground stats,= — 1. The diffusion constant

is proportional to (£ s,)2. The in-phase quantum fluctua-
Snexi=2|a|f(AN). (33)  tions have been overcompensated in this case:

- . AN+ Spex= —AN. (37)
In order to stabilize a given system statd(An) must be

chosen to compensate the diffusion step, i.e., This indicates that the reversal of the diffusion effect has

been achieved by answering the fluctuations of the in-phase
quadrature with an opposite field of double strength, effec-

OSx 05y tively reversing the sign of that field component, while the
sy +| sy =0. (39 unknown fluctuations in the out-of-phase quadrature are un-
S S modified.
Sz/ fuctuati Sz/ feedback . . oo
uctuation eecbac Another interesting scenario is the stabilizationsgf 0,

because it corresponds to the simple minded compensation
of quantum fluctuations by choosing a feedback field with

the negative amplitude of the quadrature measured in the
homodyne detection. The effective diffusion step now reads

Fors,=0, this condition is fullfilled if

— An
f(An)=—(1+s,)=—, (35) 5s 1-s2
“2|al " An x
sy =Jr_7m -ss | . (38)
o5, effective 58

wheress, is the Bloch vector component of the stabilized
state. Note that(An) is not a function of the present state of

the atomic system. try around thes, axis. The ratio ofs, /s, is a constant. The

A p_artlcularly interesting case is obtained yvhen the fee.ddiffusion is always directed towards one of the two stabilized
back is chosen to compensate for the maximal fluctuation

effects possible, stabilizing the excited state of the two-levepOles Withs,= + 1_._Th(_a absol_ute _value of _the diffusion con-

atom. If the system is not in the excited state, the diffusionStant for the stabilization a£,=0 is thus given by

step associated with a homodyne detection even ofis

now given by the sum of the original diffusion step and the (55°) r(1-s2 (39)
).

feedback, -

As shown in Fig. 5, this diffusion law has rotational symme-
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For the stabilized state with = sin 6,5,=0,,= cosé, the ef-
FIG. 5. Visualization of the effective diffusion step including a fective drift is equivalent to a Rabi rotation around the

feedback stabilizing,=0. The representation is as in Fig. 1. axis of (I'7/2)sin ¢ cos ¢ per time intervalr. This effect can

be compensated by a constant driving field. The field

In the general case of a stabilizationsyf= cos ¢, whereg ~ Strengthfo necessary for this purpose is given by

is the angle between the stabilized Bloch vector andsthe
axis, the diffusion step is

fo= L 44
5s, A s, O—Tsm 0 cosé. (44)
n
s, :‘/FTW sy| —Sx | +(s,—cos6)
952/ eftective 0 This driving field ensures that the stabilized state is a station-

ary solution of the drift-diffusion dynamics generated by the

® feedback setup. However, the drift terms may also cause
x| 0 (40) problems if they amplify small deviations from this stabi-
-8, lized state.
The stability analysis neas,=sin 6,5,=0,s,=cos6 can
and the diffusion constant is given by be performed by linearizing the drift dynamics of small de-

viations. The deviation in thes(,s,) plane is appropriately
(5) described by the angular variabde such thats,= cos@+¢)
=F(1—s§—2(cos 0)SZ+cosz0(s)2(+s§)). (42) and s,=sin(f+e). The. linear stab?lity gnalysis fchen shows
T that for smalle, the drift(Se) per time intervalr is

By varying the feedback it is therefore possible to suppress
the diffusive dynamics for an arbitrary state in thg ,s,) r
r

plane. (6e)=—Fe. (45)

C. Effects of the drift terms on time scales of I/

Although the feedback described above can completelyherefore the drift terms always stabilize the state with sup-
suppress the random walk dynamics induced by the quantugiyessed fluctuations against rotations in tag §,) plane. In
fluctuations on a time scale effor an arbitrary system state, the (s,,5,) plane, the situation is different however. The

it is necessary to consider the effects of the drift terms ifiinearized drift dynamics of smatl, is described by
stability on longer time scales is to be obtained as well. The

complete diffusion step, including a feedback field of
f(An)=—(1+cosH)An/2|a|, is given by

I'r
0S,)=—(2+cos)(cos)s,. (46)
53)( 55)( A s, < y> 2 ( ( ) y
n
sy | =| osy —\/rrm(ucose) 0 .
s, 08,/ 4 — Sy This indicates stability for all co8<0, i.e., any state that has

(42 a negatives, component. If states of higher excitation are to
be stabilized, any small deviation frosy=0 in the initial

where sy denotes the diffusion step without feedback, aspreparation is amplified exponentially on a time scale &f. 1/
given by Eq.(20). The drift is consequently modified by the This indicates that long term stability of such inverted states
nonzero average akn in the feedback term. The resulting cannot be achieved.
drift is the sum of the drift without feedback and the feed- An interesting aspect of the quantum trajectories associ-
back drift term. It may be written as the sum of a rotationated with the measurement protocols obtained from the ho-
around thes, axis and a rotation around tisg axis, modyne detection is revealed in this critical problem of
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guantum control. If the initial state is only known within an local oscillator. In the following we will investigate the ex-
error margin, the trajectories may diverge and amplify thisample of feedback stabilization for these maximally coherent
error margin even though the trajectories are fully determinStates.
istic functions of the initial state. Apparently, there is an D. Stabilization of the dipole eigenstates
aspect of deterministic chaos in this small quantum system For cos#=0, the stabilized states asg= + 1, the eigen-
when its dynamics is analyzed using homodyne detection. Iétates of the dipole component oscillating in phase with the
seems that the fully polarized stateg= +1s,=s,=0, are local oscillator. Also, this case is special because it corre-
ideal for stabilization, since they can be observed in the measPonds to the classical idea of feedback compensafion:
surement results. If the system drifts away from its stabilized", 5next._ 0: At.the same time, the average/of is a measure

of s, indicating both the sign of the Bloch vector compo-

state, this can be observed in the homodyne detection annent stabilized and the success or failure of the stabilization

may be corrected, either by applying static fields to shift the;emnt The modified total diffusion step including feedback
phase of the atomic system or by shifting the phase of thes given by

55, 1-s2 1-s2 s, S4S; S.S,
An X An? X An? I'r An? T
5Sy = \/F T m - sty -I'r " Syl — sty —I'r " Sy 0 + 7 — ( 1+ Sz) Sysz + 7 Sysz
a” o a” o a” o 2 2
s, —5,S, —5,S, — Sy s;—1 s;—1
(47)

The compensation term has been split into one part that corment. Since there will always be limits to the phase stability
pensates the drift of the total diffusion step and the remainef the local oscillator, it is essential that the effects of such
ing term, which modifies the effective drift. The nature of the deviations are understood as well. B0, the system re-
diffusion term has already been discussed in Sec. lll. Thects with a diffusion in thes,s,) plane and a drift reducing
diffusion steps are directed towards #jepoles of the Bloch s,. For small values o8,, the system will relax exponen-
sphere with a diffusion constant #f(1—s2). The average tially to s,= —Zsf,. This induces a drift irs, corresponding

drift is given by to
I'r —s,=—2Is? (50)
< 5sy> =+ 7 Sysz( 2+ sz) . (48) dt Sy - Sy '
(65,) —sj(2+s,)—sis,

This stabilization ofs,=0 is very weak compared to the
eexponential stability ins,=0. The dynamics of the relax-
ation for small deviations is approximately given by

Figure 6 shows the drift vectors on the Bloch sphere. Th

change ins, always has the same sign g5 indicating that

this drift will cause an increase in the dipole expectation

value s, until an eigenvector witts,= *+1 is reached. This

implies that the feedback setup actually creates the stabilized

coherent state regardless of the initial state. sy(1)= aTt+[s (0)] 2
If the initial state is the ground state, it is sufficient to y

examine the drift term fos, =0, since neither the diffusion

nor the drift will create ars, # 0. The drift term is then given  Figure 7 shows a comparison of this relaxation with the ex-

(51)

by ponential relaxation o§,. This comparison clearly demon-
strates that the relaxation sf may indeed be separated from
(5sy) S, the fast relaxation of,. Note that since the relaxation sf
(5s,) 4 E ss 0 (49) is very slow, its effect cannot be separated from the diffu-
Y 2 7 ' sion. The diffusion constant de§ is actually quite similar

(35,) 5,=0 —Sy to the drift term ofs, . Consequently, the trajectory of the
system dynamics will be more complicated and unpredict-

This drift equation has four stationary solutions, two unstableable than suggested by E¢l) and Fig. 7.
ones ats,= =1, the ground state and the excited state, and On time scales longer thanIl/the expectation value of
two stable ones a$,= +1, the dipole eigenstates. Conse- the dipole variable, can be observed in the averages\or.
guently the system state will be drawn towards the closesthis may serve as a control of the stabilization process and
one of the two dipole eigenstates as soon as the diffusion hgmssibly as an additional tool to produce the correct phase
moved the state away from the destabilized ground state. lelation between the local oscillator and the atomic system.
the phase of the local oscillator is changed, whether intenNote that it is fairly safe to interpret small deviations from
tionally or accidentally, this does create ap=0 compo- s,==*1 as phase mismatches between the local oscillator
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“y R guantum beats of a system could be measured by homodyne
Sz . l l l . detection. The resulting correlation between the measure-
Lol | 48! ment protocols of the homodyne detection and the probabil-
R S| l l l oy ity of an emission from a local part of the system can be
Yy [ S . predicted using quantum trajectory formalisms such as the
R one presented in this paper. The effective projective mea-
AR N T surement base of an eight port homodyne detection, which
DRI U was discussed if4], may also be applied in place of the

simple balanced homodyne detection scheme used here. This
would restore the symmetry betwespands,, increasing
the number of possible stabilization scenarios.

7]
>

FIG. 6. Effective drift on the Bloch sphere including a feedback

stabilizing?zzo. (a) shows the projection into thes(,s,) plane

V. INTERPRETATION AND CONCLUSIONS
and (b) the projection into theg,,s,) plane.

A. Interpretation of the light-atom interaction
and the atomic system since the phase stability gives liy

In the usual photon detection measurement the quantum
so much weaker than the excitation stability givensyy

fluctuations of the vacuum field state seem to have no effect.
This impression is a result of the particle picture interpreta-
. _ . tion associated with the photon measurement. If homodyne
E. Implications for coupled and multilevel atomic systems

detection is used instead, the information obtained is mainly
The major part of this paper is concerned with the possiinformation about the quantum fluctuations acting on the

bility of observing and manipulating the dynamics of a system, with only small contributions from the in-phase di-
simple atomic two-state system interacting with the lightpole component of the atomic system. While the information
field continuum. The theory of photon emission used mayabout the time of photon emission is lost completely, the
also be extended to coupled and multilevel systems, asvolution of the atomic dipole oscillations may be recon-
shown in[10] for a simple quantum beat scenario. One im-structed from the measurement protocols.

portant aspect of the effects of homodyne detection of light However, the Bloch vector does not react to the quantum
field emissions from larger electronic systems, such as nefluctuations in the same way as it would respond to a classi-
works of coupled quantum dots, is that the contribution ofcal driving field. The fact that no energy may be absorbed
the system dynamics must be considered in more detail. Ifrom the quantum fluctuations of the light field vacuum re-
fact, the presence of different frequencies in the system dyguires that the ground state is not influenced by the fluctua-
namics may effectively remove the difference between hotions. At the same time, the corresponding excited state is
modyne and heterodyne detection. In quantum beat scenariasuch more sensitive to the fluctuations. This asymmetry re-
such as the ones considered 19,1€], the homodyne detec- quired by energy conservation may also be understood in
tion could be performed on only one of the emission chanterms of a correlation of the atomic system and the field. The
nels, with consequences for the probability of detecting aratomic ground state is really a dressed state in which the field
emission in the other channel. If the coupling strength of theand dipole fluctuations are correlated so as to preserve the
transitions is very differenf16], the quantum fluctuations state of lowest energy. Consequently, there is a similar cor-
coupling to the fast transitions will induce phase fluctuationgrelation in the excited state, which enhances the interaction
in the dynamics of the system. Such phase fluctuations in theith the quantum fluctuations. Of course, this correlation
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extends only to the quantum noise. Therefore, the coherent B. Conclusions
fields used to control the atom interact in a different manner
and can never compensate the dissipative effects. This can We have presented a completely quantum-mechanical
only be achieved by manipulating the electromagnetidheory of homodyne detection, simulating the time-resolved
vacuum itself, for example, by putting the atom into a mi- gbservation of electromagnetic emissions from an atomic
crocavity. system at a quantum efficiency of 100%. The theory includes
The peculiar nature of quantum states and quantumy model of the unitary evolution of the system-field correla-
mechanical uncertainty is also apparent in the asymmetry Gfon and applies projective measurements to the results of
the diffusion step. If the quantum state is considered to be afhjs temporal evolution. The information obtained about the
objectively real description of the atomic system it is difficult gissipative dynamics of the atomic system has been applied
to explain the dependence of the diffusion step on the phasg feedback scenarios which demonstrate that the dissipative
of the local oscillator used in the homodyne detection, espegynamics can be modified by feedback to create and stabilize
cially since the measurement could be performed a long timgycited or coherent states of the system. The dissipative na-
after the emission and at an arbitrary distance. Thus thig,re of the measurement cannot be compensated however,
simple balanced homodyne detection scenario also highlightgg excited states show an instability with regard to small
the epistemological nature of the wave function and the regrors in the initial preparation on time scales of lthe
sulting nonlocality. o _natural lifetime of the excited state. In conclusion, we have
The analysis of the contributions to the spontaneous emisspown that homodyne detection can be a useful tool in at-

sion process observed on time scales df féveals a sur-  tempts to observe and control individual quantum systems.
prisingly complex structure of the process, with contribu-

tions from quasiclassical dipole radiation and nonlinear
effects of the fluctuations. The interpretation of these terms
is far from complete and reveals new challenges to our We would like to thank Ariel Liebmann and Claus
physical understanding presented by this fundamentabranzow for many helpful discussions, and Howard Car-
guantum-mechanical process. michael for valuable comments.
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