Non-Perturbative Determination of c_{SW} in Three-flavor Dynamical QCD^{*}

CP-PACS and JLQCD Collaborations: S. Aoki,^a M. Fukugita,^b S. Hashimoto,^c K-I. Ishikawa,^{a,d} N. Ishizuka,^{a,d} Y. Iwasaki,^a K. Kanaya,^a T. Kaneko,^c Y. Kuramashi,^c M. Okawa,^e V. Lesk,^d Y. Taniguchi,^a N. Tsutsui,^c A. Ukawa,^{a,d} T. Umeda,^d N. Yamada,^c and T. Yoshié^{a,d}

^aInstitute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

^bInstitute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan

^cHigh Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan

^dCenter for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan

^eDepartment of Physics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

We present a fully non-perturbative determination of the O(a) improvement coefficient c_{SW} in three-flavor dynamical QCD for the RG improved as well as the plaquette gauge actions, using the Schrödinger functional scheme. Results are compared with one-loop estimates at weak gauge coupling.

1. Introduction

Realistic simulation of QCD requires treating the light up, down and strange quarks dynamically. Incorporating a degenerate pair of up and down quarks have become almost standard by now, and a first attempt toward the continuum extrapolation has shown that the deviation of the quenched hadron mass spectrum from experiment [1] is sizably reduced[2]. Adding a dynamical strange quark is the next step, which has become possible with the recent algorithmic development for odd number of fermions[3].

The CP-PACS and JLQCD Collaborations have jointly started a 2+1 flavor dynamical QCD, employing the polynomial HMC (PHMC) algorithm for strange quark and the HMC algorithm for up and down quarks. We choose the renormalization-group (RG) improved action for the gauge fields, in order to avoid the lattice artifact present for the plaquette action[4]. We wish to use a fully O(a)-improved action for quarks to control lattice spacing errors. Here we report on a non-perturbative determination of c_{sw} for three-flavor QCD by the Schrödinger functional scheme both for the plaquette and RG-improved

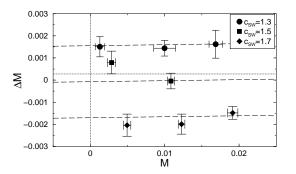


Figure 1. ΔM as a function of M for the RG action with $N_f = 3$ at $\beta = 2.2$.

gauge actions.

2. Method and Simulations

For the determination of c_{SW} , we basically follow the method of ref.[5], except for the choice B for the boundary weight of the RG-improved gauge action [6]. We refer to ref. [5] and references therein for notations in this report.

We mainly use an $8^3 \times 16$ lattice in our determination of c_{SW} for the RG-improved as well as the plaquette action with $N_f = 3$ dynamical quarks at several values of β . Simulations with $N_f = 4, 2, 0$ are also made for comparison.

^{*}Talk presented by S. Aoki

We measure the modified PCAC quark masses, M and M', and their difference $\Delta M = M - M'$, at several values of $c_{\rm SW}$ and K. We have taken these parameters to realize M = 0 by an interpolation, except at strong couplings for the case of $N_f = 3$, where an extrapolation to M = 0 is necessary as shown in Fig. 1.

From the linear fit of ΔM as a function of Mand $c_{\rm SW}$: $\delta M = a_0 + a_1 M + a_2 c_{\rm SW}$, we obtain the O(a) improvement coefficient $c_{\rm SW} = (\Delta M^{(0)} - a_0)/a_2$, where $\Delta M^{(0)} = 0.000277$, marked by the horizontal dotted line in Fig. 1, is the tree-level value of ΔM on a $8^3 \times 16$ lattice. Note that the dependence of ΔM on $c_{\rm SW}$ becomes weaker at stronger couplings, so that the determination of $c_{\rm SW}$ is more difficult, and hence the error is larger, at stronger couplings.

3. Results

In the upper plot of Fig. 2 we show the nonperturbative value of $c_{\rm SW}$ as a function of the bare gauge coupling g_0^2 for the RG-improved gauge action with $N_f = 3$ (circles), 2(diamonds) and 0(squares), together with the one-loop estimate(solid line) and the mean-field(MF) estimate(dashed line) used in ref. [2]. Similarly, results for the plaquette action with $N_f = 3$ (circles) and 0(squares) are given in the lower plot of Fig. 2, together with the one-loop estimate(solid line) and the non-perturbative values by the Alpha collaboration with $N_f = 2$ (dotted lines)[5] and 0(long-dashed line)[7].

In both cases, the non-perturbative values of $c_{\rm SW}$ are almost N_f independent at weak coupling while they become larger for smaller N_f at strong coupling. This tendency can be clearly seen in Fig. 3, where $c_{\rm SW}$ is plotted as a function of N_f for the RG action(open symbols) and the plaquette action(solid circles).

4. Comparison with perturbative estimates

At first sight, the non-perturbative $c_{\rm SW}$ seems to undershoot the one-loop estimate at weak coupling for the RG action, while it converges smoothly from above for the plaquette action.

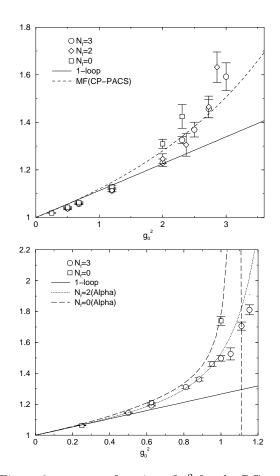


Figure 2. c_{SW} as a function of g_0^2 for the RG action (upper) and for the plaquette action(lower).

We have found that the discrepancy seen for the RG action is caused by the one-loop O(a/L) error in $c_{\rm SW}^{-2}$, which becomes leading after the O(a/L) error at tree level is removed by requiring $\Delta M = \Delta M^0$. In Fig. 4, the non-perturbative $c_{\rm SW}$ is compared with the one-loop estimate we have calculated on the same lattice size employed in the simulation, $8^3 \times 16$. As seen from the figure the non-perturbative value agrees with the one-loop estimate much better on the $8^3 \times 16$ lattice than in the infinite box. Note that the $O(g_0^2a/L)$ contribution to $c_{\rm SW}$ slightly depends on N_f through the fermion tadpole in the presence of the background gauge field of the Schrödinger functional scheme. Such an N_f dependence is in-

 $^{{}^2}O(a)$ errors of $c_{\rm SW}$ in general cause $O(a^2)$ errors in on-shell quantities, which are irrelevant in the O(a) improvement.

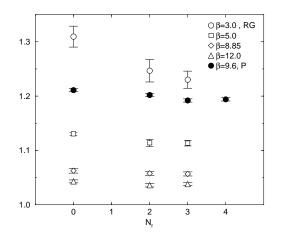


Figure 3. c_{SW} as a function of N_f for RG and P(plaquette) actions.

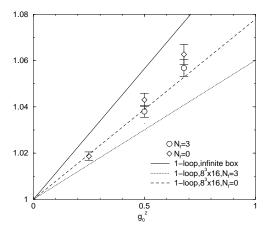


Figure 4. $c_{\rm SW}$ for the RG action at weak coupling, together with the one-loop estimate on the $8^3 \times 16$ lattice for $N_f = 3$ (dotted line) and $N_f = 0$ (dashed line).

deed seen in the numerical data of Fig. 4.

For the plaquette action we also confirm a presence of the $O(g_0^2 a/L)$ correction, which is small on the $8^3 \times 16$ lattice, as shown in Fig. 5 where $c_{\rm SW}$ is plotted as a function of a/L at $\beta = 24$ with $N_f = 0$. The one-loop estimates(solid circles) reproduce the non-monotonic behaviour of non-perturbative values(open circles) well.

5. Discussion

We have determined the non-perturbative value of $c_{\rm SW}$ for the RG action at several gauge couplings with $N_f = 3, 2, 0$. In order to obtain

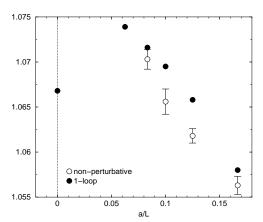


Figure 5. Non-perturbative c_{SW} (open circles) and one-loop estimate (solid circles) as a function of a/L at $\beta = 24$ for the plaquette action with $N_f = 0$.

an interpolation formula of $c_{\rm SW}$ as a function of g_0^2 , we have to eliminate large $O(g_0^2 a/L)$ corrections to $c_{\rm SW}$ present for the RG action. We are currently investigating this problem.

We are also measuring the hadron spectrum for the RG action at $\beta \equiv 2$ with $N_f = 3$ using the preliminary value of c_{SW} , in order to determine the corresponding lattice spacing.

This work is supported in part by Grants-in-Aid of the Ministry of Education (Nos. 11640294, 12304011, 12640253, 12740133, 13135204, 13640259, 13640260, 14046202 14740173). N.Y. is supported by the JSPS Research Fellowship.

REFERENCES

- CP-PACS Collaboration: S. Aoki, et al., Phy. Rev. Lett. 84 (2000) 238.
- CP-PACS Collaboration: A. Ali Khan, et al., Phy. Rev. Lett. 85 (2000) 4674
- JLQCD Collaboration: S. Aoki, et al., Phy. Rev. D65 (2002) 094507, and references therein.
- JLQCD Collaboration: S. Aoki, et al., Nucl. Phys.(Proc.Suppl.) 106 (2002) 263.
- K. Jansen and R. Sommer, Nucl. Phys. B530 (1998) 185.
- S. Aoki, R. Frezzotti, P. Weisz, Nucl. Phys. B540 (1998) 501.
- M. Lüshcer *et al.*, Nucl. Phys. B491 (1997) 323.