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1Finite-Size E�ect of Hadron Masses with Kogut-Susskind Quarks �S. Aokia, T. Umemuraa, M. Fukugitab, N. Ishizukaa, H. Minoc, M Okawad and A. UkawaaaInstitute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, JapanbYukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606, JapancFaculty of Engineering, Yamanashi University, Kofu 400, JapandNational Laboratory for High Energy Physics(KEK), Tsukuba, Ibaraki 305, JapanWe present numerical results and their analyses of �nite-size e�ects of hadron masses for both quenched andfull QCD calculations. We show that they are much larger for full QCD due to dynamical sea quarks and theassociated breaking of Z(3) symmetry. We also argue that �nite-size e�ects are non-negligible even for the largestlattice size simulation currently being made for a very small quark mass.1. IntroductionIn this report we summarize a comparativestudy of �nite size e�ects for hadron masses inquenched and full QCD with the Kogut-Susskindquark action[1]. Our motivation for the study is,�rst, to examine whether the impression obtainedfrom previous quenched studies that �nite-size ef-fects are perhaps smaller for quenched QCD[2]is actually valid, and, second, to understand theorigin of the di�erence if it exists, including thepossible role of dynamical sea quarks in the large�nite-size e�ects observed for full QCD[3].Our two-avor full QCD study[3] was carriedout at � = 5:7 for the spatial lattice size inthe range La = 0:7 � 1:8fm (L = 8 � 20) witha = 0:089(3)fm �xed by the � meson mass. Fora comparative quenched study we chose � = 6:0where our previous calculation on a 243 � 40 lat-tice gave a = 0:105(3)fm[4], and made new runsfor the sizes L = 6 � 16(La = 0:63� 1:7fm). Wealso added a full QCD run on an 83 � 16 latticeusing quark boundary conditions di�erent fromthose of Ref. [3].2. Comparison of lattice-size dependenceOur full and quenched QCD results for �, �and N masses are compared in Fig. 1 where the�presented by S. Aoki

periodic boundary condition is imposed on seaand valence quarks in the spatial directions. Itis evident in Fig. 1 that the magnitude of �nite-size e�ects is much smaller for quenched QCDthan for full QCD, especially below La ' 1 fm.The size dependence is also signi�cantly weakerfor quenched QCD; assuming a power law �Lm /L�� we �nd � � 1 � 2 for quenched QCD ascompared to � � 2� 3 observed for full QCD[5].3. Origin of di�erenceThe di�erence observed in Fig. 1 can be un-derstood by a simple argument based on an ex-pansion in inverse powers of quark masses. Theessential points of the argument are present inthe literature, dating back to quite early timesfor the quenched case[7] and more recently forfull QCD[5].For meson propagators application of the ex-pansion for valence quarks leads to an expressionof formXC m�l(C)val �hW (C)i+XC m�l(C)val ��val �hP (C)i; (1)where mval is the valence quark mass and h�i de-notes the gluon �eld average (including the quarkdeterminant in full QCD). The second term comesfrom valence quark loops C wrapping around thelattice in the spatial directions (Polyakov-type),and the �rst from trivial ones (Wilson-type), with
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