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Abstract

The dynamical fermion mass generation in the 4-dimensional brane is

discussed in a model with 5-dimensional Kaluza-Klein fermions in interaction

with 4-dimensional fermions. It is found that the dynamical fermion masses

are generated beyond the critical radius of the compactified extra dimensional

space and may be made small compared with masses of the Kaluza-Klein

modes.
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I. INTRODUCTION

It is an interesting idea to assume an existence of the extra-dimensional space which
eventually compactifies leaving our 4-dimensional space-time as a real world [1]. The recent
proposal [2,3] for the mass scale of the compactified space to be much smaller than the
Planck scale gave a strong impact on the onset of studying phenomenological evidences of
extra-dimensional effects. In recent approaches with extra dimensions it is usually assumed
that the standard model particles reside in the 4-dimensional brane while the graviton may
move around the bulk, the space-time with extra dimensions. In our present analysis we
introduce bulk fermions in addition to the graviton and see what effects could be observed
on the standard model particles. The bulk fermions interact with themselves as well as with
fermions in the 4-dimensional brane through the exchange of the graviton and its Kaluza-
Klein excited modes [4], or through the exchange of gauge bosons which may be assumed to
exist in the bulk [5]. The interactions among fermions generated as a result of the exchange
of all the Kaluza-Klein excited modes of the graviton or gauge bosons may be expressed
as effective four-fermion interactions [4,5]. According to the four-fermion interactions we
expect that the dynamical generation of fermion masses will take place.

In the present communication we look for a possibility of the dynamical fermion mass
generation under the influence of the bulk fermions through the effective four-fermion in-
teractions. Although our argument is applicable to any higher dimensional models, we
confine ourselves to the 5-dimensional space-time for the convenience of explanations. In 5
dimensions fermion mass terms are forbidden if we require the symmetry under the chiral
projection. The possible source of fermion masses in 4 dimensions is two-fold, i. e. the
dynamically generated fermion masses and masses of the Kaluza-Klein excited modes of the
bulk fermions. The mass of the Kaluza-Klein excited modes is known to be of order 1/R
where R is the radius of the compactified fifth dimension.

We show in Sec. III that the mixing between the brane fermion and bulk fermion does not
lead to the large mass of order 1/R for the fermion in 4 dimensions. We then consider in Secs.
IV and V whether the dynamically generated fermion mass can be made small compared
with the mass of the Kaluza-Klein excited modes. We calculate an effective potential for a
composite operator composed of a fermion and an anti-fermion in the leading order of the
1/Nf expansion with Nf the number of fermion species. We find that the mass of fermions in
the 4-dimensional brane is generated dynamically if the compactification radius R passes its
critical value RC and the phase transition associated with the mass generation is of second
order. This means that the fermion masses in the 4-dimensional brane is small as far as the
radius of the compactified fifth dimension is close to its critical value.

II. 5-DIMENSIONAL FERMION THEORY AND TORUS COMPACTIFICATION

We assume an existence of 5-dimensional bulk fermions ψ in interaction with fermions
L on the 4-dimentional brane. Effective interactions among these fermions can be given in
the form of the four-fermion interaction. We imagine that such effective interactions orig-
inate from the exchange of the bulk gravitons between fermions. In fact it is known that
the exchange of the Kaluza-Klein excited modes of the bulk graviton results in effective
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four-fermion interactions [4]. After the Fierz transformation on the four-fermion interac-
tions we generate the transition-type interactions. Accordingly we start with the following
Lagrangian for our model

L(5) = ψ̄iγM∂Mψ + [ L̄iγµ∂µL + g2ψ̄γML L̄γMψ ] δ(x4), (1)

where g is the coupling constant with mass dimension -3/2 and index M runs from 0 to 4
while index µ runs from 0 to 3. Fermions ψ and L are assumed to be of Nf components.

It is easy to see that the Lagrangian is symmetric under the chiral projection x4 → −x4,
ψ(−x4) → −iγ4ψ(x4) and L(−x4) → −iγ4L(x4). Thus, if we impose this symmetry on
a Lagrangian describing our fermion system, any fermion mass terms are forbidden thus
resulting in the above Lagrangian. It should be noted here that, as is easily understood by
referring to the Clifford algebra, an irreducible representation of the 5-dimensional fermion
field is given by a 4-component field just as in the case of 4 dimensions. Hence we can use
the same field both for the 4 and 5 dimensions. In odd dimensions it is well-known that
there exists no object like γ5 in 4 dimensions which commutes with all the γ matrices. Hence
we do not have such object in 5 dimensions while the fifth component of the γ matrices in
5 dimensions, γ4, turns out to be iγ5 in 4 dimensions.

For the later convenience we rewrite the above Lagrangian by using auxiliary field σM

in the following equivalent form,

L(5) = ψ̄iγM∂Mψ + [ L̄i/∂L − σM σ∗

M + (g σM ψ̄γ
ML + h.c.) ] δ(x4). (2)

Since we are mainly interested in the dynamical fermion mass generation in the leading
order of the 1/Nf expansion, we neglect the irrelevant terms in the Lagrangian by assuming
〈σµ〉 = 0 where µ runs from 0 to 3. After chiral rotation ψ → ei π

4
γ5ψ and L → ei π

4
γ5L we

have

L(5) = ψ̄i/∂ψ − iψ̄∂4ψ + [ L̄i/∂L − |σ|2 + (g σ ψ̄L + h.c.) ] δ(x4), (3)

where σ = −σ4. The Lagrangian (3) is considered to be a composite-Higgs version of the
mixing interaction adopted in Ref. [6–8].

We now consider that the space of the fifth dimension is compactified on a circle with
radius R. By adopting the periodic boundary condition at x4 = 0 and x4 = 2πR the bulk
fermion field is expressed as a Fourier series,

ψ(xµ, x4) = N
∞
∑

n=−∞

ψn(xµ) ei n

R
x4

, (4)

where N is the normalization constant.
We define the 4-dimensional Lagrangian in the following way,

L(4) ≡
∫ 2πR

0
dx4L(5)

=
∞
∑

n=−∞

ψ̄ni/∂ψn +
∞
∑

n=−∞

n

R
ψ̄nψn + L̄i/∂L

− |σ|2 +

(

m
∞
∑

n=−∞

ψ̄nL + h.c.

)

, (5)

where m ≡ Ngσ. Note that we have normalized the kinetic terms in Eq. (5) by choosing
N ≡ 1/

√
2πR.
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III. MASS SPECTRUM IN 4-DIMENSIONAL SPACE-TIME

In the following arguments we employ the matrix expressions

Ψt ≡ (L , ψ0 , ψ1 , ψ−1 , ψ2 , ψ−2 · · ·) , (6)

and

M ≡



























0 m∗ m∗ m∗ m∗ m∗ · · ·
m 0 0 0 0 0 · · ·
m 0 1

R
0 0 0 · · ·

m 0 0 − 1
R

0 0 · · ·
m 0 0 0 2

R
0 · · ·

m 0 0 0 0 − 2
R

· · ·
...

...
...

...
...

...
. . .



























. (7)

By using Eqs. (6) and (7) we rewrite the mass term and mixing term in the 4-dimensional
Lagrangian such that

L(4)
mixing =

∞
∑

n=−∞

n

R
ψ̄nψn +

(

m
∞
∑

n=−∞

ψ̄nL + h.c.

)

= Ψ̄MΨ. (8)

If auxiliary field σ acquires a non-vanishing vcuum expectation value, we replace σ in m by
its vacuum expectation value 〈σ〉, i. e. m = Ng 〈σ〉. The eigenvalues of matrix M determine
the masses of 4-dimensional fermions. The eigenvalue equation is given by [7]

det(M − λI)

=





∞
∏

j=1

(

λ2 −
(

j

R

)2
)





[

λ2 − |m|2 − 2|m|2λ2
∞
∑

l=1

1

λ2 − (l/R)2

]

= 0. (9)

It should be noted that the solutions λ = j/R obtained by setting the first factor in the
middle of Eq. (9) to vanish is not the eigenvalues of Eq. (9) since they are canceled by the
same factor in the denominator in the second factor. The real eigenvalues are obtained from
the second factor in the middle of Eq. (9). The summation in the third term of the second
factor in Eq. (9) can be performed as it is the Fourier series expansion of the cotangent
function and thus the eigenvalue equation reduces to the simpler form [7],

λR = π|mR|2 cot(πλR). (10)

We would like to see whether we have a possibility of getting the light solution in the
eigenvalue equation (10). We confine ourselves to the case |m| ≪ 1/R. By expanding the
solution of Eq. (10) in powers of |mR| we obtain [7]

λ±0R = ± |mR|
(

1 − π2

6
|mR|2 + O(|mR|4)

)

, (11)

λ±nR = ± n

(

1 +
|mR|2
n2

+ O(|mR|4)
)

(n 6= 0). (12)
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Obviously we find from Eqs. (11) and (12) that the lightest eigenvalue is given by

λ±0 = ± |m| for |m| ≪ 1/R. (13)

Thus we conclude that within our scheme there is a possibility of having the light fermion
masses which is much smaller than the mass of the Kaluza-Klein modes of the bulk fermion.
It should be noted here that in Eq. (13) we have two kinds of fermions with the positive and
negative mass. These fermions are, however, indistinguishable since they have exactly the
same properties. The next step that we have to proceed is to show that this light fermion
mass is obtained as a result of the dynamical mass generation mechanism and can really be
small.

IV. EFFECTIVE POTENTIAL FOR COMPOSITE FIELDS

We are now interested in the actual value of the lightest fermion mass in the 4-dimensional
brane as is given in Eq. (13). Thus we have to study the dynamical mechanism of generating
the non-vanishing vacuum expectation value of composite field σ which is involved in the
expression m = Ng 〈σ〉. For this purpose we would like to calculate the effective potential
for composite field σ.

Our 4-dimensional Lagrangian (5) is rewritten with the matrix representation introduced
in the last section as follows,

L(4) = Ψ̄(M + Ii/∂)Ψ − |σ|2 . (14)

The generating functional Z for our system is given by

Z =
∫

[DΨ̄][DΨ][Dσ][Dσ∗] ei
∫

d4xL(4)

. (15)

By performing the path-integration for fermion field Ψ in Eq. (15) we find in the leading
order of the 1/Nf expansion,

Z =
∫

[Dσ][Dσ∗] e−i
∫

d4xV (σ), (16)

V (σ) ≡ |σ|2 −
∫

d4k

i(2π)4
ln det(M + I/k), (17)

where V is the effective potential for the auxiliary field σ. By performing the Wick rotation
in the momentum integration in Eq. (17) we rewrite the effective potential such that

V (σ) = |σ|2 − 1

8π2

∫ Λ2

0
d(k2

E) k2
E ln det(M2 + Ik2

E), (18)

where kE stands for the Euclidean momentum and Λ is the momentum cut-off. Note that in
addition to the divergence in the momentum integration the divergence in the Kaluza-Klein
mode sum shows up in general. In our 5-dimensional model this divergence is not present
while, if we start from the space-time dimensions higher than six, the divergence does exist
and we have to rely on the regularization method developed recently in Ref. [9]. The same
argument applies to the case where we derived Eq. (10).
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After some calculations we find that

V (σ) = |σ|2 − 1

2π2

∫ Λ

0
dx x3 ln

[

x2 + |m|2(πxR) coth(πxR)
]

− 1

2π2

∞
∑

j=1

∫ Λ

0
dx x3 ln

[

x2 +
(

j

R

)2
]

. (19)

The gap equation to determine the vacuum expectation value < |σ| > of |σ| reads

∂V (σ)

∂|σ| = 2|σ|
{

1 − g2

2π2

∫ Λ

0
dx

x3

2x tanh(πxR) + g2|σ|2
}

= 0. (20)

By numerical observation of Eq. (20) we find that there exists a non-trivial solution for
|σ| for a suitable range of parameters g and R and the solution corresponds to the true
minimum of the effective potential. Accordingly the fermion mass is generated dynamically.
Here the auxiliary field σ (or the composite field L̄ψ) acquires a vacuum expectation value.
The continuous symmetry that is broken by this dynamical process is the U(1) symmetry
existed in the original Lagrangian (1):

ψ → eiβψ, L→ e−iβL. (21)

Moreover the phase transition associated with this symmetry breaking is of second order as
is seen in Fig. 1.

In the case of the second order phase transition the critical radius may be obtained by
solving the equation derived from Eq. (20) by setting |σ| = 0,

1 − g2

4π2

∫ Λ

0
dx

x2

tanh(πxR)
= 0. (22)

Eq. (22) determines the relation between R and g with the suitable choice of the cut-off
parameter Λ.

It is interesting to note here that, if we started from 3 dimensions instead of 5 dimensions
and regarded the 2-dimensional world as a physical world, we would have obtained an
equation for the critical radius corresponding to Eq. (22) as follows,

1 − g2

2π

∫ Λ

λ
dx

1

tanh(πxR)
= 0, (23)

where parameter λ is the cut-off of the low momentum integration which is needed to
remove an infrared divergence created by letting σ → 0. The integration in Eq. (23) is
easily performed and we find that

g2

2π2
= R/ ln

sinh(πΛR)

sinh(πλR)
. (24)

Eq. (24), if it is inverted, gives us a formula for the critical radius as a function of the
four-fermion coupling constant. Similarly Eq. (22) gives us a relation between R and g if
we solve the equation numerically.
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V. GENERATION OF DYNAMICAL FERMION MASSES

As was shown in Eq. (13) the lowest fermion mass on the 4-dimensional brane is m =
Ng < |σ| > where < |σ| > is determined by solving Eq. (20). By using the numerical
estimation we calculate the fermion mass m as a function of radius R for fixed coupling
constant g. The result is shown in Fig. 2 where m, R and g are normalized by the cut-off
parameter Λ. It is immediately recognized that the fermion mass generation takes place
below the critical radius and so is kept small near the critical radius. The critical curve
which represents the critical radius as a function of the coupling constant is shown in Fig. 3
as the curve for m = 0. It is easy to see that g2Λ3 = 12π2 as R→ ∞ on the critical curve.

In our model the bulk fermions reside in the 5-dimensional space-time and their Kaluza-
Klein modes show up as fermions with masses n/R in the 4-dimensional space-time. Since
those fermions are not observed in the present experimental situation except for the zero
mode which mixes with the fermion on the brane, their masses have to be very high and hence
1/R should be much higher than several TeV. Thus the compactification scale R for the fifth
dimension is considered to be very small. On the other hand the bulk graviton lives in the
higher dimensional space-time and the compactification scale 1/RG for the extra-dimensional
space associated with the bulk graviton could be smaller than 1/R as is suggested in Ref.
2. Our cut-off scale Λ is introduced to suppress the divergence appearing in the integration
in the effective potential. Hence it is to be determined by the region of the validity of our
effective four-fermion theory. We suppose that Λ > 1/R since the fundamental theory which
derives our effective theory is realized at much higher scale than the compactification scale
for the bulk fermions. In Fig. 3 we recognize that, if g2Λ3 ∼ 12π2, the fermion mass is kept
small for a wide range of radius R except for the small R region.

VI. CONCLUSIONS

We have found within our model that in spite of the presence of the large mass scale
1/R in the theory the fermion masses on the 4-dimensional brane can be made small as
a consequence of the interaction among the bulk and brane fermions: the mixing of the
brane fermions with the bulk fermions does not lead to the lightest fermion masses of order
1/R and also the dynamically generated fermion masses are not of order 1/R. This result
is obtained because the dynamical fermion masses generated under the second-order phase
transition are small irrespectively of 1/R near the critical radius. In our model the possibility
of having low mass fermions resulted from the dynamical origin. This mechanism is quite
different from the ones in other approaches in which low mass fermions are expected to show
up as a result of the kinematical origins [6–8,10,11].

It is tempting to make a final comment on the conjecture that the nature chooses the
compactification scale near the critical radius so as to have low mass fermions. In this
connection it may be interesting to suppose that the existence of the critical radius is a
result of the physical process that the compactification of the fifth dimensional space is
driven by the force unknown to us and this force is balanced by the pressure coming from
the fermionic Casimir energy [12,13].
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FIG. 1. Typical behavior of the effective potential
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FIG. 2. Dynamical fermion mass as a function of R with g fixed.
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