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Abstract

Background

Within affected communitiesPlasmodium falciparum infections may be skewed |in
distribution such that single or small clusters of households conkisteatbour g
disproportionate number of infected individuals throughout the year. ldeqtifhese
hotspots of malaria transmission would permit targeting ofvatgions and a more ragid
reduction in malaria burden across the whole community. This seidgus to compare
different statistical methods of hotspot detection (SaTScan, kamthing, weighted local
prevalence) using different indicators (PCR positivity, AMA-1 an8P-1 antibodies) fg
prediction of infection the following year.

=

Methods

Two full surveys of four villages in Mwanza, Tanzania were cotedle@ver consecutive

years, 2010-2011. In both surveys, infection was assessed using nestadrasdy chain

reaction (nPCR). In addition in 2010, serologic markers (AMA-1 and W$SBntibodies) otF
ed

exposure were assessed. Baseline clustering of infection aolkbgseal markers wer
assessed using three geospatial methods: spatial scamcsidtesinel analysis and weigh
local prevalence analysis. Methods were compared in their aailpyedict infection in th
second year of the study using random effects logistic regressid@lsnand comparisons |of
the area under the receiver operating curve (AUC) for each nteeesitivity analysis was
conducted to explore the effect of varying radius size for the kam weighted local
prevalence methods and maximum population size for the spatial scan statistic

[1%)

Results

Guided by AUC values, the kernel method and spatial scan istatgtpeared to be mare
predictive of infection in the following year. Hotspots of PCR-detkcinfection and
seropositivity to AMA-1 were predictive of subsequent infection. the kernel method, a|l1
km window was optimal. Similarly, allowing hotspots to contain up to 50%epopulation
was a better predictor of infection in the second year usirtgakspean statistics than smaller
maximum population sizes.




Conclusions

Clusters of AMA-1 seroprevalence or parasite prevalenceatieapredictive of infection ja
year later can be identified using geospatial models. Kemmabthing using a 1 km window
and spatial scan statistics both provided accurate prediction of future infection.

Keywords

Spatial methods, Malaria, Transmission, Hotspots, Micro-epidemiology, Ser&1GgR;
Africa, Plasmodium falciparum

Background

Malaria transmission in endemic countries is heterogeneous aNgplespatial scales [1,2].
At the micro scaleP. falciparum infections are frequently clustered in relatively few
households that consistently have significantly more infections thaerso(3,4]. Many
factors can contribute to this increased risk of malaria expdsateding design of housing,
the proximity to mosquito breeding sites, host genetic factors, aomgss to treatment,
maternal education, wealth, and other as yet undefined charactej88-8]. At sites with
very low levels of transmission, such as those found in Swazilands casymptomatic
malaria detected at health facilities can help in ideatibn of a hotspot, as additional
asymptomatic cases can be found living in close proximity to the icalee [9]. In areas of
moderate transmission intensity, malaria hotspots may providemogof infected human
hosts that can maintain some transmission year round. The individugalshrhotspots are
thus likely to have acquired anti-parasite immunity and toycparasites without clinical
symptoms. In the wet season, when the mosquito population increasescltistses of
asymptomatic carriers may be responsible for seeding trasiemito the rest of the
community, including less immune people who are more likely to ssfyenptomatic
infections [7]. Thus in these settings, hotspots are difficult tdifgarsing the distribution of
clinical (symptomatic) malaria cases alone.

The most used geospatial method to detect clusters of infectibie spatial scan statistic
[10-12]. Measures of exposure which have been explored using spatiatatistics include
prevalence of infection, incidence of clinical malaria and sgrcéd markers of malaria
exposure [13-18]. While this approach allows identification of clustsiag statistical
hypothesis testing, it may ignore more subtle small-scal@asheterogeneity and clusters
that do not fit within circular or elliptical windows [19]. An athative method that has been
used to detect clustering of infection is distance-weighted presalef infection, whereby
infection prevalence in neighbours is used as a proxy measure fohbllvel exposure
[20,21]. This method allows for a smoother estimation of risk in spzme spatial scan
statistics.

This study seeks to determine which geospatial method best destrib@&aria transmission
hotspot by comparing methodologies using cross-sectional dataedlthaing the first year
of the study to predict the distribution of infections found in the second year.



Methods

Study site

Misungwi district (lat 2.85000 S, long 33.08333 E) is located 60 km from Maveown in
the north-west of Tanzania at an altitude of 1,178 m above sea($eeelFigure 1). The
district is rural with moderately intense malaria transioissthe overall prevalence of
infection in the region is estimated to be 31.4% by microscopshiildren 6 -59 months
(Tanzania HIV and Malaria Indicator Survey 2008). The district twas annual rainy
seasons, the long rains between February and May, and the shetheveen November
and December. The dry and relatively hot season falls betweerafid September. Malaria
incidence peaks one to two months after the rains start. The Nadtalatia Control
Programme (NMCP) carried out indoor residual spraying (IR®)enstudy area during the
period from late November 2010 to late January 2011.

Figure 1 Location of study site within Tanzania (inset map) and clustering of makia
infection using different methods. (A)derived from SaTScan (coldspot significantly lower
infection, hotspot significantly greater infectio(B,) derived from Kernel an¢C) derived
from Weighted Local Prevalence.

Data collection

A census of four villages in a single ward was carried out imtheseason, between August
and early November 2010. All data were collected using personaligedl dissistants and
every household was visited and mapped using a global positioning syGRS). (All
individuals in the ward were invited to participate in the study. fidea of household gave
information on the age, sex and insecticide-treated net (ITN)oLiseose who were not
present. Individuals who consented to join the study were asked to profingeaprick
sample of blood which was spotted onto Whatman® standard 3 mm filter foaperasite
detection and serological analysis. Subjects who reported havingehiad within the
previous 24 hours were tested for malaria using a histidine-richipratéHRP2) rapid
malaria diagnostic test (RDParacheck-Pf®, Orchid Biomedical Systems, Goa, India) and
referred to a study clinician for management of their febrile illness

A follow-up survey was carried out in the same study villages dukingust to November
2011, one year after the initial study. The same procedures were carried outltrisagand
survey as during the baseline survey.

Molecular estimation of P. falciparum infection

DNA was extracted from filter papers using the Chelex®n(@igUSA) extraction method
described previously [22] in 96 deep-well plates. Parasite DNAde&#ected using nested
PCR (nPCR) targeting the 18S rRNA gene as previously described [23].

Serology

Antibodies were eluted from filter paper spots and assayedpfexific IgG responses to
P.falciparum AMA-1 and MSP.3 by ELISA as described by Corra al. [24]. Samples
were tested in duplicate. Duplicate optical density (OD) walD® values that differed by



more than 1.5-fold were rejected and, if possible, rerun. For eachapdéd@dard curve was
generated from a known positive control and blank wells were incladddOD values
normalised to these. To define seroprevalence a mixture modelpplsd to the OD data
which assumed two inherent Gaussian distributions; a narronwbdisdrn or sero-negatives
and a broader distribution of seropositives. A cut-off was calculasethe mean plus 3
standard deviations of the narrow distribution and was calculatecatslpdor each antigen
[25].

Cluster analysis

While there are a range of different methodological approachetemifying clusters of
infection [12,26], here we focus on three geospatial cluster detecttimods to explore
baseline clustering of infection and serological markers and abdity to predict infection
in the second year of the study. The unit of analysis was the indivich@éaning that
clustering of infected individuals was assessed rather than rotgst households with
infection. Infection in the second year was defined as a posi@Rmresult recorded as a
binary variable.

Satscan analysis

Spatial analysis was performed to assess possible clusténiRCR-positive individuals. A
spatial scan statistic was obtained using the Bernoulli modeldad]SaTScan software
(SaTScan, version 8.2.1). This software applies multiple circular wisidehich are plastic
in both position and size, across the study area. Each distiniet ®@presents a possible
cluster. For each circle, the number of observed and expectedethfendividuals are
counted, with expected numbers calculated assuming an even distribLinfections across
the population. As multiple infected and non-infected individuals can befisdeat each
household, the spatial distribution of households is accounted for. A likelilatiodtest is
used to compare the prevalence of infection within the circleabdutside it to identify
significant clusters of higher than expected (hotspot) or lavan expected (coldspot)
prevalence. The statistical significance of this hotspot isuated taking into account the
multiple tests for the many potential cluster locations ands szmluated as well as the
distribution of the population [10]. The maximum proportion of the populatidnatictuster
could contain was set at 50%. This method has been extensively dxiplatidies of the
micro-epidemiology of malaria [12,13,27-29].

Households were grouped into three categories: 1) hotspots (closggnificantly higher

than expected malaria prevalence); 2) coldspots (clustersnificagtly lower than expected
malaria prevalence); and, 3) all other households. Clusters dedfieed using three
measures: 1) nPCR positivity; 2) antibody seropositivity to AMAZ]); antibody sero-

positivity to MSP-15, and, 4) antibody seropositivity to AMA-land/or MSR:-1So as to

make results from analyses using different clustering methodparabie, hotspots were
assigned a score of 1, coldspots 0 and all remaining households &fs@dseHouseholds
for which data were only available in the second year wergrassia hotspot score
according to whether the household lay within the radius of the hot or coldspot.



Kernel analysis

Kernel density estimation is a statistical procedure used to pramgmoothed estimate of
density of events, such as individuals, across space [26]. For anypgiventhe density of
events within a predefined window is estimated, with the influesfcevents weighted
according to the distance from the centre of the window. The wasgigned to each event is
derived from the kernel function applied. In this analysis a quadratic keretidn was used
with an initial window radius of 1 km. A quadratic function allows intance of data from
neighbouring households to be relative to the distance to the index househalotaih a
smoothed estimate of infection prevalence over the study regiomnel kiensity surface of
numbers NPCR positive was divided by a kernel density surface ofemsimkamined. This
resulted in each household having a value between 0 (least exposed )il (most
exposed households). Households for which data were only available ectme s/ear were
assigned a prevalence value based on infection in neighbouring households only.

Weighted local prevalence analysis

This method calculates parasite prevalence amongst all neighlvidbin 1 km of the index

house, weighting the prevalence estimate according to the invertte afistance of the
neighbouring house to the index house [20]. While a form of spatial Bmgpan important
distinction between weighted local prevalence and kernel smoothingtisdividuals in the

index household are not included in the weighted prevalence estidstéor kernel
prevalence estimates, the weighted local prevalence for eackhlotdisanged from O (least
exposed households) to 1 (most exposed households). As this method does not include
infection status of individuals in the index household in the calculatigorenfalence, no
further action was required for those households with data from only the second year.

Statistical analysis

To compare the ability of different cluster detection methods édligr infection in the
second year, mixed effect logistic regression models was Tikedoutcome of interest was
infection status by nPCR (0/1) in the second year. The risk faeiqered were nPCR,
AMA-1, MSP-1;9 and AMA-1 and/or MSP-} (hereon termed combined seroprevalence)
cluster score in the first year (generated via each of the tiuster detection methods).
Simple summary contingency tables, graphs and scatter plots witbskawrves were used
to explore the relationship with potential risk factors and thesp@aations with age. To
explore the possibility of a non-linear relationship, risk factonewategorized into quartiles
and a likelihood ratio test was used to assess which model (@ineategorical) was better.
A household level random effect was included in the models to takeatcof correlation
between individuals within the same household. All models were controliepotential
confounding by age, which due to an obvious non-linear relationship with arfestas
categorized before analysis into —zero to four years, five toyeiaes, ten to 15 years, 16-25
year, 26-35 years and over 36 years (Table 1).



Table 1 Age-dependency of malaria in the baseline and followp surveys

Outcome Age (years) Total in each % positive OR 95%Cl Wald test
group P value
Infection by PCR 0-4 788 [27.5] 1 <0.001
(baseline survey*
5-9 622 [47.9] 2.80[2.17-3.62] <0.001
10-15 413 [50.1] 3.26 [2.44-4.35] 0.005
16-25 409 [33.7] 1.52[1.13-2.04] 0.721
26-35 328 [26.5] 0.94[0.68-1.30] 0.007
36+ 496 [20.6] 0.66 [0.49-0.89]
Infection by PCR 0-4 824 [42.4] 1 <0.001
(follow-up survey)
5-9 644 [68.8] 4.77 [3.52-6.47] <0.001
10-15 359 [70.2] 5.58 [3.84-8.10] <0.001
16-25 445 [52.8] 1.96 [1.41-2.73] 0.661
26-35 337 [44.8] 1.08 [0.75-1.56] 0.393
36+ 637 [39.7] 0.87 [0.63-1.20]
AMA -1 seropositivity 0-4 688 [21.7] 1 <0.001
(baseline survey
5-9 517 [53.0] 5.13[3.84-6.86] <0.001
10-15 321 [64.2] 8.87 [6.29-12.50] <0.001
16-25 354 [60.2] 7.60 [5.47-10.56] <0.001
26-35 294 [51.0] 4.60 [3.29-6.42] <0.001
36+ 416 [50.5] 4.39 [3.24-5.96]
MSP-1 14 seropositivity 0-4 698 [14.5] 1 0.111
(baseline survey
5-9 568 [16.9] 1.31[0.94-1.84] <0.001
10-15 346 [30.6] 3.21[2.24-4.59] <0.001
16-25 361 [34.9] 3.90[2.75-5.51] <0.001
26-35 291 [38.5] 4.90[3.39-7.07] <0.001
36+ 447 [40.3] 5.10 [3.66-7.10]

*age was missing for one individual.

To establish the effect of radius size on results obtained witkettmel and weighted local
prevalence methods, models using different radii were built. Iniaddi the initial 1 km
radius, radii of 500 m, 100 m and 0 m (i e, household) were explored. Modalsiag
individual level infection and serological status were also coatbaSimilarly, for the
SaTScan analysis, maximum population sizes of 20 and 10% were exploreainpare the
predictive performance of using different methods and radii, the larder the receiver
operating curve (AUC) was calculated for each model. AUC valese compared using
DelLong's test for paired ROC curves [30]. Statistical asialwas performed using STATA
(version 12, College Station, TX, USA) and R (version 3.0.1) [31].

Results

Study subjects

In 2010, 668 households from randomly selected sub-villages participatled first year
survey, comprising a total of 3,801 individuals, 3,057 (80.4%) of whom werecse®gnted



to participate and provided a blood specimen. Approximately half of theipants (n =
1,612, 52.7%) were male. The median age of the study population was 18@&ars5-30
years; range 1-99 years). The overall prevalenét fal ciparum by nPCR was 34.3%. In the
second year survey, 697 households participated in the survey with 3,246 (85eligiplef
individuals providing a blood specimen, 51.6% of whom were male. Distributiageofvas
similar to that of the first year survel. falciparum prevalence by nPCR was significantly
higher at 51.9% than during the baseline survey (OR 1.95; 95% CI, 1.76-2.17; p <0.001).

Association of age and other individual factors wh PCR positivity and
seropositivity

Individuals aged 10 to 15 years had the highest nPCR prevaleRcéaliparum at baseline
and at follow-up (Table 1). Seropositivity to AMA-1 similarly pedke the age group ten to
15 years. This age group had more than eight times the odds of beipgssgre to AMA-1
compared to individuals aged zero to four years (OR 8.87, 95% CI 6.29-12.5,(@X.
Seropositivity to MSP-b showed a different relationship with age, displaying a steady
increase with age, with those aged >36 years having roughlytifines the odds of being
seropositive compared to those aged zero to four years (OR 5.10 95%, -CI1Rp6ETable

1).

Prediction of infection in the second year survey

NPCR prevalence in the baseline survey

Fifty-seven per cent of individuals who were nPCR positive in tisefear were also nPCR
positive in the second year whilst 47% who were negative in the/éies were also negative

in the second yeayq{ = 27.2; P <0.001). Guided by AUC values, clustering estimated using
kernel analysis appeared to predict infection by nPCR in trendegear more accurately
than the weighted local prevalence method (p = 0.016) (Table 2). Wlstering estimated

by SaTScan gave a higher AUC value than clustering by thehteeigocal prevalence
method, there was no evidence for a difference in AUC (p = 0.12).

Table 20dds of testing positive forP. falciparum infection during the follow-up survey.
results from three geospatial models defined by baseline infectipanti-AMA -1 antibody
prevalence and anti MSP-1;4 antibody prevalence adjusted for age

Risk factor Number Malaria in OR 95%CI Wald test Area under
tested second year n% P-value the ROC curve

PCR individual

infection in baseline survey

Neg 1,763 827 [46.9] 1 <0.001 0.560

Pos 905 521 [57.6] 1.58 [1.31-1.83]

PCR prevalence

Satscan exposure category 792 319 [40.3] 1 0.181 0.620

coldspot 1,728 864 [50.0] 1.35[0.87-2.09] <0.001 0.628

neither 726 500 [68.9] 454 [2.68-7.72] 0.966 0.597

hotspot 804 390 [48.5] 1 0.013




Kernel exposure quartiles
<14.9

15-21.3

21.4-27.1

>27.1

Weighted exposure quartiles
<18.9

19-23.2

23.3-26.5

>26.5

AMA -1 individual prevalence
No

Yes

AMA -1 prevalenct

Satscan exposure category
coldspot

neither

hotspot

Kernel exposure quartiles
<27.9

28-38.9

39-53.0

>53.0

Weighted exposure quartiles
<18.9

19-23.9

24 -26.9

>26.9

MSP-1,4 individual prevalence
No

Yes

MSP prevalence

Satscan exposure category
coldspot

neither

hotspot

Kernel exposure quartiles
<12.9

13-17.3

17.4-25.4

>25.4

Weighted exposure quartiles
<16.5

16.6-18.3

18.4-22.7

>22.7

MSP-1;5 & or AMA -1
individual prevalence

No

819
818
805
816
794

807
799

1,262
1,071

904
1,092
1,250
814

813
812
807
804
809

800
803

1,730
681

1,703
967
576
806

835
808
797
805
813

802
796

986

387 [47.2]
331 [40.5]
575 [71.4]
420 [51.5]
344 [43.3]
372 [46.1]
520 [65.1]

594 [47.1]
593 [55.4]

310 [34.3]
554 [50.7]
819 [65.5]
308 [37.8]

414 [50.9]
425 [52.3]
536 [66.4]
325 [40.4]
357 [44.1]

476 [59.5]
498 [62.0]

924 [53.4]
341 [50.1]

992 [58.2]
493 [51.0]
198 [34.0]
418 [51.9]
440 [52.7]
538 [66.6]
287 [36.0]
415 [51.6]
430 [52.9]
533 [66.5]
278 [34.9]

253 [25.6]

0.99[0.60-1.64] <0.001
0.53[0.32-0.88] 0.165
3.45[2.06-5.75]  0.042
1 0.003
0.69 [0.41-1.16]

0.58 [0.35-0.98]

2.21[1.31-3.73]

1 <0.001
1.45 [1.21-1.72]

1 <0.001
2.65[1.69-4.15] <0.001
5.84 [3.75-9.10] 0.002
1 <0.001

2.26 [1.35-3.79] <0.001
2.62 [1.57-4.39] 0.154
5.16 [3.06-8.69]  <0.001
1 <0.001
1.45 [0.86-2.44]

3.50 [2.07-5.91]
3.33[1.97-5.62]

1 0.196
0.88 [0.73-1.06]

1 0.040
0.64 [0.41-0.98] <0.001
0.21[0.13-0.34] 0.773

1 0.008
1.08 [0.65-1.78]  <0.001
2.02[1.21-3.38] 0.715
0.34[0.20-0.55]  0.006
1 <0.001
1.10 [0.66-1.81]
2.08 [1.23-3.51]

0.35 [0.21-0.57]

1 0.986

0.554

0.647
0.618
0.609

0.541

0.591
0.622
0.625

0.631

0.530




Yes 1,237 466 [37.7] 1.00 [0.78-1.29]

MSP-1;5 & ; or AMA -1

prevalence

Satscan exposure category - 400 [48.4] - - -
coldspot - 357 [44.6] - - 0.604
neither - 386 [47.0] - - 0.530
hotspot 827 540 [67.8] 1 0.082

Kernel exposure quartiles 800 402 [49.3] 0.63[0.37 -1.07] 0.310

<44.5 822 380 [47.4] 0.77[0.46-1.28] 0.001

44.6-51.4 797 372 [45.6] 2.44 [1.44-4.14] 0.507

51.5-59.3 816 502 [64.0] 1 0.063

>59.4 801 0.84[0.49-1.42] 0.023

Weighted exposure quartiles 815 0.60[0.36-1.03]

<16.5 784 1.86 [1.09-3.18]

16.6-18.3

18.4-22.7

>22.7

* Only individuals who were tested at both baseline and year 1.

Using SaTScan analysis to detect nPCR hotspots, one large clastadentified with a
radius of 2.88 km, covering 141 households and one small cluster was identified wlitsa ra
of 0.1 km covering five households (Figure 1A). SaTScan analysis shbatethdividuals
who were residing in a nPCR hotspot cluster in the first hear four times the odds of
testing positive for malaria by nPCR in the second year than ttesséing in nPCR
coldspots (OR 4.54 95% CI 2.68-7.72). The kernel and weighted local prevalealgses
showed a more complex distribution of hotspots (Figure 1B and C). BeHycshow the
central hotspot detected by SaTScan, but also show numerous otheahgghigsion areas,
more consistent with the micro-epidemiology of malaria. The kexnalysis also showed
that individuals who were residing in the top quartile (areas withigh prevalence of
infection by nPCR) had three times the odds of testing positivendtarria by nPCR in the
second year compared to those living in the lowest quartile (OR 3.45, 95% CI 2.06-5.75).

Seropositivity to AMA-1 and MSP-1,9 antibodies

Defining clusters of seroprevalence using AMA-1 and MgP-dntibodies separately
improved prediction of nPCR positivity in the second year compared to usmdined
seroprevalence. SaTScan analysis revealed that individuals iiviageas of high AMA-1
seroprevalence (hotspots) in the first year had five timesdte of being nPCR positive in
the second year compared to those who lived in AMA-1 coldspots (OR 5.84 B3%5<
9.10), adjusting for age (Table 2). SaTScan could not identify anyisattifclusters using
combined seroprevalence.

When clusters were identified by kernel analysis, those indivadivahg in households with
the highest quartile of AMA-1 seroprevalence (hotspots) hadra than five times the odds
of being nPCR positive in the second year than those in the lowesteg(@f 5.16 95% CI
3.06-8.69), adjusting for age (Table 2). Using weighted local prevalenpesso distinguish
clusters showed a similar pattern, those residing in the houselnottie itop quartile of
AMA-1 seroprevalence (hotspots) had more than three times the odeisiglPCR positive
than those residing in lowest quartile (OR 3.33 95% CI 1.97-5.62) (Rablekewise the



kernel analyses showed a more complex distribution of AMA-1 hotgbats SaTScan
analysis (Figure 2). A comparison of the predictive ability ofedéht clustering methods
showed that both SaTScan and kernel analysis yielded higher AUG vaarethe weighted
prevalence method, however, only the SaTScan method produced a sidpifilifhetent
result (p = 0.002 and p = 0.27 respectively).

Figure 2 Clustering of sero-positivity to AMA-1 in 2010 using SaTScan and kernel
Method. Clustering of sero-positivity to AMA-1 in 2010 usi8y) SaTScan an(B) kernel
with a 1 km radius.

Antibody responses to MSRglshowed a less clear association with infection in the second
year, with individual age-adjusted seroprevalence at baseline shawingjationship with
infection status in the second year. SaTScan analysis sugdlesteiddividuals living in
MSP-14 hotspots were at lower risk of infection in the second year. Botlekand distance
weighted prevalence analysis also suggested individuals livireges of highest MSP-1
seroprevalence were at lower risk of infection, however thosgglivi areas of intermediate
seroprevalence (third quartile) were at higher risk of subsequent infection.

Individual seropositivity at baseline to the combined seroprevalens®af1 and/ or MSP-

1,9 antibodies showed no relationship with infection in the second yeaifaGto results

using just AMA-1, kernel analysis of combined seroprevalence shtihaéthose individuals
living in the highest quartile had more than two times the odds of b&iGdR positive in the
second year than those residing in the lowest quintile (OR 2.44 95%44414). While a

similar relationship was seen if hotspots were determined dighted local prevalence,
overall predictive ability using this method was worse than whemg ksimels with an AUC
value of 0.530 (Table 2). SaTScan was not able to find any hotspots opatsldsing

combined seroprevalence.

Sensitivity analysis of kernel and SaTScan methods for determining the best
radius to predict malaria in the second year of follow-up

Based on AUC values, the weighted local prevalence method to ydehisters was
generally less predictive of infection in the second year thanSaTScan and kernel
methods. Sensitivity analyses of these two methods were theei@oducted to determine
the radius size that best predicted infection in the second yeahd-kernel method, using
larger radii to identify clusters of nPCR tended to produced siilllC values than smaller
radii (Table 3). Using larger radii of 500 m and 1 km to identifysdrs of AMA-1
seroprevalence, MSPlor the antigens combined, generally produced higher AUC values.
Similar sensitivity analyses were done for SaTScan, whdrebynaximum population size
allowable was set to 20 and 10%. As for the kernel analysis thas a general trend to
suggest that a larger maximum population size of 50%, which aflawlarger geographic
clusters, was more predictive of subsequent infection than smaliémom population sizes
(Table 3).



Table 3 Sensitivity analysis of kernel and SaTScan analysis of PCR and serology
prevalence for prediction of infection in the second year

KERNEL SaTScan
Radius Window population size
Exposure category <Im 100m 500m 1,000m 10% 20% 50%
(Householg
PCR prevalence quartiles 0.612 0.622 0.611 0.628 0.593 0.616 0.620
Area under ROC
Proportion of total NPCR positive in the highest 30.1% 30.2% 33.1% 34.2% 27.1% 29.7% 29.7%
quartilein second year-
Proportion of the total study population 23.4% 22.7% 25.2% 24.8% 20.3% 22.4% 22.4%
included highest quartile
AMA-1 prevalence quartiles 0.583 0.587 0.619 0.618 0.602 0.615 0.647
Area under ROC
Proportion of total NPCR positivein the 26.6% 29.0% 31.8% 31.9 9.7% 28.9% 48.3%
highest quartile in second year -
Proportion of the total study population 22.6% 24.9% 24.8 24.9 6.72% 22.6% 38.0%
included highest quartile
MSP-1,¢ prevalence quartiles 0.559 0.533 0.602 0.622 0.595 0.612 0.591
Area under ROC
Proportion of total NPCR positivein the 22.7% 22.8% 19.6% 17.1% 9.4% 11.8% 12.0%
highest quartile | second year
Proportion of the total study population 24.9% 24.6% 245% 24.5% 13.7% 17.7% 17.8%
included in the highest quartile
MSP-1,¢ & or AMA-1 prevalence quartiles 0.575 0.580 0.585 0.604 - -
Area under ROC
Proportion of total NPCR positivein 28.7% 30.8% 31.1% 32.6%
the highest quartile in second year
Proportion of the total study population 24.6% 24.7% 24.9% 24.5%

included highest quartile

" Proportion of total nPCR positives in the second year that are found in the highek.quarti

Discussion

It has been suggested that if malaria transmission hotspot®ecadentified, targeting
interventions can have a improved impact on transmission [7]. A nuohipeevious studies
have explored the use of geospatial techniques to identify cludtér@nsmission markers
such as infection or seropositivity to selected antigens [13,14,18,28,32,33]. sthdss
show that households with active and historic exposure tend to clisgether
geographically. It is less clear however, whether theseectuptedict future infection and if
so, which geospatial techniques and transmission indicators should be us#tkifor
detection. Using two consecutive years’ data, this study showsltsé¢rs of infection and
seropositivity to AMA-1 are predictive of future infection andtttkarnel analysis and
SaTScan are superior to the weighted local prevalence method of clusteodetect

Several authors have identified the existence of hotspots at simg points, using a variety
of different measures of transmission [13,18,28]. Fewer studiesshaven that hotspots are
stable over time. Using data from multiple years in KenyaoiBeij al. applied spatial scan
statistics to identify infection hotspots that were predictivéutidire hotspots up to seven
years later [14]. Another study done in a highland of Kenya byt [etral. identified stable
spatial clusters of malaria cases by SaTScan statwier a period of four years [33]. Again
using spatial scan statistics, Bouse#hal. showed that over the period of two years, clinical



episodes of malaria cluster into hotspots [13]. This study is ¢ensiwith these findings,
showing that hotspots of infection are predictive of future infectidtre Jtudy also shows
that being seropositive to AMA-1 or being in a hotspot of AMA-1 sergemce is
predictive of future infection. As seropositivity to AMA-1 is indtive of recent exposure to

P. falciparum, this finding adds further evidence that hotspots of transmissicstadie over
several years. The relatively low AUC values do, however, sugjgesinportance of other
factors related to risk of infection that were not accounted Iforaddition, the higher
prevalence of infection seen in the second year, likely due torhighgall observed that
year, led to some infections in non-hotspot households, which negatively impacts the AUC.

The relationship between hotspots of seropositivity to MHRid future infection was less
clear. Clusters with high MSP-1 seroprevalence were found to logvet risk of infection
suggesting some protection at the neighbourhood level. However, vdmist Sudies have
demonstrated a protective effect of antibodies to MH34-37] at the individual level, this
was not observed in this study. The reasons for these observations diftethaces in the
patterns seen with AMA-1 require further investigation but they melate to the differing
immunogenicity and half-life of the antibody response to these two antigens [38].

In terms of methods to detect clusters, this study suggestssihg spatial scan statistics or
kernel analysis allows better characterization of hotspots thaneighted local prevalence
method. This may be due to the fact that estimates of weightedl prevalence for each
household are made using infection status of neighbours only. This likdky te an inferior
indication of hotspot location as individual or household level factors plajportant role
in risk of subsequent infection in that household. Sensitivity analyseging both the
window size and maximum population size for kernel and SaTScansesnadgpectively,
suggests that generally hotspots form over larger (1-3 km) s¥dteke this likely varies by
setting, similarly sized hotspots have been detected by previmgess in similar
transmission settings [13,14,20]. In lower transmission settings,ntisgien appears to
cluster over increasingly small scales. A recent studységrleet al. in Zambia, where
infection prevalence was estimated to be 23% by rapid diagnesti¢RDT), showed that
active case detection within a 500-m radius could identify 76% ofR&IT-positive
individuals [39]. A study in Swaziland, where transmission is exherow (PCR-derived
parasite prevalence <1%), suggested that infections tend to cligitér households of
passively detected cases [9].

This study has several potential operational implications for malaria cdfitsily, given the
apparent stability of hotspots, targeting clusters of infection sendpositivity to AMA-1
(and/or antigens with similar properties) with complete curenreat and vector control
could have a dramatic impact on transmission [7]. Secondly, kerngisenahd SaTScan
appear to be optimal methods to detect hotspots. Currently, estallistingeropositivity to
AMA-1 can only be done using assays that require samples to éespeal in the laboratory.
Equally, while RDTs exist for determining infection status, theses a large fraction of
infections, most of which are likely to be subpatent [40-42]. Previouk thas shown that
these subpatent infections tend to cluster in hotspots, making RBdgropriate methods to
detect hotspots [43]. In order to target interventions at hotspotsiaiteerde development of
sensitive rapid diagnostics for infection and seropositivity to AMfer similar) is required.
Alternatively, it may be possible to identify hotspots in thedfiey clustering of particular
risk factors or passively detected cases. This is the fddusther research. In the meantime,
in the setting of moderate malaria transmission around LakéonAc mass drug
administration of entire villages may be required to interrupt transmissspn [



Limitations

This study used indirect measures to define household malaria expdsing more direct

measures, such as entomological inoculation rate (EIR) and other rexasures, may have
led to different results. However, EIR can be challenging tesorean low-endemic settings.
Thus, individual parasite prevalence was chosen as the measure gustibgeansmission

for this study. In addition, indoor residual spraying (IRS) was appleween survey periods
throughout the study area. While there is no supporting data, it i ke households that
did not receive IRS were randomly distributed and therefore unlikeigttoduce bias into

the results. Lastly, the study continued for only two years, tlalslist of malaria hotspots

could only be predicted for that time period. However, as statedathdhat hotspots of

AMA-1 seroprevalence were predictive of future infection suggemtsmission hotspots are
stable over a longer time frame.

Conclusions

This study supports previous work showing that hotspots can be defined usspati
methods and are stable over a period of at least one year. Hatapdis detected either by
using parasite prevalence or seroprevalence of AMA-1 antibodiegsl also found that
spatial scan statistics and kernel analysis were beitecharacterizing hotspots of
transmission than the weighted local prevalence method. Given theflaighly sensitive
rapid diagnostic tests for infection and AMA-1 seropositivity, routieection of hotspots is
challenging. Further work exploring simple methods to identify hotspots wigtireg tools is
therefore required. Furthermore, while theorized, it has ydtetshown in the field that
targeting interventions does indeed lead to greater reductions irmisait over an
untargeted approach. Studies linking methods of hotspot detection widsrassgs of the
subsequent impact of targeted interventions would be extremely valuable.
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