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Abstract 

Background 

Within affected communities, Plasmodium falciparum infections may be skewed in 
distribution such that single or small clusters of households consistently harbour a 
disproportionate number of infected individuals throughout the year. Identifying these 
hotspots of malaria transmission would permit targeting of interventions and a more rapid 
reduction in malaria burden across the whole community. This study set out to compare 
different statistical methods of hotspot detection (SaTScan, kernel smoothing, weighted local 
prevalence) using different indicators (PCR positivity, AMA-1 and MSP-1 antibodies) for 
prediction of infection the following year. 

Methods 

Two full surveys of four villages in Mwanza, Tanzania were completed over consecutive 
years, 2010-2011. In both surveys, infection was assessed using nested polymerase chain 
reaction (nPCR). In addition in 2010, serologic markers (AMA-1 and MSP-119 antibodies) of 
exposure were assessed. Baseline clustering of infection and serological markers were 
assessed using three geospatial methods: spatial scan statistics, kernel analysis and weighted 
local prevalence analysis. Methods were compared in their ability to predict infection in the 
second year of the study using random effects logistic regression models, and comparisons of 
the area under the receiver operating curve (AUC) for each model. Sensitivity analysis was 
conducted to explore the effect of varying radius size for the kernel and weighted local 
prevalence methods and maximum population size for the spatial scan statistic. 

Results 

Guided by AUC values, the kernel method and spatial scan statistics appeared to be more 
predictive of infection in the following year. Hotspots of PCR-detected infection and 
seropositivity to AMA-1 were predictive of subsequent infection. For the kernel method, a 1 
km window was optimal. Similarly, allowing hotspots to contain up to 50% of the population 
was a better predictor of infection in the second year using spatial scan statistics than smaller 
maximum population sizes. 



Conclusions 

Clusters of AMA-1 seroprevalence or parasite prevalence that are predictive of infection a 
year later can be identified using geospatial models. Kernel smoothing using a 1 km window 
and spatial scan statistics both provided accurate prediction of future infection. 

Keywords 

Spatial methods, Malaria, Transmission, Hotspots, Micro-epidemiology, Serology, PCR, 
Africa, Plasmodium falciparum 

Background 

Malaria transmission in endemic countries is heterogeneous over multiple spatial scales [1,2]. 
At the micro scale, P. falciparum infections are frequently clustered in relatively few 
households that consistently have significantly more infections than others [3,4]. Many 
factors can contribute to this increased risk of malaria exposure, including design of housing, 
the proximity to mosquito breeding sites, host genetic factors, poor access to treatment, 
maternal education, wealth, and other as yet undefined characteristics [3,5-8]. At sites with 
very low levels of transmission, such as those found in Swaziland, cases of symptomatic 
malaria detected at health facilities can help in identification of a hotspot, as additional 
asymptomatic cases can be found living in close proximity to the index case [9]. In areas of 
moderate transmission intensity, malaria hotspots may provide a reservoir of infected human 
hosts that can maintain some transmission year round. The individuals in such hotspots are 
thus likely to have acquired anti-parasite immunity and to carry parasites without clinical 
symptoms. In the wet season, when the mosquito population increases, these clusters of 
asymptomatic carriers may be responsible for seeding transmission to the rest of the 
community, including less immune people who are more likely to suffer symptomatic 
infections [7]. Thus in these settings, hotspots are difficult to identify using the distribution of 
clinical (symptomatic) malaria cases alone. 

The most used geospatial method to detect clusters of infection is the spatial scan statistic 
[10-12]. Measures of exposure which have been explored using spatial scan statistics include 
prevalence of infection, incidence of clinical malaria and serological markers of malaria 
exposure [13-18]. While this approach allows identification of clusters using statistical 
hypothesis testing, it may ignore more subtle small-scale spatial heterogeneity and clusters 
that do not fit within circular or elliptical windows [19]. An alternative method that has been 
used to detect clustering of infection is distance-weighted prevalence of infection, whereby 
infection prevalence in neighbours is used as a proxy measure for household level exposure 
[20,21]. This method allows for a smoother estimation of risk in space than spatial scan 
statistics. 

This study seeks to determine which geospatial method best describes a malaria transmission 
hotspot by comparing methodologies using cross-sectional data collected during the first year 
of the study to predict the distribution of infections found in the second year. 



Methods 

Study site 

Misungwi district (lat 2.85000 S, long 33.08333 E) is located 60 km from Mwanza town in 
the north-west of Tanzania at an altitude of 1,178 m above sea level (see Figure 1). The 
district is rural with moderately intense malaria transmission; the overall prevalence of 
infection in the region is estimated to be 31.4% by microscopy in children 6 -59 months 
(Tanzania HIV and Malaria Indicator Survey 2008). The district has two annual rainy 
seasons, the long rains between February and May, and the short rains between November 
and December. The dry and relatively hot season falls between June and September. Malaria 
incidence peaks one to two months after the rains start. The National Malaria Control 
Programme (NMCP) carried out indoor residual spraying (IRS) in the study area during the 
period from late November 2010 to late January 2011. 

Figure 1 Location of study site within Tanzania (inset map) and clustering of malaria 
infection using different methods. (A) derived from SaTScan (coldspot significantly lower 
infection, hotspot significantly greater infection), (B) derived from Kernel and (C) derived 
from Weighted Local Prevalence. 

Data collection 

A census of four villages in a single ward was carried out in the dry season, between August 
and early November 2010. All data were collected using personalized digital assistants and 
every household was visited and mapped using a global positioning system (GPS). All 
individuals in the ward were invited to participate in the study. The head of household gave 
information on the age, sex and insecticide-treated net (ITN) use of those who were not 
present. Individuals who consented to join the study were asked to provide a finger-prick 
sample of blood which was spotted onto Whatman® standard 3 mm filter paper for parasite 
detection and serological analysis. Subjects who reported having had fever within the 
previous 24 hours were tested for malaria using a histidine-rich protein 2 (HRP2) rapid 
malaria diagnostic test (RDT, Paracheck-Pf®, Orchid Biomedical Systems, Goa, India) and 
referred to a study clinician for management of their febrile illness. 

A follow-up survey was carried out in the same study villages during August to November 
2011, one year after the initial study. The same procedures were carried out during the second 
survey as during the baseline survey. 

Molecular estimation of P. falciparum infection 

DNA was extracted from filter papers using the Chelex® (Sigma, USA) extraction method 
described previously [22] in 96 deep-well plates. Parasite DNA was detected using nested 
PCR (nPCR) targeting the 18S rRNA gene as previously described [23]. 

Serology 

Antibodies were eluted from filter paper spots and assayed for specific IgG responses to 
P.falciparum AMA-1 and MSP-119 by ELISA as described by Corran et al. [24]. Samples 
were tested in duplicate. Duplicate optical density (OD) values OD values that differed by 



more than 1.5-fold were rejected and, if possible, rerun. For each plate a standard curve was 
generated from a known positive control and blank wells were included and OD values 
normalised to these. To define seroprevalence a mixture model was applied to the OD data 
which assumed two inherent Gaussian distributions; a narrow distribution or sero-negatives 
and a broader distribution of seropositives. A cut-off was calculated as the mean plus 3 
standard deviations of the narrow distribution and was calculated separately for each antigen 
[25]. 

Cluster analysis 

While there are a range of different methodological approaches to identifying clusters of 
infection [12,26], here we focus on three geospatial cluster detection methods to explore 
baseline clustering of infection and serological markers and their ability to predict infection 
in the second year of the study. The unit of analysis was the individual, meaning that 
clustering of infected individuals was assessed rather than clustering of households with 
infection. Infection in the second year was defined as a positive nPCR result recorded as a 
binary variable. 

Satscan analysis 

Spatial analysis was performed to assess possible clustering of nPCR-positive individuals. A 
spatial scan statistic was obtained using the Bernoulli model [11] and SaTScan software 
(SaTScan, version 8.2.1). This software applies multiple circular windows, which are plastic 
in both position and size, across the study area. Each distinct circle represents a possible 
cluster. For each circle, the number of observed and expected infected individuals are 
counted, with expected numbers calculated assuming an even distribution of infections across 
the population. As multiple infected and non-infected individuals can be specified at each 
household, the spatial distribution of households is accounted for. A likelihood ratio test is 
used to compare the prevalence of infection within the circle to that outside it to identify 
significant clusters of higher than expected (hotspot) or lower than expected (coldspot) 
prevalence. The statistical significance of this hotspot is evaluated taking into account the 
multiple tests for the many potential cluster locations and sizes evaluated as well as the 
distribution of the population [10]. The maximum proportion of the population that a cluster 
could contain was set at 50%. This method has been extensively explored in studies of the 
micro-epidemiology of malaria [12,13,27-29]. 

Households were grouped into three categories: 1) hotspots (clusters of significantly higher 
than expected malaria prevalence); 2) coldspots (clusters of significantly lower than expected 
malaria prevalence); and, 3) all other households. Clusters were defined using three 
measures: 1) nPCR positivity; 2) antibody seropositivity to AMA-1; 3) antibody sero-
positivity to MSP-119; and, 4) antibody seropositivity to AMA-1and/or MSP-119. So as to 
make results from analyses using different clustering methods comparable, hotspots were 
assigned a score of 1, coldspots 0 and all remaining households a score of 0.5. Households 
for which data were only available in the second year were assigned a hotspot score 
according to whether the household lay within the radius of the hot or coldspot. 

  



Kernel analysis 

Kernel density estimation is a statistical procedure used to produce a smoothed estimate of 
density of events, such as individuals, across space [26]. For any given point, the density of 
events within a predefined window is estimated, with the influence of events weighted 
according to the distance from the centre of the window. The weight assigned to each event is 
derived from the kernel function applied. In this analysis a quadratic kernel function was used 
with an initial window radius of 1 km. A quadratic function allows importance of data from 
neighbouring households to be relative to the distance to the index household. To obtain a 
smoothed estimate of infection prevalence over the study region, a kernel density surface of 
numbers nPCR positive was divided by a kernel density surface of numbers examined. This 
resulted in each household having a value between 0 (least exposed households) and 1 (most 
exposed households). Households for which data were only available in the second year were 
assigned a prevalence value based on infection in neighbouring households only. 

Weighted local prevalence analysis 

This method calculates parasite prevalence amongst all neighbours within 1 km of the index 
house, weighting the prevalence estimate according to the inverse of the distance of the 
neighbouring house to the index house [20]. While a form of spatial smoothing, an important 
distinction between weighted local prevalence and kernel smoothing is that individuals in the 
index household are not included in the weighted prevalence estimate. As for kernel 
prevalence estimates, the weighted local prevalence for each household ranged from 0 (least 
exposed households) to 1 (most exposed households). As this method does not include 
infection status of individuals in the index household in the calculation of prevalence, no 
further action was required for those households with data from only the second year. 

Statistical analysis 

To compare the ability of different cluster detection methods to predict infection in the 
second year, mixed effect logistic regression models was used. The outcome of interest was 
infection status by nPCR (0/1) in the second year. The risk factors explored were nPCR, 
AMA-1, MSP-119 and AMA-1 and/or MSP-119 (hereon termed combined seroprevalence) 
cluster score in the first year (generated via each of the three cluster detection methods). 
Simple summary contingency tables, graphs and scatter plots with Lowess curves were used 
to explore the relationship with potential risk factors and their associations with age. To 
explore the possibility of a non-linear relationship, risk factors were categorized into quartiles 
and a likelihood ratio test was used to assess which model (linear or categorical) was better. 
A household level random effect was included in the models to take account of correlation 
between individuals within the same household. All models were controlled for potential 
confounding by age, which due to an obvious non-linear relationship with infection was 
categorized before analysis into –zero to four years, five to nine years, ten to 15 years, 16-25 
year, 26-35 years and over 36 years (Table 1). 

  



Table 1 Age-dependency of malaria in the baseline and follow-up surveys 
Outcome Age (years) Total in each 

group 
% positive OR 95%CI  Wald test 

P value 
Infection by PCR 
(baseline survey)* 

0-4 788 [27.5]  1 <0.001 

 5-9 622 [47.9]  2.80 [2.17-3.62] <0.001 
 10-15 413 [50.1]  3.26 [2.44-4.35] 0.005 
 16-25 409 [33.7]  1.52 [1.13-2.04] 0.721 
 26-35 328 [26.5]  0.94 [0.68-1.30] 0.007 
 36+ 496 [20.6]  0.66 [0.49-0.89]  
Infection by PCR 
(follow-up survey) 

0-4 824 [42.4]  1 <0.001 

 5-9 644 [68.8]  4.77 [3.52-6.47] <0.001 
 10-15 359 [70.2]  5.58 [3.84-8.10] <0.001 
 16-25 445 [52.8]  1.96 [1.41-2.73] 0.661 
 26-35 337 [44.8]  1.08 [0.75-1.56] 0.393 
 36+ 637 [39.7]  0.87 [0.63-1.20]  
AMA  -1 seropositivity 
(baseline survey) 

0-4 688 [21.7]  1 <0.001 

 5-9 517 [53.0]  5.13 [3.84-6.86] <0.001 
 10-15 321 [64.2]  8.87 [6.29-12.50] <0.001 
 16-25 354 [60.2]  7.60 [5.47-10.56] <0.001 
 26-35 294 [51.0]  4.60 [3.29-6.42] <0.001 
 36+ 416 [50.5]  4.39 [3.24-5.96]  
MSP-1 19 seropositivity 
(baseline survey) 

0-4 698 [14.5]  1 0.111 

 5-9 568 [16.9]  1.31 [0.94-1.84] <0.001 
 10-15 346 [30.6]  3.21 [2.24-4.59] <0.001 
 16-25 361 [34.9]  3.90 [2.75-5.51] <0.001 
 26-35 291 [38.5]  4.90 [3.39-7.07] <0.001 
 36+ 447 [40.3]  5.10 [3.66-7.10]  

*age was missing for one individual. 

To establish the effect of radius size on results obtained with the kernel and weighted local 
prevalence methods, models using different radii were built. In addition to the initial 1 km 
radius, radii of 500 m, 100 m and 0 m (i e, household) were explored. Models assuming 
individual level infection and serological status were also compared. Similarly, for the 
SaTScan analysis, maximum population sizes of 20 and 10% were explored. To compare the 
predictive performance of using different methods and radii, the area under the receiver 
operating curve (AUC) was calculated for each model. AUC values were compared using 
DeLong’s test for paired ROC curves [30]. Statistical analysis was performed using STATA 
(version 12, College Station, TX, USA) and R (version 3.0.1) [31]. 

Results 

Study subjects 

In 2010, 668 households from randomly selected sub-villages participated in the first year 
survey, comprising a total of 3,801 individuals, 3,057 (80.4%) of whom were seen, consented 



to participate and provided a blood specimen. Approximately half of the participants (n = 
1,612, 52.7%) were male. The median age of the study population was 13 years (IQR = 5-30 
years; range 1-99 years). The overall prevalence of P. falciparum by nPCR was 34.3%. In the 
second year survey, 697 households participated in the survey with 3,246 (85.4%) of eligible 
individuals providing a blood specimen, 51.6% of whom were male. Distribution of age was 
similar to that of the first year survey. P. falciparum prevalence by nPCR was significantly 
higher at 51.9% than during the baseline survey (OR 1.95; 95% CI, 1.76-2.17; p <0.001). 

Association of age and other individual factors with PCR positivity and 
seropositivity 

Individuals aged 10 to 15 years had the highest nPCR prevalence of P. falciparum at baseline 
and at follow-up (Table 1). Seropositivity to AMA-1 similarly peaked in the age group ten to 
15 years. This age group had more than eight times the odds of being seropositive to AMA-1 
compared to individuals aged zero to four years (OR 8.87, 95% CI 6.29-12.5; P < 0.001). 
Seropositivity to MSP-119 showed a different relationship with age, displaying a steady 
increase with age, with those aged >36 years having roughly five times the odds of being 
seropositive compared to those aged zero to four years (OR 5.10 95%, CI 3.66-7.10) (Table 
1). 

Prediction of infection in the second year survey 

nPCR prevalence in the baseline survey 

Fifty-seven per cent of individuals who were nPCR positive in the first year were also nPCR 
positive in the second year whilst 47% who were negative in the first year were also negative 
in the second year (χ2 = 27.2; P <0.001). Guided by AUC values, clustering estimated using 
kernel analysis appeared to predict infection by nPCR in the second year more accurately 
than the weighted local prevalence method (p = 0.016) (Table 2). While clustering estimated 
by SaTScan gave a higher AUC value than clustering by the weighted local prevalence 
method, there was no evidence for a difference in AUC (p = 0.12). 

Table 2 Odds of testing positive for P. falciparum infection during the follow-up survey: 
results from three geospatial models defined by baseline infection, anti-AMA -1 antibody 
prevalence, and anti MSP-119 antibody prevalence adjusted for age 

Risk factor Number 
tested 

Malaria in 
second year n. % 

OR 95%CI  Wald test 
P-value 

Area under 
the ROC curve 

PCR individual 
infection in baseline survey* 

     

Neg 1,763 827 [46.9] 1 <0.001 0.560 
Pos 905 521 [57.6] 1.58 [1.31-1.83]   
PCR prevalence      
Satscan exposure category 792 319 [40.3] 1 0.181 0.620 
coldspot 1,728 864 [50.0] 1.35 [0.87-2.09] <0.001 0.628 
neither 726 500 [68.9] 4.54 [2.68-7.72] 0.966 0.597 
hotspot 804 390 [48.5] 1 0.013  



Kernel exposure quartiles 819 387 [47.2] 0.99 [0.60-1.64] <0.001  
<14.9 818 331 [40.5] 0.53 [0.32-0.88] 0.165  
15-21.3 805 575 [71.4] 3.45 [2.06-5.75] 0.042  
21.4-27.1 816 420 [51.5] 1 0.003  
>27.1 794 344 [43.3] 0.69 [0.41-1.16]   
Weighted exposure quartiles 807 372 [46.1] 0.58 [0.35-0.98]   
<18.9 799 520 [65.1] 2.21 [1.31-3.73]   
19-23.2      
23.3-26.5      
>26.5      
AMA -1 individual prevalence      
No 1,262 594 [47.1] 1 <0.001 0.554 
Yes 1,071 593 [55.4] 1.45 [1.21-1.72]   
AMA -1 prevalence      
Satscan exposure category 904 310 [34.3] 1 <0.001 0.647 
coldspot 1,092 554 [50.7] 2.65 [1.69-4.15] <0.001 0.618 
neither 1,250 819 [65.5] 5.84 [3.75-9.10] 0.002 0.609 
hotspot 814 308 [37.8] 1 <0.001  
Kernel exposure quartiles 813 414 [50.9] 2.26 [1.35-3.79] <0.001  
<27.9 812 425 [52.3] 2.62 [1.57-4.39] 0.154  
28-38.9 807 536 [66.4] 5.16 [3.06-8.69] <0.001  
39-53.0 804 325 [40.4] 1 <0.001  
>53.0 809 357 [44.1] 1.45 [0.86-2.44]   
Weighted exposure quartiles 800 476 [59.5] 3.50 [2.07-5.91]   
<18.9 803 498 [62.0] 3.33 [1.97-5.62]   
19-23.9      
24 -26.9      
>26.9      
MSP-119 individual prevalence      
No 1,730 924 [53.4] 1 0.196 0.541 
Yes 681 341 [50.1] 0.88 [0.73-1.06]   
MSP prevalence      
Satscan exposure category 1,703 992 [58.2] 1 0.040 0.591 
coldspot 967 493 [51.0] 0.64 [0.41-0.98] <0.001 0.622 
neither 576 198 [34.0] 0.21 [0.13-0.34] 0.773 0.625 
hotspot 806 418 [51.9] 1 0.008 0.631 
Kernel exposure quartiles 835 440 [52.7] 1.08 [0.65-1.78] <0.001  
<12.9 808 538 [66.6] 2.02 [1.21-3.38] 0.715  
13-17.3 797 287 [36.0] 0.34 [0.20-0.55] 0.006  
17.4-25.4 805 415 [51.6] 1 <0.001  
>25.4 813 430 [52.9] 1.10 [0.66-1.81]   
Weighted exposure quartiles 802 533 [66.5] 2.08 [1.23-3.51]   
<16.5 796 278 [34.9] 0.35 [0.21-0.57]   
16.6-18.3      
18.4-22.7      
>22.7      
MSP-119 &/ or AMA -1 
individual prevalence 

     

No 986 253 [25.6] 1 0.986 0.530 



Yes 1,237 466 [37.7] 1.00 [0.78-1.29]   
MSP-119 & / or AMA -1 
prevalence 

     

Satscan exposure category - 400 [48.4] - - - 
coldspot - 357 [44.6] - - 0.604 
neither - 386 [47.0] - - 0.530 
hotspot 827 540 [67.8] 1 0.082  
Kernel exposure quartiles 800 402 [49.3] 0.63 [0.37 - 1.07] 0.310  
<44.5 822 380 [47.4] 0.77 [0.46-1.28] 0.001  
44.6-51.4 797 372 [45.6] 2.44 [1.44-4.14] 0.507  
51.5-59.3 816 502 [64.0] 1 0.063  
>59.4 801  0.84 [0.49-1.42] 0.023  
Weighted exposure quartiles 815  0.60 [0.36-1.03]   
<16.5 784  1.86 [1.09-3.18]   
16.6-18.3      
18.4-22.7      
>22.7      

* Only individuals who were tested at both baseline and year 1. 

Using SaTScan analysis to detect nPCR hotspots, one large cluster was identified with a 
radius of 2.88 km, covering 141 households and one small cluster was identified with a radius 
of 0.1 km covering five households (Figure 1A). SaTScan analysis showed that individuals 
who were residing in a nPCR hotspot cluster in the first year had four times the odds of 
testing positive for malaria by nPCR in the second year than those residing in nPCR 
coldspots (OR 4.54 95% CI 2.68-7.72). The kernel and weighted local prevalence analyses 
showed a more complex distribution of hotspots (Figure 1B and C). Both clearly show the 
central hotspot detected by SaTScan, but also show numerous other high transmission areas, 
more consistent with the micro-epidemiology of malaria. The kernel analysis also showed 
that individuals who were residing in the top quartile (areas with a high prevalence of 
infection by nPCR) had three times the odds of testing positive for malaria by nPCR in the 
second year compared to those living in the lowest quartile (OR 3.45, 95% CI 2.06-5.75). 

Seropositivity to AMA-1 and MSP-119 antibodies 

Defining clusters of seroprevalence using AMA-1 and MSP-119 antibodies separately 
improved prediction of nPCR positivity in the second year compared to using combined 
seroprevalence. SaTScan analysis revealed that individuals living in areas of high AMA-1 
seroprevalence (hotspots) in the first year had five times the odds of being nPCR positive in 
the second year compared to those who lived in AMA-1 coldspots (OR 5.84 95% CI 3.75-
9.10), adjusting for age (Table 2). SaTScan could not identify any significant clusters using 
combined seroprevalence. 

When clusters were identified by kernel analysis, those individuals living in households with 
the highest quartile of AMA-1 seroprevalence (hotspots) had a more than five times the odds 
of being nPCR positive in the second year than those in the lowest quintile (OR 5.16 95% CI 
3.06-8.69), adjusting for age (Table 2). Using weighted local prevalence scores to distinguish 
clusters showed a similar pattern, those residing in the households in the top quartile of 
AMA-1 seroprevalence (hotspots) had more than three times the odds of being nPCR positive 
than those residing in lowest quartile (OR 3.33 95% CI 1.97-5.62) (Table 2). Likewise the 



kernel analyses showed a more complex distribution of AMA-1 hotspots than SaTScan 
analysis (Figure 2). A comparison of the predictive ability of different clustering methods 
showed that both SaTScan and kernel analysis yielded higher AUC values than the weighted 
prevalence method, however, only the SaTScan method produced a significantly different 
result (p = 0.002 and p = 0.27 respectively). 

Figure 2 Clustering of sero-positivity to AMA-1 in 2010 using SaTScan and kernel 
Method. Clustering of sero-positivity to AMA-1 in 2010 using (A) SaTScan and (B) kernel 
with a 1 km radius. 

Antibody responses to MSP-119 showed a less clear association with infection in the second 
year, with individual age-adjusted seroprevalence at baseline showing no relationship with 
infection status in the second year. SaTScan analysis suggested that individuals living in 
MSP-119 hotspots were at lower risk of infection in the second year. Both kernel and distance 
weighted prevalence analysis also suggested individuals living in areas of highest MSP-1 
seroprevalence were at lower risk of infection, however those living in areas of intermediate 
seroprevalence (third quartile) were at higher risk of subsequent infection. 

Individual seropositivity at baseline to the combined seroprevalence of AMA-1 and/ or MSP-
119 antibodies showed no relationship with infection in the second year. Similar to results 
using just AMA-1, kernel analysis of combined seroprevalence showed that those individuals 
living in the highest quartile had more than two times the odds of being nPCR positive in the 
second year than those residing in the lowest quintile (OR 2.44 95% CI 1.44-4.14). While a 
similar relationship was seen if hotspots were determined by weighted local prevalence, 
overall predictive ability using this method was worse than when using kernels with an AUC 
value of 0.530 (Table 2). SaTScan was not able to find any hotspots or coldspots using 
combined seroprevalence. 

Sensitivity analysis of kernel and SaTScan methods for determining the best 
radius to predict malaria in the second year of follow-up 

Based on AUC values, the weighted local prevalence method to identify clusters was 
generally less predictive of infection in the second year than the SaTScan and kernel 
methods. Sensitivity analyses of these two methods were therefore conducted to determine 
the radius size that best predicted infection in the second year. For the kernel method, using 
larger radii to identify clusters of nPCR tended to produced similar AUC values than smaller 
radii (Table 3). Using larger radii of 500 m and 1 km to identify clusters of AMA-1 
seroprevalence, MSP-119 or the antigens combined, generally produced higher AUC values. 
Similar sensitivity analyses were done for SaTScan, whereby the maximum population size 
allowable was set to 20 and 10%. As for the kernel analysis, there was a general trend to 
suggest that a larger maximum population size of 50%, which allows for larger geographic 
clusters, was more predictive of subsequent infection than smaller maximum population sizes 
(Table 3). 

  



Table 3 Sensitivity analysis of kernel and SaTScan analysis of PCR and serology 
prevalence for prediction of infection in the second year 

 KERNEL  SaTScan 
Radius Window population size 

Exposure category <1 m 
(Household) 

100 m 500 m 1,000 m 10% 20% 50% 

PCR prevalence quartiles 0.612 0.622 0.611 0.628 0.593 0.616 0.620 
Area under ROC        
Proportion of total nPCR positive in the highest 
quartile in second year΅ 

30.1% 30.2% 33.1% 34.2% 27.1% 29.7% 29.7% 

Proportion of the total study population 
included highest quartile 

23.4% 22.7% 25.2% 24.8% 20.3% 22.4% 22.4% 

AMA-1 prevalence quartiles 0.583 0.587 0.619 0.618 0.602 0.615 0.647 
Area under ROC        
Proportion of total nPCR positive in the 
highest quartile in second year ΅ 

26.6% 29.0% 31.8% 31.9 9.7% 28.9% 48.3% 

Proportion of the total study population 
included highest quartile 

22.6% 24.9% 24.8 24.9 6.72% 22.6% 38.0% 

MSP-119 prevalence quartiles 0.559 0.533 0.602 0.622 0.595 0.612 0.591 
Area under ROC        
Proportion of total nPCR positive in the 
highest quartile I second year 

22.7% 22.8% 19.6% 17.1% 9.4% 11.8% 12.0% 

Proportion of the total study population 
included in the highest quartile 

24.9% 24.6% 24.5% 24.5% 13.7% 17.7% 17.8% 

MSP-119 &/ or AMA-1 prevalence quartiles 0.575 0.580 0.585 0.604 - - - 
Area under ROC        
Proportion of total nPCR positive in 
the highest quartile in second year 

28.7% 30.8% 31.1% 32.6%    

Proportion of the total study population 
included highest quartile 

24.6% 24.7% 24.9% 24.5%    

΅ Proportion of total nPCR positives in the second year that are found in the highest quartile. 

Discussion 

It has been suggested that if malaria transmission hotspots can be identified, targeting 
interventions can have a improved impact on transmission [7]. A number of previous studies 
have explored the use of geospatial techniques to identify clusters of transmission markers 
such as infection or seropositivity to selected antigens [13,14,18,28,32,33]. These studies 
show that households with active and historic exposure tend to cluster together 
geographically. It is less clear however, whether these clusters predict future infection and if 
so, which geospatial techniques and transmission indicators should be used for their 
detection. Using two consecutive years’ data, this study shows that clusters of infection and 
seropositivity to AMA-1 are predictive of future infection and that kernel analysis and 
SaTScan are superior to the weighted local prevalence method of cluster detection. 

Several authors have identified the existence of hotspots at single time points, using a variety 
of different measures of transmission [13,18,28]. Fewer studies have shown that hotspots are 
stable over time. Using data from multiple years in Kenya, Bejon et al. applied spatial scan 
statistics to identify infection hotspots that were predictive of future hotspots up to seven 
years later [14]. Another study done in a highland of Kenya by Ernst et al. identified stable 
spatial clusters of malaria cases by SaTScan statistics over a period of four years [33]. Again 
using spatial scan statistics, Bousema et al. showed that over the period of two years, clinical 



episodes of malaria cluster into hotspots [13]. This study is consistent with these findings, 
showing that hotspots of infection are predictive of future infection. The study also shows 
that being seropositive to AMA-1 or being in a hotspot of AMA-1 seroprevalence is 
predictive of future infection. As seropositivity to AMA-1 is indicative of recent exposure to 
P. falciparum, this finding adds further evidence that hotspots of transmission are stable over 
several years. The relatively low AUC values do, however, suggest the importance of other 
factors related to risk of infection that were not accounted for. In addition, the higher 
prevalence of infection seen in the second year, likely due to higher rainfall observed that 
year, led to some infections in non-hotspot households, which negatively impacts the AUC. 

The relationship between hotspots of seropositivity to MSP-119 and future infection was less 
clear. Clusters with high MSP-1 seroprevalence were found to be at lower risk of infection 
suggesting some protection at the neighbourhood level. However, whilst some studies have 
demonstrated a protective effect of antibodies to MSP-119, [34-37] at the individual level, this 
was not observed in this study. The reasons for these observations and the differences in the 
patterns seen with AMA-1 require further investigation but they may relate to the differing 
immunogenicity and half-life of the antibody response to these two antigens [38]. 

In terms of methods to detect clusters, this study suggests that using spatial scan statistics or 
kernel analysis allows better characterization of hotspots than the weighted local prevalence 
method. This may be due to the fact that estimates of weighted local prevalence for each 
household are made using infection status of neighbours only. This likely leads to an inferior 
indication of hotspot location as individual or household level factors play an important role 
in risk of subsequent infection in that household. Sensitivity analyses, varying both the 
window size and maximum population size for kernel and SaTScan analysis respectively, 
suggests that generally hotspots form over larger (1-3 km) scales. While this likely varies by 
setting, similarly sized hotspots have been detected by previous studies in similar 
transmission settings [13,14,20]. In lower transmission settings, transmission appears to 
cluster over increasingly small scales. A recent study by Searle et al. in Zambia, where 
infection prevalence was estimated to be 23% by rapid diagnostic test (RDT), showed that 
active case detection within a 500-m radius could identify 76% of all RDT-positive 
individuals [39]. A study in Swaziland, where transmission is extremely low (PCR-derived 
parasite prevalence <1%), suggested that infections tend to cluster within households of 
passively detected cases [9]. 

This study has several potential operational implications for malaria control. Firstly, given the 
apparent stability of hotspots, targeting clusters of infection and seropositivity to AMA-1 
(and/or antigens with similar properties) with complete cure treatment and vector control 
could have a dramatic impact on transmission [7]. Secondly, kernel analysis and SaTScan 
appear to be optimal methods to detect hotspots. Currently, establishment of seropositivity to 
AMA-1 can only be done using assays that require samples to be processed in the laboratory. 
Equally, while RDTs exist for determining infection status, these miss a large fraction of 
infections, most of which are likely to be subpatent [40-42]. Previous work has shown that 
these subpatent infections tend to cluster in hotspots, making RDTs inappropriate methods to 
detect hotspots [43]. In order to target interventions at hotspots, therefore, the development of 
sensitive rapid diagnostics for infection and seropositivity to AMA-1 (or similar) is required. 
Alternatively, it may be possible to identify hotspots in the field by clustering of particular 
risk factors or passively detected cases. This is the focus of further research. In the meantime, 
in the setting of moderate malaria transmission around Lake Victoria, mass drug 
administration of entire villages may be required to interrupt transmission [43]. 



Limitations 

This study used indirect measures to define household malaria exposure. Using more direct 
measures, such as entomological inoculation rate (EIR) and other vector measures, may have 
led to different results. However, EIR can be challenging to measure in low-endemic settings. 
Thus, individual parasite prevalence was chosen as the measure of subsequent transmission 
for this study. In addition, indoor residual spraying (IRS) was applied between survey periods 
throughout the study area. While there is no supporting data, it is likely that households that 
did not receive IRS were randomly distributed and therefore unlikely to introduce bias into 
the results. Lastly, the study continued for only two years, thus stability of malaria hotspots 
could only be predicted for that time period. However, as stated, the fact that hotspots of 
AMA-1 seroprevalence were predictive of future infection suggests transmission hotspots are 
stable over a longer time frame. 

Conclusions 

This study supports previous work showing that hotspots can be defined using geospatial 
methods and are stable over a period of at least one year. Hotspots can be detected either by 
using parasite prevalence or seroprevalence of AMA-1 antibodies. It was also found that 
spatial scan statistics and kernel analysis were better at characterizing hotspots of 
transmission than the weighted local prevalence method. Given the lack of highly sensitive 
rapid diagnostic tests for infection and AMA-1 seropositivity, routine detection of hotspots is 
challenging. Further work exploring simple methods to identify hotspots with existing tools is 
therefore required. Furthermore, while theorized, it has yet to be shown in the field that 
targeting interventions does indeed lead to greater reductions in transmission over an 
untargeted approach. Studies linking methods of hotspot detection with assessments of the 
subsequent impact of targeted interventions would be extremely valuable. 
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