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How does population viral load vary with
the evolution of a large HIV epidemic in
sub-Saharan Africa?

Laith J. Abu-Raddada,b,c and Susanne F. Awada

Using mathematical modelling, we described the
temporal evolution of population HIV-1 viral load
in Tanzania throughout the epidemic. Population
log10 viral load was found to be stable and not
sensitive to epidemic dynamics. However, even
modest increases in antiretroviral therapy (ART)
coverage were reflected as appreciable reductions
in population log10 viral load. As ART coverage
expands in sub-Saharan Africa, population log10

viral load will increasingly become a powerful
proxy for monitoring ART implementation and
HIV incidence trends.
Introduction

The population plasma HIV-1 RNA viral load has
become a subject of intense research [1–4]. This
importance stems from findings and developments such
as impact of viral load suppression on HIV transmission
[5], ecological association between community viral
load and HIV incidence [6–8], regional differences in
population viral load [4] and availability of viral load
testing and its use for clinical monitoring [9]. Yet, the
evolution of population viral load in an actual epidemic
in sub-Saharan Africa (SSA), with or without the impact
of antiretroviral therapy (ART), remains uncertain.
This contrasts with developed settings wherein empirical
studies have assessed the evolution of community viral
load over time [6–8].

It is not known whether population viral load varies
by epidemic phase, thereby complicating the use of
population viral load as a proxy of ART coverage and
ART’s impact on HIV incidence. The positive association
between population viral load and HIV incidence
following ART’s expansion is not well established,
though widely hypothesized on the basis of ecological
evidence [6–8]. The consequences of incidence declines,
as those witnessed recently in SSA [10], on population
viral load are yet to be investigated.

Against this background, we attempt to answer the
following questions: How did population viral load vary
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throughout an actual epidemic in SSA? What is the
impact on population viral load of the recent reductions
in incidence? Will ART scale-up in SSA lead to
noticeable reductions in population viral load that are
distinguished from any changes in viral load arising from
epidemic dynamics? Can population viral load be used
as a proxy for ART’s impact on reducing HIV incidence?
To address these questions, we calculated, using
mathematical modelling, the population log10 viral load
in a representative nation in SSA, Tanzania, to examine
population viral load variation from the start of
the epidemic up to today, and its likely evolution with
ART scale-up.
Materials and methods

A deterministic model was used, based on earlier
models [4,11] (S.F. Awad, L.J. Abu-Raddad, unpublished
observation), to describe HIV transmission in Tanzania.
The model stratified the population according to
HIV status, stage of infection and sexual risk group.
HIV progression was divided into the three stages of
acute, chronic and advanced. The model incorporated
10 risk groups, a sexual-mixing matrix and temporal
changes in risk behaviour. An ART intervention was
incorporated by gradually rolling-out ART among
infected persons with CD4þ cell count less than
200 cells/ml and reaching full coverage by 2020. Further
details on this model type can be found in the
unpublished observation by Awad and Abu-Raddad.

The model was parameterized using epidemiological
and natural history data from SSA. The mean log10

viral load during each of HIV stages was assumed to be
5.98 (acute infection), 4.38 (chronic infection) and
5.14 (advanced infection). These values are based on a
large viral load database from SSA [4], and studies of
viral load by stage of infection [12–15]. We defined
population viral load, based on the Centers for Disease
Control and Prevention guidance [1], as mean HIV-1
viral load among all infected persons. The term
population viral load in this article refers strictly, per
general convention, to population viral load transformed
into the base-10 logarithmic scale.

The model was fitted to HIV prevalence time-series data
[16]. Multivariate uncertainty analyses were conducted
with respect to the key structural parameters and viral load
level per HIV stage (Figure S1, http://links.lww.com/
QAD/A483). Each analysis was implemented using
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Monte Carlo sampling from uniform probability
distributions for parameter uncertainty.
Results

The model robustly fitted HIV prevalence (Fig. 1a).
HIV incidence rate peaked in early 1990s, and HIV
prevalence in mid-1990s (Fig. 1a, b). Since then, HIV
prevalence declined with the declining incidence.
Despite the variations in prevalence and incidence,
population viral load was virtually stable throughout the
epidemic (<0.1 log10 variation; Fig. 1c).

Figure 1d shows the impact of an ART intervention
implemented starting from 2010. Although population
viral load was stable throughout the epidemic, it was
pyright © Lippincott Williams & Wilkins. Unautho
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Fig. 1. Evolution of population plasma HIV-1 RNA log10 viral load
epidemic trajectory in Tanzania in terms of (a) HIV prevalence from
(c) Population log10 viral load from 1980 up to 2010; (d) Population
in presence of an antiretroviral therapy (ART) intervention starting
declining steadily with ART scale-up. HIV incidence rate
also declined steadily with ART scale-up and declining
population viral load.

The uncertainty analyses indicated that the result of
stable population viral load pre-ART is not affected by
parameter uncertainty (Figure S1A, http://links.lww.
com/QAD/A483). The analyses further indicated that
the considerable decline in population viral load post-
ART is robust to parameter uncertainty (Figure S1B,
http://links.lww.com/QAD/A483).
Discussion

Our results show that although the epidemic went
through different phases, population viral load remained
rized reproduction of this article is prohibited.

5 2000 2005 2010

5 2000 2005 2010

5 2000 2005 2010

Mean log10 VL

HIV incidence rate

2015

year)

2020

H
IV

 in
ci

de
nc

e 
ra

te
 (

%
)

0

0.25

0.50

0.75

1

in a major epidemic in sub-Saharan Africa. The simulated HIV
1980 up to 2010; (b) HIV incidence rate from 1980 up to 2010;
log10 viral load and HIV incidence rate from 2005 up to 2020
from 2010.

http://links.lww.com/QAD/A483
http://links.lww.com/QAD/A483
http://links.lww.com/QAD/A483


CE: Swati; AIDS-D-13-01223; Total nos of Pages: 4;

AIDS-D-13-01223

Research Letter 3
virtually stable. The recent incidence declines had
also little impact on population viral load. Epidemic
dynamics does not appear to tangibly influence
population viral load; observed changes in population
viral load should reflect other factors. Notably,
population viral load was influenced by ART scale-up
and was associated with the ART-driven decline in
incidence. These findings affirm the rationale for
using population viral load as a proxy of ART effective-
ness and ART’s impact on incidence rate. They
further suggest that the empirically observed ecological
association between community viral load, incidence
rate and ART coverage [6–8] likely reflects a causal
relationship.

The stability of population viral load pre-ART
suggests that regional viral load differences, as observed
recently [4], may not be explained by epidemic phase
or the distribution of infected persons across HIV
stages. Population viral load is driven by the distri-
bution of infected persons across stages, and this
distribution varies in an epidemic. However, late-stage
infection contribution tends to balance acute infection
contribution with epidemic evolution leading to
small overall viral load variation. The measurement of
population viral load on a logarithmic scale, for
statistical relevance, also minimizes population viral load
variation, though viral load in its natural or low-power
transformation scales also remained largely invariable
(not shown).

We reported population viral load evolution only
in Tanzania, and these results may not be generalizable
to other countries. Nonetheless, examining the trends
in Cameroon, Malawi, Mali, Togo and Zimbabwe,
countries with different epidemic sizes, led to similar
results (not shown). Our results may depend on the
kind of mathematical model used, but our model is
an elaborate one refined over multiple studies.

In conclusion, population viral load is virtually not
sensitive to epidemic dynamics, but is influenced by
ART. Even modest increases in ART coverage are
reflected as appreciable reductions in population
viral load. As ART eligibility and coverage expands in
SSA over the coming years, population viral load will
increasingly become a powerful tool to monitor the
effectiveness of ART implementation and trends in HIV
incidence.
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