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The Nagumo-Sato model is a simple mathematical expression of a single neuron, and it is catego-
rized as a discrete-time hybrid dynamical system. To compute bifurcation sets in such a discrete-
time hybrid dynamical system accurately, conditions for periodic solutions and bifurcations are
formulated herewith as a boundary value problem, and Newton’s method is implemented to
solve that problem. As the results of the analysis, the following properties are obtained: border-
collision bifurcations play a dominant role in dynamical behavior of the model; chaotic regions
are distinguished by tangent bifurcations; and multi-stable attractors are observed in its coupled
system. We demonstrate several bifurcation diagrams and corresponding topological properties
of periodic solutions.

Keywords: discrete-time hybrid dynamical system, Nagumo-Sato model, border-collision bifur-
cation

1. Introduction

The Nagumo-Sato (NS) model is represented by a first-order difference equation and it gives a simple
mathematical neuron model [Nagumo & Sato, 1972; Hata, 1982]. There is a threshold value to bind two
different maps in the equation, thereby the equation should be conditional, and it is classified as a discrete-
time hybrid dynamical system [Bemporad & Morari, 1999; Blondel & Tsitsiklis, 1999; Heemels et al., 2001;
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Bernardo et al., 2008]. The chaotic neuron model derived from the NS model [Aihara et al., 1990] exhibits
various bifurcation phenomena as well as chaotic attractors [Aihara et al., 1990; Nakagawa & Okabe, 1992;
Kitajima et al., 2001].

Dynamical properties of the diffusively coupled NS models [Crutchfield & Kaneko, 1988; Politi et al.,
1993; Kinoshita & Ueta, 2010] and synaptically coupled the NS models [Oku & Aihara, 2012] were studied.
Especially in our previous papers [Kinoshita & Ueta, 2010; Oku & Aihara, 2012], results by bifurcation
analyses were shown. In both papers, bifurcation structures that look like Arnold’s tongues [Boyland, 1986]
are confirmed in the bifurcation diagrams; however, it is experimentally shown that the border-collision
(BC) bifurcations [Banerjee et al., 2000] form these structures instead of tangent bifurcations. Kinoshita and
Ueta (2010) computed bifurcation sets by combining the bisection method and the brute-force method.
In the synaptically coupled NS models [Oku & Aihara, 2012], bifurcation diagrams are visualized with
classified responses (including periodic solutions and chaos) by evaluating firing rates and periods, mainly
on the basis of simulations and the brute-force method. Thereby, only bifurcation sets of stable attractors
are visualized. In spite of the fact that the NS model is described by a piecewise linear equation, solvable
bifurcation conditions were not specified explicitly because of its discontinuity. As far as we know, accurate
bifurcation parameter values have not obtained because discontinuity in the model affects the solvability
of the condition for bifurcations.

In this study, the NS model and its coupled system are analyzed rigorously by utilizing Newton’s
method. First, definitions of bifurcation phenomena of periodic solutions are formulated as differentiable
two-point boundary value problems, and Newton’s method is implemented for it [Kuznetsov, 2004]. In
general, for high-order discrete-time hybrid dynamical systems, the convergence ability of Newton’s method
becomes worse. To overcome this, we develop a repetitive procedure of Newton’s method, i.e., we introduce
an extended border to allow a tolerant error evaluation. As a result of the analysis for bifurcation structures,
we have found that BC bifurcations play a dominant role in dynamical behavior of the NS model, period-
locking regions edged by BC bifurcation sets are computed accurately, and chaotic regions rimmed with
tangent bifurcations are found. In addition, multi-stable attractors that do not exist in the single NS
model are observed in the coupled system. We demonstrate several bifurcation diagrams and corresponding
topological properties of periodic solutions.

2. The Nagumo-Sato model

The Nagumo-Sato model [Nagumo & Sato, 1972; Hata, 1982] is expressed as follows:

xk+1 = f(xk), f(xk) =

{
axk + b− 1 if xk ∈ D,
axk + b if xk ∈ D,

(1)

D = {x ∈ R | x ≥ c} , (2)

where a, b and c are parameters related to a decay factor, input and threshold of a neuron. D is the
complement sub-domain of D. This dynamical system is recognized as a piecewise-affine (PA) system since
the model has discontinuity such that smooth difference equations change on the boundary, and it is con-
sidered as an interrupt dynamical system. Furthermore, PA systems that have non-smooth characteristics
are categorized as hybrid dynamical systems in control theory [Bemporad & Morari, 1999; Heemels et al.,
2001; Blondel & Tsitsiklis, 1999].

The detailed analysis of bifurcation parameter sets for hybrid dynamical systems is achieved by solving
two-point boundary problems. However, in a preceding study [Oku & Aihara, 2012; Kinoshita & Ueta,
2010], bifurcation structures of the NS model were computed mainly by the brute-force method. Numerical
methods were not used because the accurate computation of the Jacobian matrix requires complicated
schemes due to discontinuity of the NS model. In the next section, we propose a numerical computation
method to solve boundary value problems for periodic solutions of discrete-time hybrid systems.
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3. Computation algorithm for bifurcations in a discrete-time hybrid dynamical
system

A general form of the discrete-time hybrid dynamical system is described as

xk+1 = f j(xk) if xk ∈ Dj , (3)

where xk ∈ Rn is the state and f j with j = 1, 2, . . . , m is a C∞-class function defined in a domain Dj

in the state space; for example, D and D of Eq. (2) correspond to D1 and D2 with m = 2, respectively.
Suppose that xk+1 can go outside Dj by applying f j to xk.

Assume that x0 is the initial state, solutions of Eq. (3) are represented as

xk = φ(x0, k), (4)

where x0 = φ(x0, 0). When solutions satisfy

x0 = φ(x0, p), (5)

and the points {x0,x1, . . . ,xp−1} are different each other, we call them p-periodic points, especially we
call x0 a fixed point when p = 1. The Jacobian matrix is expressed as follows:

∂φ

∂x0
(x0, p) =

p−1∏
i=0

∂f j

∂x

∣∣∣∣
x=xi∈Dj

, (6)

where we assume that the map f j at each time i is the function of the domain Dj including the current
state xi, thus also the Jacobian ∂f j/∂x depends on the domain.

Local bifurcations are considered as follows. The characteristic equation is given as

χ(µ) = det

(
∂φ

∂x0
(x0, p)− µI

)
= 0, (7)

where µ is a multiplier determining the stability of the periodic point, and I is the identity matrix. A local
bifurcation occurs if the absolute value of the multiplier is unity; for example, µ = 1 and µ = −1 mean
a tangent bifurcation and a period-doubling bifurcation, respectively. By combining Eqs. (5) and (7), the
two-point boundary value problem is expressed as{

φ(x0, p)− x0 = 0,
χ(µ) = 0,

(8)

where p is the period of the objective attractor.
It is well known that BC bifurcations are typical phenomena of hybrid dynamical systems [Kinoshita

& Ueta, 2010]. They emerge when a part of the periodic point hits the border separating two sub-spaces in
general, and they are independent of the stability for the attractor. Hence, the two-point boundary value
problem for the BC bifurcation is described by the following equations with definition of the border (the
threshold value) at which objective hybrid dynamical systems show discontinuity:{

φ(x0, p)− x0 = 0,
q(x0, θ) = 0,

(9)

where q(x, θ): Rn+1 7→ R is the function defining the border. Eq. (9) can be solved by numerical approach,
i.e. Newton’s method, through which the bifurcation structure of the hybrid dynamical system can be
computed in detail.

4. Bifurcations of the NS model

The numerical approach for analyzing the bifurcation structure of the single NS model is explained first.
Bifurcation phenomena can be computed by using Newton’s method. Two sub-spaces in the NS model can
be defined by Eq. (2), and the differential of each map is obtained as follows:

∂fi
∂x

= a, i = 1, 2. (10)
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Therefore, multipliers that show the stability of a periodic point are given dependently on the parameter
a and its period. The characteristic equation for the p-periodic point is shown as

χ(µ) = µ− ap = 0. (11)

The multipliers are thus given as µ = ap. Bifurcation phenomena generally emerge when one of the
multipliers is on a unit circle. It is thus easy to determine bifurcation parameter values by using multipliers;
for example, the tangent bifurcation occurs if a = 1.
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Fig. 1. Bifurcation diagrams of the single NS model. Bi means a BC bifurcation of i-periodic solution. (a): c = 0, (b): c = 0.5.

Bifurcation diagrams of the NS model are shown in Fig. 1. These diagrams visualize periodic regions
in which the period is less than ten. All bifurcation sets are BC bifurcations and they are obtained by
solving Eq. (9). Figure 1(a) shows the case of c = 0. For all periodic regions, the upper cusp points are
located at rational numbers of b and aligned along the line with a = 1, and the lower cusp points gather at
(a, b) = (0, 0), (0, 1). All regions are not overlapped, and many other longer period regions are embedded
between any two regions (not visualized here). Here, p-periodic BC bifurcations are represented as Bp. It
is confirmed that the model mainly generates the BC bifurcations. The tangent bifurcation occurs only on
the line with a = 1. Thus, the BC bifurcations dominate the dynamical behavior of the NS model. If this
bifurcation occurs, the concerned attractor will disappear. Note that a chaotic attractor does not exist at
this parameter region (0 < a < 1 and 0 < b < 1).

Figure 1(b) shows the case of c = 0.5, where periodic regions in which the period is less than five are
visualized. Compared with Fig. 1(a), a period-1 region edged by B1 newly emerges in the left part, and
the BC bifurcation set B1 is given analytically as ac + b − c = 0. For other bifurcation structures, upper
cusp points still touch rational numbers of b, but period locking regions are shifted to the right.

Oku and Aihara (2012) have studied firing rates and periods in the NS model by a brute-force method.
Their results are reproduced in Fig. 2. Compared with Fig. 1(a), it is easy to see that the edges of regions
in Fig. 2 correspond to BC bifurcation sets. Figures 1 and 2 show that BC bifurcations characterize firing
rates and periods of the NS model.
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Fig. 2. (a) Firing rates and (b) firing periods in the single NS model (c = 0). Reproduced images by referring [Oku & Aihara,
2012].

5. Bifurcations of coupled Nagumo-Sato models

5.1. Definitions of borders and domains

In the previous works [Ito et al., 2011; Fujii & Tsuda, 2004; Ueta et al., 2004], the following diffusively
coupled NS models are considered: {

xk+1 = f(xk) + δ(xk − yk),
yk+1 = f(yk) + δ(yk − xk),

(12)

where f is given in Eq. (1), and δ is called “the factor of the coupling.” We do not restrict the sign of δ in
this paper.

Four domains according to the border c are assigned in the state space as follows (see Fig. 3):

D1 : x < c ∧ y < c,
D2 : x ≥ c ∧ y < c,
D3 : x < c ∧ y ≥ c,
D4 : x ≥ c ∧ y ≥ c.

(13)

Fig. 3. Four sub-spaces of the coupled system. Red lines show the borders x = c and y = c.

Equation (12) is rewritten as follows:

xk+1 = f j(xk) if xk ∈ Dj , (14)
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where, x = (x, y)⊤, and

f1 =

(
ax+ b+ δ(x− y)
ay + b+ δ(y − x)

)
, x ∈ D1,

f2 =

(
ax+ b− 1 + δ(x− y)
ay + b+ δ(y − x)

)
, x ∈ D2,

f3 =

(
ax+ b+ δ(x− y)
ay + b− 1 + δ(y − x)

)
, x ∈ D3,

f4 =

(
ax+ b− 1 + δ(x− y)
ay + b− 1 + δ(y − x)

)
, x ∈ D4.

(15)

In this system, the differentials of all the maps in Eq. (15) are the same. Thus, if the periods of some
attractors are equal to each other, the Jacobian matrices for all the periodic points are also the same and
determined by parameters a and δ independently of the state and interrupt characteristics as follows:

∂f i

∂x
=

(
a+ δ −δ
−δ a+ δ

)
, ∀ i = 1, 2, 3, 4. (16)

Therefore, the multipliers also depend only on the two parameter values and the period. The characteristic
equation of the 1-periodic point is given as

χ(µ) = µ2 − 2(a+ δ)µ+ (a+ δ)2 − δ2 = 0. (17)

The multipliers are thus given as µ1 = a + 2δ and µ2 = a. As the result, it is easy to determine the
bifurcation parameter values by using the multipliers. For example, the tangent bifurcation occurs if the
following equation is satisfied:

a = 1 or a = 1− 2δ. (18)

5.2. Extension of Newton’s method for solving Border-collision bifurcation

Newton’s method is also applicable to solve the boundary value problems of Eqs. (8) and (9) for coupled
NS models, however, the method fails solving them in some reasons for hybrid dynamical systems. Let us
describe the problem and show its workaround.

A 3-periodic point attractor just before the BC bifurcation is shown in Fig. 4, where (a) shows the
3-periodic point, and (b) shows the solution with small perturbation (∆x = (10−4, 10−4)⊤) at the initial
point x0.

Figure 4(b) shows that the mapped point f3(x0 +∆x) is far from x0, even though ∆x on x0 is small
enough. This is caused due to change the order of maps. The 3-periodic point is mapped f3 → f1 → f2

as shown in Fig. 4 (a), but in the solution with the small perturbation, the order of maps is changed
to f3 → f1 → f4 because the state f2(x0 + ∆x) crosses the border y = c, as shown in Fig. 4(c). As
a result, the small perturbation in the initial state leads to large difference between the mapped points.
The parameter perturbation also causes the similar effect. Suppose that we try to compute the accurate
periodic points by Newton’s method for this case. If the correction ∆x for the first guess x0 is computed
by the first iteration of the method, possibly the orbit starting from the updated value x0 +∆x does not
form a periodic solution any longer in this example, thus the scheme may fail. This undesirable failure
could appear in discrete-time hybrid dynamical systems in general, and in fact, this is very closed to a BC
bifurcation phenomenon.

In general continuous-time hybrid dynamical systems, any flow approach a border without a break as
the time grows, i.e., switching of the system always occurs on the border. One can calculate when and where
the flow arrives at the border accurately by controlling a tick of the time for the numerical integration.
Newton’s method for solving bifurcation problems can work properly as far as we consider these arrival
points on the border [Kousaka et al., 1999].

In contrast with this, in the discrete-time hybrid dynamical systems, an orbit may not approach the
border like a flow. The border only notifies us which domain the current point locates. In Newton’s method
to compute boundary value problems formulated in Eq. (8) or Eq. (9), although the computation scheme is
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Fig. 4. The problem of the BC bifurcation analysis with Newton’s method. The large error can be generated by discontinuity
dynamics. This problem happens due to a small perturbation on the initial state.

independent from the original dynamics of the system, A small perturbation of the state or the parameter
value possibly gives improper correction values for the condition of the periodic point. In other words,
Newton’s scheme yields BC bifurcation.

To complete Newton’s method for boundary value problems without above mentioned failure, we
propose an extension of the border. If the periodic point that we want to solve is located near the border,
the failure possibly happens during the correction process of Newton’s method, i.e., after the initial guess
is updated by adding the correction, the new orbit starting from that initial value is mapped into the
different domain. Figure 5(a) shows an example. In order to find a true periodic point x∗ from the first
guess x0, Newton’s method generates updated points as the iteration progresses. If the convergence area is
beyond the domain D2, updated points may enter to another domain. In this example, the point xa is out
of D2, then the method offers the next point xb ∈ D4 since the Jacobian matrix defined for D4 is chosen
there. The further updated point cannot be back to the convergence area anymore.

To overcome this difficulty, we offer an extended border for Newton’s method, as shown in Fig. 5(b).
We virtually provide the extended domain that covers the whole convergence area of Newton’s method
for x∗, i.e., during the iteration of the method, we keep update points into the same domain D2. The
Jacobian matrix defined for D4 is never chosen. Even if the point x∗ is unknown, the convergence area can
be estimated adaptively.

As a result of this extension, large errors of mapped points with small errors in initial points are
not generated even if solutions cross beyond the original border; therefore, BC bifurcations for Newton’s
method is suppressed. For example, in Fig. 4, the correct order of maps, namely f3 → f1 → f2, is applied
independently of the state of trajectory, since the region on which f2 is applied is extended. Thus, if the
trajectory goes over the border y = c, f2 rather than f4 is applied.
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Extended border

Extended domain for 

Convergence area of Newton’s method

Fig. 5. A sketch of a solution to eliminate a BC bifurcation associated with Newton’s method. Owing to the extended border,
x∗ can be found.

5.3. Bifurcation structures of the coupled system

The coupled system can be equivalent to a single neuron model when responses of two neurons are syn-
chronized in-phase since the coupling terms vanish for xk = yk. Henceforth, the case that two neurons are
not synchronized in-phase is considered below. To clarify the effects of coupling factor δ, the bifurcation
structures are compared with Fig. 1(a) and (b).

Assume c = 0.5. A bifurcation diagram in the a-b plane with δ = −0.1 is shown in Fig. 6. Periodic
regions that the periods are less than nine are depicted. From comparison with Fig. 1(b), two conspicuous
properties of the bifurcation structures emerge: First, the left 4-periodic-point area (surrounded by B4) is
clearly separated from the other regions, i.e., the bottom cusp point is isolated. For other periodic areas, the
bottom cusp points are not concentrated. Second, some overlapped regions appear. This property suggests
the existence of multi-stable situations; in fact, in the hatched area at the upper-center of Fig. 6, two
5-periodic attractors coexist and one of them appears depending on the initial value.

A bifurcation diagram for δ = 0.1 is shown in Fig. 7. The number of overlapped periodic regions is
increased in comparison with Fig.6. In the hatched regions, multiple periodic solutions coexist. Line T
shows the tangent bifurcation set for all the periodic attractors, and it is given by Eq. (18). Beyond this
bifurcation set, all the periodic attractors disappear, and instead of them, chaotic attractors appear. Since
the Jacobian matrix Eq. (16) is independent of b, the maximum Lyapunov exponent values λ have constant
values corresponding to the parameter a; e.g., for a = 0.7, λ is −0.105413, and for a = 0.9, λ is 0.095241.
In the gray shaded region, BC bifurcation sets are mathematically survived, but only chaotic solutions are
observed in the numerical simulation.

To visualize the coupling effects totally, a bifurcation diagram in the a-δ plane is shown in Fig. 8.
Chaotic attractors appear for positive values of δ. The bottom cusp points of the periodic regions are
concentrated to δ = 0 and a = 0. In the hatched areas, multiple periodic solutions are obtained. In this
figure, δ = 0 (an uncoupled case) looks very special, i.e., it passes through the hatched areas. As we shown
in Fig. 1(b), there is no overlapped area in bifurcation structures. In this hatched area, as |δ| decreases,
different 5-periodic solutions approach each other, and the single period-5 solution exists on the line δ = 0.

Firing rates and periods of the coupled system in the a-δ plane are shown in Figure 9. After the
tangent bifurcation, the period of an attractor becomes long, but the firing rates of the attractors are
almost unchanged.

A chaotic and the 3-periodic attractor are shown in Fig. 10, and a one-dimensional bifurcation diagram
and the Lyapunov exponent values with varying the parameter δ are shown in Fig. 11. The 3-periodic
attractor disappears by the tangent bifurcation at δ = 0.25, and thereafter a chaotic attractor appears.

In Fig. 8, 5, 8, and 11-periodic attractors coexist as multi-stable attractors at the parameter values of
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Fig. 6. Bifurcation diagram of the coupled system in the a-b plane (c = 0.5 and δ = −0.1).

(iii), and they are shown in Fig. 12. These attractors will emerge dependently on initial conditions. The
basins of attraction are shown in Fig. 13.

6. Conclusion

We have investigated bifurcation structures of the NS model and its coupled system in detail. First, defini-
tions of bifurcation phenomena of periodic solutions are formulated as a differentiable two-point boundary
value problem, and accurate bifurcation sets are calculated by Newton’s method featuring variational equa-
tions. As the result, we have shown that BC bifurcations play a dominant role in dynamical behavior of
NS models, period-locking regions edged by BC bifurcation sets are computed accurately, and chaotic re-
gions rimmed with tangent bifurcations are found. In addition, multi-stable attractors that do not exist in
the single NS model are observed in the coupled system. On the analysis of bifurcation phenomena using
Newton’s method, degrading the convergence ability due to discontinuity becomes a critical problem. In
general, for high-order discrete-time hybrid dynamical systems, the convergence ability of Newton’s method
becomes worse. To overcome this problem, we have developed the repetitive procedure of Newton’s method
(Sec. 5.2), i.e., we have introduced an extended border to allow a tolerant error evaluation. Note that our
proposed method can be implemented not only in piecewise linear systems but also in piecewise nonlinear
systems.
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Fig. 7. Bifurcation diagram of the coupled system in the a-b plane (c = 0.5 and δ = 0.1).



Bifurcation Analysis of the Nagumo-Sato Model and its Coupled Systems 11

-0.5

-0.3

-0.1

0.1

0.3

 0.5

 0  0.2  0.4  0.6  0.8  1

Chaos

(i)

(ii)

(iii)

Fig. 8. Bifurcation diagram of the coupled system in the a-δ plane (b = 0.5 and c = 0.5).

 0  0.2  0.4  0.6  0.8  1

-0.4

-0.2

 0

 0.2

 0.4

10

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1

Fig. 9. (a) firing rates and (b) firing periods of the coupled system in the a-δ plane (b = 0.5 and c = 0.5).
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Fig. 10. A 3-periodic attractor and a chaotic attractor (a = 0.5, b = 0.5 and c = 0.5).
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