The Traces of Hecke Operators in the Space of the 'Hilbert Modular' Type Cusp Forms of Weight Two

By Hirofumi Ishikawa

College of Liberal Arts and Science, Okayama University Tsushimanaka, Okayama 700, Japan

> (Received January 19, 1979) (Introduced by H. Shimizu)

Introduction

The purpose of the present note is to calculate the trace of Hecke operators acting on the space of cusp forms of weight two belonging to a Hilbert modular group over a totally real algebraic number field. Arthur [1] has given the proof of 'Selberg trace formula' for a reductive algebraic group over a number field F whose semi-simple component is of F-rank one. We shall apply his results to the group SL(2) and GL(2), and carry out the trace formula for Hecke operators.

§ 1 is concerned with preliminary statements. In § 2, an explicit formula for the trace of $T(\Gamma \alpha \Gamma)$ in the space of cusp forms of weight two belonging to $SL_2(\mathfrak{o})$ will be given (Theorem 1). In § 3, we shall give the trace of T(UyU) in $S'=S_1\times\cdots\times S_h$, where S_ν is the cusp form space of weight two belonging to the discrete subgroup Γ_ν of $GL_2(\mathbf{R})\times\cdots\times GL_2(\mathbf{R})$ (Theorem 2). We shall apply Theorem 2 to the operator $T(\mathfrak{q})$ defined in Shimura [17] and give the trace of $T(\mathfrak{q})$ (Theorem 2'). In §§ 3.4-3.5, we shall give some application of Theorem 2' and the numerical examples.

About the calculation of the trace of Hecke operators in the space of various cusp forms of the several variables, Shimizu [16] has given its explicit formula for the case of weight greater than two. Also for the case of automorphic forms of weight greater than or equal to two for a discontinuous group with a compact fundamental domain, it has been calculated in our previous paper [10]. Recently, the dimension formula for the space of 'Hilbert modular' type cusp forms of weight two belonging to a quadratic real number field is given by Hirzebruch [8]. The author would like to express his sincere thanks to Prof. Y. Ihara, Prof. H. Shimizu and to Prof. T. Shintani who encouraged him with many suggestions during the preparation of the paper.

Notation

If H, v stand for a F-subgroup of G and any place of F, H_F, H_v and H_A denote the groups of F-rational points, F_v -rational points and the adèlized group, respectively. H_{∞}, H_f denote the infinite part and the finite part of H_A $(H_A = H_{\infty}H_f)$.

$$n(x)(x \in \mathbf{R}), \alpha(y), (y \in \mathbf{R}_+), k(\theta)(0 \le \theta < 2\pi), h_t(t \in \mathbf{R}), w$$

denote the elements $\begin{bmatrix} 1, & x \\ 0, & 1 \end{bmatrix}$, $\begin{bmatrix} y^{1/2}, & 0 \\ 0, & y^{-1/2} \end{bmatrix}$, $\begin{bmatrix} \cos \theta, & -\sin \theta \\ \sin \theta, & \cos \theta \end{bmatrix}$, $\begin{bmatrix} e^t, & 0 \\ 0, & e^{-t} \end{bmatrix}$ and $\begin{bmatrix} 0, & 1 \\ -1, & 0 \end{bmatrix}$ in $SL_2(\boldsymbol{R})$. If, for $g \in SL_2(\boldsymbol{R})$, g decomposes into $n(x)a(y)k(\theta)$, we shall denote x, y, θ by $x(g), y(g), \theta(g)$, respectively. Denote by σ_m an irreducible representation of $SO_2(\boldsymbol{R})$ satisfying $\sigma_m(k(\theta)) = e^{-im\theta}$, $(m \in \boldsymbol{Z})$.

§ 1. Preliminaries

1.1. Let F be a totally real algebraic number field of finite degree n over Q. Let F_v be the completion of F with respect to a valuation v in F and F_A the adèle ring of F. Denote by \mathfrak{o}, E_0 the ring of all integers in F and the group of units in \mathfrak{o} . For a prime ideal \mathfrak{p} in \mathfrak{o} , let us denote by \mathfrak{o} , the valuation ring in $F_{\mathfrak{p}}$.

Let G be SL(2) or GL(2) which are considered algebraic groups defined over F. Now we shall define some F-subgroups of G. Let N, A and Z be the subgroup consisting of matrices $\begin{bmatrix} 1, & n \\ 0, & 1 \end{bmatrix}$ in G, the group of diagonal matrices in G and the center of G, respectively. Put P=NA, so that P is a minimal parabolic subgroup of G. Define a subgroup A_{∞}^+ of the identity component of A_{∞} by $\begin{bmatrix} a, & 0 \\ 0, & a^{-1} \end{bmatrix} \in A_{\infty}$; $a_1 = \dots = a_n \in \mathbb{R}_+^\times \}$ (G=SL(2)) or by $\{ \begin{bmatrix} a, & 0 \\ 0, & d \end{bmatrix} \in A_{\infty}$; $a_1 = \dots = a_n$, $d_1 = \dots = d_n \in \mathbb{R}_+^\times \}$ (G=GL(2)), $(a_i, d_i \text{ denoting the infinite components of } a, d \text{ with respect to the infinite place } v_i \text{ in } F$). Put $K_{\gamma} = U_{\gamma} = SL_2(\mathfrak{d}_{\gamma})$ or $GL_2(\mathfrak{d}_{\gamma})$ for a prime ideal \mathfrak{d}_{γ} in \mathfrak{d}_{γ} and $K_{v_i} = SO_2(\mathbb{R})$ or $O_2(\mathbb{R})$ for an infinite place v_i , according to G=SL(2) or GL(2). Here K_v is a maximal compact subgroup of G_v and we say* that $G_v = P_v K_v$. Set $K = \prod_v K_v, U = \{x \in G_A; x_p \in U_i, (\mathfrak{p} < \infty)\}$ and $U_0 = \{x \in U; x_{v_i} = 1, (1 \le i \le n)\}$. We can also say that $G_A = P_A K$.

We shall take as measures on G_A , A_A the Tamagawa measures, and on Z_{∞} , A_{∞}^+ , the measures which correspond to the Euclidian measures on $(\mathbf{R}^{\times})^n$, and on $(\mathbf{R}_{\infty}^{\times})^n$, and on $(\mathbf{R}_{\infty}^{\times})^n$ ($\varepsilon = 1$ or 2, according to SL(2) or GL(2)). Let dn be the Haar measure on N_A which makes the measure of $N_F \setminus N_A$ equal to one. As measure on K, we shall choose the normalized Haar measure dk. Define the right and the left Haar measures on P_A by

^{*)} Bruhat, F., p-adic groups, in Algebraic Groups and Discontinuous groups, A.M.S., 1966.

$$\int_{P_A} h(p)d_r p = \int_{N_A} \int_{A_A} h(na)dnda$$

$$(h \in C_c^{\infty}(P_A)).$$

$$\int_{P_A} h(p)d_l p = \int_{A_A} \int_{N_A} h(an)dadn$$

There is a homomorphism $\delta_P(p)$ of P_A to R_+^\times such that $d_r p = \delta_P(p) d_t p$, which is given by $|a/d|_A \left(p = \begin{bmatrix} a, & b \\ 0, & d \end{bmatrix}\right)$. Put $H(p) = \frac{1}{2} \log \delta_P(p)$. Besides we can extend H to the mapping of G_A to R such that H(x) = H(p) if x = pk.

We denote by $L^2(Z_{\infty}G_F\backslash G_A)$ the space of the square integrable functions over $Z_{\infty}G_F\backslash G_A$. Let us define the subspace $L_0^2(Z_{\infty}G_F\backslash G_A)$ of $L^2(Z_{\infty}G_F\backslash G_A)$, which consists of functions h satisfying

$$\int_{N_F \setminus N_A} h(nx) dn = 0, \text{ for almost all } x \text{ in } G_A.$$

Also we denote by $L_0^2(\{P\})$, $L_1^2(\{P\})$ the space of the residues of the Eisenstein series and the continuous part of $L^2(Z_\infty G_F \backslash G_A)$, respectively. According to ([1], p. 344), $L^2(Z_\infty G_F \backslash G_A)$ decomposes into the direct sum of the above three subspaces. Let λ be the right regular representation of $Z_\infty \backslash G_A$ on $L^2(Z_\infty G_F \backslash G_A)$. Suppose

Let λ be the right regular representation of $Z_{\infty}\backslash G_A$ on $L(Z_{\infty}G_F\backslash G_A)$. Suppose f is a complex valued function on $Z_{\infty}\backslash G_A$ satisfying the following assumption.

Assumption 1. ([1], Assumption 3.5) f is the convolution of a left K-finite function f_1 and a right K-finite function f_2 such that the function f_i is of form $f_{\infty}f_f$, $f_f = \prod\limits_{v < \infty} f_v$, where f_{∞} is an infinitely differentiable function with compact support on $Z_{\infty}\backslash G_{\infty}$, where f_{ν} is a locally constant function with compact support on G and where, for almost all \mathfrak{p}, f is equal to the characteristic function of U.

Now we define an operation $\lambda(f)$ of $L^2(Z_{\infty}G_F\backslash G_A)$ by

$$\lambda(f)h(y) = \int_{Z_{\infty}\backslash G_A} f(x)(\lambda(x)h)(y)dx, (h \in L^2(Z_{\infty}G_F\backslash G_A)).$$

Also according to ([1], Corollary 2.10), the subspaces $L_0^2(Z_{co}G_F \setminus G_A)$, $L_0^2(\{P\})$ and $L_1^2(\{P\})$ are $\lambda(f)$ -invariant. Let $\lambda_0(f)$ be the restriction of $\lambda(f)$ to $L_0^2(Z_{co}G_F \setminus G_A) \oplus L_0^2(\{P\})$. $\lambda(f)$ is written as an integral operator with a kernel K(f; x, y), namely,

$$(\lambda(f)h)(x) = \int_{Z_{co}G_F \backslash G_A} K(f; x, y)h(y)dy$$

$$(1.1)$$

$$K(f; x, y) = \sum_{\gamma \in Z_F \backslash G_F} f(x^{-1}\gamma y).$$

Here, we see that the summation of K is finite if x, y lie in fixed compact subsets of $Z_{\infty} \backslash G_A$.

Next we shall give expression of $\lambda_0(f)$. Let \emptyset denote the space of square integrable functions ϕ on $Z_{\infty}N_AA_FA_{\infty}^+\backslash G_A$. For a character χ of $Z_{\infty}A_FA_{\infty}^+\backslash A_A$, $\emptyset(\chi)$ denotes the subspace of \emptyset which consists of the functions ϕ satisfying the equation $\phi(\alpha x) = \chi(\alpha)\phi(x)$ for $\alpha \in A_A$. If X is the group of characters of $Z_{\infty}A_FA_{\infty}^+\backslash A_A$, \emptyset decomposes to the direct sum of $\emptyset(\chi)(\chi \in X)$. For an irreducible representation τ of K, we denote by $\emptyset(\chi,\tau)$ the subspace of $\emptyset(\chi)$ on which the right regular representation of K is equivalent to τ . Then the dimension of $\emptyset(\chi,\tau)$ is finite and $\emptyset(\chi)$ is the direct sum of $\emptyset(\chi,\tau)$. According to the above decomposition to the direct sum, we fix an orthonormal basis $\{\phi_\alpha\}_{\alpha\in I_\chi}$ of $\emptyset(\chi)$. For any $z\in C$, there is a representation $\pi(z)$ of $Z_{\infty}\backslash G_A$ on \emptyset defined by

$$(\pi(z,y)\phi)(x) = \phi(xy)e^{(z+1)H(xy)}e^{-(z+1)H(x)}$$
.

Also define an operation $\pi(z, f)$ on Φ by

$$\pi(z,f)\phi \!=\! \int_{Z_{\infty}\backslash G_{A}}\! f(y)\pi(z,y)\phi dy\;.$$

For $\phi \in \Phi$, $z \in C(\text{Im }(z) > 1)$, $x \in G_A$, we define the Eisenstein series $E(\phi, z, x)$ associated to ϕ . Put

(1.2)
$$E(\phi, z, x) = \sum_{\tilde{\theta} \in P_{R} \setminus G_{R}} \phi(\delta x) e^{(z+1)H(\tilde{\theta}x)}.$$

Then $E(\phi,z,x)$ converges uniformly for x in a compact set of $Z_{\infty}\backslash G_A$ and z in a compact set of $\{z\in C; \text{Im }(z)>1\}$. If M(z) is an analytic function of $\{z\in C; \text{Im }(z)>1\}$ to the space of linear operators on \emptyset defined by the Fourier expansion of $E(\phi,z,x)$ (see Appendix), it is known that $E(\phi,z,x)$ and $M(z)\phi$ can be continued to meromorphic functions on C. Put

(1.3)
$$K_{\mathbf{I}}(f; x, y) = \frac{1}{4\pi} \sum_{\mathbf{z} \in X} \int_{-i \cos a, \beta \in A_{\mathbf{z}}}^{i \cos} \sum_{\alpha, \beta \in A_{\mathbf{z}}} (\pi(\mathbf{z}, f) \phi_{\beta}, \phi_{\alpha}) E(\phi_{\alpha}, \mathbf{z}, x) \overline{E(\phi_{\beta}, \mathbf{z}, y)} d|\mathbf{z}|$$

$$K_{\mathbf{0}}(f; x, y) = K(f; x, y) - K_{\mathbf{I}}(f; x, y)$$

Because of Assumption 1, the summation over A_{λ} is finite.

THEOREM A. ([1], Theorem 3.6 & 3.9). $\lambda_0(f)$ is of trace class and the kernel $K_0(f; x, y)$ is integrable over the diagonal of $Z_{\infty}G_F \backslash G_A \times Z_{\infty}G_F \backslash G_A$ and its integral equals the trace of $\lambda_0(f)$.

Combining Theorem A with ([6], $\S 1.2.3$ Lemma), we have

THEOREM B. $L_0^2(Z_{\infty}G_F\backslash G_A)$ decomposes into the direct sum of countably many invariant subspaces of irreducible unitary representations. Each irreducible representation enters into $L_0^2(Z_{\infty}G_F\backslash G_A)$ with a finite multiplicity.

Theorem C. ([1], § 9). The trace of $\lambda_0(f)$ is the sum of the following terms;

(i) measure $(Z_{\infty}G_F\backslash G_A)f(1)$,

(ii)
$$\sum_{\gamma \in (G_e)} \int_{Z_{e \circ G(\gamma)_F} G_A} f(x^{-1} \gamma x) dx ,$$

(iii)
$$-\frac{c}{2} \sum_{r \in Z_F \backslash A_F \atop r \notin Z_F} \int_K \int_{N_A} f(k^{-1}n^{-1}\mu nk) H(wn) dn dk ,$$

(iv)
$$\lim_{z\to 0} \frac{d}{dz} \{ z\theta(z, f) \}$$
,

(v)
$$\frac{1}{4\pi} \sum_{\gamma \in X} \int_{-i\infty}^{i\infty} \operatorname{trace}_{\Phi(X)} M(-z) \left(\frac{d}{dz} M(z)\right) \pi(z, f) d|z|$$
.

(vi)
$$-\frac{1}{4} \operatorname{trace} M(0)\pi(0, f)$$
,

where

$$\theta(z,f) \!=\! \int_{Z_{\varpi}G_F\backslash G_A} \sum_{\tilde{v}\in P_F\backslash G_F} \sum_{v\in N_F, v\neq 1} f(g^{-1}\tilde{v}^{-1}v\tilde{o}g)e^{-2H(\tilde{u}g)z}dg\;.$$

The notations are defined as follows. Let G_e be a subset of G_F consisting of elements which are not G_F -conjugate to any element in P_F . For x', x in G_F , x, x' will be called equivalent if $x' = zgxg^{-1}$ for some $z \in Z_F$, $g \in G_F$. $\{G_e\}$ denotes a fixed set of representatives of equivalence classes in G_e . The positive constant c is defined by the equation

$$\int_{Z_{\infty}\backslash G_A}h(x)dx=c\int_K\int_{Z_{\infty}\backslash P_A}h(pk)d_tpdk,\ (h\in C_e^{\infty}(Z_{\infty}\backslash G_A))\ .$$

1.2. Let H be a space of continuous functions h on $Z_{\circ}G_F \backslash G_A$ satisfying the following conditions

(H.1)
$$h(xk) = \prod_{i=1}^{n} \sigma_2(k_{v_i})h(x)$$
, for all $k \in \prod_{1 \le \infty} K_1 \prod_{i=1}^{n} SO_2(F_{v_i})$,

- (H.2) for any compact set C of $Z_{\infty}G_F\backslash G_A$ and for any constant c>0, there exist constants c_1, c_2 such that $\left|h\left(\begin{bmatrix} a,0\\0,d\end{bmatrix}x\right)\right| \leq c_1|a/d|_A^{c_2}$ for all $x\in C$ and for all $\begin{bmatrix} a,0\\0,d\end{bmatrix}\in A_A, |a/d|_A\geq c$.
- (H.3) $\lambda(D_{v_i})h=0$, where $D_{v_i}=(0,\cdots,0,D,0,\cdots,0)$ is an element of the universal enveloping algebra of $\mathfrak{G}_{\omega}\otimes C$ (\mathfrak{G}_{ω} being Lie algebra of $GL_2(F_{\omega})$, $D=X_1^2+X_2^2-X_3^2$, $X_1=\begin{bmatrix}1,&0\\0&-1\end{bmatrix}$, $X_2=\begin{bmatrix}0,1\\1&0\end{bmatrix}$, $X_3=\begin{bmatrix}0,1\\-1&0\end{bmatrix}$),

(H.4)
$$\int_{N_F \setminus N_A} h(nx) dn = 0, \text{ for almost all } x.$$

By Godement**), H coincides with the space of all K-finite functions in $L_0^2(Z_\infty G_F \setminus G_A)$ satisfying the conditions (H.1, 3). For every y in G_A , yUy^{-1} is commensurable with U; so we can define the Hecke ring $R(U, G_A)$ which is a free \mathbb{Z} -module generated by all UyU ($y \in G_A$) with a structure of ring. For UyU in $R(U, G_A)$, define a linear operator T(UyU) in H by

(1.4)
$$T(UyU)h(x) = \sum_{i} h(xz_{i}),$$

where $\{z_i\}$ is a system of representatives for the right cosets of U in UyU. We identify $R(U,G_A)$ with the tensor product of the rings $R(U,G_A)$ by the correspondence:

$$UyU\longleftrightarrow \otimes U_1y_2U_p$$
.

For UyU in $R(U,G_A)$, we fix f, once for all, the characteristic function of U,y_*U , and f_f for $\prod\limits_{1\leq \infty} f_*$.

An irreducible unitary representation r of $Z_{\infty}\backslash G_A$ is regarded as a tensor product representation of irreducible representations r_{∞} of $Z_{\infty}\backslash G_{\infty}$ and r_f of G_f . Moreover r_{∞} is given by the tensor product representation of each irreducible representation of $Z_{v_i}\backslash G_{v_i}$ $(1\leq i\leq n)$, whose classification has been given by Bargmann (c.f. ([9], Proposition 1)). For a representation r, χ_r will denote its character. If f satisfies Assumption 1, then $\chi_r(f) = \chi_{r_{\infty}}(f_{\infty})\chi_{r_f}(f_f)$. Set $I = \{1, 2, \cdots, n\}$. For a subset f in f, f will be denoted the subset of equivalent classes of irreducible representations $f_{\infty} = \bigotimes r_f$ of f such that f is contained in the discrete series or in the principal or supplemental series, according as f is contained in f or not. For $f \subseteq f$, we shall call that a function $f_{\infty} \in C_c^{\infty}(Z_{\infty}\backslash G_{\infty})$ is of type f if f satisfies the condition: for any f is a function of f in f in f in f in f is a satisfies the condition for any f is a function of f in f is a satisfies the condition: for any f is a function of f in f

$$f_{\infty}(k_{\infty}x_{\infty}k_{\infty}') = \prod_{j \in J} \sigma_2(k_{v_j}k_{v_j}')^{-1}f_{\infty}(x_{\infty})$$
.

From ([9] Proposition 4) it follows that unless J contains J', $\chi_{r_{\infty}}(f_{\infty})$ vanishes for any r_{∞} in $R_{\infty}(J')$ and for any function f_{∞} of type J, and that, for $r_{\infty}=(r_{J})\in R_{\infty}(I)$, when $\chi_{r_{\infty}}(f_{\infty},I)$ does not vanish, a function φ which is contained in the representation space satisfies $\lambda(D)\varphi=0$. Up to equivalence, there exists uniquely such r_{∞} (in the case G=SL(2)) or the restriction of such r_{∞} into $Z_{\infty}\setminus (G_{\infty})_{+}$ (in the case G=GL(2)). We denote by s_{∞} such an irreducible representation in $R_{\infty}(I)$.

Now we shall consider a system of functions $\{f_J\}$ for all $J\subseteq I$.

Assumption 2. $\{f_J\}$ satisfies the following conditions,

^{**)} Godement, R., Notes on Jaquet-Langland's theorey (§ 3.1). Lecture note, Institute for Advanced Study, Princeton, 1970.

- (i) $f_J(x)=f_{\infty,J}(x_{\infty})f_f(x_f)$ satisfies Assumption 1; moreover $f_{\infty,J}$ is of type J and f_f is determined by UyU as previously stated.
 - (ii) $\chi_{r_{\infty}}(f_{\infty,J_1}) = \chi_{r_{\infty}}(f_{\infty,J_2})$, for any J_1, J_2 and $J' \subseteq J_1 \cap J_2$ and for any $r_{\infty} \in R_{\infty}(J')$.
- (iii) In the case G=GL(2), $f_{\infty,J}(x_{\infty})=f_{\infty,J}((\det x_{\infty})^{-1/2}x_{\infty})$ for $x_{\infty}\in (G_{\infty})_+$, and $f_{\infty,J}=0$ outside $(G_{\infty})_+$.

For $J\subseteq J$, set sign $(J)=(-1)^n(-1)^{|J|}$, where |J| denotes the number of elements in J.

Now we consider the trace of the alternating sum of operator sign $(J)\lambda_0(f_J)$ over all subsets J in I.

Proposition 1. If $\{f_J\}$ satisfies Assumption 2, we have

(1.5)
$$\sum_{J \subseteq I} \operatorname{sign}(J) \operatorname{trace} \lambda_0(f_J) = \chi_{s_{cc}}(f_{\infty,J}) \operatorname{trace}_{II} T(UyU) + (-1)^n \operatorname{trace} (\lambda_0(f_{\phi}) | L_0^2(\{P\})),$$

where I runs over all subsets of I.

Proof. Let R(J) be the subset of equivalent classes of irreducible representations $r=r_{\infty}\otimes r_{J}$ of $Z_{\infty}\backslash G_{A}$ such that r_{∞} is contained in $R_{\infty}(J)$. For $r\in R(J)$, we denote by m_{r} the multiplicity with which r enters in $L_{0}^{2}(Z_{\infty}G_{F}\backslash G_{A})$. By Theorem B, we have

trace
$$(\lambda_0(f_J)|L_0^2(Z_\infty G_F \setminus G_A)) = \sum_{J' \subseteq J} \sum_{r = r_\infty \otimes r_f \in R(J')} m_r \chi_{r_\infty}(f_\infty, J) \chi_{r_f}(f_f)$$
.

Because of Assumption 2 (ii), we get

$$\sum_{J \subseteq I} \operatorname{sign}(J) \operatorname{trace}(\lambda_0(f_J) | L_0^2(Z_{\infty}G_F \setminus G_A)) = \sum_{s \in R(I)} m_s \chi_s(f_I).$$

Suppose $\chi_s(f_I) \neq 0$. If V_s stands for the representation space of s in $L_0^2(Z_{co}G_F \setminus G_A)$, then $\lambda(D_{v_i})\varphi = 0$ for $\varphi \in V_s$ ([10], Proposition 1). As $f_I(kxk') = \prod_j \sigma_2(k_{v_j}k_{v_j})^{-1}f_I(x)$ for $k, k' \in \prod_p K_p \prod_j SO_2(F_{v_j})$, we only consider the trace $\lambda_0(F_I)$ in the subspaces V_s' consisting of φ in V_s such that $\lambda(k)\varphi = \prod_j \sigma_2(k_{v_j})\varphi$ for all k in $\prod_p K_p \prod_j SO_2(F_{v_j})$. But, in the case G = GL(2), it follows from Assumption 2 (iii) that the value of $\chi_{s_{co}}(f_{co,I})$ does not depend on the choice of s_{co} . Thus we have

$$\sum_{s \in R(I)} m_s \chi_s(f_I) = \operatorname{trace}_H \lambda_0(f_I) = \chi_{\S_{co}}(f_{\infty,I}) \operatorname{trace}_H T(UyU).$$

On the other hand, we can see that the trace of $\lambda_0(f_J)$ in $L_0^2(\{P\})$ does not vanish if and only if J is the empty set.

Q.E.D.

§ 2. The trace of Hecke operators for $\Gamma = SL_2(\mathfrak{o})$

2.1. Throughout this section, we shall be dealing with G=SL(2). We shall only consider the case $F\neq Q$. We denote by h the class number of F. We can regard an element in G_F as an element in G_{∞} through the projections of G_F into each components of G_{∞} with respect to infinite places. Then we can see that the projection of Γ into G_{∞} is a discrete subgroup of G_{∞} ; we also denote by Γ its projection. The next proposition follows from the strong approximation theorem (c.f. [4]).

Proposition 2. There is a canonical bijection between $G_F \setminus G_A / U_0$ and $\Gamma \setminus G_\infty$.

Let \mathfrak{G}^n be the direct product of n upper half planes. G_{∞} will act on \mathfrak{F}^n as the linear fractional transformation on each component. dz denotes an invariant measure on \mathfrak{F}^n defined by $\prod_j dx_j dy_j | y_j|^2 (z_j = x_j + iy_j)$. By a classical cusp form of weight two belonging to Γ , we understand a holomorphic function h on \mathfrak{F}^n satisfying the following conditions;

(S.1)
$$h(\gamma z) = j(\gamma, z)^{-1}h(z)$$
 for $\gamma \in \Gamma$,

(S.2) h(z) is regular at every parabolic point κ of Γ , and a constant term in the Fourier expansion of h at κ vanishes.

Here j(x,z) denotes $\prod_{j=1}^{n} (c_j z_j + d_j)^{-2}$ for $x = (x_{v_j}) \in G_{\infty}$ $\left(x_{v_j} = \begin{bmatrix} a_j, b_j \\ c_j, d_j \end{bmatrix} \right)$. The linear space consisting of all h is denoted by S. For an element α in G_{∞} such that $\alpha \Gamma \alpha^{-1}$ is commensurable with Γ , we define a linear operator $T(\Gamma \alpha I')$ in S, say Hecke operator, by

(2.1)
$$T(I'\alpha I')h(z) = \sum_{n=1}^{d} j(\alpha_n^{-1}, z)h(\alpha_n^{-1}z), \quad \left(\Gamma \alpha I' = \bigcup_{n=1}^{d} \alpha_n I'\right).$$

Using Proposition 2, for $h \in S$, we can define a function h' of H by $h'(x) = h(x_{\infty}(i))j(x_{\infty}, i)$ if $x = gx_{\infty}u$ for $g \in G_F$, $x_{\infty} \in G_{\infty}$, $u \in U_0$. Thus we can establish the following proposition.

Proposition 3. The map ι from h to h' describes an isomorphism between S and H as linear spaces over C.

By ([17] Proposition 1.4), we have

LEMMA 1. Let α be an element of G_F . Then we have $\Gamma \alpha U = U \alpha U$.

For UyU (§ 1.2), we take an element α in G_F and any z in UyU satisfying $z \in \alpha U$. It follows from Lemma 1 that $\Gamma \alpha \Gamma$ is uniquely determined by UyU independent of the choice of z and α . As $\alpha \Gamma \alpha^{-1}$ is commensurable with Γ for $\alpha \in G_F$, an

operator T(UyU) in H induces an operator $T(\Gamma\alpha\Gamma)$ in S; and the action on S induced by T(UyU) through ι coincides with the action of $T(\Gamma\alpha\Gamma)$. Therefore the calculation of the trace of $T(\Gamma\alpha\Gamma)$ in S is referable to that of the trace of T(UyU) in H. On the other hand, because of Proposition A-1, the trace of $\lambda_0(f_{\psi})$ in $L_0^2(\{P\})$ equals the trace in the constant function field.

Next, we construct a "convenient" system $\{f_{\infty,J}\}$ of functions on $Z_{\infty}\backslash G_{\infty}$ satisfying Assumption 2. Let ψ_j $(1 \le j \le n)$ be an entire function of exponential type on C satisfying the following condition:

(i) $\psi_j(z)$ is rapidly decreasing uniformly in every strip of finite width which is parallel to the imaginary axis when the imaginary part of z tends to infinity,

(ii)
$$\psi_j(-z) = \psi_j(z), \ \psi_j(1/2) \neq 0.$$

(From ([13], V-§ 3), it follows that an entire function satisfying the above conditions is obtained by the Mellin transform of an infinite differentiable function h with compact support such that $h(\alpha)=h(\alpha^{-1})$ on \mathbb{R}^+). Put

$$g_j(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi_j(i\rho) e^{-i\rho u} d\rho$$
, $g_j[\cosh(u)] = 2g_j(u)$, $(u \ge 0)$.

For e=0 or 2, put

$$f_{e,j}[x] = (-1/\sqrt{2}\pi) \int_{x}^{\infty} g_{j}'[y] T_{e}(x,y) \sqrt{y-x^{-1}} dy , \quad (x \ge 1) ,$$

$$T_{c}(x,y) = \begin{cases} 1, & \text{if } e = 0 \\ 2\frac{y+1}{x+1} - 1, & \text{if } e = 2. \end{cases}$$

For $x = k(\theta)h_t k(\phi) \in SL_2(\mathbf{R})$ $(t \ge 0)$, put

$$f_{e,j}(x) = e^{ie(\theta+\phi)} f_{e,j} [\cosh(2t)]$$
.

Note that $f_{e,j}$ does not depend on the decomposition of x. For $x=(x_{v_j}) \in G_{\infty}$ and for $J \subseteq I$, put

$$(2.2) f_{\infty,J}(x_{\infty}) = \prod_{i \in J} f_{2,J}(x_{n_j}) \prod_{i \neq J} f_{0,J'}(x_{n_{J'}}).$$

The integral operator with the kernel $f_{e,j}$ has an eigenfunction $e^{-ie\theta(x)}y(x)^{1/2+z}$ if z is a complex number. Thus we regard its eigenvalue as a function of z, say Selberg's transformation of $f_{e,j}$.

LEMMA 2. Selberg's transformation of $f_{e,j}$ is given by ψ_i .

Proof. We consider the following formula:

$$\begin{split} & \int_{SL_2(\mathbf{R})} f_{e,j}(g^{-1}g') e^{ie(\theta(g) - \theta(g'))} y(g')^{1/2 + z} y(g)^{-1/2 - z} dg' \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{e,j}(n(x)h_t) e^{2tz - t} dx dt \; . \end{split}$$

Choose elements $k(\theta)$, h_t , $k(\phi)$ satisfying $n(x)h_t = k(\theta)h_t k(\phi)$. Then we have

$$\cosh (2\tau) = 2 \left| \cosh (t) + i \frac{x}{2} e^{-t} \right|^2 - 1, \quad e^{i(\theta + \phi)} = \frac{\cosh (t) - i \frac{x}{2} e^{-t}}{\left| \cosh (t) - i \frac{x}{2} e^{-t} \right|}.$$

By the definition of $f_{e,j}[x]$, its integral equals

$$\int_{-\infty}^{\infty} \bigg\{ \sqrt{\,2\,} \int_{\cosh{(2\tau)}}^{\infty} f_{e,\,j}[x] T_e(x,\cosh{(2\tau)}) \sqrt{x-\cosh{(2\tau)}^{-1}} dx \bigg\} e^{2\tau z} d\tau \;.$$

But the inverse formula of $g_j[y]$ from $f_{e,j}[x]$ is given by

$$g_{j}[y] = \sqrt{2} \int_{y}^{\infty} f_{e,j}[x] T_{e}(x,y) \sqrt{x-y^{-1}} dx$$
.

Therefore its integral equals $\int_{-\infty}^{\infty} g_j[\cosh{(2t)}]e^{2tz}dt$. By the inverse formula of the Fourier transform, it becomes $\phi_j(z)$.

Because of ([3] Theorem 2.1), $f_{e,j}$ is an infinitely differentiable function on $SL_2(\mathbf{R})$ with compact support. Thus $\{f_J = f_{\infty,J}f_f\}$ satisfies Assumption 2. Further we have

$$\chi_{\theta_{\infty}}(f_{\infty,I}) = \chi_{id.}(f_{\infty,\phi}) = \prod_{j} \psi_{j}\left(\frac{1}{2}\right).$$

2.2. The purpose of this subsection is to calculate the left hand side of (1.5), using Theorem C. Firstly we consider the non-parabolic part (Theorem C (i), (ii)). Define an equivalence relation of elements of $\Gamma \alpha \Gamma$ by

$$x \sim x' \longleftrightarrow x' = \pm \gamma x \gamma^{-1}$$
 for $\gamma \in \Gamma$.

Let [x] denote an equivalent class in $\Gamma \alpha \Gamma$ containing x. For $g \in G_{\infty}$, put $\Gamma(g) = \{ \gamma \in \Gamma ; g = \pm \gamma g \gamma^{-1} \}$.

Case i). The contribution from the singular part to (1.5) is

measure
$$(G_F \setminus G_A) \sum_{J \subseteq I} \text{sign } (J) f_J(1)$$

By the definition of f_f , it does not vanish only if UyU=U Combining ([6], §5.5 (2)) with Lemma A-3, we get

Lемма 3.

$$f_{e,j}(1) = \frac{1}{4\pi} \left\{ \int_{-\infty}^{\infty} \psi_j(i\rho) \tanh (\pi \rho) d\rho + (e/2) \psi_j\left(\frac{1}{2}\right) \right\} .$$

Therefore

$$\text{measure } (G_F\backslash G_A) \sum_{J=I} \text{sign } (J) f_{\infty,J}(1) = \text{measure } (G_F\backslash G_A) (4\pi)^{-n} \prod_J \phi_J\!\left(\frac{1}{2}\right).$$

On the other hand, measure $(G_F \setminus G_A)$ equals the volume of the fundamental domain of Γ in \mathfrak{S}^n with respect to dz. By ([15], No. 29 (53)), making use of the zeta function ζ_F and of the discriminant D_F of F, we express the volume in the form

$$(2/\pi^n)|D_F|^{3/2}\zeta_F(2)$$
.

Case ii). In view of the definition of f_f , the contribution from the elliptic part to (1.5) is written in the form

$$\textstyle \sum_{J \subseteq I} \mathrm{sign}\,(J) \sum_{[g]g \in B'} \int_{I'(g)\backslash G_\infty} f_{\infty,\,J}(x^{-1}gx) dx\,,$$

where B' denotes a subset of $\Gamma \alpha \Gamma$ consisting of elements g such that no fixed point of g is a parabolic point of Γ . An element g in B' can be classified to one of the following types: (ii-1) g is elliptic, (ii-2) g is hyperbolic and no fixed point of g is a parabolic point of Γ , (ii-3) g is mixed. (We say the an element g in G_{∞} is elliptic, hyperbolic or parabolic as all g_j are of the corresponding types in the usual sense. If g belongs to none of the above types and $g \neq \pm 1$, we say that g is mixed).

Case ii-1). Combining ([6], § 5.4 (4)), with Lemma A-1, we get

Lemma 4. Let g be an elliptic element of $G_v = SL_2(\mathbf{R})$ in the usual sense. Then

$$\begin{split} & \int_{\mathcal{G}_v(g)\backslash G_v} f_{e,\,j}(x^{-1}gx) dx \\ &= (2\sin\theta_\theta)^{-1} \left\{ \int_{-\infty}^\infty \psi_j(i\rho) \frac{\cosh\left((\pi-2\theta_\theta)\rho\right)}{2\cosh\left(\pi\rho\right)} d\rho + i(e/2) e^{i\theta\theta} \psi_j\!\!\left(\frac{1}{2}\right) \right\} \,. \end{split}$$

where θ_g satisfies $\frac{gz-z_0}{gz-\bar{z}_0}=e^{2i\theta_g}\frac{z-z_0}{z-\bar{z}_0}$, $(z_0$ being the fixed point of g in the upper half plane).

Let $\{B_e\}$ be a complete system of inequivalent elliptic elements in B'. The contribution from this part is referred to

$$\begin{split} &\sum_{J=I} \operatorname{sign} (J) \sum_{[g] \in \{B_g\}} (\Gamma(g) : \{\pm 1\})^{-1} \int_{G_{\infty}(g) \setminus G_{\infty}} f_{\infty,J}(x^{-1}gx) dx \\ &= \sum_{[g] \in \{B_g\}} (\Gamma(g) : \{\pm 1\})^{-1} \prod_{j=1}^n \frac{ie^{i\theta(\mathcal{G}_J)}}{2 \sin \theta(g_j)} \prod_{j=1}^n \psi_j \left(\frac{1}{2}\right) \\ &= \sum_{[g] \in \{B_g\}} (\Gamma(g) : \{\pm 1\})^{-1} \prod_{j=1}^n \frac{\gamma_j}{\zeta_j - \gamma_j} \prod_{j=1}^n \psi_j \left(\frac{1}{2}\right), \end{split}$$

where η_j , ζ_j are the eigenvalues of g_j satisfying $e^{2i\theta(g_j)} = \eta_j \zeta_j^{-1}$. Case ii-2).

Lemma 5. Let g be a hyperbolic element of $G_v=\mathrm{SL}_2(R)$ in the usual sense. Then we get

$$\int_{a_v(g)\backslash G_v} f_{e,j}(x^{-1}gx) dx = \frac{1}{2\pi} \frac{1}{\lambda - \lambda^{-1}} \int_{-\infty}^{\infty} \phi_j(i\rho) \lambda^{\nu i\rho} d\rho,$$

where $\lambda > 1$ is the eigenvalue of g.

Proof. We write I(g) for the left hand side of (2.4). Then I(g) is transformed into

$$\frac{1}{2(\lambda-\lambda^{-1})}\!\int_{-\infty}^{\infty}\!f_{e,j}\!\left(\!\begin{bmatrix}\lambda,n\\0,\lambda^{-1}\end{bmatrix}\!\right)\!dn\;.$$

As we choose elements $k(\theta)$, $h_{t'}$ and $k(\psi)$ satisfying the equation $\begin{bmatrix} \lambda, n \\ 0, \lambda^{-1} \end{bmatrix}$ = $k(\theta)h_{t'}k(\psi)$, we get

$$\cosh (2t') = \frac{\lambda^2 + \lambda^{-2}}{2} + \frac{n^2}{2} , \quad e^{i(\theta + \psi)} = \frac{\lambda + \lambda^{-1} + i(n/2)}{|\lambda + \lambda^{-1} + i(n/2)|} .$$

It follows from the definition of $f_{e,j}[q]$ that

$$I(g) = \frac{1}{2(\lambda - \lambda^{-1})} \int_{-\infty}^{\infty} \left\{ \frac{\lambda + \lambda^{-1} + i(n/2)}{|\lambda + \lambda^{-1} + i(n/2)|} \right\}^{e} f_{e,j} \left[\frac{\lambda^{2} + \lambda^{-2}}{2} + \frac{n^{2}}{2} \right] dn \ .$$

Put $p = \frac{\lambda^2 + \lambda^{-2}}{2}$, $q = p + \frac{n^2}{2}$. Changing the variable n into p, we have

$$\frac{1}{\lambda-\lambda^{-1}}\!\int_{p}^{\infty}T_{e}(q,p)f_{e,j}[q]\frac{dq}{\sqrt{2}\sqrt{q-p}}\,.$$

By the inverse formula of $g_j[p]$ from $f_{e,j}[q]$, I(g) becomes $\frac{1}{2(\lambda-\lambda^{-1})}g_j[p]$. In view of the definition of ψ_j , I(g) coincides with the right hand side of (2.4).

Q.E.D.

Thus, since $\int_{a_{\infty}(g)\backslash a_{\infty}} f_{\infty,J}(x^{-1}gx)dx$ does not depend on J for any hyperbolic element g, their alternating sum over J vanishes. We conclude that the contribution from hyperbolic elements to (1.5) vanishes.

Case ii-3). g is mixed. At least one of g_{nj} 's is hyperbolic in the usual sense ([15], No. 22). It follows from Lemma 5 that the contribution from this part to (1.5) also vanishes.

Secondly, we treat the parabolic part (Theorem C (iii-vi)). G_F decomposes to double cosets of P_F and I' in the form

(2.5)
$$G_F = \bigcup_{\nu=1}^h P_F \gamma_{\nu} l^{\nu}, \quad (\gamma_{\nu} \in G_F).$$

From now on, we fix a set of I-inequivalent cusps $\kappa_{\nu} = \gamma_{\nu}^{-1} \infty$. Put

$$\begin{split} &\Gamma_{\kappa_{\nu}}^{(1)} = \{ \gamma \in \Gamma \; ; \; \gamma \kappa_{\nu} = \kappa_{\nu} \} \; , \quad \Gamma_{\kappa_{\nu}} = \{ \gamma \in \Gamma_{\kappa_{\nu}}^{(1)} \; ; \; \gamma_{\nu} \gamma \gamma_{\nu}^{-1} \in N_{F} \} \; , \quad B_{\kappa_{\nu}} = \{ g \in \Gamma \alpha \Gamma \; ; \; \gamma_{\nu} \gamma \gamma_{\nu}^{-1} \in N_{F} \} \; , \\ &A_{\nu} = \left\{ (a_{j}d_{j}) \; ; \; \gamma_{\nu} \gamma \gamma_{\nu}^{-1} = \left(\begin{bmatrix} a_{j}, b_{j} \\ 0, d_{j} \end{bmatrix} \right) \; , \; \gamma \in \Gamma_{\kappa_{\nu}}^{(1)} \right\} \; , \quad M_{\nu} = \left\{ (b_{j}) \; ; \; \gamma_{\nu} \gamma \gamma_{\nu}^{-1} = \left(\begin{bmatrix} 1, b_{j} \\ 0, 1 \end{bmatrix} \right) \; , \; \gamma \in \Gamma_{\kappa_{\nu}} \right\} \; , \\ &N_{\nu} = \left\{ (b_{j}) \; ; \; \gamma_{\nu} \gamma \gamma_{\nu}^{-1} = \left(\begin{bmatrix} 1, b_{j} \\ 0, 1 \end{bmatrix} \right) \; , \; \gamma \in B_{\kappa_{\nu}} \right\} \; , \quad \mathfrak{A}_{\nu} = (c_{\nu}, d_{\nu}) \left(\gamma_{\nu} = \begin{bmatrix} a_{\nu}, b_{\nu} \\ c_{\nu}, d_{\nu} \end{bmatrix} \right) \; . \end{split}$$

(By [18], it is known that $A_{\nu}=E_0^2$, $M_{\nu}=\mathfrak{A}_{\nu}^{-2}$). As M_{ν} is a discrete subgroup of \mathbb{R}^n of rank n ([15], Theorem 3.1), for a set of generators $\{\mu_i^{(j)}; 1 \leq j \leq n\}$ of M_{ν} , put $d(M_{\nu})=|\det(\mu_i^{(j)})|$. Hereafter, we often use the following fact. If u_j,v_j,v_j' are any complex numbers $(1\leq j\leq n)$ and $n\geq 2$, then

(2.6)
$$\sum_{J \subseteq J} \operatorname{sign}(J) \left(\sum_{k \neq j} v_j \prod_{k \neq j} u_k + \sum_{j' \in J} v_{j'} \prod_{k \neq j'} u_k \right) = 0.$$

Case iii). Let μ be an element in A_F-Z_F . Using the fact that $y(wn(x))=(1+x^2)^{-1}$ in Iwasawa's decomposition of wn(x) in $SL_2(\mathbf{R})$, μ 's term in (iii) of Theorem C is transformed into

(2.7)
$$c \sum_{j=1}^{n} \int_{\mathbf{R}} f_{v,j}(n(x)^{-1} \mu_{v_j} n(x)) \log (1+x^2) dx$$
$$\times \prod_{k \neq j} \int_{\mathbf{R}} f_{v,k}(n(x)^{-1} \mu_{v_k} n(x)) dx,$$

where the constant c is independent of the choice of e. If λ_k is an eigenvalue of μ_{v_k} such that $|\lambda_k| > 1$, it follows from Lemma 5 that the second integral of (2.7) equals $|\lambda - \lambda^{-1}|^{-1} g_k(2 \log |\lambda|)$. Therefore the alternating sum of (2.7) over J is equal to

(2.8)
$$c \sum_{J=1} \operatorname{sign}(J) \sum_{j} \left\{ \prod_{k \neq j} \frac{g_{k}(2 \log |\lambda_{k}|)}{|\lambda_{k} - \lambda_{k}^{-1}|} \int_{\mathbf{R}} f_{e,j}(n(x)^{-1} \mu_{v_{j}} n(x)) \log (1 + x^{2}) dx \right\}.$$

Since $n \ge 2$, it follows from (2.6) that (2.8) vanishes.

Case iv). By virtue of (2.5), we can transform $\theta(z, f_J)$ into

$$\begin{split} &\sum_{\nu=1}^h \int_{G_F\backslash G_A} \sum_{\tilde{o} \in \Gamma_{\kappa_{\mathcal{V}}}^{(1)} \backslash \Gamma} \sum_{v \in \gamma_{\nu}^{-1} N_F T_{\nu}} f_J(g^{-1} \delta^{-1} v \tilde{o} g) e^{-2H(T_{\nu} \tilde{o} g) z} dg \\ &= \sum_{\nu=1}^h \int_{\Gamma \backslash G_{co}} \sum_{\tilde{o} \in \Gamma_{\kappa_{\nu}}^{(1)} \backslash \Gamma} \sum_{v \in B_{\epsilon_{\nu}} v \neq 1} f_{co,J}(g^{-1} \tilde{o}^{-1} v \tilde{o} g) \prod_j (y_j(\gamma_{\nu} \tilde{o} g))^{-z} dg \;. \end{split}$$

LEMMA 6. ([16], Lemma 3.1). N_{ν} is the union of a finite number of cosets of M_{ν} . If $\mu \in N_{\nu}$, $\lambda \in \Lambda_{\nu}$, then $\lambda \mu$ is contained in N_{ν} .

Set $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ ($\varepsilon_j = 1$ or -1). Define a Dirichlet series by

$$L_{N_
u/A_
u}(z,\varepsilon) = \sum_{\mu \neq 0} \left(\prod_j |\mu_j| \right)^{-(1+z)}$$
,

where μ runs over full representatives of N_{ν}/Λ_{ν} except $\mu=0$ such that $\varepsilon_{j}\mu_{j}>0$ for all j. Put

$$L_{N_{\nu}/J_{\nu}}(z) = \sum_{\mu \in N_{\nu}/J_{\nu}, \, \mu \neq 0} \prod_{j} \text{ sign } (\mu_{j}) (\prod_{j} |\mu_{j}|)^{-(1+z)}.$$

 $L_{N_{\nu}/A_{\nu}}(z)$ is equal to $\sum_{\varepsilon} (\prod_{j} \varepsilon_{j}) L_{N_{\nu}/A_{\nu}}(z, \varepsilon)$. (Note that $L_{M_{\nu}/A_{\nu}}(z)$ is introduced in ([15], No. 21)).

Now we consider the expression of $\theta(z, f_J)$ making use of $L_{N_{\nu}/I_{\nu}}(z, \varepsilon)$. For simplicity, fix one of κ_{ν} 's, say κ_{1} , and assume $\kappa_{1} = \infty$, $\gamma_{1} = 1$. Then

$$\begin{split} &\int_{\Gamma\backslash G_{\infty}} \sum_{\delta\in\Gamma^{(1)}\backslash\Gamma} \sum_{v\in B_{s_1}v\neq 1} f_{\infty,J}(g^{-1}\delta^{-1}v\delta g) \prod_{j} (y_j(\delta g))^{-z} dg \\ &= \int_{\Gamma_{s_1}\backslash G_{\infty}} \sum_{v\in B_{s_1}/J_1} f_{\infty,J}(g^{-1}vg) \prod_{j} (y_j(g))^{-z} dg \\ &= d(M_1) L_{N_1/J_1}(z,\varepsilon) \prod_{j} \int_{\mathbb{R}^+} f_{e,j}(a(y)^{-1}n(\varepsilon_j)a(y)) y^{-(2+z)} dy \;. \end{split}$$

It can be shown that $L_{N_1/A_1}(z,\varepsilon)$ has a simple pole at z=0 and that its residue is $m_1 \int_{\mathbb{R}^n/A_1, \prod\limits_j |x_j| \le 1, \, x_j \varepsilon_j > 0} dx$ $(m_1$ being the number of cosets of M_1 in N_1). As its residue does not depend on ε , we denote it by λ_{-1} . We also denote by $\lambda_0^{(\varepsilon)}$ the constant term of the Laurent expansion of $L_{N_1/A_1}(z,\varepsilon)$ at z=0. Therefore, we get

$$\begin{split} &\lim_{\varepsilon \to 0} \frac{d}{dz} \bigg(z L_{N_1/I_1}(z,\varepsilon) \prod_j \int_{\mathbf{R}^+} f_{e,j}(a(y)^{-1} n(\varepsilon_j) a(y)) y^{-(2+z)} dy \bigg) \\ &= \lambda_0^{(\varepsilon)} \prod_j \int_{\mathbf{R}^+} f_{e,j}(a(y)^{-1} n(\varepsilon_j) a(y)) y^{-2} dy \end{split}$$

$$+\lambda_{-1} \sum_{j} \left[\int_{\mathbf{R}^{+}} f_{e,j}(a(y)^{-1} n(\varepsilon_{j}) a(y)) (\log y) y^{-2} dy \right]$$

$$\times \prod_{k \neq j} \left\{ \int_{\mathbf{R}^{+}} f_{e,k}(a(y)^{-1} n(\varepsilon_{k}) a(y)) y^{-2} dy \right\} .$$

Concerning the first integral of the above formula, we need the following lemma.

LEMMA 7. For $\varepsilon=1$ or -1, we get

(2.10)
$$\int_{\mathbb{R}^+} f_{e,j}(a(y)^{-1} n(\varepsilon) a(y)) y^{-2} dy = \frac{1}{2} g_j(0) + (e/2) (i\varepsilon/2\pi) \psi_j\left(\frac{1}{2}\right).$$

Proof. We only show this lemma in the case $\varepsilon=1$. The left hand side of (2.10) can be expressed by

(2.11)
$$\lim_{\theta \to 0} \frac{\sin \theta}{\pi} \int_{SO_0(R) \setminus SL_0(R)} f_{c,j}(gk(\theta)g^{-1}) dg,$$

since

$$\lim_{\theta \to 0} \frac{\sin \theta}{\pi} \int_0^\infty f_{e,j} \left(\begin{bmatrix} \cos \theta, & t^2 \sin \theta \\ -t^2 \sin \theta, \cos \theta \end{bmatrix} \right) \frac{t^2 - t^{-2}}{t} dt$$

$$= \int_0^\infty f_{e,j}(n(x)) dx = \int_0^\infty f_{e,j}(a(y)^{-1}n(1)a(y)) y^{-2} dy.$$

On the other hand, because of Lemma 3, (2.11) equals

$$\frac{1}{2\pi}\left\{\int_{-\infty}^{\infty} \psi_j(i\rho) \frac{d\rho}{2} + i(e/2)\psi_j\left(\frac{1}{2}\right)\right\} = \frac{1}{2}g_j(0) + (i/2\pi)(e/2)\psi_j\left(\frac{1}{2}\right). \quad \text{Q.E.D.}$$

Thus, making use of (2.6), λ_{-1} -term vanishes. Consequently

$$\sum_{z \to J} \operatorname{sign}(J) \lim_{z \to 0} \left\{ \frac{d}{dz} z \theta(z, f_J) \right\} = \left(\frac{1}{2\pi} \right)^n \sum_{\nu=1}^h d(M_{\nu}) L_{N_{\nu}/4_{\nu}}(0) \prod_{j=1}^n \psi_j \left(\frac{1}{2} \right).$$

Next we shall see the contribution from the part of Eisenstein series. Case v). In view of Assumption 2, note that unless $\theta(\chi)$ contains a U_0 -invariant element, the trace of $\pi(z,f_J)$ in $\theta(\chi)$ vanishes. For $J \subseteq I$ and for $\phi_{m,\chi}$ defined in (A.1), $\pi(z,f_J)\phi_{m,\chi}$ does not vanish only if $m_J=2$ for $j\in J$, $m_{j'}=0$ for $j'\notin J$. Put $m_J=(m_1,\cdots,m_n)$ such that $m_j=2$ for $j\in J$, $m_{j'}=0$ for $j'\notin J$. Then

$$\pi(z, f_J)\phi_{m_{J,z}}(x) = \prod_j \phi_j\left(\frac{z}{2} + 2\pi i \hat{\xi}_j\right) \sum_l \phi_{m_{J,z}}(xz_l) ,$$

where ξ_j is a real number attached to χ (Appendix 1). It follows from Proposition A-1 & Corollary A-2 that

$$\begin{split} &M(-z)\,\frac{d}{dz}\,M(z)\pi(z,f_J)\phi_{m_J,z}(x) = \left\{m(-z,\bar{\chi})\,\frac{d}{dz}\,m(z,\chi)\right.\\ &\left. + \sum_{j\in J}A(-z,2,\,-\,\bar{\xi}_j)\,\frac{d}{dz}\,A(z,2,\bar{\xi}_j)\right\}\,\prod\limits_j\,\phi_j\!\left(\frac{z}{2}\,+2\pi i\bar{\xi}_j\right)\,\sum\limits_i\phi_{m_J,\,z}\!(xz_i)\;. \end{split}$$

Therefore

$$\begin{split} &\sum_{J=I} \operatorname{sign}\left(J\right) \operatorname{trace}_{\theta(z)} M(-z) \frac{d}{dz} M(z) \pi(z,f_J) \\ &= \sum_{J=I} \operatorname{sign}\left(J\right) m(-z,\bar{\chi}) \frac{d}{dz} m(z,\chi) \operatorname{trace}_{\theta(z)} \pi(z,f_J) \\ &+ \sum_{J=I} \operatorname{sign}\left(J\right) \sum_{j \in J} A(-z,2,-\xi_j) \frac{d}{dz} A(z,2,\xi_j) \operatorname{trace}_{\theta(z)} \pi(z,f_J) \;. \end{split}$$

As each term of the first part of above formula does not depend on J, its first part vanishes. Since $n \ge 2$, its second part also vanishes in view of (2.6). Thus, there are no contributions from (v) to (1.5).

Case vi). As M(z) maps $\phi_{m,\chi}$ to $\phi_{m,\chi}$, the trace over $\Phi(\chi_0)$ only contributes to (1.5) (χ_0^2) being the identity character). Since A(0,e,0)=1 for e=0,2 because of Proposition A-1, we have

$$\begin{split} & \sum_{J \subseteq I} \mathrm{sign} \; (J) \; \mathrm{trace}_{\theta(\mathbf{x}_0)} \; M(0) \pi(\mathbf{0}, f_J) \\ &= m(\mathbf{0}, \mathbf{x}_0) \sum_{J \subseteq I} \mathrm{sign} \; (J) \; \mathrm{trace}_{\theta(\mathbf{x}_0)} \; \pi(\mathbf{0}, f_J) \! = \! 0 \; . \end{split}$$

Therefore, there is no contribution from (vi) to (1.5).

2.3. Summing up the above results, we obtain

THEOREM 1. The trace of $T(\Gamma \alpha \Gamma)$ in S is given by

Trace
$$T(I'\alpha I') = \tilde{o} \frac{2}{(2\pi)^{2n}} |D_F|^{3/2} \zeta_F(2)$$

 $+ \sum_{\{g\} \in \{B_g\}} (I'(g) : \{\pm 1\})^{-1} \prod_{j=1}^n \frac{\eta_{,j}}{\zeta_{,j} - \eta_{,j}}$
 $+ (i/2\pi)^n \sum_{\nu=1}^n d(M_{\nu}) L_{N_{\nu}/A_{\nu}}(0) - (-1)^n \cdot d$.

The notations used in this formula are defined as follows.

$$\partial = \begin{cases} 1 & if \quad \Gamma \alpha \Gamma = \Gamma \\ 0 & if \quad \Gamma \alpha \Gamma \neq \Gamma \end{cases}$$

 $\{B_e\}$; a complete system of inequivalent elliptic elements in $\Gamma \alpha \Gamma$. ζ_j, η_j ; the eigenvalues of an elliptic element g_j satisfying the condition in Lemma 4.

d; the number of right Γ -cosets in $\Gamma \alpha \Gamma$. The others are referred to the previous definitions.

Remark. By [15], the elliptic term is written by

$$\frac{1}{h} \sum_{\mathfrak{D} \in \mathcal{Q}} \frac{h(\mathfrak{D})}{w(\mathfrak{D})} \sum_{g \in B_e \cap \mathcal{Q} \text{ g mod } \{\pm 1\}} \Psi(g) .$$

Here Ω is the set of all orders $\mathbb D$ (taken up to isomorphism) in the quadratic extensions of F. $h(\mathfrak D), w(\mathfrak D)$ is the class number of $\mathbb D$ or is the index of E_0 in the group of units in $\mathfrak D$. Put $K=F(\mathfrak D)$. Denote by $C''(\mathfrak o), C(\mathfrak D)$ the ideal class group of $\mathfrak o$ modulo $\prod_{i=1}^n v_i$, the ideal class group of $\mathfrak D$ and by N the mapping of $C(\mathfrak D)$ into $C''(\mathfrak o)$ induced by $N_{K/F}$. If $(C''(\mathfrak o):N(C(\mathfrak D)))=1$, put $\Psi(g)=1/2(-1)^n$. In the other case, i.e., $(C''(\mathfrak o):N(C(\mathfrak D)))=2$, call σ_j either one of the two extensions of K of the isomorphism of F into F_{v_j} . Take g^* a generator of F(g) and assume ζ_j^* is the eigenvalue of g_j^* satisfying the condition in Lemma 4. We define $\varepsilon(\sigma_j)$ to be 1 or -1 according as $\sigma_j g_j^* = \zeta_j^*$ or ζ_j^{*-1} . Put

$$\Psi(g) = \sum_{(\sigma_1, \dots, \sigma_n)} \prod_j \frac{(\sigma_j g)^2}{1 - (\sigma_j g)^2}$$

where $(\sigma_1, \dots, \sigma_n)$ is taken over all the combinations such that $\prod_{j=1}^n \varepsilon(\sigma_j) = 1$.

§ 3. The trace of Hecke operators for GL(2).

3.1. In this section, let G be GL(2). Also we shall only consider the case $F \neq Q$. By Eichler's approximation theorem, we have

(3.1)
$$G_A = \bigcup_{\nu=1}^h G_F x_{\nu} U$$
, $(x \in G_A, h \text{ being the class number of } F)$.

Put $U_{\nu}=x_{\nu}Ux_{\nu}^{-1}$, $\Gamma_{\nu}=U_{\nu}\cap G_{F}$ $(1\leq\nu\leq h)$. Let \mathfrak{F}^{n} be the set of all $z=(z_{1},\cdots,z_{n})$ with $z_{J}\in C$, Im $(z_{J})\neq 0$. Then G_{∞} acts on \mathfrak{F}^{n} as the linear fractional transformation on each component. As the same way as § 2.1, we regard G_{F} as subgroup of G_{∞} , dz also denotes the invariant measure on \mathfrak{F}^{n} defined by $\prod_{j}dx_{j}dx_{j}|y_{j}|^{2}$ $(z_{j}=x_{j}+iy_{j})$. By S_{ν} , we understand the space of cusp forms of weight two on \mathfrak{F}^{n} with respect to Γ_{ν} consisting of a holomorphic function on each connected component of \mathfrak{F}^{n} which satisfies the conditions (S.1), (S.2) in § 2.1 replacing Γ_{ν} , $j(\gamma,z)$ by Γ_{ν} , $j'(\gamma,z)=\prod_{j}(\det \gamma_{j}(c_{j}z_{j}+d_{j})^{-2})$. Let S' be the direct product of S_{1},\cdots,S_{h} . By (3.1), we can see the following proposition.

Proposition 4.***) For $h_{\nu} \in S_{\nu}(1 \le \nu \le h)$, define a function h' on $Z_{\infty}G_F \setminus G_A$ by

^{***)} Shimizu, H., Theta series and automorphic forms on GL_2 , (§ 6, 8), J. of Math. Soc. Japan, 24, (1972).

 $h'(x) = h_{\nu}(x_{\infty}(i))j'(x_{\infty}, i)$, if $x = gx_{\nu}x_{\infty}u$ for $g \in G_F$, $x_{\infty} \in G_{\infty}$, $u \in U_0$. Then the map if from (h_{ν}) to h' describes an isomorphism between S' and H as linear spaces over C.

Next we define the Hecke operators on S'. We need the following lemma.

LEMMA 7. ([17], Proposition 2.3). Let α be an element of G_F . Then $U_{\mu}\alpha U_{\nu} = \Gamma_{\mu}\alpha U_{\nu}$.

For UyU (§ 1.2), suppose there exists z in UyU such that $x_{\mu}z \in \beta x_{\nu}U$ with $\beta \in G_F$. Then μ is uniquely determined by ν , because of (3.1). We take an element β in $U_{\mu}x_{\mu}yx_{\nu}^{-1}U_{\nu}\cap G_F$. It follows from Lemma 7 that $\Gamma_{\mu}\beta\Gamma_{\nu}$ is uniquely determined by UyU. Thus we define a linear operator T(UyU) on S' by

$$(3.2) T(\Gamma_{\mu}\beta\Gamma_{\nu})h_{\mu}(z) = \sum_{j} j'(\beta_{j}^{-1}, z)h_{\mu}(\beta_{j}^{-1}z) = g_{\nu}(z) \quad (\Gamma_{\mu}\beta\Gamma_{\nu} = \bigcup_{j} \beta_{j}\Gamma_{\nu})$$

$$T(UyU)(h_{1}, \dots, h_{h}) = (g_{1}, \dots, g_{h}).$$

Also the action of T(UyU) on S' coincides with the action of T(UyU) on H through the isomorphism ι' .

By ([1], Lemma 2.6), $L_0^2(\{P\})$ owes the residues of the Eisenstein series. The poles of $E(\phi,z,x)$ occur at z=1 only when $\tau(k)=\xi(\det(k))$ with a Grössen-character ξ of F_A^\times/F^\times such that ξ^2 is trivial on F_∞^\times . Put $D_\xi(x)=\xi(\det(x))$. Then $L_0^2(\{P\})$ is equivalent to the direct sum of the one-dimensional spaces CD_ξ . In order to calculate the trace of $\lambda_0(f_\phi)$ we limit ourselves to the right U-invariant subspaces. Such spaces occur in the case ξ is trivial on $\prod_{\infty} \mathfrak{o}_{\mathfrak{p}}^\times$. As is well known that $(F_A: F^\times(F_\infty^\times)_+ \prod_{\infty} \mathfrak{o}_{\mathfrak{p}}^\times) = 2^n h/(E_0: E_0^+)$, we have

trace
$$(\lambda_0(f_\phi)|L_0^2(\{P\})) = \delta' \frac{2^n h}{(E_0:E_0^+)} d \prod_{j=1}^n \psi_j \left(\frac{1}{2}\right)$$
,

(d being the number of right U_0 -cosets in UyU, and $\delta'=1$ if $\det y_f \in F^{\times}(F_{\infty}^{\times})_+\Pi_{0,*}$, otherwise $\delta'=0$).

Next, we can extend $f_{\omega,J}$ which is defined in § 2.1 to the function of G_{ω} such that it satisfies Assumption 2 (iii). For the present case, we shall define a system $\{f_J\}$ satisfying Assumption 2. Combining above arguments with Proposition 1, we obtain

(3.3)
$$\sum_{J \subseteq I} \operatorname{sign}(J) \operatorname{trace} \lambda_0(f_J) = \left\{ \operatorname{trace}_{S'} T(UyU) + (-1)^n \delta' \frac{2^n}{(E_0 : E_0^+)} h \cdot d \right\} \prod_{J=1}^n \phi_J \left(\frac{1}{2}\right).$$

3.2. In this subsection, we shall calculate the left hand side of (1.5) with the aid of Theorem C. Put $Z_{\nu} = \Gamma_{\nu} \cap Z_{\infty}$, $B_{\nu} = U_{\nu} x_{\nu} y x_{\nu}^{-1} U_{\nu} \cap G_{F}$. We also define the equivalence relation in B_{ν} replacing $(\Gamma \alpha \Gamma, \Gamma, \{\pm 1\})$ by $(B_{\nu}, \Gamma_{\nu}, Z_{\nu})$, and denote by

[x] an equivalence class containing x. For $g \in G_{\infty}$, put $\Gamma_{\nu}(g) = \{g \in \Gamma_{\nu}; g = \varepsilon \gamma g \gamma^{-1} \text{ for some } \varepsilon \in \mathbb{Z}_{\nu}\}.$

Case i). Unless y is contained in U, the contribution from the singular part vanishes. By Lemma 3, for the case UyU=U, its contribution is

measure
$$(Z_{\infty}G_F\backslash G_A)(4\pi)^{-n}\prod_{j=1}^n\psi_j\left(\frac{1}{2}\right)$$
.

On the other hand, by (3.1) measure of $Z_{\infty}G_F\backslash G_A$ equals the sum of the volumes of the fundamental domain of Γ_{ν} in \mathfrak{F}^n with respect to dz. It is known**** that its sum is written by $\frac{2h}{\pi^n}|D_F|^{3/2}\zeta_F(2)$.

Case ii). Let B_{ν}' be a subset of B_{ν} consisting of elements g such that no fixed point of g is a parabolic point of Γ_{ν} . Then the contribution from the elliptic part to (1.5) is given

$$\textstyle \sum_{J \subseteq I} \mathrm{sign}\,(J) \sum_{\nu=1}^h \sum_{\{g\}} \int_{g \in B_\nu'} \int_{Z_\infty \Gamma_\nu(g) \backslash G_\infty} f_{\infty,J}(x^{-1} gx) dx \;.$$

According to § 2.2, we classify an element in B_{ν}' .

Case ii-1). Let $\{B_{\nu,e}\}$ be a complete system of inequivalent elliptic elements in B_{ν}' . Note that if $B_{\nu,e} \neq \{\phi\}$, det $y_f \in F^{\times}(F_{\infty}^{\times})_+ \Pi_{0}^{\times}$. The contribution from elliptic elements in B_{ν}' is written by

$$\sum_{J \subseteq I} \operatorname{sign}(J) \sum_{[g]} (\Gamma_{\nu}(g) : Z_{\nu})^{-1} \sum_{\iota} \int_{G_{\infty}(g) \setminus (G_{\infty})_{+}} f_{\infty,J}(x^{-1}g^{\iota}x) dx ,$$

where $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ runs over all combinations of $\varepsilon_j = 1, -1$ $(1 \le j \le n)$. Let η_j, ζ_j be the eigenvalues of g_j satisfying $e^{2i\theta(\theta_j)} = \eta_j \zeta_j^{-1}$. By Lemma 4, we have

$$\begin{split} & \sum_{J=I} \operatorname{sign}(J) \sum_{\epsilon} \int_{G_{\infty}(g) \backslash G_{\infty}} f_{\infty,J}(x^{-1}g^{\epsilon}x) dx \\ & = \sum_{\epsilon} \left\{ \prod_{i,j=1} \frac{\eta_{J}}{\zeta_{J} - \eta_{J}} \prod_{i,k=-1} \frac{\zeta_{k}}{\eta_{k} - \zeta_{k}} \right\} \prod_{j} \psi_{j} \left(\frac{1}{2}\right) = (-1)^{n} \prod_{j} \psi_{j} \left(\frac{1}{2}\right). \end{split}$$

Case ii-2, 3). Applying arguments of § 2.2 to the present case, we see that there are no contributions from hyperbolic and mixed elements to (1.5).

Case iv). Let $\kappa_{\nu} = \gamma_{\nu}^{-1} \infty$ $(1 \le \nu \le h)$ be inequivalent cusps of Γ_{μ} . We define $(\Gamma_{\mu}^{(1)})_{\varepsilon_{\nu}}, (\Gamma_{\mu})_{\varepsilon_{\nu}}, (B_{\mu})_{\varepsilon_{\nu}}, (A_{\mu})_{\nu}, (M_{\mu})_{\nu}, (N_{\mu})_{\nu}$ and the Dirichlet series $L_{(N_{\mu})_{\nu}, (A_{\mu})_{\nu}}(z)$ by the same way as in § 2.2 replacing Γ by Γ_{μ} . Applying calculation of § 2.2 to the present case together with (3.1), $\theta(z, f_J)$ can be written in the form

$$\begin{split} \theta(z,f_J) &= \sum_{\mu} \sum_{\nu} \theta_{\mu\nu}(z,f_J) \\ \theta_{\mu\nu}(z,f_J) &= d((M_{\mu})_{\nu}) L_{(N_{\mu})_{\nu} \cap (A_{\mu})_{\nu}}(z) \\ &\times \prod_{j} \int_{\mathbf{R}^+} \{ f_{e,j}(a(y)^{-1}n(1)a(y)) + f_{e,j}(a(y)^{-1}n(-1)a(y)) \} y^{-(2+z)} dy \; . \end{split}$$

^{****)} Shimizu, H., On zeta functions of quaternion algebras, Ann. of Math. 81 (1965) pp. 166-193.

But, by Lemma 7, we have

$$\int_{R^+} \{f_{e,j}(a(y)^{-1}n(1)a(y)) + f_{e,j}(a(y)^{-1}n(-1)a(y))\}y^{-2}dy = g_j(0) \; .$$

Therefore

$$\begin{split} & \sum_{J=I} \mathrm{sign}\,(J) \lim_{z \to 0} \left\{ \frac{d}{dz} (z \theta_{\mu\nu}(z, f_J)) \right\} \\ & = \sum_{J \subseteq I} \mathrm{sign}\,(J) L_{(N_{\mu})_{\nu'}(J_{\mu})_{\nu}}(0) \prod_{J} g_{J}(0) = 0 \; . \end{split}$$

Thus, in the present case, this part has no contribution to (1.5).

Case iii, v, vi). By the same reason as § 2.2, there are no contributions from the parts (iii), (v), (vi) to (1.5).

3.3. Summing up the above things, we obtain

THEOREM 2. The trace of T(UyU) in S' is given by

(3.4) Trace
$$T(U_{\mathcal{V}}U) = \delta \frac{2h}{(2\pi)^{2n}} |D_F|^{3/2} \zeta_F(2)$$

$$+ (-1)^n \sum_{\nu=1}^h \sum_{i \neq j} (I^r_{\nu}(y) : Z_{\nu})^{-1} - (-1)^n \frac{2^n h}{(E_0 : E_0^+)} \cdot d,$$

if det $y_f \in F^{\times}(F_{\infty}^{\times})_+ \Pi_{0}^{\times}$. Otherwise, it vanishes. The notations are defined as follows. $\hat{o}=1$ if $y \in U$ and otherwise $\hat{o}=0$. [g] runs over a full system of inequivalent elliptic elements in $B_{s'}$. d is a number of right U-cosets in UyU.

Let α be an integral ideal in F. Following from ([17], § 3.4), we define an operator $T(\alpha)$ in S' by the sum of T(UyU) over all double cosets UyU such that the right $M_2(\alpha)$ ideal $\bigcap_{\mathfrak{p}} y \ M_2(\alpha)$ is integral and of norm α . Unless α is a principal ideal $a\mathfrak{p}$ with a totally positive element a, trace $T(\alpha)=0$. Combining Theorem 2 with ([9], § 5.1) & ([16], § 4), we get

THEOREM 2'. Let a=a0 be a principal ideal with a totally positive element a in a. The trace T(a) in S' is given by the following formula.

(3.5)
$$\operatorname{Trace} T(\mathfrak{a}) = \delta(\mathfrak{a}) \frac{2h}{(2\pi)^{2n}} |D_{F}|^{3/2} \zeta_{F}(2)$$

$$+ \frac{(-1)^{n}}{2} \sum_{\mathfrak{D} \in \mathcal{B}} \frac{h(\mathfrak{D})}{w(\mathfrak{D})} |I(\mathfrak{a}, \mathfrak{D}) mod E_{\mathfrak{a}}|$$

$$- (-1)^{n} \frac{2^{n}h}{(E_{\mathfrak{a}} : E_{\mathfrak{a}}^{+})} \sum_{\mathfrak{u} \mid \mathfrak{a}} N_{F/\mathbf{Q}}(\mathfrak{u}).$$

The notations are as follows. $\delta(\mathfrak{a})=1$ if $\mathfrak{a}=a_0^2\mathfrak{o}$ for some $a_0\in\mathfrak{o}$ and otherwise $\delta(\mathfrak{a})=0$. \mathfrak{n} runs over all divisors of \mathfrak{a} . Ω is the set of all orders \mathfrak{D} (taken up to isomor-

phism) in totally imaginary quadratic extensions of F. $h(\mathbb{D})$ is the class number of \mathbb{D} , and $w(\mathbb{D})$ is the index of E_0 in the group of units in \mathbb{D} . Let K be the quadratic extension of F containing \mathbb{D} ; ϕ is an embedding of the adèle of K into $M_2(K)_A$ such that $\phi(\mathbb{D}_*) = \phi(K_*) \cap M_2(\mathfrak{O}_*)$ for all \mathfrak{p} ; $I(\mathfrak{a}, \mathbb{D})$ is the set of all $x \in K - F$ such that $\phi(x)$ is contained in the union of double cosets UyU appearing in $T(\mathfrak{a})$.

3.4. Here, we shall give some relations between the various relative class numbers of the totally imaginary quadratic extensions over some fixed real quadratic field. When $F = Q(\sqrt{5})$, $Q(\sqrt{2})$, $Q(\sqrt{13})$ or $Q(\sqrt{17})$, the space of cusp forms of weight two with respect to F vanishes (Theorem 2). It follows from Theorem 2'

Proposition 5. Let q be a totally positive element in a. For above F, we have

Here, q is the principal ideal in 0 generated by q; s,f denote integers in F, and $\mathbb{O}(s,f)$ denotes the order in $F(\sqrt{s^2-4q})$ with the discriminant $(s^2-4q)f^{-2}$. s runs over all integers in F such that $s^2-4q<0$, $(s^*)^2-4q^*<0$, $((s\pm\sqrt{s^2-4q})/2 \mod E_0)$ and (f) runs over the divisors of (f_0) where $\mathbb{O}(s,f_0)$ is the principal order in $F(\sqrt{s^2-4q})$, (ε being a generator of Gal(F/Q)).

Remark. $\frac{1}{8\pi^4}D_F^{3/2}\zeta_F(2)$ is $\frac{1}{60}$, $\frac{1}{24}$, $\frac{1}{12}$ or $\frac{1}{6}$, according to $F=Q(\sqrt{5})$, $Q(\sqrt{2})$, $Q(\sqrt{13})$ or $Q(\sqrt{17})$, respectively.

3.5. Numerical Examples

i) Set $F = Q(\sqrt{N})$ (N>5 being a square-free positive number). We assume that the class number of F is one and that F contains a unit of norm -1. It follows from Theorem 2' that

$$\dim S' = \frac{1}{8\pi^4} D_F^{3/2} \zeta_F(2) - 1 + \frac{1}{2} \Sigma \frac{h(\mathbb{O}(s,\mathfrak{f}))}{w(\mathbb{O}(s,\mathfrak{f}))} \left(w(\mathbb{O}(s,\mathfrak{f})) - 1 \right).$$

Here,

s; integers in F, satisfying $4-s^2$ is totally positive,

f; integral ideals in F, satisfying $(s^2-4)^{r-2}$ is an integral ideal in F,

 $\mathfrak{O}(s,\mathfrak{f})$; the order in $F(\sqrt{s^2-4})$ with discriminant $(s^2-4)\mathfrak{f}^{-2}$.

The summation runs over all $\mathfrak{D}(s,\mathfrak{f})$ (taken up to isomorphism). As N>5, in the summation of right hand side of (3.6) s which satisfies the conditions is only 0

or ± 1 , and for any cases of s, t=0. The consideration of the zeta function of $F(\sqrt{s^2-4})$ gives

LEMMA 8. Suppose $K=\mathbf{Q}(\sqrt{N},\sqrt{-D})$ with a square-free positive number D. Then h(K)=(1/2)h(-D)h(-ND), where h(-L) denotes the class number of $\mathbf{Q}(\sqrt{-L})$.

Thus

$$\dim S' = \frac{1}{8\pi^4} D_F^{3/2} \zeta_F(2) - 1 + \frac{h(-3N)}{6} + \frac{h(-N)}{8} \ .$$

Moreover we assume that N is not divided by 2 or 3 and $N \ge 37$. It follows from Theorem 2' that the trace of T((2)) and of T((3)) in S' are also given by

(3.7)
$$\operatorname{Trace} T((2)) = \frac{h(-2N)}{4} + \frac{h(-7N)}{2} + \frac{h(-N)}{4} - \hat{o}_2(N),$$

$$\operatorname{Trace} T((3)) = \hat{\xi}_2(N) \frac{h(-3N)}{2} + \frac{h(-11N)}{2} + \frac{h(-2N)}{2} - \hat{o}_3(N).$$

Here,

$$\hat{\sigma}_{2}(N) = \begin{cases} 9 & \text{if } \left[\frac{2}{N}\right] = 1\\ 5 & \text{if } \left[\frac{2}{N}\right] = -1 \end{cases} \qquad \hat{\sigma}_{3}(N) = \begin{cases} 16 & \text{if } \left[\frac{3}{N}\right] = 1\\ 10 & \text{if } \left[\frac{3}{N}\right] = -1 \end{cases}$$

$$\hat{\xi}_{2}(N) = \begin{cases} 3 & \text{if } \left[\frac{2}{N}\right] = 1\\ 1 & \text{if } \left[\frac{2}{N}\right] = -1 \end{cases}.$$

where $\left[\frac{p}{N}\right]$ denotes the Legendre symbol. Using the electric computer at Okayama University, for a prime number N satisfying the above conditions, we calculate the dimension of S', the trace of T((2)), and of T((3)) which are given in Appendix 3.

ii) By application of Proposition 5, we get some class numbers of biquadratic fields. Let N=13 or 17 and consider the trace of T((2)). In these cases, s which appears in Proposition 5, is 0, ± 1 , ± 2 , $\pm (1\pm\sqrt{13})/2$ (if N=13) or $\pm (1\pm\sqrt{17})/2$ (if N=17). Then the value of trace of T((2)) is the sum of the terms appearing in the right hand side of (3.7) and of

$$2h(F(\sqrt{(-9+\sqrt{13})/2}))$$
, or $2h(F(\sqrt{(-7+\sqrt{17})/2}))$,

according to N=13 or 17. Thus

$$h(F\sqrt{\frac{-9+\sqrt{13}}{2}}))=1$$
, $(F=Q(\sqrt{13}))$

$$h\left(F\sqrt{\frac{-7+\sqrt{17}}{2}}\right)=1$$
, $(F=Q(\sqrt{17}))$.

Appendix 1.

The purpose of this appendix is to give the definition of the Eisenstein series and some examinations of its Fourier expansion. Through this section, we take G=SL(2).

We define the Eisenstein series $E(\phi,z,x)$ on $G_F\backslash G_A$ which is right U_0 -invariant. Let χ be a Grössen-character of $F_A{}^\times/F^\times$ with a conductor $\mathfrak o$ such that its restriction $\chi(x_\infty)$ to $(F_A{}^\times)_\infty$ is $\prod_{j=1}^n |x_j|^{4\pi i j}$, where $\xi = (\xi_1,\cdots,\xi_n)$ in $\mathbb R^n$ satisfies the following conditions

(i)
$$\hat{\xi}_1 \log |\xi_1^{(i)}| + \cdots + \hat{\xi}_n \log |\xi_n^{(i)}| \in \mathbb{Z}$$
. $(1 < i < n-1)$

(ii)
$$\xi_1 + \cdots + \xi_n = 0$$
,

 $\{\varepsilon^{(1)},\cdots,\varepsilon^{(n-1)}\}$ being a complete set of generators in the group of E_0^2). For an element $\begin{bmatrix} a,0\\0,\alpha^{-1}\end{bmatrix}$ in A_A , we put $\chi(\begin{bmatrix} a,0\\0,\alpha^{-1}\end{bmatrix})=\chi(a)$; thus we can regard χ as a character of $A_FA_{\infty}^+\backslash A_A$. For $m=(m_1,\cdots,m_n)$ $(m_j$ being an even integer) and for x=nak $(n\in N_A, a\in A_A, k\in K)$, we define a function $\phi_{m,\chi}$ in $\phi(\chi)$ and the Eisenstein series $E(\phi_{m,\chi},z,x)$ by

$$\begin{split} \phi_{m,z}(x) &= \prod_{j=1}^n \sigma_{mj}(k_{v_j}) \chi(\alpha) \\ E(\phi_{m,z},z,x) &= \sum_{\delta \in P_p \setminus G_p} \phi_{m,z}(\delta x) e^{(z+1)H(\delta x)} \,. \end{split}$$

For a constant term of the Fourier expansion of the Eisenstein series, we have

Proposition A-1. The constant term of $E(\phi_{m,y}, z, x)$, i.e.,

$$E^{0}(\phi_{m,z},z,x) = \int_{N_{E}\backslash N_{A}} E(\phi_{m,z},z,nx) dn$$

is given by the expression

$$E^{0}(\phi_{m,z},z,x) = \phi_{m,z}(x)e^{(z+1)H(x)} + m(z,\chi) \prod_{j=1}^{n} A(z,m_{j},\xi_{j})\phi_{m,z}(x)e^{(1-z)H(x)},$$

$$(A.2) m(z,\chi) = \frac{\xi(z,\chi)}{\xi(1+z,\chi)},$$

$$\xi(z,\chi) = \left\{ \frac{|D_F|^{1/2}}{\Gamma(\frac{1}{2})} \right\}^z \prod_{j=1}^n \Gamma(\frac{z}{2} + 2\pi i \xi_j) L(z,\chi),$$

$$A(z,m_j,\xi_j) = \begin{cases} 1 & (m_j = 0), \\ \prod_{k=1}^{m_j/2} \frac{2k - 1 - z - 4\pi i \xi_j}{2k + 1 + z + 4\pi i \xi_j} & (m_j \ge 2), \end{cases}$$

where $L(z, \chi)$ denotes Hecke's L-function with a Grössen-character χ .

Proof. $E^{0}(\phi_{m,x},z,x)$ becomes

$$\sum_{\{\hat{\sigma}\}\in P_{E}\backslash G_{E}/N_{E}}\int_{\hat{\sigma}^{-1}P_{E}\hat{\sigma}\cap N_{E}\backslash N_{A}}\phi_{m,\chi}(\hat{o}nx)e^{(z+1)H(\hat{\sigma}nx)}dn\;.$$

Because of Bruhat's decomposition of $G_F = P_F \cup P_F w N_F$, it equals

$$\phi_{m,\chi}(x)e^{(z+1)H(x)}+\int_{N_E}\phi_{m,\chi}(wnx)e^{(z+1)H(wnx)}dn.$$

By Iwasawa's decomposition of x=n'a'k' $(n' \in N_A, a' \in A_A, k' \in K)$, we have

$$H(wnx) = -H(x) + H(w(a'^{-1}nn'a')),$$

$$\chi(wnx) = \chi(x)^{-1}\chi(w(a'^{-1}nn'a')).$$

Thus the later integral of above formula is

$$\phi_{m,\frac{7}{2}}(x)e^{(1-z)H(x)} \int_{N_{A}} e^{i\sum_{j} m_{j}\theta_{j}(wn)} \chi(wn)e^{(z+1)H(wn)} dn$$

$$= \phi_{m,\frac{7}{2}}(x)e^{(1-z)H(x)} \int_{N_{\infty}} e^{i\sum_{j} m_{j}\theta_{j}(wn_{\infty})} \chi(wn_{\infty}) \prod_{j} y_{j}(wn_{\infty})^{(z+1)/2} dn$$

$$\times \int_{N_{f}} \chi(wn_{f})e^{(z+1)H(wn_{f})} dn_{f}.$$

By the same way as ([12], (6.1.3)), the first integral equals

$$|D_F|^{-1/2} \prod_j A(z, m_j, \xi_j) B\left(\frac{1}{2}, \frac{z}{2} + 2\pi i \xi_j\right).$$

For a finite prime \mathfrak{p} , we define a mapping $H_{\mathfrak{p}}$ of $G_{\mathfrak{p}}$ to R by the same way as the definition of H. It follows from Iwasawa's decomposition of wn, that

$$\int_{N_{\mathfrak{p}}} \chi(wn_{\mathfrak{p}}) e^{(z+1)H_{\mathfrak{p}}(wn_{\mathfrak{p}})} dn_{\mathfrak{p}} = \sum_{m=0}^{\infty} \chi(\mathfrak{p}^{m}) \varphi(\mathfrak{p}^{m}) N_{F/Q}(\mathfrak{p}^{m})^{-(1+z)} = \frac{1-\chi(\mathfrak{p})N_{F/Q}(\mathfrak{p})^{-(1+z)}}{1-\chi(\mathfrak{p})N_{F/Q}(\mathfrak{p})^{-z}},$$

where φ denotes Euler's function. If S_k is a set consisting of the first k finite primes, the second integral in (A.3) becomes

$$\lim_{k \to \infty} \prod_{i \in S_k} \int_{N_k} \chi(wn_i) e^{(z+1)H_i(wn_i)} dn = \prod_{i \in S_k} \frac{1 - \chi(\mathfrak{p}) N_{F/Q}(\mathfrak{p})^{-(1+z)}}{1 - \chi(\mathfrak{p}) N_{F/Q}(\mathfrak{p})^{-z}} = \frac{L(z,\chi)}{L(1+z,\chi)} \,.$$

Combining the above things, we get the expression (A.2). Q.E.D. By the functional equation of Hecke's L-function, we have

Corollary A-2. $m(z, \chi)m(-z, \bar{\chi})=1$.

Appendix 2.

We shall examine the correspondence between the situations of ([6], § 5) and ours. Here $\varphi(q)$, $h^+(\rho)$, h_n^{\pm} denote the functions defined in ([6], §§ 5.1-5.2).

LEMMA A-3. Let take $f_{e,j}(g)$ for $\varphi(g)$. Then

$$(1) \quad h^+(\rho) = \phi_j \left(i \frac{\rho}{2}\right).$$

(2)
$$h_n^+=0$$
 if $n \neq 1$ or if $n=1$, $e=0$; $h_n^-=0$ for all n ; $h_1^+=\phi_j\left(\frac{1}{2}\right)$.

Proof. (1) Let g be a hyperbolic element in $G=SL_2(\mathbf{R})$ in the usual sense. By Lemma 5, we have the following equation

(A.4)
$$\int_{-\infty}^{\infty} |\lambda_g - \lambda_g^{-1}| \int_{a_{\zeta g} \setminus G} f_{e,j}(x^{-1}gx) dx |\lambda_g|^{i\rho} \frac{d\rho_g}{\rho_g}$$

$$= \int_{-\infty}^{\infty} g_j(2 \log |\lambda_g|) |\lambda_g|^{i\rho} \frac{d\lambda_g}{\lambda_g} ,$$

where λ_g is the eigenvalue of g satisfying $|\lambda_g| > |\lambda_g^{-1}|$ By ([6], § 5.3 (5)), its right hand side becomes $h^+(\rho)$. On the other hand, because of the definition of g_j , its left hand side equals $\phi_j\left(i\frac{\rho}{2}\right)$.

(2) Applying the argument of ([9], § 2.2), it follows first two assertions. Now let us take n=1, e=2. It follows from the definition of h_1 ⁺ that

$$h_1 = \int_G f_{2,j}(g) dg + \int_{(G)_h} f_{2,j}(g) \frac{3\lambda_g^{-1} - \lambda_g}{\lambda_g - \lambda_g^{-1}} dg ,$$

where $(G)_h$ denotes the set of all hyperbolic elements g in G. By the definition of $f_{2,j}$, the first integral vanishes. By ([6], § 5.3 (5)), we have

$$\int_{(G)_h} f_{2,j}(g) \frac{\lambda_g^{-1}}{\lambda_g - \lambda_g^{-1}} dg = \int_{|\lambda_h| > 1} (\lambda_h - \lambda_h^{-1}) \lambda_h^{-1} \int_{(G)_h \backslash G} f_{2,j}(x^{-1}hx) dx dh \ .$$

By Lemma 5, its integral equals

$$\frac{1}{2\pi} \int_{|\lambda| > 1} \left\{ \int_{-\infty}^{\infty} \phi_j(i\rho) |\lambda|^{2i\rho - 1} d\rho \right\} \frac{d\lambda}{\lambda} = -\frac{1}{2\pi i} \int_{\operatorname{Re}(z) = 0} \frac{\phi_j(z)}{z - \frac{1}{2}} dz .$$

By the same way, we have

$$\int_{(G)_h} f_{2,j}(g) \frac{\lambda_g}{\lambda_g - \lambda_g^{-1}} dg = \frac{1}{2\pi i} \int_{\text{Re}(z)=1} \frac{\psi_j(z)}{z - \frac{1}{2}} dz .$$

It follows from Cauchy's integral formula that the second integral becomes $\psi_j(\frac{1}{2})$.

Appendix 3.

N	DIM S'	TR T((2))	TR $T((3))$	N	DIM S'	TR $T((2))$	TR $T((3))$
29	1	-1	1	337	21	13	21
37	1	0	1	349	16	8	46
41	1	1	-2	353	18	32	15
53	2	2	2_{0}	373	19	8	34
61	2	0	8	389	18	10	22
73	2	3	3	397	18	14	51
89	. 3	7	1	409	28	13	21
97	3	6	6	421	21	8	45
101	4	3	9	433	29	22	28
109	4	, 1	14	449	28	27	13
113	4	11	5	457	32	18	27
137	5	14	7	461	21	14	33
149	6	4	11	509	23	18	34
157	6	6	23	521	35	29	15
173	7	8	15	541	30	7	54
181	7	5	27	557	27	17	31
193	9	9	13	569	41	24	16
197	8	8	15	593	38	40	24
233	11	18	12	601	50	15	29
241	13	8	13	613	35	14	52
269	11	10	22	617	41	42	29
277	13	6	28	641	48	31	19
281	15	16	8	653	33	17	36
293	12	13	25	661	37	15	71
313	18	17	22	673	57	23	33
317	13	13	24	677	34	21	41

DIM S'	TR T((2))	TR $T((3))$	N	DIM S'	TR T((2))	TR T((2))
39	13	31	1301	84	27	52
43	12	63	1321	158	37	54
47	16	57	1361	138	44	30
71	18	39	1381	113	14	84
38	27	46	1409	148	53	29
41	26	42	1433	137	73	47
67	30	24	1453	116	25	85
46	18	41	1481	161	44	30
52	16	77	1493	98	28	67
51	19	84	1549	130	21	101
65	49	28	1553	150	78	40
56	17	70	1597	130	25	100
74	40	27	1609	214	33	62
78	46	23	1613	107	30	67
90	29	49	1621	143	16	101
53	24	51	1637	108	39	68
79	48	32	1657	204	47	73
80	57	31	1669	139	23	126
					26	118
			1		86	49
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			64
	30			193		39
95	45		1733	124	28	59
64	20	52	1741		22	121
	18				57	72
						75
						104
	15					59
	44		1			130
	28					78
	67					75
			1			32
			1 .			48
						106
			1			73
147	22	49	1973	142	41	70
77	32	52	1993	272	43	83
129	44	30				
	39 43 47 71 38 41 67 46 52 51 65 56 74 78 90 53 79 80 65 56 68 106 95 64 76 91 68 80 121 71 105 141 90 106 85 147	39 13 43 12 47 16 71 18 38 27 41 26 67 30 46 18 52 16 51 19 65 49 56 17 74 40 78 46 90 29 53 24 79 48 80 57 65 19 56 29 68 20 106 30 95 45 64 20 76 18 91 61 68 25 80 15 121 44 71 28 105 67 141 23 90 21 106 62 85 29 147 22 77 32	39 13 31 43 12 63 47 16 57 71 18 39 38 27 46 41 26 42 67 30 24 46 18 41 52 16 77 51 19 84 65 49 28 56 17 70 74 40 27 78 46 23 90 29 49 53 24 51 79 48 32 80 57 31 65 19 86 56 29 52 68 20 91 106 30 53 95 45 27 64 20 52 76 18 86 91 61 30 68 25 48 80 15 76	39 13 31 1301 43 12 63 1321 47 16 57 1361 71 18 39 1381 38 27 46 1409 41 26 42 1433 67 30 24 1453 46 18 41 1481 52 16 77 1493 51 19 84 1549 65 49 28 1553 56 17 70 1597 74 40 27 1609 78 46 23 1613 90 29 49 1621 53 24 51 1637 79 48 32 1657 80 57 31 1669 65 19 86 1693 56 29 52 1697 68 20 91 1709 106 30 53 1721 <td>39 13 31 1301 84 43 12 63 1321 158 47 16 57 1361 138 71 18 39 1381 113 38 27 46 1409 148 41 26 42 1433 137 67 30 24 1453 116 46 18 41 1481 161 52 16 77 1493 98 51 19 84 1549 130 65 49 28 1553 150 56 17 70 1597 130 74 40 27 1609 214 78 46 23 1613 107 90 29 49 1621 143 53 24 51 1637 108 79 48 32 1657 204 80 57 31 1669 139 6</td> <td>39 13 31 1301 84 27 43 12 63 1321 158 37 47 16 57 1361 138 44 71 18 39 1381 113 14 38 27 46 1409 148 53 41 26 42 1433 137 73 67 30 24 1453 116 25 46 18 41 1481 161 44 52 16 77 1493 98 28 51 19 84 1549 130 21 65 49 28 1553 150 78 56 17 70 1597 130 25 74 40 27 1609 214 33 78 46 23 1613 107 30 90 29 <</td>	39 13 31 1301 84 43 12 63 1321 158 47 16 57 1361 138 71 18 39 1381 113 38 27 46 1409 148 41 26 42 1433 137 67 30 24 1453 116 46 18 41 1481 161 52 16 77 1493 98 51 19 84 1549 130 65 49 28 1553 150 56 17 70 1597 130 74 40 27 1609 214 78 46 23 1613 107 90 29 49 1621 143 53 24 51 1637 108 79 48 32 1657 204 80 57 31 1669 139 6	39 13 31 1301 84 27 43 12 63 1321 158 37 47 16 57 1361 138 44 71 18 39 1381 113 14 38 27 46 1409 148 53 41 26 42 1433 137 73 67 30 24 1453 116 25 46 18 41 1481 161 44 52 16 77 1493 98 28 51 19 84 1549 130 21 65 49 28 1553 150 78 56 17 70 1597 130 25 74 40 27 1609 214 33 78 46 23 1613 107 30 90 29 <

References

[1] Arthur, J., The Selberg trace formula for groups of F-rank one, Ann. of Math., 100 (1974), 326-385.

- [2] Duflo, M. & J.-P. Labesse, Sur la formule des traces de Selberg, Ann. Scient. Éc. Norm. Sup., 4º série, 4 (1971), 193-284.
- [3] Ehrenpreis, L. & F. I. Mautner, Some properties of the Fourier-transforms on semisimple Lie groups, II., Trans. Amer. Math. Soc., 84 (1957), 1-55.
- [4] Eichler, M., Allgemeine Kongruenzklasseneinteilungen der Ideale einfacher Algebren über algebraischen Zalhkörpern und iher L-Reihen, J. reine angew. Math., 179 (1938), 227-251.
- [5] Eichler, M., Eine Verallgemeinerung der Abelschen Integrale, Math. Z., 67 (1957), 267-298.
- [6] Gel'fand, I.M., M. I. Grave & I. I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions, W. B. Saunders Co., 1969.
- [7] Godement, R., The Decomposition of L²(G/I') for I'=SL(2, Z), Proc. Sympos. Pure Math., 9 Amer. Math. Soc., 1966, 211-224.
- [8] Hirzebruch, F., The Hilbert modular group, resolution of the singularities at the cusp and related problems, Sém. Bourbaki 1970/71, Exposé 396, 275-288.
- [9] Ishikawa, H., On the trace formula for Hecke operators, J. Fac. Sci. Univ. Tokyo, Sec. I, 20 (1973), 217-238.
- [10] Ishikawa, H., On traces of Hecke operators for discontinuous groups operating on the product of the upper half planes, J. Fac. Sci. Univ. Tokyo, Sec. I, 21, (1974), 357-376.
- [11] Jaquet, H. & R.P. Langlands, Automorphic forms on GL(2), Springer Lecture Note Vol. 114, 1970.
- [12] Kubota, T., Elementary Theory of Eisenstein series, 1973, Kodansha Scientific.
- [13] Lang, S., $SL_2(R)$, 1974, Addison-Wesly.
- [14] Selberg, A., Narmonic analysis and discontinuous groups on weakly symmetric Riemann spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47–87.
- [15] Shimizu, H., On discontinuous groups operating on the product of the upper half planes, Ann. of Math., 77 (1963), 33-71.
- [16] Shimizu, H., On traces of Hecke operators, J. Fac. Sci. Univ. Tokyo, Sec. I, 10 (1963), 1-19
- [17] Shimura, G., On Dirichlet series and Abelian varieties attached to automorphic forms, Ann. of Math., 76 (1962), 237-294.
- [18] Siegel, C.L., Lectures on advanced analytic number theory, 1961, Tata Institute.