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Introduction

The purpose of the present note is to. calculate the trace of Hecke operators
acting on the space of cusp forms of weight two belonging to a Hilbert modular
group over a totally real algebraic number field.  Arthur [1] has given the proof
of ‘Selberg trace formula’ for a reductive algebraic group over a number field
F whose semi-simple component is of F-rank one. We shall apply his results
to the group SL(2) and GL(2), and carry out the trace formula for Hecke operators.

© §1 is concerned with preliminary statements. In §2, an explicit formula
for the trace of T(/’al”) in the space of cusp forms of weight two belonging to
SLy(p) will be given (Theorem 1). In §3, we shall give the trace of 7(UyU) in
§ =8, % - XS, where S, is the cusp form space of weight two belonging to the
discrete subgroup /7, of GLy(R)X -+ X GLsy(R) (Theorem 2). We shall apply Theorem
2 to the operator 7(g) defined in Shimura [17] and give the trace of T(q) (Theorem
29, In §83.4-3.5, we shall give some application of Theorem 2/ and the numeri-
cal examples.

About the calculation of the trace of Hecke operators in the space of various
cusp forms of the several variables, Shimizu [16] has given its explicit formula
for the case of weight greater than two. Also for the case of automorphic
forms of weight greater than or equal to two for a discontinuous group with
a compact fundamerital domain, it has been calculated in our previous paper [10].
Recently, the dimension formula for the space of ‘Hilbert modular’ type cusp
forms of weight two belonging to a quadratic real number field is given by
Hirzebruch [8). The author would like to express his sincere thanks to Prof. Y.
Thara, Prof. H. Shimizu and to Prof. T. Shintani who encouraged him with many
suggestions during the preparation of the paper.
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Notation

If H,v stand for a Fsubgroup of G and any place of 7, I, f, and I, denote
the groups of F-rational points, Fy-rational points and the adélized group, respec-
tively. H., FI; denote the infinite part and the {inite part of Hy (Hyi=H.H)).

n(x)(zeR), aly), (yeR,), R(O(0<0<2xr), l(teR), w

N 1, 2 y2 0 cosf), —sinf] [e, O } L 0, 17
denote the elements LO, 1], [0, ’y“”"":l’ [Sil’l 0 cos /}J’ l.O, ot and ~1 0.

in SLy(R). If, for geSL.(R),¢ decomposes into #(x)a(y)k(0), we shall denote z,y, (
by 2(g), %(g), 0(g), respectively. Denote by oy, an irreducible representation of SOu(R)
satisfying on(R(0) =™, (meZ).

§1. Preliminaries

1.1. Let F be a totally real algebraic number field of finite degree n over
Q. Let F, be the completion of F with respect to a valuation » in F and Fy4
the adéle ring of F. Denote by o, £y the ring of all integers in F and the group
of units in 0. For a prime ideal p in o, let us denote by o, the valuation ring
in Fp. ) '

Let G be SL(2) or GL(2) which are considered algebraic groups defined over
F. Now we shall define some F-subgroups of G. Let N, A and Z be the sub-
group consisting of matrices [(1)' ﬂ in G, the group of diagonal matrices in G
and the center of G, respectively. Put P=NA, so that P is a minimal parabolic
subgroup of G. Define a subgroup A of the identity component of A by

a, 0 ), . « oy a, 0
[0’ anGAw»“l" maneRAF! (G=SL(2)) or by {[0, d

=dneRi} (G=GL(2)), (@i, d; denoting the infinite components of @, d with respect

JGAK’; A = =0y, dl:"‘

to the infinite place »; in F). Put K. =U, = SLu(0,) or GLx(o,) for a prime ideal
p in o and K,,=SOx(R) or Oy(R) for an infinite place v;, according to G=SL(2)
or GL{2). Here K, is a maximal compact subgroup of G, and we say* that
Gy=P,K,. Set Kzl;l Ko, U={2eG4; 2pe U, (9<c0)) and Uy={xelU; z,=1,(1<i

<n)}; We can also say that Ga=P.K.

We shall take as measures on G4, A4 the Tamagawa measures, and on Z., A2,
the measures which correspond to the Euclidian measures on (R*)", and on (R}
(e=1 or 2, according to SL(2) or GL(2)). Let dn be the Haar measure on N
which makes the measure of Nx\N, equal to one. As measure on K, we shall
choose the normalized Haar measure dk. Define the right and the left Haar
measures on Py by

* Bruhat, F., p-adic groups, in Algebraic Groups and Discontinuous groups, A.M.S,
1966.
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Sp 4 l,l(ﬁ M= S SAA h(ne)dnda

Ny

(/I‘EC?(PA)) .
\. I p)d, p:——g g h(an)dadn
JP4 d4JN4

There is a homomorphism d6p(p) of Pa to RY such that dwp=0dp(p)dip, which is
given by |a/d|4 (pz[g’ 2J> Put H(p) =%—10g op(p). Besides we can extend H
to the mapping of G4 to R such that H{x)=H(p) if z=pk.

We denote by LXZ.Gi\G.) the space of the square integrable functions over
Z.G\G4. Let us define the subspace L¥(Z.Gr\Ga) of LAZ.Gr\G4); which con-
sists of functions % satisfying '

S Hnz)dn=0, for almost all = in Gu.

Np\N 4

Also we denote by Lo({P}), L.2({P}) the space of the residues of the Eisenstein

series and the continuous part of LA Z.Gr\G.), respectively. According to ([1],

p. 344), L*(Z.Gr\G4) decomposes into the direct sum of the above three subspaces.
Let 4 be the right regular representation of Z.\G4 on L¥(Z.Gr\G4). Suppose

fis a complex valued function on Z.\Gi satisfying the following assumption.

AssumPTION 1. ([1], Assumption 3.5) f is the comvolution of a left K-finite
Function fi and a vight K-finite function fy such that the function fi is of form
Fukrs Fr=T1 fv, where f., is an infinitely differentiable function with compact sup-

beloo

port on Z\Gsw, where 1, is a locally constant function with compact suppovt on
G and where, for almost all p,f. is equal to the characteristic function of U..

Now we define an operation A(f) of L¥Z.Gr\Ga) by

A f)/z(y)=Sz . Flay ey yyda, (he L(Z.Gr\G 1) -

ea\G 4
Also according to ({11, Corollary 2.10), the subspaces Li(Z.Gr\Ga), Li({P}) and
L2({P}) are A(f)-invariant. - Let A(f) be the restriction of A(f) to Li¥(Z.Gr\G4)D
LE({P)).  A(f) is written as an integral operator with a kernel K(f;z, y), namely,

(x<f>h><x>=§

JZeeG R

K(f; 2, w)h(y)dy
N\t 4
(1.1)
Kifswow)= X flary).
1€Zp\Gp

Here, we see that the summation of K is finite if x, y lie in fixed compact sub-
sets of Z.\Ga.
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Next we shall give expression of 1,(f). Let @ denote the space of square
integrable functions ¢ on Z.N4ArAi\G4. For a character y of Z,ApAi\NA4 O
denotes the subspace of @ which consists of the functions ¢ satisfying the equation
alax)=y(@)p{x) for aeAy. If X is the group of characters of Z.ApAi\A4 @
decomposes to the direct sum of @(3)(3€X). For an irreducible representation <
of K, we denote by @(y, ) the subspace of ¢(y) on which the right regular re-
presentation of X is equivalent to . Then the dimension of @(y, ) is finite and
(y) is the direct sum of @(y, =). According to the above decomposition to the direct
sum, we fix an orthonormal basis {¢elees, Of @(x). For any zeC, there is a
representation z(z) of Z.\G4 on @ defined by :

(TE(Z, ?/)9',)(:”) 293(3:?/)8(’7"‘ l)lI(ml")e—(Zvl)II(fL') A

Also define an operation =(z,f) on @ by

w(z, [)p= K Sw(z, y)ody -
JE NG g

For ge®, zeC(Im (2)>1), xeG4, we define the Eisenstein series ¢, z, 2) associ-

ated to ¢. Put

(1.2) f'(m, 2, 2 dldp)etm UG

: nel—‘l g

Then (¢, z, ) converges uniformly for x in a compact set of Z,\G4 and z in a

compact set of {zeC; Im (2)>1}. If M(z) is an analytic function of {zeC; Im (2)>1}

to the space of linear operators on @ defined by the Fourier expansion of £(g, z, x)

(see Appendix), it is known that E(g, 2, ) and M{z)¢ can be continued to mero-

morphic functions on €. Put

K= 50 T (ele Fin ol 2 G 5 1)l

T y€X oJ —ivo a, g€ Ay
(1.3)
LKW =K ".v/) =K f; a,y)

Because of Assumption 1, the summation over ., is finite.

TureoreM A, ([1], Theorem 3.6 & 3.9). (/) is of trace class and the kernel
Kol f; @, y) is integrable over the diagonal of Z.Gr\GaX Z.Gi\G4 and its integral
equals the trace of lo(f).

Combining Theorem A with (6], § 1.2.3 Lemma), we have

THEOREM B. Li(Z.Gr\Ga) decomposes into the direct sum of countably many
mvariant subspaces of itrreducible wunitary rvepresentations. Each ivveducible re-

presentation enters info L Z.Gp\G4) with a finite multiplicity.

Tueorem C. (11, 89). The trace of i(f) is the sum of the following terms;
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(1) measure (Z.Gr\G.4)f(1),

(iiy 2, HfleYra)de,

.
FELl) Szwam Gy

¢ ) ,
(i) -5 X S S FR 0 ynk) Haom)dndk
2 edpap i da
: 2L g :

) . d .
(1V> 121-111(']1 3; {w(/(m f)} ’

(vy L ZS tracesc ]‘.fl’(—%)(«;;g]\f[(z))rr(z,f)cl\zl.

A 2 )
. 1 _ o
(vi) -  trace MO, £,
where

— T =151 ES T AGIAT
(s f)WSZ(mGF\(_; A aep%aﬁ. veyguﬂﬂg i vdg)e a.
The notations are defined as follows. Let G, be a subset of Gp consisling of
elements which are not Gr-conjugate to any element in Pp. For &',z in Gp, 2, '
will be called equivalent if &' =zqug™* for some z26Zp, geGr. (G.} denotes a fixed
sel of represeniatives of equivalence clusses in G, The positive constant ¢ is
defined by the equation

s

g Iyl = ,~§ \ IR, pele, (heCHZNG) .
Sz, JEdzap,

1.2. Let H Dbe a space of continuous functions 2o on Z.Gp\(z4 satisfying the
following conditions
7

(H.1) hek)=|] ala)i(x), Tor all ke [| &[] SOLF),
i=1 i

v
g ) Pl

(H.2) . for any compact set C of Z.Gp\G4 and for any constant ¢>0, there

/l( «0 .'r:)

exist constants ¢y, co such that 0.d
! k -y R

’ b O“ 2
[,g, d"] €Ay, lafdlazc.

(H.3) XD, k=0, where D,,=(0,--,0,D,0,--,0) is an element of the univer-
sal enveloping algebra of &.QC <(95 being Lie algebra of GL.(IF.), D=X*4 X,*

o v [L 0] - [017 o [ 017y
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(H.4)

S l(nx)dn=0, for almost all z.

Np\V 4

By Godement*®, H coincides with the space of all K-finite functions in L(Z.Gz\
G 4) satisfying the conditions (H.1,3). For every y in G4, yUy~" is commensurable
with U; so we can define the Hecke .ring R(U,G4) which is a free Z-module
generated by all UyU (yeG4) with a structure of ring. For UyU in R(U, G),
define a linear operator 7(UyU) in H by

(14) T(UyUh(x)= 3 h(zxz),

where {2} is a system. of representatives for the right cosets of Uin UyU. We
identify R(U, G.4) with the tensor product of the rings R(U,, G,) by the corre-
spondence :

UyUe—Q@Uy,Us .

For UyU in R(U, G4), we fix f, once for all, the characteristic function of
Uy, U, and f; for B S
1o

An irreducible unitary representation r of Z.\G. is regarded as a tensor
product representation of irreducible representations 7., of Z.\G. and 7, of Gj.
Moreover 7. is given by the tensor product representation of each irreducible
representation of Z,\G», (1<i<#), whose classification has been given by Barg-
mann- (c.f. ([9], Proposition 1)). For a representation 7, y. will denote its character.
If f satisfies Assumption 1, then 7.(f)=yr.( Sadtr (fr). Set I={1,2,--,n}. For a
subset / in I, R..(J) will be denoted the subset of equivalent classes of irreducible
representations 7.,.=®r; of Z.\G., such that »; is contained in the discrete series or
in the principal or supplemental series, according as j is contained in J or not.
For /<1, we shall call that a function f..eC(Z.\G) is of type J if f. satisfies

the condition: for any k=(k,), k'=(k},) in liﬁl SO:(Fy),

Sl bkl = ,-UJ ok hh ) (@) ©
From (9] Proposition 4) it follows that unless J contains /7, y,.(f.) vanishes for
any 7. in R.(/’) and for any function f. of type J, and that, for r.=(r,)eR.{),
when y.(f«. 1) does not vanish, a function ¢ which is contained in the represent-
ation space satisfies A(D)p=0. Up to equivalence, there exists uniquely such 7.,
(in the case G=SL(2)) or the restriction of such 7., into Z,\(G.), (in the case
G=GL(2)). We denote by s. such an irreducible representation in R.([).
Now we shall consider a system of functions {f,} for all j<I.

AssuMPTION 2. {fy} salisfies the following conditions,

#* Godement, R., Notes on Jaquet-Langland’s theorey (§ 3.1). Lecture note, Institute
for Advanced Study, Princeton, 1970.
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(1) Fr@) =S ilw) Fols) Satisfies Assumption 1; moreover f..y is of tvpe ]
end fr is determined by UyU as previously stated.

(1)  gro{Sfood )= tral Seorry)y SOV any Ji, Jo and J'S 02 and for any ve.e R(J").

(iii) - In the case G=GL(2), fo i(2s)=Fm s((det zo) "V ea) for r.e(Ga)., and
Seora =0 oulside (G..)..

For j<J, set sign (J)=(—1)"(— 1), where |J| denotes the number of elements
in J.

Now we consider the trace of the alternating sum of operator sign (J)A(fs)
over all subsets 7/ in /1.

ProrosiTioN 1. If {f;} satisfies Assumption 2, we have

(1_5) ;%;1 sign (J) trace A(fir)=ys..( e 1) tracey T(UyU)
+(—=1D" trace (L) LEAPY ,

where J runs over all subsels of I.

Proof. Let R(J) be the subset of equivalent classes of irreducible represent-
ations 7=7,.®¥,; of Z\G4 such that . is contained in R.(/). For reR(/), we
denote by m, the multiplicity with which 7 enters in LiN(Z.Gr\Ga).- By Theorem
B, we have

trace ((fs )’L{rg(ZwGF\GA)) = 3 2 WZan,.,(f ol )Z‘r‘r(ff ).

JILT =@ R
Because of Assumption 2 (ii), we get

T sign () trace (W £)| LZ.CACOY= 3 mia 1)

Suppose ys(f7)#0. If V, stands for the representation space of s in Ly¥Z.Gr\G4),
then (D, )p=0 for @eV, ([10], Proposition 1). As f(kxk')= H os(ky ke )" f1(x) for

kEe [I K, ﬂ SOx(Fy ), we only consider the trace 2(/7) in the subspaces V' con-
sisting o{ @ m V, such that A(k)p= H as(k Y for all k& in 1"1 K, II SOu(Fy,). But,
in the case G=GL(2), it follows from Assumption 2 (iii) that the Value of ool Foor 1)
does not depend on the choice of s.. Thus we have

Ik msm( JFoj=tracer J(f)=ys.(fe.1) tracen T\UyU) .
On the other hand, we can see that the trace of A,(f) in Le*({P}) does not vanish

if and only if J is the empty set.
Q.E.D.
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§2. The trace of Hecke operators for I'=SL.(0)

2.1. Throughout this section, we shall be dealing with G=SL(2). We shall
only consider the case F+Q. We denote by %4 the class number of F. We can
regard an element in Gp as an element in G, through the projections of Gp into
each components of G.. with respect to infinite places. . Then we can see that
the projection of /" into G. is a discrete subgroup of G..; we also denote by I’
its projection. The next proposition follows from the strong approximation
theorem (c.f. [4]).

Prorosition 2. There is a canonical bijection between Gp\G.4/U, and I'\G...

Let " be the direct product of # upper half planes. G., will act on §* as
the linear fractional transformation on each component. dz denotes an invariant
measure on $* defined by [] dedyfy® (zi=a;+iy;). By a classical cusp form

J

of weight two belonging to I', we understand a holomorphic function % on H*
satisfying the following conditions;

(B1) AG2)=j(y, 2) () for yel',

(8.2) A(z) is regular at every parabolic point « of /”, and a constant term
in the Fourier expansion of 4 at x vanishes.

i bj]). The linear
_Ciy djﬁ E

space consisting of all 4 is denoted by S. For an element « in G. such that
al'a™" is commensurable with /°, we define a linear operator 7(/'«l’) in S, say
Hecke operator, by

Here j(», z) denotes [[ (c;z;+dy)™* for z=(x,,)eG.. (:cq,j=
i=1 ’

d d
(2.1 Tl ()= 3 jle,, @)l 'z), (/W/": U a',,/'>.

=l p#=1

Using  Proposition 2, for %eS, we can define a function 4’ of H by 7'(z)
= (2 (X ) i 2=gr.u for ¢eGp, ».€G., uel,. Thus we can establish the
following proposition.

ProprosITION 3. The map « from h to I describes an isomorphism bétween
S and H as linear spaces over C.

By ([17] Proposition 1.4), we have

LevmMma 1. Let «a be an element of Gp. Then we have I'aU=U«aU.

For UyU (§1.2), we take an element « in Gp and any z in UyU satisfying zeaU.
It follows from Lemma 1 that I'a/” is uniquely determined by UyU independent
of the choice of z and a. As al'«! is commensurable with /" for weGr, an
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operator T{UyU) in H induces an operator 7{/'a/") in S; and the action on S
induced by T(UyU) through ¢ coincides with the action of 7/"a/"). Therefore the
calculation of the trace of T(I'al") in S is referable to that of the trace of T{UyU)
in A. On the other hand, because of Proposition A~1, the trace of 2,(f,) in L({P})
equals the trace in the constant function field.

Next, we construct a “convenient” system {f..,} of functions on Z.\G.. satis-
fying Assumption 2. Let ¢; (1<j<n) be an entire function of exponential type
on C satisfying the following condition:

(i) ¢(2) is rapidly decreasing uniformly in every strip of finite width which
is parallel to the imaginary axis when the imaginary part of z tends to infinity,

(i) ¢(—2)=¢(z), Pi(1/2)=0.

(From ([13], V-§3), it follows that an entire function satisfying the above con-
ditions is obtained by the Mellin transform of an infinite differentiable function
A with compact support such that A(e)=4(e"?) on R*). Put

()= “2}: S\ Silio)e™® dp,  gilcosh (#)]=2q(20) , (¢=0).

For e=0 or 2, put

Felal=(—1/v2z) S 0/ iTa, )V y—a™'dy, (e=1),
1, if =0
Tl )= 9 g+l L if e
I a+1 VAT
For w=k(k(p)eSLAR) (£=0), put
So fxy=e 0 f, Teosh )] .

Note that f,,; does not depend on the decomposition of x. For w=(ry;)eG.. and
for /<1, put '

(2.2) St 2e)= )[;[] JSa il j)j'r(;.[,] Foop(ny) .

The integral operator with the kernel £, ; has an eigenfunction e~ ®y(x)'"*% if
z is a complex number. Thus we regard its eigenvalue as a function of z, say
Selberg’s transformation of f,, ;.

LemMA 2. Selberg's transformation of f,.; is given by &,

Proof. We consider the following formula: S
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SS] e 107Ny g Ay ) ey
2

= Sm S»: So in(z))e** dadt .

-0

Choose elements k(4), k., k(¢) satisfying n(x)h,=hk(0)hR(p). Then we have

2

L&
cosh (Z) —zé—e"”
—1, U=

cosh (2z)=2

cosh (&) +i—g—e"‘

2

cosh () —i 2ot
By the definition of £, jfx], its integral equals

vz o1, cosh (2r>)vmﬁg—2;5“‘¢zm}ezfzzzr .
But the inverse formula of ¢;y] from f. fz] is given by

o lyl='T S:fﬂ.fixmm WVE—7 s .

Therefore its integral equals 5 gilcosh (2H)e**dt. By the inverse formula of the

Fourier transform, it becomes ¢ (z). Q.E.D.

Because of ([3] Theorem 2.1), f..; is an infinitely differentiable function on
SL:(R) with compact support. Thus {fr=Ff...fs} satisfes Assumption 2. Further
we have

o=t Fo )= ] /J(}g—) .

2.2. The purpose of this subsection is to calculate the left hand side of (1.5),
using Theorem C. Firstly we consider the non-parabolic part (Theorem C (i),
(ii)). Define an equivalence relation of elements of I"al” by

g~x' >z’ =ty for yel'.

Let [2] denote an equivalent class in I'al containing z. For geG., put I'(g)

={rel’; g=xrg7 7}
Case 1). The contribution from the singular part to (1 5) is

measure (Gp\Ga)J{?ISign (D f)

By the definition of fy, it does not vanish only if U JU—U Combining ([6]), §5.5
(2)) with Lemma A-3, we get
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LemmA 3.
foi)= —41;{ Sm ¢ (ip) tanh (ﬂp)dp—}—(e/Z)ghj(‘%—)} ,

Therefore
measure (Gp\Ga) ’ZI sign (J)fo.s(1)=measure (Gr\G)(dz) ™" ];[ ¢ j(%) .

On the other hand, measure (Gr\G.) equals the volume of the fundamental
domain of I in " with respect to dz. By ([15], No. 29 (53)), making use of
the zeta function ¢r and of the discriminant Dy of F, we express the volume in the
form

(2/z")|Dr|**Cr(2) .

Case ii). In view of the definition of f,, the contribution from the elliptic
part to (1.5) is written in the form

JZ]sign N = Feoa(z  gz)de

LylyeB’ SP((/)\G'm

where B’ denotes a subset of 'a/" consisting of elements ¢ such that no fixed
point of ¢ is a parabolic point of I". An element ¢ in B’ can be classified to
one of the following types: (ii-1) ¢ is elliptic, (ii~2) ¢ is hyperbolic and no fixed
point of ¢ is a parabolic point of I, (ii-3) ¢ is mixed. (We say the an element
g in G. is elliptic, hyperbolic or parabolic as all g; are of the corresponding types
in the usual sense. If g belongs to none of the above types and g+ +1, we say
that g is mixed).
Case ii-1). Combining ([6], § 5.4 (4)), with Lemma A-1, we get

LeMMA 4. Let g be an elliptic element of Gy=SLy(R) in the usual sense.
Then

S fe.j(“;&lgx)d"v
Gpld\Gy
. _ L
= (2 sin 00)"1‘ S-—w ¢J(Zp) C_,?,__Szl]c((gzh (_7_2;%%2__,) dp + z(e/Z)maij('é‘) } .

where 0, satisfies gz—:g’- =32iﬂoz—zz_° , (20 being the fixed point of ¢ in the wupper
&0 &0
half plane).

Let {B,} be a complete system of inequivalent elliptic elements in B’. The
contribution from this part is referred to

51400
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"

231gn(7) ST () {1 SG g St toaide
@) \lsa

[o1e{Be)
n jetdWp n 1
B o2
[trlg?d( 28 n 12 8in 0(g ) Jﬂl 2
= 5 reEn 2 flas)
[#1€1Be) Je=1 Si""’/v j=1

where 7;,£; are the eigenvalues of g; satisfying e*0¥7=y{;~.

Case ii-2).

LevmMa 5. Let g be a hyperbolic element of Gu=SLy(R) in the usual sense.
Then we get '

1 i . ons

(2.4) T

Sl gx)de= -

&‘ﬂ)—&

S(}v((/)\(}'u

where 1>1 is the eigenvalue of g.

Proof. We write I{g) for the left hand side of (2.4). Then I{y) is trans-

formed into
o .
a1 l)S fe ’([0 2 ])d"

. . . 2,
As we choose elements B(0), k. and k(¢) satisfying the equation [0 ;L‘I]
= k(NI k()), we get ‘ )

~ c. ’ ——.A +A ”2 pE ) — Z‘I-X 1-|:'"(H//‘))
cosh (2)="" " + 5, ¢ a2t +imf2)|

It follows from the definition of f. ;[g] that

1 o [ 24+ i(n, B4t ond
I(‘]) () e 1)\ {]2+A*‘+z(n/2);} fc /[ sl 2 —l(hl

o

B2 2 . . .
Put p= w%—w, g=p+ % Changing the variable z into p, we have

1 a
1= S TAq, p)fe. 14] ,\7 ZM»\:/(} —:-j) .
By the inverse formula of ¢;[p] from fe. g, Ily) becomes s 1 )07[15] I view

of the definition -of ¢, X{g) coincides with the right hand side of (2.4).
T s QED:.
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Thus, since S ~ S sl gadde does not depend on J for any hyperbolic ele-
Goul ) \Geo
ment g, their alternating sum over J vanishes. - We conclude that the contribution

from hyperholic elements to (1.5) vanishes.

Case ii-3). ¢ is mixed. At least one of g»;s is hyperbolic in the usual sense
([15], No. 22). It follows from Lemma 5 that the contribution from this part to
(1.5) also vanishes.

Secondly, we treat the parabolic part (Theorem C (iii~vi)). G decomposes
to double cosets of Pp and /7 in the form

. h
(2.5) Gr= U Per.0", (7.€Gr).
PE

From now on, we fix a set of /™-inequivalent cusps r,=y.,"'co. Put
]

IO={rel’; re,=nt, o={el"Y; i eNe}, By=lgel'al’; rir. '€ N},

;b o (L ,
.dpz{(cz‘,-dj);m;’;’:([of d; > 7'e1§j], M,= l(b;); 1T ’=( 0 1’]), re/:,},

1,0, . ., 0

(By [18], it is known that A, =ZF, M,=%"%). As M, is a discrete subgroup of
R* of rank #» ((15], Theorem 3.1), for a set of generators {7, 1<j<n} of M,
put d(M.)=\|det (;49")|. Hereafter, we often use the following fact. If uj )2/
are any complex numbers (1< j<n) and #>2, then
(2.6) osign (SN vs [ we+ 230/ 1 w)=0.
Jol el k#j ied T kgt

Case iii). Let p be an element in Ayp—Zp Using the fact that y(wn(x))
=(1+a®" in Iwasawa’s decomposition of wn(x) in SLy(R), p’'s term in (iii) of
Theorem C is transformed into

"

(2.7 e

Je=l

S[c Se i) po (i) Log (1 4-a*)ed

X T] Sﬁf e e(m() o () de

K#J

where the constant ¢ is independent of the choice of e. If 2 is an eigenvalue
of p, such that [4]>1, it follows from Lemma 5 that the second integral of
(2.7) equals |A—21"!|"'gi(2log |4]). Therefore the alternating sum of (2.7) over J
is equal to

(28) ¢ sign () ATl MS S i) ey m()) log (U428 de | .
) T olees =7 IR !

Since n>2, it follows from (2.6) that (2.8) vanishes.
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Case iv). By virtue of (2.5), we can transform 0(z, f,) into

13
S Z ﬁl(g«—la—-lvag)e—zll(r,,ﬁ(l)zdg
v=1 0N aer(Nr ver g, v

=5 m 3 st T] o) da.

Moy aer“)\r veB, v#1

LemmMa 6. ([16], Lemma 3.1). N, is the union of a finite number of cosets
of M,. If peN,, Zed,, then lu is contained in N,.

Set e=(ey, *--, &n) (¢;=1 or —1). Define a Dirichlet series by

Ly iz o= 5 ()9,
w0 g

where p runs over full representatives of N,/A, except p=0 such that ¢;u;>0
for all j. Put
Ly, (z)= 3  []sign (#j)(gllﬁjl)"“"‘”.

HENY/ Ay, p0 §

Ly,..(2) is equal to 3 (I] e Ly, 4,(2, ). (Note that Ly, (2) is introduced in ([15],
& J

No. 21)).
Now we consider the expression of #(z,f;) making use of Ly, (2,¢). For
simplicity, fix one of &,’s, say &, and assume r,=c0, 11=1. Then

g P 22 SuulgTlo'0dg) U (yi(0¢))2dy

1-\(;m agrl(c:)\r neB 1 *1

g 2 feutaoa) 1 (wile))-*dy
IT N, veB, T4 vy 7

=AM Ly, (29 ] S Fo gy e Nty Pdy .

It can be shown that Ly,,..(z ¢) has a simple pole at z=0 and that its residue

1741

is mlg dz {(m being the number of cosets of M, in N;). As its

; Rn//h.ljl|-7v‘jl$l,.l'jaj>0, ‘
residue does not depend on ¢, we denote it by 1.,.. We also denote by ¢ the
constant term of the Laurent expansion of Ly,.(2,¢) at z=0. Therefore, we
get ‘

. d ; ~ ; — (22
lim ‘(E<ZLN1{.11(3’ €) ];I SR+fe.j(“(’!/) (e paly)y™ @ ’d’y>

=2 [T S Aato) ntepatu)udy



Traces of Hecke Operators 15

2 [ Fu ety ipat)iog v-sdy
x I {S fe.x-,(a(:ur‘n(ek)w(y))?/‘”dy}].
k#j L JRY
Concerning the first integral of the above formula, we need the following lemma.
LevmMma 7. For e=1 or —1, we get

@10 | ket et = 5 00+ e 5)

Proof. We only show this lemma in the case ¢=1. The left hand side of
(2.10) can be expressed by

2.11) fim 327 Fodgh @

-0 T S S0u (IS Lo (R

since

. sind cos 0, Zsin 07|\ £2—17"
101_r’1g1 T Sf“q—tgsin(l,cos() ) t a

= S:f e jn(@)de = g: o el nDaty)y-tdy .

On the other hand, because of Lemma 3, (2.11) equals

1 (¢~ codp 1 1 e 1
AV i it (3) | =g o0 +peteri(3).  QED.

Thus, making use of (2.6), A-i-term vanishes. Consequently
¥ sign (/) lim {izu(z 5 )]-(i—>" S MLy, O [1 ¢ (l)
4 g 3—1;10 {ZZ s T "" on & v/ e N o4, j:]l,j 2 B

Next we shall see the contribution from the part of Eisenstein series.

Case v). In view of Assumption 2, note that unless $(y) contains a Up-
invariant element, the trace of n(z,f,) in ®(y) vanishes. For J&/ and for ¢n.,
defined in (A.1), 7(z, fs)¢m., does not vanish only if m;=2 for jeJ, m;=0 for j'¢J.
Put my=(m,, -, »,) such that m,;=2 for jeJ, m;=0 for j’¢/.. Then

‘T(Z f’)(/)m.)' Z<x ]—.[ (/} (_” +27'l$j) Z;l (/'3771—.]&(1"31?) )

where &; is a real number attached to y (Appendix 1). It follows from Proposition
A-1 & Corollary A-2 that
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[ t4
A’[( _Z) ;%é ]“!(Z)Z’T(Z, f:/){fjm.’,l(w,} = [ ”Z( —Z, Z) "2(;' ”Z(Z, Z)

+ T A-22 ~8) o Aw2 5»} i c,bj(i +2m'sj) T i, oz
7

jer 2 T
Therefore
’Z'I sign (/) traces, M(—2) ;—lz— M)r(z,f))

) 7
= JZI sign (J)m(—2z, %) ;;; m(z, y) traces, =2, f)

_ i
+ Y sign () 3 A(—2,2, ”5")}%‘4(2’ 2, &) tracesc, 7(2, f1) -
Jel jed Z

As each term of the first part of above formula does not depend on J, its first
part vanishes. Since #>2, its second part also vanishes in view of (2.6). Thus,
there are no contributions from (v) to (1.5).

Case vi). As M(2) maps ¢m., to ¢n;, the trace over @(y,) only contributes
to (1.5) (3"* being the identity character). Since A(0,e,0)=1 for ¢=0,2 because
of Proposition A-1, we have

KZIsign (/) tracepcy,y MO)=(0, f.)
=m(0, X!J) I{Z[Sign (]) tl‘acedl(lu) ﬁ(o)fl,)zo .
Therefore, there is no contribution from (vi) to (L.5).

2.3. Summing up the above results, we obtain

Turorem 1. The trace of T\wl’) in S is given by

Trace TV al) =0 5 g | Del* u(2)
(2m)™
+ T e ]
lule{Bp} J=1 %577y

h
(/200" T M) Ly, () —=(—1)"d.
=]

The notations used in this formula are defined as follows.
- {1 if Pal'=I"
TN if lal'#D

{B.}; a complete system of inequivalent elliptic elements in ['al'.
Eivmay the eigenvalues of an elliptic element q; satisfying the. condition in Lemma
4.
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d; the number of right ['-cosets in Ial’.
The others ave referred to the previous definitions.

Remark, By [15], the elliptic term is written by
/Z(D)

/I DED w(D) yEB 1 2 ymod [£1}

(g) .

Here (2 is the set of all orders © (taken up to isomorphism) in the quadratic
extensions of F. H(D), w(D) is the class number of O or is the index of £, in
the group of units in ©. Put K=F({). Denote by C'(0),C(D) the ideal class

group of o modulo H v;, the ideal class group of © and by N the mappmg of
C(D) into C'’(v) mduced by Ni,p. If (C7(0): NICO)))=1, put ¥(g)=1/2(-1)"
the other case, Le., (C'(0): N(C(D)))=2, call s; either one of the two extensions
of K of the isomorphism of F into F,, Take ¢* a generator of /'(g) and assume
£/ is the eigenvalue of g;* satisfying the condition in Lemma 4. We define
(o) to be 1 or —1 according as osg/4={* or {*'. Put

o= 2 g /i

2
(e 5 1= (o)

n

where (o1, o+, 0u) IS taken over all the combinations such that ﬂ rf,) 1.
FED!

§3. The trace of Hecke operators for GL(2).

3.1. In this section, let G bz GL(2). Also we shall only consider the case
F+@. By Eichler's approximation theorem, we have

h
(3.1) Ga= U Gpa,U, (xeGy,h being the class number of F).
wail

Put U=a,Uz", I=UNGpr A<v<h). Let §* be the set of all z=(zy, , 2n)
with z;eC, Im (z;)#0. Then G., acts on %" as the linear fractional transformation
on each component. As the same way as §2.1, we regard G as subgroup of
G.. dz also denotes the invariant measure on F* defined by gdi’fjdxj/'_?/jg (z;

=ax;+iy;). By S., we understand the space of cusp forms of weight two on "
with respect to /", consisting of a holomorphic function on each connected com-
ponent of §" which satisfies the conditions (8.1), (5.2) in §2.1 replacing 7',j(7, 2)
by 7, 7(r, 2)=T] (det y{cjz;+d;)*). Let S’ be the direct product of 8y, -, Su. By

J
(3.1), we can see the following proposition.

ProposITION 4.%%%)  For h,eS,(1<v<h), define a function h' on ZGir\Ga Dy

##5) Shimizu, ., Theta series and automorphu, forms on GLs (§6, 8), J. of Math.
Soc. Japan, 24, (1972).
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B () =h (D] (e, 1), I x=G2,Ttt [0V gEGp, X€G.ry ucUs. Then the map ¢
from (h,) to I describes an isomorphism between S' and H as linear spaces over C. -

Next we define the Hecke operators on S’. We need the following lemma.

Lemma 7. ([17), Proposition 2.3). Lel a be an element of Gp. Then U,aU,
=["aU.,.

For UyU (§1.2), suppose there exists z in UyU such that wz.zefe,U with
feGp. Then o is uniquely determined by v, because of (3.1). We take an element
B in U,zye,U,NGp. It follows from Lemma 7 that [",58/", is uniquely deter-
mined by UyU. Thus we define a linear operator T{UyU) on S’ by

TS V(@)= 07 (B DB A)=0.2) - (81 =) Bil’.)

(3.2)
T(U?/U)(/Zly B ]lh)=(gl; Tty .(Ihv) .

Also the action of T(UyU) on S’ coincides with the action of T{UyU) on H through
the isomorphism (.

By ([11, Lemma 2.6), L*{P}) owes the residues of the Eisenstein series.
The poles of B¢,z x) occur at z=1 only when c(k)=¢&(det(k)) with a Grissen-
character £ of F4*/F* such that & is trivial on F.*. Put Di(z)=5(det (x)). Then
Lo({P}) is equivalent to the direct sum of the one-dimensional spaces CD:. In
order to calculate the trace of 2,(f;) we limit ourselves to the right U-invariant
subspaces. Such spaces occur in the case & is trivial on [] 5%, As is‘well known

that (Fq: FAF.), [T 0.)=2"/(E,: Ey), we have
oo

trace (ol F )| LA PY) =3 ([ﬁfmw?) afl m(%),
(d being the number of right Uy-cosets in UyU, and &’ =1 if dety, e/ *(#.7). 1o.*,
otherwise i’ =0).

Next, we can extend f..; which is defined in §2.1 to the function of G.
such that it satisfies Assumption 2 (iii). For the present case, we shall define a
system {f,} satisfying Assumption 2. Combining above arguments with Proposition
1, we obtain

(3.3) ZI sign (J) trace 4(f1)
J_

. g2 pal e
= itracey. T{(UyU)+(—1)" (EO:EQ"‘)IZ d} 1 ¢J<2>.

32. In this subsection, we shall calculate the left hand side of (1.5) with the
aid of Theorem. C. Put Z,=I""NZw, B.=Uxyx,U,NGr. We also define the
equivalence relation in B, replacing (/'al’, 1", {£1}) by (B., 1., Z,), and denote by
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[#] an equivalence class containing @. For geG., put I"(g)=lgel"; g=¢rgy™" for
some ¢€Z,}.

Case i). Unless y is contained in U, the contribution from the singular part
vanishes.. By Lemma 3, for the case UyU=U, its contribution is

measure (Z.Gp\Ga)(4z)™" ﬁ (/,J(é.) .
J=1

On the other hand, by (3.1) measure of Z.G#\G4 equals the sum of the volumes
of the fundamental domain of I', in " with respect to dz. It is known***®

that its sum is written by o ID,—IJ 2r(2) .

Case ii). Let B, be a subset of B, consisting of elements ¢ such that no
fixed point of ¢ is a parabolic point of /',. Then the contribution from the elliptic
part to (1.5) is given : '

Z sign (/) Z

S Seaa(atga)dy .
ve=1 (u] YeB! J Ao\

According to §2.2, we classify an element in B,/

Case ii-1). Let {B...} be a complete system of inequivalent elliptic elements
in B,’. Note that if B,,.#{¢}, det yye F*(F..*).Ip*. The contribution from elliptic
elements in B,’ is written by

Z sign (j) [Z]: W ORARDY Sl gt )

.
: Sam(m\u:uo .

where e=(e;, -, &,) runs over all combinations of ¢;=1, —1 (1<j<n). Let 7, {;
be the eigenvalues of ¢, satisfying ¢*0WP=y;;". By Lemma 4, we have

2 sign (/) 2 Fona(e™ g )

£ S(r N\ e

id - 1
; LJH1 aj""/z %111 7}1«""Clr} H ‘/y ( )ﬂ( 1> IJ[ ('!"'<2) )

Case ii~2, 3). Applying arguments of §2.2 to the present case, we see that
there are no contributions from hyperbolic and mixed elements to (1.5).

Case iv). Let k=7, 'co (L<v<h) be inequivalent cusps of /',. We define
), (e (Budey () (M), (N,), and the Dirichlet series L rcap () by the
same way as in §2.2 replacing /" by I',.. Applying calculation of §2.2 to the
present case together with (3.1), #(z,7,) can be written in the form

”(Z,f,/): % ; ”{lv(z)fcl)
”Ilv(z: .fJ) =d((Ml)u)L(N“)DJ(:I,ﬂp(z‘) )
X T1 (. (e aty) a4/ fela) n=De)l *dy

Rk Shimizua, H., ‘On zeta functions of quaternion algebras, Ann. of Math. 81 (1965)
pp. 166-193. ‘ .
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But, by Lemma 7, we have

' Sm {fe. ) nVa(y) + 1o {a(y) "l —Da(y)ty *dy=g0) .
Therefore

d
£ sign ) lim |4 @onta. )]
= n‘ZzSIgn (f)L(AV,:>uf(.1;.)y(0) U g40)=
Thus, in the present case, this part has no contribution to (1.5).
Case iii, v, vi). By the same reason as § 2.2, there are no contributions from
the parts (iii), (v), (vi) to (1.5).

3.3. Summing up the above things, we obtain

THEOREM 2. The trace of T(UyU) in S’ is given by

(3.4) Trace T(UvU) =4 - (Z )m 1 Dpl (@
h ] "/]
L(—1)" (o) Z T .
+( )E[QZ-;(/'@) )= (= )(ﬁ," iy

it detyre*(F.7), o, Otherwise, it vanishes. The nolations are defined as
Jollows.. 6=1if ye U and otherwise 6=0. [¢] runs over a full system of inequivalent
elliptic elements in B,. d is a number of vight U-cosets in UyU.

Let a be an integral ideal in F. Following from ({17], §3.4), we define an
operator T\a) in S* by the sum of T(Uyl/) over all double cosets Uyl such that
the right M.(p) ideal ”\ y Ma(o ) is integral and of norm < Unless o is a principal

ideal ao with a totally positive element @, trace T\a) 0. Combining Theorem 2
with ([9], §5.1) & ([16], §4), we get

“THROREM 2/. Let a=ao be a principal ideel with a lotally positive element
in . The trace T(a) wn S s given by the following formula.

| D2 (2)

Trace T{a)=2a(a) - (Z )“n
D D) b S medE,
(3.5) + 5 D};gw(D) | I(a, D)ymodE,|
~CV g B e

The notations are as follows. da)=1 if a=ay’o for some ayen and otherwise (a)
=0. nruns over all divisors of a. £ is the set of all ovders O (taken wp to isomor-
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phism) -in totally imaginary quadratic extensions of . h(Q) is the class number
of 9, and wD) is the index of Ei in the group of unils in . Let K be the
quadratic extension of F containing ;¢ is an embedding of the adéle of K into
My(K)a such that $(83.)=¢(K. )N Me(o,) for all p; Ia, D) is the set of all = eK—-F
such that ¢z) zc contained n the union of double cosels UyU appearing in T(n).

3.4. Here, we shall give some relations between the various relative class
numbers of the totally imaginarv quadratic extensions over some ﬁxed real quad
of weight two with respect 10 F vanishes (Theox em 2). It follows from Theorem
o

PROPOSITION 5. Let q be @ lotally positive element in 0. For above F, “we
have

()(q) —— D] “;_'p(2> Z‘: NI /Q(n)+ Z D(: ;;)

Here,‘ q is the principal ideal in o generated by ¢; s, f denote integers in F, and
(s, f)- denotes the order in F(+~/s®—4q) with the discriminant (s*~4¢)f2 sruns
over all integers in F such that §*—4g<0, (s92—4¢'<0, ((s=+'s*—4g)/2 mod Ey)
and (f) runs over the divisors of (fo) where (s, 14) is the principal order in

F(~/s*—4g), (¢ being a generator of Gal(F/Q)).

111
7 60" 24° 12

QV'2), Q13) or Q(V17), respectively.

or according to F=Q(v'5),

- 1
Remark. 3 A2 p(2) 1 X

3.5. Numerical Examples

) Set F=Q(~N) (N>5 being a square-free positive number). We assume
that the class number of F is one and that /* contains a unit of norm —1. It
follows from Theorem 2 that

1, A, D)

(3.‘6)’ L dim ' = ”"‘"“Dﬁl “’g’r(?«) 1+—' y- W, ’f))( w(Q(s, D) - 1)

Here,

s; integers in F, satisfying 4—s* is totally p051t1ve,
; integral ideals in F, satisfying (s*~4)7~? is an integral 1deal in F,

£(s,7); the order in F(~/s*—4) with dlscnmmam (st—4)2 X

I

—t

The summation runs over all (s, ) (taken up to isomorphism). As N>5, inthe
summation of right hand side of (3.6) s which satisfies the conditions is only 0
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or =1, and for any cases of s,f=0. The consideration of the zeta function of
F(V/5°—4) gives

Then h(K)= 1/2)/z D)a(—ND), w/zcre /z( L) denotes the class number of Q(«/ L
Thus

I(=3N) , I(~N)

M (g 1 82
dlmS—é—;—r;Dp Cr(2)—1+ 6 -3

Moreover we assume that N is not divided by 2 or 3 and N>37. It follows from
Theorem 2’ that the trace of 7((2)) and of 7((3)) in S’ are also given by

W=2N)  W~TN) h(=N)

Trace T((2)= i 5 ) —0da(N),
(3.7)
Trace T((3))=&(N) = "( ) h(“;w Ly ”‘(TZZN ) o).
Here,
9 if %11 16 i [%]:1
()g(N)= l :2 - ()S(N)::'l 3 -
5 if |5 |=-1 10 if [N‘l=_1
@i %—v_ﬂ
L | |=-1

where’ { NJ denotes the Legendre symbol. Using the electric computer at Oka-

yama University, for a prime number N satisfying the above conditions, we
calculate the dimension of &, the trace of 7((2)), and of 7((3)) which are given
in Appendix 3. ,

ii) By application of Proposition 5, we get some class numbers of biquadratic
fields. Let N=13 or 17 and consider the trace of TY((2)). In these cases, s which
appears in Proposition 5, is 0, +1, +2, +(1++/13)/2 (f N=13) or =(1x17)/2
(if N=17). Then the value of trace of 7((2)) is the sum of the terms appearing
in the right hand side of (3.7) and of

according to N=13 or 17. Thus
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/'W) >

lz(F‘\/—-—2—~—~— =1, (F=QWT)

/Z(F'\/-:ij-il_z>>=l, (P=Q(/T7).

Appendix 1.

The purpose of this appendix is to give the definition of the Eisenstein
series and some examinations of its Fourier expansion. Through this section,

we take G=SL(2).
We define the Eisenstein series £(¢, 2, x) on Gp\G4 which is right Up-invariant.
Let x be a Grissen-character of F,*/F" with a conducter o such that its restriction

ki3

2(2e) 10 (Fa™)w s [] 179, where &=(&, -+, &) in R" satisfies the following con-
Jj=1

ditions

(1) &logey@|+ - +&ulog eV |eZ, (1<i<n—1)

(i) &4 +E.=0,
(fe®, «--, ™2} being a complete set of generators in the group of E2%). For an

@0 7. ‘
element Ig’a"] in A4, we put X([g'2~l]):x(a); thus we can regard y as a

character of ArA.."\Aa For m=(my, -, m,) (m; being an even integer) and for
a=nak (neNy, acA,, keK), we define a function ¢m,, in @(r) and the Eisenstein
series F(¢hn.,» 2, %) by

n

{lim. 7,(-7") = II (Tm](kvj)x<a)

=1
(A1)

Elpmy &, )=_ T o, ()@@ 110G
r?G}-’F\G[,v

For a constant term of the Fourier expansion of the Eisenstein series, we have
ProrosiTion A-1. The constant term of Elpm., 2, ), ie.,

E'$n, 2, 2)= S B, 5 2, n)dn

N AN
is given by lhe expression
EO((/)m’ “ z, .’L‘) = (/5m x(w)e(z»&»l)ﬂcx)

n
+m(z, 7) [ Alz, my, &), ; (@)ed =2 @)
J=1
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RGN
"D ey
(A2)
121z n
&z, )= LQ_F_{._ 1 [(EZ_ +2n‘i$j>L(Z, op
(=3 =
()
1 (m;=0),

Alz,mg, E) =" 9 —1 — z—dzit,

AT 2
k=1 2R +142-+-4zig; (m22),

where L(z,y) denotes Hecke's L-function with a Grissen-character .
Proof. E%¢mn.y, 2 %) becomes

S G, (GM)E P IH Dy
(B)GPF\I,'}F/NF 6"1PI,,171‘\NF\N4

Because of Bruhat's decomposition of Gp=PrUPrwNr, it equals
G, ()@ TDH O . g G,y (e @ DH WDy
N
»

By Iwasawa’s deconiposition of v=n'a’k’ W eNy a’cA,, K ekK), we have
Hons)= ~ H(z) + Huola “nn'a’)),
wwnz)=y(z) " yw(@ nn’a’)) .

Thus the later integral of above formula is

gf')m';(m)e““z’”(m’ x et § 7njoj(wn)x(wn)e(z S H )
JN
El

(A.S) =¢m‘;(x)eu~z)1[(.r) S )

Yo

et Bty om,) [ yeon.) D dn
i
% S x(wnj)e(z-i l)fl(wn_/)dnf .
Ny

By the same way as ([12], (6.1.3)), the ‘ﬁré,t integral equals
1ro 1 =z .

Dl T] Aley s £)B( 5, 5 +20i8s)

J

For a finite prime p, we define a mapping H; of G, to R by the same way as the
definition of H. It follows from Iwasawa’s decomposition of wn, that

1—2WNrqlp)- =
1=y Nroh)*

S 2(wny)e@ PNy, = Z 10" )e(0™) Nr,p™) 02 =
N” m=0
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where ¢ denotes Euler’s function. If Si is a set consisting of the first & finite
primes, the second integral in (A.3) becomes

. : 1= 0WNeg) ' _ Lz
- i Ve e DI Qo )y — = .
tim [T ), oo = I Ne ) T T I+ 2

Combining the above things, we get the expression (A.2). QED.
By the functional equation of Hecke's L-function, we have

CbROLLARY A-2. m(z, yym(—z,7)=1.

Appendix 2.

We shall examine the correspondence between the situations of ((6],§5) and
ours. Here ¢(g), 27(p), a* denote the functions defined in ([6], §§5.1-5.2).

Lemma A-3. Let take £, f(q) for ¢(g). Then

(1) /z»'(p)—_—l,oj(i%.

(2) hyet=0if n=+1 or if n=1, ¢e=0; h,~=0 for all »; Iz,“ngj(%).

Proof. (1) Let g be a hyperbolic element in G=SL.(R) in the usual sense.
By Lemma 5, we have the following equation

(A4) Sm |zg-,z(,~‘lg Je iz g a’rlijl”’w~
o e o GOPAG £

[

=\" sl b 22,
o — e (]

where 2, is the eigenvalue of ¢ satisfying |4,>(2,7*] By (6], §5.3 (5)), its right
hand side becomes %2"(p). On the other hand, because of the definition of g, its

left hand side equals 9’;j<z-g—)
(2) Applying the argument of ([9], §2.2), it follows first two assertions.
Now let us take n=1, e=2. It follows from the definition of /;* that

ng

we={ o+ r;
U Jy,

where (G), denotes the set of all hyperbolic elements ¢ in G. By the definition
of fa,j the first integral vanishes. By (6], §5.3 (5)), we have

S(a),,fn ,(g) - dq_-g '

|2y )1

(2 — "D S So e hx)dzdh .
(@OR\G
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By Lemma 5, its integral equals

1 o T di 1 bz
ng . {S A 9/’j(ZP)|7~l“""”’dP}7 ="§;ZT§ -'('J(—% dz
ToJA o T JRe(z) <0 z—
2
By the same way, we have
Ay 1 S (z)
o, 1) = lg= =— Sz
S(mhf,.J(.a)lrﬂg_ug e Jnoor,_ 1 z

2

It follows from Cauchy’s integral formula that the second integral becomes

o)

Appendix 3.

N DIMS TR T(2) TR T(3)) N DIMS TR T(2) TR T3))
29 1 -1 1 337 21 13 21
37 1 0 1 349 16 8 46
41 1 1 -2 353 18 32 15
53 2 2 2 373 19 8 34
61 2 0 8 389 18 10 22
73 2 3 3 397 18 14 51
89 3 7 1 409 28 13 21
97 3 6 6 421 21 8 45

101 4 3 9 433 29 22 28

109 4 1 14 449 28 27 13

113 4 11 5 457 32 18 27

137 5 14 7 461 21 14 33

149 6 4 11 509 23 18 34

157 6 6 23 521 35 29 15

173 7 8 15 541 30 7 54

181 7 5 27 557 27 17 31

193 9 9 13 569 41 24 16

197 8 8 15 593 38 40 24

233 11 18 12 601 50 15 29

241 13 8 13 613 35 14 52

269 11 10 22 617 41 42 29

277 13 6 28 641 48 31 19

281 15 16 8 ; 653 33 17 36

293 12 13 25 661 37 15 71

313 18 17 22 673 57 23 33

317 13 13 24 677 34 21 41



N

701
709
757
769
773
797
809
821
829
853
857
877
881
929
937
941
953
977
997
1013
1021
1033
1049
1061
1069
1097
1109
1117
1153
1181
1193
1201
1213
1217
1237
1249
1277
1289

1]

DIM &

39
43
47
71
38
41
67
46
52
51
65
56
74
78
90
53
79
80
65
56
68
106
95
64
76
91
68
80
121
71
105
141
90
106
85
147
77
129

TR T{(2))
13
12
16
18
27
26
30
18
16
19
49
17
40
46
29
24
48
57
19
29
20
30
45
20
18
61
25
15
44
28
67
23
21
62
29
22
32
44
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TR T((3)) N
31 1301
63 1321
57 1361
39 1381
46 1409
42 1433
24 1453

41 1481
77 1493
84 1549
28 1553
70 1597
27 1609
23 1613
49 1621
51 1637
32 1657
31 1669
86 1693
52 1697
91 1709
53 1721
27 1733
52 1741
86 1753
30 1777
48 1789
76 1801
52 1861
58 1873
35 1877
49 1889
77 1913
42 1933

105 1949
49 1973
52 1993
30
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