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Abstract

An array of recent astrophysical observations established the standard cosmological model called
ΛCDM model. The energy content of the present-day universe is dominated by dark energy
and dark matter and its nature and physical properties are not known. In order to reveal the
mysterious dark components in the universe, several observational programs are proposed and
still in research. Gravitational lensing is expected to be the main subject in future cosmology
surveys for constraints on cosmological parameters, which provide important clues to the dark
components in the universe.

Gravitational lensing is a powerful method to study matter distribution in the universe, from
which one can extract information on the basic cosmological parameters. However, the statistical
method to make the best use of gravitational lensing data in upcoming surveys is still under
debate. This problem originates from non-Gaussianity of the matter density field due to non-
linear gravitational growth. In this thesis, we explore the applicability and the utility of two
statistical approaches for understanding dark matter and dark energy with gravitational lensing
measurement.

For cosmological constraints related to the nature of dark energy, we study morphological statis-
tics called Minkowski functionals (MFs) to extract the non-Gaussian information of gravitational
lensing using numerical simulations and observational data. We find that systematic effects in
observation need to be well-calibrated in using MFs, although MFs can be a powerful statistics
beyond the conventional approach with two-point correlation function for cosmological con-
straints. We then put a constraint on mean matter density in the present universe with lensing
MFs measured from Canada-France-Hawaii Telescope Lensing survey (CFHTLenS). We also
make the forecast on the nature of dark energy with MFs in upcoming surveys with sky coverage
of 20,000 square degrees. Combined with two-point correlation function, MFs can constrain the
equation of state of dark energy with a precision level of ∼3-4%.

In order to constrain the properties of dark matter, we study the cross-correlation of gravitational

lensing and another possible probe of dark matter distribution, the extragalactic gamma-ray

background (EGB). Dark matter annihilation is among the potential contributors to the EGB.

The cross-correlation is a powerful probe of signatures of dark matter annihilation, because both

gravitational lensing and gamma-ray emission originate directly from the same DM distribution

in the universe. Therefore, measurement of the cross-correlation can be used to derive constraints

on dark matter annihilation cross-section. We perform the first measurement of the cross-

correlation using the real data set obtained from CFHTLenS and the Fermi Large Area Telescope.

We find that the measured cross-correlation is consistent with a null signal. Comparing the result

to theoretical predictions based on structure formation, we place an independent constraint on

dark matter annihilation. We also show that future lensing surveys will increase sensitivity to

probe annihilation cross section and be useful to constrain on the canonical value of annihilation

cross section for wide range of mass of dark matter.
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Chapter 1

Introduction

1.1 Cosmic Acceleration

In 1917, Albert Einstein first considered the cosmological model with his theory of

General Relativity [4]. There, he adopted the simple assumptions: the universe would

be static and homogeneous on large scales. In order to realize the static universe with a

matter-filled space, he introduced the additional constant in the field equation, which is

so-called the cosmological constant. Is the cosmological constant really needed in order

to make the universe static? This question have been answered by the discovery of the

expanding universe [5]. In 1929, Edwin Hubble reported the relation of distance and

radial velocity among galaxies. His finding is summarized as

cz = H0d, (1.1)

where c is light speed, d represents the distance to galaxy and z is the redshift of galaxy.

H0 is some constant number known as Hubble constant. Since cz corresponds to the

radial velocity of galaxy moving away from us, the coherent motion of galaxies discovered

by Hubble provided the evidence of the expansion of the universe. Therefore, the original

motivation to introduce the cosmological constant were removed at that time. The

situation, however, have been changed as the observational cosmology developed. To

tell the truth, a number of observational studies indicates that the expansion of the

universe is accelerating. Such observational results seem to be in conflict with the simple

cosmological model without the cosmological constant. In this chapter, we summarize

the representative observational results which revealed the cosmic acceleration.

1
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1.1.1 Type Ia supernovae

Supernova is one of the most energetic phenomena in the universe, which is thought to

occur late in life of a massive star. Type Ia supernovae are among the most interesting

supernovae in context of observational cosmology. Type Ia supernovae have no absorp-

tion line of hydrogen with the presence of silicon in their spectrum. A white dwarf in a

binary system can increase its mass by up to the Chandrasekhar mass limit with accre-

tion from a binary companion or the merger of two white dwarfs. Once its mass exceeds

the Chandrasekhar mass, gravitational collapse induces a runaway fusion reaction and

leads to complete explosion of the white dwarf, that is Type Ia supernova.

The absolute magnitude of Type Ia supernovae at peak luminosity is roughly constant

with some dispersion (e.g., [6, 7, 8]). The observed dispersion can be reduced by the

novel technique based on the empirical correlation between the intrinsic magnitude and

the shape of light curve (i.e. more luminous supernovae tend to decline its luminosity

slower [9]). These results guarantee the usefulness of Type Ia supernovae as standard

candle, which enable us to measure the distance precisely. With appropriate corrections

(e.g., dust extinction, K-correction for redshifting effect, and so on), the observational

programs have been conducted on for measuring the distance of Type Ia supernovae at

higher redshift [10, 11].

Effort is rewarded. The two independent detailed analysis of tens of Type Ia super-

novae at cosmological redshifts have been utilized to measure the luminosity distance

of those objects [12, 13]. Their conclusion is that a universe curved by ordinary matter

(the simple expectation from Ref. [5]) is ruled out at high significance. The observed

luminosity distances can be explained by the cosmological model with ordinary matter

and the cosmological constant.

1.1.2 Baryon acoustic oscillations

According to the discovery by Hubble [5], the early universe should be in the state of

very large matter density and very high temperature. The model with such initial state

of a universe is so called Big-Bang cosmology. In the Big-Bang cosmology, baryons

and photons had experienced non-thermal processes as the universe expands or the

temperature of radiation decreases [14]. Once electron and proton combined to form

hydrogen atom, photons were able to travel through the space, i.e. the universe become

transparent [15]. This epoch is called recombination epoch. Thus, the photon emitted

when hydrogen atom formed contains the information of the earliest universe that we

can observe from measurements of radiation field. This last-scattered photon is currently
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called cosmic microwave background (CMB), which is one of the essential pieces of the

Big-Bang cosmology.

At last scattering surface where CMB photons were released, there remains various

interesting features in spatial variation of CMB temperature [16]. Baryonic acoustic

oscillation is an example illustrative of the property of CMB photons. Before hydrogen

atom formed, a photon-baryon fluid had played an important role to determine the dy-

namics of the universe. When the primeval fluctuations exist in the fluid, gravity affects

the growth of perturbation, whereas radiation pressure resists. This simple framework

finally induces the acoustic waves in the photon-baryon fluid, and the oscillating feature

on the anisotropy of CMB sky. The oscillation have been actually conformed by CMB

analysis in harmonic space (e.g., [17]). The characteristic scale of acoustic oscillation

is determined by the sound horizon of the photon-baryon fluid at last scattering sur-

face. Thus, the sound horizon at last scattering surface can be measured by the detailed

analysis of CMB temperature anisotropy.

There exists another tracer of baryonic acoustic oscillation. Galaxies are expected to

form in high matter density region where matter have been assembled initially. Since

baryons have experienced acoustic oscillation in the early universe and should be abound

at the acoustic peak, galaxy clustering would also show imprint of baryonic acoustic

oscillation. SDSS collaboration [18] performed the correlation analysis of 46,748 galaxies

and clearly detected the feature of the acoustic peak in galaxy correlation function. With

the sound horizon measured from CMB, we can regard the acoustic peak found in galaxy

clustering as standard ruler. The idea is very simple; ruler looks smaller as it is more

distant. Considering two different cases where ruler locates enables us to determine the

expansion rate of the universe. The current measurement of CMB (e.g., [19]) and galaxy

clustering (e.g., [20]) is in favor with the presence of the cosmological constant.

1.2 Astrophysical Evidence of Dark Matter

First astrophysical implication on the existence of dark matter is found in Ref. [21]. Fritz

Zwicky analyzed the velocity dispersion of galaxies in the Coma cluster and estimated

the mass in the system from the virial theorem. He found that the ratio of mass and lu-

minosity of member galaxies in this system to be ∼ 400 solar masses per solar luminosity,

which is larger than that of the solar neighborhood by a factor of 100. Theoretically, in

1970’s, numerical studies (e.g., Ref. [22]) indicated that the existence of dark mass seems

to be required for the gravitational stability of the disk of galaxy. Also, the observed

anisotropies on cosmic microwave background in 1980’s (e.g., [23, 24, 25]) seemed to be

inconsistent with the cosmological model which is composed of simple baryonic matter.
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Here, we summarize some examples of astrophysical “evidences” of the existence of dark

matter (without attempting to be complete). The following astrophysical evidences are

one of the reasons why most astronomers believe that dark matter exists if we can not

see it.

1.2.1 Rotation curves of galaxies

The observation of the 21 cm line of HI clouds in galaxies in 1980’s (e.g., [26]) provide

us the new insight of matter distribution at galactic scales.

In Newtonian dynamics, the circular velocity of an object with off-centric distance of r

is given by

v(r) =

√
GM(r)

r
, (1.2)

where M(r) is the inner mass which is defined by M(r) =
∫

dr4πr2ρ(r), and ρ(r)

describes the matter density profile in the system of interest. If the measured light

distribution would exactly trace the matter distribution in galaxies, the circular veloc-

ity would decrease as ∼
√

1/r beyond the optical disc. However, the observed circular

velocity of HI clouds in spiral galaxies reaches to almost constant value as r increases.

This is so-called flat rotational curve problem. One of the solution to this problem is to

suppose invisible mass distribution in halo region of galaxies. If one assume M(r) ∝ r

or ρ(r) ∝ r−2 in outer region, the observed circular velocity can be explained. However,

there is another solution of this problem actually. That is the modified Newtonian dy-

namics (MOND) which can solve the flat rotational curve problem with an appropriate

parameter (e.g., [27]). In order to distinguish these two models, we require another

observational data which clearly shows the baryonic and dark matter distribution sepa-

rated. In fact, we have already found such observational data, as known as bullet cluster

[28, 29]. We revisit how we know the invisible dark matter distribution later.

1.2.2 Mass estimate of clusters of galaxies

Clusters of galaxies are one of the most important targets in terms of dark matter as

Zwicky demonstrated in 1930’s [21]. Modern astrophysical techniques enables us to

study the mass distribution in clusters of galaxies in more sophisticated ways.

X-ray emission is one of the promising observables to estimate the mass of a galaxy

cluster. Suppose the virialized object which holds the thermal equilibrium. In such
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system, the virial theorem should hold

kBTeq =
1
2

GmpMcl

Rcl
, (1.3)

where mp is proton mass and Mcl and Rcl represent the mass and the radius of cluster,

respectively. For typical clusters, the virial temperature is given by

kBTeq ∼ 2 keV
(

Mcl

1014 M"

)(
Rcl

2Mpc

)−1

, (1.4)

which corresponds to X-ray. Thus, the observation of the X-ray emission profile of galaxy

cluster is aimed at measuring the mass under the hydrostatic equilibrium. Combining

with optical luminosity of member galaxies, one can constrain on the mass-to-luminosity

ratio over various samples of galaxy clusters (e.g., [30, 31]).

An alternative method for mass estimation is based on gravitational lensing. Gravita-

tional lensing is known as the relativistic effect on trajectory of photon in the universe.

According to General Relativity, intervening mass distribution can affect the path of

photon emitted from distant objects. This effect would be observed by the distortion of

images of source objects, or arc like images in some cases. Thus, the detailed analysis of

images of background galaxies behind galaxy clusters can be useful to reconstruct the

mass distribution of galaxy clusters itself. Such reconstruction technique are adopted to

very interesting system, so-called bullet cluster [28, 29]. Bullet cluster has very unique

characteristics of the gas distribution inferred from X-ray observation. It is found that

a pair of clusters are colliding and the hot interstellar gas has a shock front. Ref. [29]

adopted the mass reconstruction technique to this system and first showed the direct

evidence of dark matter, of which density distribution clearly separated from gas density

distributions.

1.2.3 Global energy budget of universe

Precise measurements of anisotropies on cosmic microwave background (CMB) are one

of the most stringent cosmological probes. Although anisotropies in the temperature

fluctuation are of a level of 10−5, the physics of CMB can be understood in a simple but

robust framework based on General Relativity and fluid dynamics [16]. The expected

angular dependence of anisotropies can be well characterized by six parameters, which

represent the fundamental quantities. Such parameters include the mean matter density

and the baryonic matter density of universe. Recent measurement of cosmic microwave

background (e.g., [19]) determines the mean density of dark matter and baryonic matter
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as follows;

Ωcdmh2 = 0.1138 ± 0.0045, (1.5)

Ωbh
2 = 0.02264 ± 0.00050, (1.6)

where the former represents the (normalized) mean density of dark matter and the latter

is for baryonic matter. These results indicate that we must consider the non-baryonic

matter to explain the observed CMB anisotropies and the significance of the existence

of dark matter is 0.1138/0.0045 ∼ 25σ.

1.3 Cosmology with Gravitational Lensing

Entering the twenty-first century, technological progress enables us to conduct wider

and/or deeper surveys. Statistical analysis with a huge sample reveals the dynamics

(e.g., [32, 33]) and the composition (e.g., [19, 34, 35]), of the universe.

The “standard” cosmological model called ΛCDM model is currently consistent with

the observational results1. In this concordance model, an exotic form of energy, now

called dark energy, dominates the present universe and causes the cosmic acceleration.

If dark energy density does not evolve in time as the universe expands, such energy is

essentially equivalent to the cosmological constant introduced by Einstein. Dark matter

is invisible mass and is considered to be a different form from normal matter like stars

and planets. A large part of galaxy and cluster of galaxies seems to be made up of dark

matter. Dark matter plays an important role in the formation of rich structure in the

universe.

Next goal of observational cosmology is, probably, to understand the nature of dark

energy and the physical properties of dark matter. Gravitational lensing is one of the

important cosmological tools to tackle the problem.

Gravitational lensing provides a powerful method to probe matter distribution in the

universe. Accoording to gravitational lensing, intervening large-scale structures induce

small image distortion of distant galaxies. The small distortion is called cosmic shear

which contains, in principle, rich information on the matter distribution at small and

large scales. Gravitational lensing also has the advantage of not requiring any assump-

tions such as the relation between luminosity and mass and/or hydrostatic equilibrium.

This indicates that it is an optimal tool to investigate dark matter distribution in the

universe. The strength of lensing effect is also sensitive to the distance to background
1 At small scale (less than galactic scales), the validity of ΛCDM model is controversial (see, e.g.,

[36] for review).
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galaxies and lensing objects. It can thus be utilized to provide the meaningful informa-

tion of both expansion history and gravitational growth of structure in the universe.

Although cosmic shear contains rich cosmological information, image distortion induced

by gravitational lensing is very small in general. Therefore, we need the statistical

analysis of cosmic shear signal over a large number of distant galaxies in order to ex-

tract cosmological information from gravitational lensing. The conventional statistics

of cosmic shear are two-point correlation function or power spectrum. If the statistical

property of cosmic shear field follows Gaussian, this quantity can describe all the infor-

mation of cosmic shear. However, this is not the case in reality because cosmic shear has

non-Gaussian information either of primordial origin (e.g., [37]) or caused by non-linear

gravitational growth [38]. We have not understood yet how to make the best use of grav-

itational lensing for constraints on the nature of dark energy and dark matter. In this

thesis, we explore the applicability and the utility of statistical analyses of gravitational

lensing for understanding dark matter and dark energy.

Many proposals are found in literature. The statistical analyses differ between the two

classes.

1. Extension of two-point statistics

Ref. [39] shows the prospects of two-point statistics of cosmic shear in terms of

measurement of cosmological parameters. Ref. [40] proposed the simple extension

of the method in Ref. [39] in order to extract the redshift information of large-scale

structure. This methodology is called tomography which causes the improvement

of the cosmological parameter estimation due to reconstruction of the structure

along the line of sight. Ref. [41] shows the potential contaminant in tomography,

called intrinsic alignment. Intrinsic alignment of galaxy’s shape could be caused

by correlation between the ellipticity of galaxy and the tidal field at large scale.

This alignment induces the additional correlation of shape of galaxy between two

different redshifts. The impact of intrinsic alignment on two-point statistics of

cosmic shear have been investigated with both theoretical (e.g., [42]) and obser-

vational method (e.g., [43]). Also, various systematics associated with the shape

measurement can affect a cosmic shear analysis [44, 45]

Another extension is the cross-correlation of the shape of background galaxies and

the position of foreground galaxies. This method is called galaxy-galaxy lensing

which have been proposed for purpose of measuring galaxy mass [46]. Refs. [47, 48]

have recognized this technique as a direct probe of the relation between the mass

and the light, as known as galaxy bias. Ref. [49] has derived the constraint on cos-

mological parameters with combination of the information of galaxy clustering and
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galaxy bias estimated from galaxy-galaxy lensing. This combined analysis is an-

other path to extract the dark matter clustering directly. In order to maximize the

information content we can gain from this method, more sophisticated algorithm

is proposed in Ref. [50] and have been applied to the real data set [51]. Similar

method can be applied to observables of clusters of galaxies and the expected cos-

mological constraints would be comparable with current CMB measurements [52].

Joint analysis of three different statistics (i.e. two point correlation of galaxy, two

point correlation of cosmic shear, and galaxy-galaxy lensing) have been studied in

e.g., Ref. [53].

2. Higher-order statistics

Cosmic shear contains the information of non-linear gravitational growth as well.

This information typically appear as non-Gaussian property of cosmic shear. In

order to extract non-Gaussianity of cosmic shear, a promising way is to consider

the higher-order statistics beyond two-point statistics.

Three-point statistics or bispectrum of cosmic shear is one of the candidates.

Refs. [54, 55] show that the skewness of lensing field can, in principle, break

the degeneracy between cosmological parameter dependences found in two-point

statistics of cosmic shear. The cosmological information content in bispectrum of

lensing field and the utility of bispectrum tomography with power spectrum have

been discussed in Refs. [56, 57].

Peak statistics in lensing field are also useful to constrain on cosmological parame-

ters. In Ref. [58], the authors utilize a large set of numerical simulations and show

that peaks of lensing field can be associated with massive clusters along the line

of sight. Thus, number of lensing field peaks would be correlated with number

of very massive object in the universe such as galaxy clusters and be sensitive to

cosmological parameters [59, 60]. Refs. [61, 62] have investigated cosmological in-

formation obtained from combined analysis of peak count and angular correlation

of cosmic shear. In addition to number counts, the correlation of peaks and cross

correlation of peak and cosmic shear would provide fruitful cosmological informa-

tion [63]. Some systematical effects in peak statistics have been studied in detail

[64, 65, 66].

1.4 Objective of This Thesis

Future lensing surveys are aimed at measuring cosmic shear over a wide area of more

than a thousand square degrees. Such ongoing observational programs include Subaru

Hyper Suprime-Cam (HSC)1, the Dark Energy Survey (DES)2, and the Large Synoptic
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Survey Telescope (LSST)3. Space missions such as Euclid and WFIRST are also

promising. In these programs, the statistical error of shape measurement of galaxies

would be improved dramatically. It is therefore crucial to construct the well-calibrated

and accurate statistical approach of cosmic shear for providing important clues to the

mysterious dark component.

In this thesis, we examine the two different methods of gravitational lensing for con-

straints on the nature of dark energy and dark matter. Each statistical analysis can

be categorized in “higher-order statistics” or “extension of two-point statistics” as we

mentioned in Section 1.3.

In order to reveal the nature of dark energy, we study the cosmological information con-

tent of morphological statistics of comic shear field, called Minkowski funtionals (MFs).

We extend the previous morphological studies by including various observational effects

such as sky masking, systematics associated with shape measurement, photometric red-

shift errors, and shear calibration correction. We generate a large set of mock cosmic

shear data with numerical simulations to study possible systematics in detail one by one.

We then apply all the methods developed and examined in numerical simulations to the

real data obtained by Canada-France-Hawaii Telescope Lensing survey (CFHTLenS).

In order to explore the physical property of dark matter, we study the cross-correlation of

cosmic shear and another possible probe of dark matter distribution, the extragalactic

gamma-ray background (EGB). The origin of EGB is still unclear and the potential

contributors to the EGB includes the emission due to dark matter annihilation. One

of the most plausible candidates for dark matter is a weak interacting massive particle

(WIMP). WIMP with the mass of 10 GeV – 10 TeV can naturally explain the abundance

of dark matter today if their annihilation cross section is the same order as the cross

section for weak interaction. If dark matter particles annihilate into standard model

particles, they will produce gamma rays that contribute to the observed EGB. The dark

matter distribution that causes cosmic shear would also be a gamma-ray source. Thus,

the cross-correlation of cosmic shear and the EGB can be a powerful probe of signature

of dark matter annihilation. We perform the first measurement of the cross-correlation

using the real data set obtained from CFHTLenS and the Fermi Large Area Telescope.

Comparing the result to theoretical predictions based on structure formation, we place

a cosmological constraint on dark matter annihilation with our measurement.

The rest of the thesis is organized as follows. In Chapter 2, we summarize the basics

of structure formation. In Chapter 3, we describe the formulation of weak gravitational

1http://www.naoj.org/Projects/HSC/j index.html
2http://www.darkenergysurvey.org/
3http://www.lsst.org/lsst/
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lensing and summarize how to perform statistical analyses with observables. In Chapter

4, we show the results of the impact of observational effects on lensing MFs. Various

effects are investigated with numerical simulations and the real data set. The analysis

presented in Section 4 is based on Refs. [1, 2]. In Chapter 5, we present the cross

correlation analysis of cosmic shear and extragalactic gamma-ray background. We there

summarize the detail of theoretical model and methodology. A large part of Section 5

is based on Ref. [3]. Concluding remarks and discussions are given in Chapter 6.



Chapter 2

Structure Formation

2.1 The standard cosmological model

2.1.1 Friedmann equation

The universe has a rich variety of structure. We know that galaxies are made of stars,

and galaxies show a tendency to cluster into groups. Clusters of galaxies are a building

block of larger structure such as superclusters and filaments. Even though the universe

has the hierarchical structure, the matter distribution in the universe on a sufficient large

scale should be homogenous and isotropic. This assumption is called the cosmological

principle. In four space-time dimensions, the Friedmann-Lemâitre-Robertson-Walker

(FLRW) metric fulfills the requirement of the cosmological principle, i.e. a homogeneity

and isotropy of space. This metric is given by

ds2 = −c2dt2 + a2(t)
[

dr2

1 − Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (2.1)

where a(t) is the scale factor and K is the spatial curvature of the space. The spatially

closed, flat and open universe correspond to the case of K > 0, K = 0 and K < 0,

respectively. In the FLRW metric, the scale factor determines the time evolution of the

space. In this thesis, we normalize as a = 1 at the present. In an expanding universe, it

is useful to define the comoving distance χ as follows;

dχ2 ≡ dr2

1 − Kr2
. (2.2)

11
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With the definition of the comoving distance, the proper distance r is described as a

function of χ, which is given by

r(χ) =






sinh(
√
−Kχ)/

√
−K (K < 0)

χ (K = 0)

sin(
√

Kχ)/
√

K (K > 0)

. (2.3)

The time evolution of a(t) can be determined by the Einstein equations;

Gµν = Rµν −
(

1
2
R − Λ

)
gµν =

8πG

c4
Tµν . (2.4)

Let us consider the case of a perfect isotropic fluid under the FLRW metric. In this

case, the energy-momentum tensor is given by

Tµν = (ρ + p)uµuν + pgµν , (2.5)

with density ρ and pressure p. The time-time and the space-space components of the

Einstein equations then leads to

(
ȧ

a

)2

=
8πG

3c2
ρ − c2K

a2
+

Λc2

3
, (2.6)

ä

a
= −4πG

3c2
(ρ + 3p) +

Λc2

3
, (2.7)

where ˙ denotes d/dt. Eqs. (2.6) and (2.7) would reduce to the single equation as

ρ̇ = −3 (ρ + p)
ȧ

a
. (2.8)

The property of the fluid is specified by its equation of state, that is p = wρ. The

parameter w is zero for non-relativistic pressure-less components such as dark matter,

while w is set to be one third for relativistic components, e.g., radiation. Using Eq. (2.8)

and w of each component, we can derive the time evolution of the density as: ρm ∝ a−3

for non-relativistic component and ργ ∝ a−4 for relativistic one. In this thesis, we

call non-relativistic components “matter” and relativistic components “radiation”. In

general, the time evolution of energy density ρ(t) is given by

ρ ∝ exp
(
−3
∫

da′

a′
(1 + w(a′))

)
. (2.9)
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Suppose that a hypothetical fluid corresponding to cosmological constant Λ. We can

obtain the following conditions of energy fluid from Eqs. (2.6) and (2.7):

ρΛ =
Λc4

8πG
, (2.10)

wDE ≡ pΛ

ρΛ
= −1. (2.11)

Hence, we can regard cosmological constant effectively as the energy fluid specified by

Eqs. (2.10) and (2.11). Hereafter, we introduce dark energy ρΛ instead of cosmological

constant. The density of dark energy with the same properties as Λ does not evolve in

time.

In modern cosmology, the expansion history of the universe can be described by the

following parameters called cosmological parameters: Hubble parameter H, density pa-

rameter Ωα, critical density ρc and the curvature parameter ΩK. The definition of these

parameters are summarized as follows:

H =
ȧ

a
, (2.12)

Ωα =
ρα

ρc
, (2.13)

ρc =
3H2

8πG
, (2.14)

ΩK =
Kc2

a2H2
. (2.15)

(2.16)

With these parameters, Eq. (2.6) is given by

H2(a) = H2
0

[
Ωm0

a3
+

Ωγ0

a4
− ΩK0

a2

+ΩΛ0 exp
{
−3
∫

da′

a′
(1 + wDE(a′))

}]
, (2.17)

where the index 0 denotes the present value of each parameter. Once cosmological

parameters are specified at present, the expansion history of the universe can be deter-

mined by Eq. (2.17). In the following, we summarize the expansion rate of the universe

at the dominant epoch of radiation Ωγ , matter Ωm, curvature K and dark energy ΩΛ.

1. Radiation domination

a = (2H0)1/2Ω1/4
γ0 t1/2. (2.18)
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2. Matter dominatation

a =
(

9
4
H2

0Ωm0

)1/3

t2/3. (2.19)

3. Curvature domination

Curvature can dominate the universe when ΩΛ = 0,K < 0, a > −Ωm0/ΩK0.

a = H0Ω
1/2
K0 t (2.20)

4. Dark energy domination

We consider the case of wDE = −1 for simplicity.

a = exp
[
Ω1/2

Λ0 H0(t − t0)
]

(2.21)

Current astrophysical observations yield the present value of dark energy density ΩΛ0 ∼
0.7. The simplest candidate of dark energy with wDE = −1 is thought to be vacuum

energy. However, if dark energy is vacuum energy, there appears to be a huge discrepancy

between the observed amount of dark energy and the expected amount of vacuum energy

at the present. This is one of the main motivation of other proposals for the candidate of

dark energy. Among various models of dark energy, wDE(a) is one of the key parameters

to identify dark energy. It is crucial to determine wDE(a) precisely by observation for

understanding what dominates the present universe and why the current expansion of

the universe is accelerating. In practice, the following parameterization of wDE(a) is

often used:

wDE(a) = w0 + w1(1 − a) + · · · . (2.22)

In this thesis, we pay particular attention to constraints on the parameter of w0.

2.1.2 Cosmological redshift and angular-diameter distance

Here, we consider cosmological redshift as the time coordinate and define the angular

diameter distance. Cosmological redshift is caused by a stretch of the wavelength of

photon due to the expansion of the universe. Consider that the photon emitted at t = t1

from the point (r1, θ1,φ1). The photon path in a FLRW universe is determined by null
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geodesics, i.e. ds = 0 in Eq. (2.1). It is given by

∫ t0

t1

cdt

a(t)
=

∫ r1

0

dr

1 − Kr2
, (2.23)

where t0 is the arrival time of photon and we set dθ = dφ = 0 because of homogeneity

and isotropy of space. The right hand side of Eq. (2.23) is independent of the time.

This leads to the following equation when considering the case of another emitted time

t1 + δt1 and arrival time t0 + δt0:

∫ t0

t1

cdt

a(t)
=

∫ t0+δt0

t1+δt1

cdt

a(t)
. (2.24)

Suppose that the evolution of a(t) is negligible during δt1 and δt0. Then, we can obtain

the following relation with the Tayler expansion of Eq. (2.24) around t0 and t1:

δt1
a(t1)

=
δt0

a(t0)
. (2.25)

This result can be described in terms of redshift z as follows:

1 + z =
λ0

λ1
=

1
a(t1)

, (2.26)

where the wavelength of photon λi is defined by cδti and a(t0) is set to be unity.

We next define the angular diameter distance dA. The angular diameter distance to an

object is defined by the object’s size ' and the apparent angular size of the object ∆θ.

In the FLRW metric, the relation of ' between ∆θ is given by

' = ar∆θ =
r

1 + z
∆θ. (2.27)

Thus, dA is obtained by

dA =
'

∆θ
=

r

1 + z
. (2.28)

In general, the angular diameter distance between two redshifts z1 and z2 (z1 < z2) can

be calculated by

dA(z1, z2) =
r(z1, z2)
1 + z2

, (2.29)

where r(z1, z2) is defined by
∫ z2

z1

cdz

H(z)
.
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2.2 Growth of matter density

2.2.1 Evolution of density fluctuations

We can not explain the rich structure of the universe observed today only assuming

FLRW metric because FLRW metric describes the homogeneous universe. According to

the observation of cosmic microwave background (CMB), there exist tiny fluctuations in

the CMB temperature map. These fluctuations are expected to amplify its amplitude

mainly due to gravitational growth and develop the rich structure of the universe such

as galaxies and clusters of galaxies. The gravitational growth of density fluctuations is

governed by the fluid equation and the Poisson equation under the background expansion

of the universe with FLRW metric. The matter density of fluid ρ(x, t) can be decomposed

into the homogeneous and inhomogeneous part;

ρ(x, t) = ρ̄(t) + δρ(x, t), (2.30)

δρ(x, t) ≡ ρ̄(t)δ(x, t), (2.31)

where ρ̄ and δρ are the homogeneous and inhomogeneous part, respectively. The fluid

equation and the Poisson equation under the background FLRW universe are given by

δ̇ +
1
a
∇ · [(1 + δ)u] = 0, (2.32)

u̇ +
ȧ

a
u +

1
a
(u ·∇)u = − ∇p

aρ̄(1 + δ)
−∇Φ

a
, (2.33)

∆Φ = 4πGρ̄a2δ, (2.34)

where u is the velocity field of matter fluid, Φ = φ +
aä

2
x2, φ represents the gravitational

potential and ∇ is the derivative operator by the comoving coordinate x. The evolution

of density fluctuations can be determined by a set of non-linear equations Eqs. (2.32),

(2.33) and (2.34).

2.2.2 Linear perturbation

It is difficult to determine the evolution of matter density analytically in general. How-

ever, perturbations of matter density can be understood with the linearized equations

when the amplitude of perturbations is sufficiently small, i.e. δ * 1. For matter com-

ponents with p = 0, we can obtain the following equation of δ by considering the first

order of Eqs. (2.32), (2.33) and (2.34)

δ̈ + 2
ȧ

a
δ̇ − 4πGρ̄δ = 0. (2.35)
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Thus, the evolution of δ is determined as a function of time over various physical scales

at the level of the first order in Eqs. (2.32), (2.33) and (2.34). The linear growth of δ

would be affected by the expansion history of the universe. Here, we summarize the

linear growth of δ in various cosmological models.

1. Radiation domination and equality epoch

Let us consider the evolution of δ from radiation domination to the equality time.

The equality time is defined by the cosmic epoch when the energy density of

radiation in the universe is equal to that of matter. At this epoch, a mixture

of radiation and matter dominates the universe. Hubble parameter H is then

calculated by

H(a) = H0

√
Ωm0a−3 + Ωγ0a−4

=
H0Ω

1/2
m0

a2

√
a + aeq, (2.36)

where aeq is the scale factor at the equality time, defined by aeq = Ωγ0/Ωm0. We

can rewrite Eq. (2.35) by the new time coordinate y = a/aeq instead of t as follows;

d2δ

dy2
+

2 + 3y

2y(1 + y)
dδ

dy
− 3δ

2y(1 + y)
= 0. (2.37)

There are two kinds of solutions of Eq. (2.37). One is given by

δ ∝ 1 +
3y

2
, (2.38)

and another is expressed as

δ ∝
(

1 +
3y

2

)
ln
(√

1 + y + 1√
1 + y − 1

)
− 3
√

1 + y. (2.39)

This result indicates that the density fluctuation of matter density can grow grad-

ually (i.e. by a factor of 2.5) in radiation domination.

2. Matter Domination

In matter domination, Hubble parameter H is equal to 2/(3t). Using the relation

between ρ̄ and the time at this epoch (ρ̄ = 1/(6πGt2)), we can rewrite Eq. (2.35)

as follows;

δ̈ +
4
3t

δ̇ − 2
3t2

δ = 0. (2.40)
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We can solve Eq. (2.40) by considering the case of δ ∝ tn. The solution can be

expressed as

δ = At2/3 + Bt−1. (2.41)

Thus, the evolution of δ is determined by δ ∝ t2/3 ∝ a.

3. ΛCDM model

Here, we consider the case of ΛCDM model that is consistent with current mul-

tiple astrophysical observations. In this model, the radiation density Ωγ0 and the

curvature K is negligible and the equation state of dark energy wDE is set to be

-1. Therefore, Hubble parameter H is given by

H(a) = H0

√
Ωm0a−3 + ΩΛ0. (2.42)

One can find that Eq. (2.42) is actually the specific solution of Eq. (2.35) in ΛCDM

model with the relation of 4πGρ̄ = 3/2H2Ωm. Hence, one can obtain another

solution of Eq. (2.35) by assuming D(a) = H(a)f(a). The solution is given by

D(a) ∝ H(a)
∫ a da′

(a′H(a′))3
. (2.43)

Note that H(a) represents the decline of the linear growth and D(a) describes

the linear growth of δ in ΛCDM model. We also extend ΛCDM model by con-

sidering wDE = const. += −1. In this model, the linear growth of matter density

perturbation can be expressed as

D(a) ∝ aF

(
− 1

3wDE
,
wDE − 1
2wDE

, 1 − 5
6wDE

, x

)
, (2.44)

x = −ΩΛ0

Ωm0
a−3wDE , (2.45)

where F (α,β, γ, x) is known as the hypergeometric function. An integral giving

the hypergeometric function is

F (α,β, γ, x) =
Γ(γ)

Γ(α)Γ(γ − β)

∫ 1

0
tβ−1(1 − t)γ−β−1(1 − tx)−αdt. (2.46)

We here emphasize that all the results above are correct only when matter overdensity

δ is significantly small, i.e. δ * 1. We can not predict the evolution of δ in the way as

shown above once the amplitude of δ becomes larger and the mode coupling of δ (the

coupling term such as δ · u etc.) becomes important.
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2.2.3 Non-linear perturbation

The spherical collapse model is one of the simplest models to describe non-linear growth

of matter density in the universe. Suppose that matter density around a given point

distributes in a spherical manner. The gravitational force at a shell with a offset distance

of r from the center of system can be determined by the inner mass M within this shell.

The equation of motion for the shell is given by

d2r

dt2
= −GM

r2
, (2.47)

and the solution of the above equation under the condition of dr/dt > 0 and r = 0 at

t = 0 is

r = A2(1 − cos θ), (2.48)

t =
A3

√
GM

(θ − sin θ). (2.49)

When considering the matter domination for simplicity, one can find that the overdensity

within the shell is given by

δ =
9GMt2

2r3
− 1 =

9
2

(θ − sin θ)2

(1 − cos θ)3
− 1, (2.50)

where we use the relation of mean matter density and cosmic time i.e. ρ̄ = 1/(6πGt2).

As you can see from Eq. (2.48), the shell will expand from θ = 0 to θ = π and then

contrast from θ = π. Finally, the overdensity within this shell would diverge when

θ = 2π. Let us assume this system would be virialized through the contraction of each

shell and the formation of object with a finite size of rvir occurs. In this scenario, the

following relations should be realized according to the energy conservation of system

and the virial theorem;

2Kvir + Uvir = 0, (2.51)

Kvir + Uvir = Uturn, (2.52)

where Uturn is the potential energy of the shell at θ = π and Kvir and Uvir represent

the kinematic energy and the potential energy of shell, respectively. These equations

provide rvir = A2. Thus, broadly speaking, the overdensity when the system is virialized

can be evaluated as

∆vir =
3M

4πr3
vir

1
ρ̄(tcoll)

− 1 = 18π2 − 1 , 177, (2.53)
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where tcoll is the free fall time given by t(θ = 2π) = 2A3/
√

GM . Therefore, we can

estimate the overdensity within an virialized region as ∼ 177.

It is useful to consider the linear overdensity in a virialized system. The linear density

in the spherical model is defined by the lowest order of Eq. (2.50) in terms of θ,

δL(t) =
3
20

(
6
√

GM

A3
t

)2/3

. (2.54)

The linear overdensity at t = tcoll is ∼1.69.

We can easily extend the above calculation to the case of various cosmological models.

Ref. [67] provided the useful fitting formula in ΛCDM model as follows;

∆vir , 18π2(1 + 0.4093w0.9052
f ), (2.55)

δL , 3(12π)2/3

20
(1 − 0.00123 log10 Ωf), (2.56)

wf =
1
Ωf

− 1, (2.57)

Ωf =
Ωm0(1 + z)3

Ωm0(1 + z)3 + ΩΛ0
. (2.58)

How does matter distribute in virialized system such as galaxy and cluster of galaxies?

Ref. [68] has performed cosmological N-body simulation with various cosmological model

and the authors found that matter density profile of virialized dark matter halo can be

described by the universal function as follows;

ρh(r) =
ρs

(r/rs)(1 + r/rs)2
, (2.59)

where ρs and rs are the scale density and the scale radius, respectively. These parameters

can be condensed into one parameter, the concentration cvir(M, z), by the use of two

halo mass relations; namely, M = 4πr3
vir∆vir(z)ρcrit(z)/3, where rvir is the virial radius

corresponding to the overdensity criterion ∆vir(z) as shown, e.g, in Eq. (2.55), and

M =
∫

dV ρh(ρs, rs) with the integral performed out to rvir. At present, the density

profile shown in Eq. (2.59) is called NFW profile. NFW profile have been conformed

for wide range of mass scales (from earth-size halos to clusters of galaxies) at different

epochs in current (dark matter only) N-body simulations [69, 70, 71, 72]. Once NFW

profile is assumed, one can easily calculate the various observables such as rotation curve

of galaxies (e.g., [73, 74]), gravitational lensing effect of clusters of galaxies (e.g., [75]),

hot gas distribution in galaxy clusters (e.g., [76]), and two-point statistics of density

perturbations (e.g., [77]).
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2.3 Statistics of matter density perturbation

2.3.1 Two point statistics

One needs the statistical method to investigate gravitational growth of density pertur-

bations in the universe with a large data set obtained from photometric and/or spectro-

scopic astronomical surveys. One of the simplest statistics is two point correlation func-

tion. Two point correlation function represents the clustering of astrophysical sources

such as galaxies, which is defined by

ξ(|x1 − x2|) = 〈δg(x1)δg(x2)〉, (2.60)

δg(x) = (n(x) − n̄)/n̄, (2.61)

where n(x) is the number density of objects and n̄ represents the mean number density.

In general, number density of astrophysical objects n(x) can be biased from underlying

matter density ρ(x). We here consider the simplest case that n(x) can be proportional

to ρ(x), i.e. matter overdensity δ is equal to δg.

It is useful to consider two point correlation function in fourier space instead of real

space. In fourier space, density perturbation δ̃(k) is related to δ(x) as follows;

δ(x) =
1

(2π)3

∫
d3k δ̃(k) exp(ik · x), (2.62)

δ̃(k) =
∫

d3x δ(x) exp(−ik · x). (2.63)

Thus, two point correlation between two different wave numbers k and k′ is given by

〈δ̃(k)δ̃(k′)〉 = (2π)3δ(3)
D (k + k′)

∫
d3r ξ(r) exp(−ik · r), (2.64)

where δ(3)
D (r) represents three-dimensional dirac function. The integral in Eq. (2.64) is

called power spectum and often is denoted by P (k). Power spectrum depends on only

the amplitude of k if the universe is isotropic.

The initial condition of power spectrum of matter density is usually assumed to be a

power law function, i.e. Pinit(k) ∝ kns . This originates from early works by Harrison

[78] and Zeldovich [79] in 1970’s (The similar approximation is also found in Ref. [80]).

In their prescription, all perturbations that come within the horizon have the same

amplitude. In this case, ns is found to be unity and the case of ns = 1 is called

Harrison–Zeldovich spectrum. Most of inflation models also predict the power law type

of primordial power spectrum.
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The shape of power spectrum would be affected by growth of primordial density per-

turbation through various physical processes. In the linear regime (i.e. δ * 1), power

spectrum would be modified in an independent way of wave number mode k because

the evolution of δ can be determined by a function of time not k as shown in Eq. (2.35).

Thus, overdensity δ̃(k, a) should be decomposed into a function of k and a as follows;

δ̃(k, a) =
T (k)D(a)
D(ainit)

δ̃(k, ainit), (2.65)

where D(a) is the growth factor given by the solution of Eq. (2.35) and T (k) represents

the evolution of density perturbation at different scales, which is called the transfer

function. Therefore, power spectrum at a given k and a can be written as

P (k, a) =
T 2(k)D2(a)
D2(ainit)

Pinit(k). (2.66)

Note that the above formula should be valid in the linear regime (i.e. δ * 1). In order

to obtain the specific shape of T (k), we need to solve the Boltzmann equation coupled

with General Relativity. Although it is difficult to derive T (k) analytically, one can

obtain T (k) numerically with the Boltzmann equation solver [81] or the fitting formula

shown in Ref. [82].

The normalization of power spectrum is determined by observations. One possible way

is based on the variance of smoothed overdensity σR with comoving scale of R Mpc/h

at present. σR is given by

σ2
R =

∫
d3k

(2π)3
P (k, a = 1)|WR(k)|2 (2.67)

where WR(k) is the window function, which is set to be the top-hat function in practice.

R = 8 Mpc/h is the conventional scale for the normalization of power spectrum. We

can also use another observational result in the early universe, e.g., the power spectrum

of primordial curvature perturbation generated by inflation at some pivot wave number

of k0. In matter domination, power spectrum of curvature perturbation is related to one

of matter density through Poisson equation as follows;

4πk3P (k, a)
(2π)3

= ∆2
R(k0)

(
2c2k2

5H2
0Ωm0

)2

D2(a)T 2(k)
(

k

k0

)−1+ns

(2.68)

∆2
R(k) =

4πk3PR(k)
(2π)3

(2.69)

where PR(k0) represents power spectrum of curvature perturbation which is determined

by observations.
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2.3.2 Mass function and Halo bias

The abundance of massive objects such as clusters of galaxies is one of the powerful tools

to probe cosmology at lower redshift. Let us consider the number of virialized objects

with mass range of M ∼ M + dM which is called mass function. One of the simplest

way to calculate the mass function is Press-Schechter formalism [83]. In Press-Schechter

formalism, virialized objects with mass of M are assumed to form where the density

perturbation in an sphere with radii of R = (3M/4πρ̄)1/3 is larger than the critical value

δc. δc is often considered to be ∼ 1.69 as shown in Eq. (2.54).

Smoothed density perturbation with smoothing scale of R is given by

δR(x) =
∫

d3x′ WR(
∣∣x − x′∣∣)δ(x′), (2.70)

where WR(|x − x′|) represents window function for smoothing. Top-hat window function

is often used in literature. Suppose that smoothed density perturbation follows Gaussian,

the probability of formation of virialized objects with mass of M = 4π/3ρ̄R3 can be

written as

F (M) = 2
∫ ∞

δc

dδR
1√

2πσ2
R

exp
(
−1

2
δ2
R

σ2
R

)
= 2 × 1

2
erfc

(
δc√
2σR

)
, (2.71)

where σR is the variance of smoothed density perturbation given by Eq. (2.67). The

factor of 2 in Eq. (2.71) is the multiplicative correction so that F (0) would be equal to

unity when R → 0. (Note that σR → ∞ with limit of R → 0.) In this thesis, n(M)dM

denotes the number density of virialized objects with mass range of M−M +dM . Thus,

the mass fraction of virialized objects with mass of M can be written as n(M)MdM/ρ̄.

This fraction should be equal to be F (M + dM)− F (M) = |∂F/∂M |M dM . Therefore,

we can evaluate n(M) by equating n(M)MdM/ρ̄ with |∂F/∂M |M dM ;

n(M) = − ρ̄

M

∂F

∂M

= − ρ̄

M

√
2
π

δc

σ2
R

exp
(
−1

2
δ2
c

σ2
R

)
∂σR

∂M

= fPS

(
δc

σR

)
ρ̄

M2

∣∣∣∣∣
d lnσ−1

R

d lnM

∣∣∣∣∣ , (2.72)

fPS(ν) =
√

2
π

νe−ν2/2. (2.73)

Although Press-Schechter formalism relies on various approximations, it can explain

overall feature of mass function found in cosmological N-body simulation. The detailed

shape of mass function have been calibrated with numerical simulations (e.g., [84, 85,
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86]). There are some previous works based on the analytic approach with ellipsoidal

collapse model [87, 88]. In the case of ellipsoidal collapse model, fPS can be replaced

with the following function;

fST(ν) = A

√
2α

π

[
1 +

(
αν2

)−p
]
νe−αν2/2, (2.74)

where α and p represent the parameter of ellipsoidal collapse model and A is the nor-

malization factor. Numerical simulation have been utilized for calibration of these pa-

rameters, which are given by A = 0.322, α = 0.707, and p = 0.3.

Virialized objects such as galaxies and galaxy clusters are biased tracer of underlying

matter distribution. Thus, the clustering of virialized objects would be different from

one of matter density perturbation. The peak-background split formalism [89] give a

simple framework to calculate the clustering of virialized objects at large scale. One can

split underlying density perturbation into long-wavelength mode δ& and short-wavelength

mode δs;

ρ(q) = ρ̄(1 + δ& + δs), (2.75)

where q represents the coordinate in the Lagrangian space. The number density of

virialized object with mass of M at the position of q would be modulated by presence

of the long-wavelength mode of density perturbation. Hence, the simple model of the

number density field of virialized objects is given by a local shift in the density threshold,

i.e. replacing δc with δc−δ&(q) in Eq. (2.72). In this context, the number density contrast

of virialized objects in the Lagrangian space is given by

δh(q|M) =
nh(q|M)

n(M)
− 1, (2.76)

where nh(q|M) is the number density field of objects with mass of M at q and n(M)

represents the mean number density which is given by e.g., Eq. (2.72). By expanding

this equation into Taylor series of δ& in Eq. (2.76), one can relate δh with δ& as follows;

δh(q|M) = bL(M)δ&(q), (2.77)

bL =
1

n(M)

(
∂nh

∂δ&

)

δ!=0

. (2.78)

bL is the large-scale bias of virialized objects in Lagrangian space. In Eulerian space,

one needs to add the correction of the Eulerian space clustering. Therefore, the total

or Eulerian bias is given by b = bL + 1. bL can be calculated once the function form of

mass function is specified. For example, in the case of the functional form in Eq. (2.73),
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bL is given by

bL(M) =
ν2 − 1

δc
, (2.79)

where ν is given by δc/σR(M).
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Weak Gravitational Lensing

3.1 Basic Equation

According to General Relativity, the path of photon from a distant object would be

affected by intervening matter distribution between the object and us. This relativistic

effect is called gravitational lensing and more effective when photon goes through more

massive objects along the line of sight. Photon from every galaxy at a cosmological

distance would experience gravitational lensing effect due to large-scale structure in the

universe. Hence, the image of distant galaxies would be distorted by multiple deflections

of the path of photon. Although the distortion of images is very weak in general, we

can extract the information of matter density distribution along the line of sight with

statistical analysis of image of galaxies.

Let us consider the path of photon from a distant source object in the presence of

inhomogeneous matter distribution. The path of a light ray can be determined by the

null geodesic equation;

d2xµ

dλ2
= −Γµ

αβ

dxα

dλ

dxβ

dλ
, (3.1)

gµν
dxµ

dλ

dxν

dλ
= 0, (3.2)

where Γµ
αβ represents the Christoffel symbol given by a function of metric gµν ,

Γµ
αβ =

gµν

2
(gµα,β + gµβ,α − gαβ,µ) , (3.3)

where ∂gµα/∂xβ = gµα,β and so on. In this chapter, Roman letter (e.g., i, j) is running

from 1 to 3 and Greek character (e.g., α, β) is running from 0 to 3. When gravita-

tional potential Φ is very small, the metric of inhomogeneous expanding universe can be

26



Chapter 3. Weak Gravitational Lensing 27

described as follows;

ds2 = −
(

1 +
2Φ
c2

)
c2dt2 + a2(t)

(
1 − 2Φ

c2

)[
dχ2 + r(χ)2dσ2

]
. (3.4)

We can approximate dσ2 as (dθ1)2 + (dθ2)2 when the deflection angle of interest is

small (this approximation is valid because the typical value of θ is of the order of arc-

minutes for distant galaxies). Suppose that the position of a light ray xi = (θ1, θ2,χ),

the derivative with respect to affine parameter can be written as follows;

d
dλ

=
dχ

dλ

d
dχ

=
dχ

dx0

dx0

dλ

d
dχ

= −P 0

a

d
dχ

, (3.5)

where P 0 = dx0/dλ. Therefore, the transverse components (i = 1, 2) of the null geodesic

equation can be expressed as the differential equation with respect to comoving distance

χ. We can obtain the following equation by expanding Taylor series about θ1, θ2, and

Φ/c2 up to first order in the geodesic equation;

d2(rθi)
dχ2

+ Krθi = − 2
c2

∂Φ
∂(rθi)

. (3.6)

The solution of Eq. (3.6) is given by

βi = θi − 2
c2

∫ χ

0
dχ′∂iΦ(χ′)

r(χ − χ′)
r(χ)

, (3.7)

where βi is the unlensed position of source on sky and ∂i is the derivative with respect

to rθi. Eq. (3.7) is the basic equation in weak gravitational lensing.

When we denote the observed position of a source object as θ and the true position as

β, we can characterize the distortion of image of a source object by the following 2D

matrix:

Aij =
∂βi

∂θj
≡
(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
, (3.8)

where κ is convergence and γ is shear. The component of Aij can be decomposed as

Aij =

(
1 − κ 0

0 1 − κ

)
+

(
−γ1 −γ2

−γ2 +γ1

)
, (3.9)
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where the first part of the right-hand side represents an amplification of the size of the

image and the second part discribes an anisotropic stretching of its shape.

By using Eq. (3.7), we can relate each component of Aij to the second derivative of the

gravitational potential as follows;

Aij = δij − Φij , (3.10)

Φij =
2
c2

∫ χ

0
dχ′g(χ,χ′)∂i∂jΦ(χ′), (3.11)

g(χ,χ′) =
r(χ − χ′)r(χ′)

r(χ)
. (3.12)

We can find 2κ = Φ11 +Φ22 from the above equations. On the other hand, gravitational

potential Φ can be related to matter density perturbation according to Poisson equation;

∆Φ =
3H2

0

2
Ωm0

δ

a
. (3.13)

Therefore, convergence can be expressed as the weighted integral of δ along the line of

sight;

κ =
1
c2

∫ χ

0
dχ′g(χ,χ′)[∆ − ∂2

χ]Φ

=
3
2

(
H0

c

)2

Ωm0

∫ χ

0
dχ′g(χ,χ′)

δ

a
− 1

c2

∫ χ

0
dχ′g(χ,χ′)∂2

χΦ. (3.14)

We can safely neglect the term related to the second derivative with respect to χ when

considering small angle separation [90]. Thus, convergence κ can be written as

κ =
3
2

(
H0

c

)2

Ωm0

∫ χ

0
dχ′g(χ, χ′)

δ

a
. (3.15)

The relation between convergence and shear in fourier space is given by

γ̃(k) = γ̃1(k) + iγ̃2(k)

=
k2

1 − k2
2 + ik1k2

k2
κ̃(k), (3.16)

κ̃(k) = γ̃1(k) cos 2φk + γ̃2(k) sin 2φk, (3.17)

where X̃(k) is the fourier coefficient of X(θ) and k = (k1, k2) = k(cos φk, sinφk).

Inverse fourier transform of Eq. (3.17) provides that (e.g., [91])

κ(θ) = − 1
π

∫
d2θ′Re [D∗(θ − θ′)γ(θ′)] , (3.18)

D(z) =
z2
1 − z2

2 + 2iz1z2

z4
. (3.19)
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One of the most common observables is the angle average of lensing quantities around

some objects like galaxy or galaxy clusters. From Eq. (3.10), we can derive the following

equations by taking a polar coordinate (θ1, θ2) = (θ cos φ, θ sinφ);

κ =
1
2

(
Φθθ +

1
θ
Φθ +

1
θ2

Φφφ

)
, (3.20)

γt = −1
2

(
Φθθ −

1
θ
Φθ −

1
θ2

Φφφ

)
, (3.21)

γ× = ∂θ

(
1
θ
Φφ

)
, (3.22)

where the origin is set to be the center of the object. Here, γt and γ× represents the

tangential and cross component of shear which are defined as

γt = −γ1 cos 2φ − γ2 sin 2φ, (3.23)

γ× = γ1 sin 2φ − γ2 cos 2φ. (3.24)

Then, the average of κ, γt and γ× within an annulus [θ, θ + dθ] is given by

〈κ〉(θ) =
1
2

(
〈Φθθ〉 +

1
θ
〈Φθ〉

)
, (3.25)

〈γt〉(θ) = −1
2

(
〈Φθθ〉 −

1
θ
〈Φθ〉

)
, (3.26)

〈γ×〉(θ) = 0, (3.27)

where 〈X〉(θ) is given by
∫ 2π
0 X(θ, φ)dφ/2π and we use the fact that 〈Φφ〉 = 0. Hence,

for a given point on sky, one can test any systematic effects on cosmic shear measurement

by checking whether 〈γ×〉 = 0 or not. Also, 〈κ〉 and 〈γt〉 are related as follows;

〈γt〉(θ) = −〈κ〉(θ) + κ̄(θ), (3.28)

where κ̄(θ) represents the circler average of convergence defined by

κ̄(θ) =
1

πθ2

∫ θ

0
2πdθ′θ′〈κ〉(θ),

=
1
θ2

∫ θ

0
dθ′∂θ′

(
θ′Φθ′

)
,

=
1
θ
〈Φθ〉. (3.29)
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3.2 Observable

Here, we consider the relationship between the observable and the cosmological signal

in weak lensing measurement.

Weak lensing measurement roughly consists of two methods: measurement of shape of

images and measurement of size and magnitude of images. Gravitational lensing causes

amplification of size and distortion of shape of an image. The size amplification is called

magnification and leads to fluctuation in the size and the magnitude of distant galaxies.

In a magnitude-limited survey, number density of background galaxies is expected to

change by the magnification due to foreground matter density distribution. This mag-

nification effect have been already detected by cross correlation analysis of background

and foreground populations (e.g., [92, 93]) and use of a tight scaling relation between

galaxy’s properties such as apparent size and surface brightness [94]. Nevertheless, at

present, the shape measurement of distant galaxies is more commonly used in weak

gravitational lensing measurement. In the following, we focus on the shape of image of

a distant object in terms of measurement of shear γ [95, 96].

Suppose the observed surface brightness of galaxies f(θ), we can define the center of an

image θ̄i as follows;

θ̄i ≡
∫

d2θ W (θ) θi f(θ)∫
d2θ W (θ) f(θ)

, (3.30)

where W (θ) determines the apparent size of image. Then, the quadruple moment of

image can be evaluated by

Q(obs)
ij ≡

∫
d2θ W (θ)(θi − θ̄i)(θj − θ̄j)f(θ)∫

d2θ W (θ)f(θ)
. (3.31)

The position of observed galaxies would change due to gravitational lensing effect by

foreground matter distribution. When the unlensed position is denoted by β, we can

define the quadruple moment of images on source plane β. The surface brightness on

source plane f (s)(β) should be equal to the observed surface brightness according to

conservation of photon energy;

f(θ) = f (s)(β). (3.32)
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Therefore, the quadruple moment on source plane is given by

Q(s)
ij =

∫
d2β W (β)(βi − β̄i)(βj − β̄j)f (s)(β)∫

d2β W (β)f (s)(β)

=
∫

d2θ det A W (Aθ) Aik(θk − θ̄k) Ajλ(θλ − θ̄λ)f(θ)∫
d2θ det A W (Aθ)f(θ)

= Aik(θ̄)QkλAjλ(θ̄). (3.33)

Here, we define two good measures of ellipticity ε = ε1 + iε2 as

ε1 ≡ Q11 − Q22

Q11 + Q22 + 2
√

Q11Q22 − 2Q2
12

, (3.34)

ε2 ≡ 2Q12

Q11 + Q22 + 2
√

Q11Q22 − 2Q2
12

. (3.35)

This complex parameter ε can be defined in the same way on source plane. Thus, the

relation of ellipticity between source plane and observed plane is given by

ε =
εint + g

1 + g∗εint
, (3.36)

where we use Eq. (3.33) and the above relation is valid for |g| ≤ 1. Complex reduced

shear g is defined by

g ≡ γ1

1 − κ
+ i

γ2

1 − κ
. (3.37)

In the weak lensing regime (i.e. κ, γi * 1), the observed ellipticity can be an estimator

of shear as follows;

ε = γ + εint, (3.38)

where εint represents the intrinsic ellipticity of source galaxies. The current ground-

based observations indicate σint =
√
〈|εint|2〉 , 0.4 (e.g., [97]). This value is much larger

than the expected signal of cosmic shear of each galaxy by a factor of ∼ 10 − 100.

Thus, the statistical analysis of galaxy’s ellipticity is crucial to extract the cosmological

information from the shape measurement of galaxies.
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3.3 Statistics

3.3.1 Two Point Correlation Function

In the presence of the intrinsic ellipticity called shape noise, we need to perform some

statistical analysis of ellipticities of source galaxies in order to use it as cosmological

probe. The conventional statistical quantity is two point correlation function of elliptic-

ity of galaxies. Here, we will summarize the formulation of two point correlation function

of ellipticity of galaxies.

First of all, we will start to consider the convergence power spectrum, i.e. two point

correlation in fourier space. The convergence power specturm contains the information

of the power spectrum of density fluctuation δ because convergence relates to δ through

Eq. (3.15). Although we consider the specific case that all the sources locate at the same

redshift in Eq. (3.15), source galaxies have the distribution of redshift in practice. We

can take into account the effect of redshift distribution of source galaxies on Eq. (3.15)

as follows;

κ(θ) =
∫ χH

0
dχ q(χ)δ(χ, r(χ)θ), (3.39)

q(χ) ≡ 3
2

(
H0

c

)2

Ωm0WGL(χ)
r(χ)
a(χ)

, (3.40)

WGL(χ) =
∫ χH

χ
dχ′G(χ′)

r(χ′ − χ)
r(χ′)

, (3.41)

where G(χ) represents the redshift distribution of source galaxies and χH is the comoving

distance up to z → ∞. Let us calculate the convergence power spectrum with Eq. (3.39).

The two point correlation function of convergence is defined by

〈κ(θ)κ(θ′)〉 =
∫

dχq(χ)
∫

dχ′q(χ′)〈δ(χ, r(χ)θ)δ(χ′, r(χ′)θ′)〉. (3.42)

The fourier transform of the above equation provides the relation between the conver-

gence power spectrum and matter density power spectrum. We can obtain the following

equation by fourier transforming of δ;

〈κ(θ)κ(θ′)〉 =
∫

dχ q(χ)
∫

dχ′ q(χ′)
∫

d3k

(2π)3

∫
d3k′

(2π)3
〈δ(χ, k)δ(χ′, k′)〉

× exp
[
−ir(χ)k⊥ · θ − ir(χ′)k′

⊥ · θ′ − ik‖χ − ik′
‖χ

′
]
, (3.43)

where k⊥ and k‖ represent the wave vector in the perpendicular and the parallel direction

on the line of sight, respectively. Assuming that the comoving distance r(χ) does not

change significantly at angular scale of interest, i.e. r(χ′) , r(χ), q(χ′) = q(χ), we can
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calculate the two point correlation of convergence as

〈κ(θ)κ(θ′)〉 =
∫

dχ q2(χ)
∫

d2k⊥
(2π)2

P (χ, k⊥) exp
[
−ir(χ)k⊥ · (θ − θ′)

]
. (3.44)

The power spectrum in two dimensional space is expressed as

Pκ(') =
∫

d2θ〈κ(θ)κ(θ′)〉ei%·(θ−θ′
). (3.45)

Therefore, the convergence power spectrum is given by

Pκ(') =
∫

dχ
q2(χ)
r2(χ)

P

(
χ,

'

r(χ)

)
. (3.46)

We can also calculate the power spectrum of γi by using Eq. (3.11). Here, we generalize

Eq. (3.11) in the same way as Eq. (3.39);

Φij(θ) =
∫ χH

0
dχWΦ(χ)∂i∂jΦ(χ′), (3.47)

WΦ(χ) =
2
c2

r(χ)
∫ χH

χ
dχ′ G(χ′)

r(χ − χ′)r(χ′)
r(χ)

. (3.48)

Then, the power spectrum of Φij is defined by

〈Φij(%)Φlm(%′)〉 = (2π)2δ(2)(% + %′)PΦ
ijlm(') (3.49)

with the two-dimensional power spectrum of

PΦ
ijlm(') =

∫ χH

0
dχ

W 2
Φ

r2

'i'j'l'm

r4
PΦ(k = '/r), (3.50)

where PΦ(k) represents the power spectrum of gravitational potential. We can easily

obtain the power spectrum of lensing quantities κ and γi in terms of PΦ(k) as follows;

Pκ(') =
'4

4

∫ χH

0
dχ

W 2
Φ

r6
PΦ(k = '/r), (3.51)

Pγ1('1, '2) = Pκ(') cos2(2φ&), (3.52)

Pγ2('1, '2) = Pκ(') sin2(2φ&), (3.53)
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where '1 = ' cos(φ&) and '2 = ' sin(φ&). Therefore, the two point correlation function of

γi is given by

〈γ1(0)γ1(θ)〉 =
1

16π

∫ ∞

0
d' '5

∫ χH

0
dχ

W 2
Φ

r6
PΦ(k = '/r)

× [J0('θ) + J4('θ) cos(4φ)] , (3.54)

〈γ2(0)γ2(θ)〉 =
1

16π

∫ ∞

0
d' '5

∫ χH

0
dχ

W 2
Φ

r6
PΦ(k = '/r)

× [J0('θ) − J4('θ) cos(4φ)] , (3.55)

〈γ1(0)γ2(θ)〉 =
1

16π

∫ ∞

0
d' '5

∫ χH

0
dχ

W 2
Φ

r6
PΦ(k = '/r)

× [J4('θ) sin(4φ)] , (3.56)

where J0(x) (J4(x)) is the zero-th (fourth) bessel function and θ1 = θ cos φ and θ2 =

θ sinφ.

Then, we can construct the correlation functions of shear which is defined the tangential

and cross component of γ = γ1 + iγ2 as

γt ≡ −Re(γe−2iφ), (3.57)

γ× ≡ −Im(γe−2iφ). (3.58)

Finally, we can obtain the linear combination of the cross-correlation function of γt and

γ× as follows [98];

ξ±(θ) ≡ 〈γt(0)γt(θ)〉± 〈γ×(0)γ×(θ)〉, (3.59)

=
1
2π

∫
d' 'Pκ(')J0,4('θ), (3.60)

where the Bessel function J0 (J4) corresponds to the correlation function of ξ+ (ξ−).

Eq. (3.59) can relate to the convergence power spectrum (i.e. Eq. (3.46)) and is a

function of separation angle only. Thus, ξ± is easily measurable in practice and enables

us to compare with theoretical prediction for a given cosmological model.

Ref. [99] shows that the two point correlation functions are estimated in an unbiased

way by averaging over pairs of galaxies. In practice, the estimator ξ̂± is calculated by

ξ̂±(θ) =
1

Np(θ)

∑

ij

wiwj (εt(θi)εt(θj) ± ε×(θi)ε×(θj))∆θ(θi − θj), (3.61)

Np(θ) =
∑

ij

wiwj∆θ(θi − θj), (3.62)

where wi is weight related to shape measurement, ∆θ(φ) = 1 for θ−∆θ/2 ≤ φ ≤ θ−∆θ/2

and zero otherwise, and εt,×(θi) is the tangential and cross component of ith source
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galaxy’s ellipticity. The expectation value of this estimator is evaluated by an ensemble

average of the shear field γ. According to Eq. (3.38), an ensemble average 〈εtiεtj±ε×iε×j〉
is given by

〈εtiεtj ± ε×iε×j〉 = σ2
intδij + ξ±(θ), (3.63)

where we here assume the source ellipticity to be oriented randomly. Thus, we can

see that this estimator is unbiased, i.e. 〈ξ̂±(θ)〉 = ξ±(θ). Then, we can calculate the

covariance of ξ̂±, which is defined by

Cov(ξ̂±, θ1, ξ̂±, θ2) ≡ 〈(ξ̂±(θ1) − ξ±(θ1))(ξ̂±(θ2) − ξ±(θ2))〉. (3.64)

In the calculation of Eq. (3.64), the four point correlation function of ellipticity appears.

The four point correlation function of ellipticity can be given by

〈εαiεβjεµkεν&〉 = 〈γαiγβjγµkγν&〉 + 〈εint,αiεint,βjεint,µkεint,ν&〉 +
σ2

int

2
(
δj&δβν〈γαiγµk〉

+δjkδβµ〈γαiγν&〉 + δi&δαν〈γβjγµk〉 + δikδαµ〈γβjγν&〉
)
, (3.65)

where the above equation is valid for i += j and k += ' and Greek letters represent 1 or 2.

It is difficult to calculate the four point correlation of the shear field without numerical

simulations at present [100]. Here, assuming that the shear field and the source ellipticity

are Gaussian, we can write the four point correlation as the product of the two point

function as follows;

〈εαiεβjεµkεν&〉 = 〈γαiγβj〉〈γµkγν&〉 + 〈γαiγµk〉〈γβjγν&〉 + 〈γαiγν&〉〈γβjγµk〉

+
(

σ2
int

2

)2

(δikδj&δαµδβν + δi&δjkδανδβµ) +
σ2

int

2
(
δj&δβν〈γαiγµk〉

+ δjkδβµ〈γαiγν&〉 + δi&δαν〈γβjγµk〉 + δikδαµ〈γβjγν&〉
)
. (3.66)

From Eq. (3.66) and the fact that

εtiεtj + ε×iε×j = ε1iε1j + ε2iε2j , (3.67)

εtiεtj − ε×iε×j = (ε1iε1j − ε2iε2j) cos 4φij + (ε1iε1j + ε2iε2j) sin 4φij , (3.68)
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where φij is the polar angle of θi − θj , we can express the covariance of ξ̂± as follows;

Cov(ξ̂+, θ1, ξ̂+, θ2) =
1

Np(θ1)Np(θ2)

[
σ4

intδθ1θ2

∑

ij

w2
i w

2
j ∆θ1(ij)

+ 2σ2
int

∑

ijk

w2
i wjwk∆θ1(ij)∆θ2(ik)ξ+(jk)

+
∑

ijk&

wiwjwkw&∆θ1(ij)∆θ2(k')

×
(
ξ+(i')ξ+(jk) + cos [4(φi& − φjk)] ξ−(i')ξ−(jk)

)]
, (3.69)

Cov(ξ̂−, θ1, ξ̂−, θ2) =
1

Np(θ1)Np(θ2)

[
σ4

intδθ1θ2

∑

ij

w2
i w

2
j ∆θ1(ij)

+ 2σ2
int

∑

ijk

w2
i wjwk∆θ1(ij)∆θ2(ik)ξ+(jk) cos [4(φij − φik)]

+
∑

ijk&

wiwjwkw&∆θ1(ij)∆θ2(k')

×
(
cos [4(φij − φi& − φjk + φk&)] ξ−(i')ξ−(jk)

+ cos [4(φij − φk&)] ξ+(i')ξ+(jk)
)]

, (3.70)

Cov(ξ̂+, θ1, ξ̂−, θ2) =
1

Np(θ1)Np(θ2)

[
2σ2

int

∑

ijk

w2
i wjwk∆θ1(ij)∆θ2(ik)ξ−(jk) cos [4(φik − φjk)]

+ 2
∑

ijk&

wiwjwkw&∆θ1(ij)∆θ2(k') cos [4(φi& − φk&)] ξ−(i')ξ+(jk)
]
, (3.71)

where we use the result of Eqs. (3.54), (3.55), and (3.56).

3.3.2 Lensing Mass Reconstruction

Reconstruction of mass density (or convergence) field from observed ellipticity of galaxies

is first proposed in Ref. [101] (KS92). The primary motivation of the reconstruction of

mass density in KS92 is to investigate mass distribution in clusters and the method

proposed in KS92 have been applied to real data set by Ref. [102]. However, Seitz

and Schneider have pointed out that the reconstruction algorithm in KS92 would be

problematic in practice because of the boundary artifacts on finite sky coverage [91].

They then have proposed the modification of the method in KS92 by taking into account

the finite field in observation.

On the other hand, instead of the reconstruction of convergence field itself, Ref. [103]

has proposed the statistical analysis based on the smoothed convergence field with some

smoothing function for the purpose of detection of dark matter concentration. The

statistics of the smoothed convergence field are currently known as the powerful tool to

measure the abundance of dark matter haloes (e.g., [104, 105, 106]) and the higher-order
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moments of underlying dark matter field (e.g., [107, 108]). In the following, we focus on

the smoothed convergence field as a cosmological probe.

Let us first define the smoothed lensing convergence field:

K(θ) =
∫

d2φ κ(θ − φ)U(φ), (3.72)

where U is the filter function to be specified below. We can calculate the same quantity

by smoothing the shear field γ as

K(θ) =
∫

d2φ γt(φ : θ)Qt(φ), (3.73)

where γt is the tangential component of the shear at position φ relative to the point θ.

The filter function for the shear field Qt is related to U by

Qt(θ) =
∫ θ

0
dθ′ θ′U(θ′) − U(θ). (3.74)

We consider Qt to be defined with a finite extent. In this case, one finds

U(θ) = 2
∫ θo

θ
dθ′

Qt(θ′)
θ′

− Qt(θ), (3.75)

where θo is the outer boundary of the filter function.

In this thesis, we consider the truncated Gaussian filter (for U) as

U(θ) =
1

πθ2
G

exp
(
− θ2

θ2
G

)
− 1

πθ2
o

(
1 − exp

(
− θ2

o

θ2
G

))
, (3.76)

Qt(θ) =
1

πθ2

[
1 −

(
1 +

θ2

θ2
G

)
exp

(
− θ2

θ2
G

)]
, (3.77)

for θ ≤ θo and U = Qt = 0 elsewhere. Throughout this thesis, we adopt θG = 1 arcmin

and θo = 15 arcmin. Note that this choice of θG is considered to be an optimal smoothing

scale for the detection of massive galaxy clusters using weak-lensing for source redshift

of zsource = 1.0 [58].

It is important to use appropriately the weight associated with shape measurement when

making smoothed convergence maps. In practice, we can estimate K by generalizing

Eq. (3.73):

K(θi) =
∑

j Qt(φj)wjεt(φj : θi)∑
j Qt(φj)wj

, (3.78)

where the summation in Eq. (3.78) is taken over all the source galaxies that are located

within θo from ith pixel.
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3.3.3 Minkowski Functionals

In 1970’s–1980’s, there has been a debate about the nature of the topology of large

scale structure in the universe. At that time, there were two competing models: the

hierarchical clustering model [109] and the cell structure model [110]. The former model

appears in a cold dark matter (CDM) scenario, i.e. high-density regions would be seen

as isolated clumps and low-density regions are connected. The latter model predicts that

the largest structure first forms and then fragment into smaller objects. The cell struc-

ture model is so-called “top-down” type model of structure formation in the universe.

In order to examine the connectedness of the high- and the low-density regions in the

universe, Ref. [111] has proposed a measure of topology by using of a density contour of

galaxy distribution and they have found that both the high- and low-density region are

connected, which can be explained naturally by the initial Gaussian condition in the

inflationary models. The more qualitative studies in measuring the topology of galaxy

distribution have been presented in, e.g., Refs. [112, 113, 114]. In particular, Gott et al.

(1989) [114] have applied their developed technique of measuring of topology to real data

set and they have found that the CDM model give a good fit to the observed measure

of the topology of galaxy distribution.

On the other hand, the measure of two dimensional topology has been initiated in e.g.,

Refs. [115, 116, 117]. Coles (1988) [115] has studied the statistical geometry of the

two-dimensional random field in order to examine the conventional assumption that the

primordial density fluctuations are a Gaussian random field. This interesting idea has

been applied to the current data of comic microwave background [118, 119] and the

topological analysis on sky can be a powerful probe to constrain on non-Gaussianity in

underlying random field.

Minkowski functionals (MFs) are among the most useful statistics to extract non-

Gaussian information from a two-dimensional or three-dimensional field. MFs are mor-

phological statistics for some smoothed random field above a certain threshold. In

general, for a given D-dimensional smoothed field SD, one can calculate D + 1 MFs

Vi. On S2, one can thus define 2+1 MFs V0, V1, and V2. For a given threshold, V0,

V1, and V2 describe the fraction of area, the total boundary length of contours, and the

integral of the geodesic curvature Kg along the contours, respectively. MFs are defined,
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for threshold ν, as

V0(ν) ≡ 1
4π

∫

Qν

dS, (3.79)

V1(ν) ≡ 1
4π

∫

∂Qν

1
4
d', (3.80)

V2(ν) ≡ 1
4π

∫

∂Qν

1
2π

Kgd', (3.81)

where Qν and ∂Qν represent the excursion set and the boundary of the excursion set

for a smoothed field u(θ). They are given by

Qν = {θ |u(θ) > ν}, (3.82)

∂Qν = {θ |u(θ) = ν}. (3.83)

Here, geodesic curvature is defined as

Kg ≡ |∇ζ̇ ζ̇|, (3.84)

where ζ̇ is the tangent vector along the contour curve ζ and ∇ζ̇ represents the covariant

derivative along the curve. Note that V2 equals to the genus statistic in a two-dimensional

space as found in e.g., Ref. [120]. The genus statistic has been used as the measure

of topology in the three-dimensional galaxy distribution [112, 113, 114] and the two-

dimensional anisotropy of cosmic microwave background [115]. The genus statistic G2(ν)

in a two-dimensional space is defined by

G2(ν) =
[
(the number of contours surrounding regions higher than the threshold value ν)

− (the number of contours surrounding regions lower than the threshold value ν)

]
, (3.85)

per unit area of the surface. We summarize the schematic picture of MFs for two-

dimensional random field in Figure 3.1.

For a two-dimensional Gaussian random field, we can calculate the expectation values

for MFs analytically [121];

V0(ν) =
1
2

[
1 − erf

(
ν − µ

σ0

)]
, (3.86)

V1(ν) =
1

8
√

2
σ1

σ0
exp

(
−(ν − µ)2

σ2
0

)
, (3.87)

V2(ν) =
ν − µ

2(2π)3/2

σ2
1

σ3
0

exp
(
−(ν − µ)2

σ2
0

)
, (3.88)

where µ = 〈u〉, σ2
0 = 〈u2〉 − µ2, and σ2

1 = 〈|∇u|2〉.
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Figure 3.1: The schematic picture of Minkowski functionals (MFs). The upper
panels show each MF for a given threshold. The blue, yellow and red line represent
lower, medium and higher threshold, respectively. The lower panels show that three
examples of the excursion sets on the hypothetical two-dimensional random field. In
lower panels, white region shows area with a pixel value above a threshold and threshold

increases from left to right.

In general, the expectation values for MFs can be expressed as [120]

Vk(ν) =
1

(2π)(k+1)/2

ω2

ω2−kωk

(
σ1√
2σ0

)k

e−x2/2vk(x) (3.89)

ωk =
πk/2

Γ(k/2 + 1)
, (3.90)

where x = (ν−µ)/σ0 and ωk represents the volume of the unit ball in the k-dimensioanl

space, thus ω0 = 1,ω1 = 2, and ω2 = π. vk in a general random field can be obtained by

the cumulant expansion theorem of the multiplicative probability function of the series

of spatial derivatives of u [120]:

vk(x) = v(0)
k (x) + v(1)

k (x)σ0 + v(2)
k (x)σ2

0 + · · · , (3.91)

where v(0)
k = Hk−1 and Hk is the k-th Hermite polynomial. Here, v(1)

k is given by

v(1)
k (x) =

S

6
Hk+2(x) − kSI

4
Hk(x) − k(k − 1)SII

4
Hk−2(x), (3.92)
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where S, SI and SII are defined by

S =
〈F 3〉
σ4

0

, (3.93)

SI =
〈F 2∇2F 〉

σ2
0σ

2
1

, (3.94)

SII =
2〈|∇F |2∇2F 〉

σ4
1

, (3.95)

where F = (u−µ)/σ0. From Eq. (3.92), one can expect that MFs contain the information

of higher-order moments of an underlying random field.

Ref. [122] constructed the estimator of MFs in pixelated maps as follows;

Vi(F0) =
1

Npix

Npix∑

j=1

Ii(F0, θj), (3.96)

I0(F0, θj) = Θ(F − F0), (3.97)

I1(F0, θj) =
1
4
(δF0)−1 (Θ(F − F0 + δF0/2) − Θ(F − F0 − δF0/2))

×
√

F 2
x + F 2

y , (3.98)

I2(F0, θj) =
1
2π

(δF0)−1 (Θ(F − F0 + δF0/2) − Θ(F − F0 − δF0/2))

×
2FxFyFxy − F 2

xFyy − F 2
y Fxx

F 2
x + F 2

y
, (3.99)

where Npix is the number of pixels on the map and Fx = (∂F/∂θx)θx=θx,j and Fx =

(∂F/∂θy)θy=θy,j .

There are several previous studies on MFs of weak gravitational lensing. Matsubara

and Jain (2001) [123] and Sato et al. (2001) [124] studied Ωm0-dependence of weak

lensing MFs. While these studies mainly focus on the relatively weak non-Gaussian

information of lensing MFs, Taruya et al. (2002) [125] have considered the highly non-

Gaussian information and constructed the phenomenological model of lensing MFs based

on numerical simulations. More recently, Kratochvil et al. (2012) [126] showed that the

lensing MFs contain significant cosmological information, beyond the power-spectrum,

whereas Ref. [127] showed weak lensing MFs can be used to constrain the statistical

properties of the primordial density fluctuations.

According to these works, lensing MFs is receiving renewed attention as a cosmological

probe in upcoming galaxy imaging surveys. However, cosmic shear field or convergence

field show highly non-Gaussian feature due to the nature of non-linear gravitational

growth of matter density fluctuations. Thus, it is difficult to construct the theoretical
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template of lensing MFs by the analytic approach. The simplest but powerful method-

ology is to utilize a large set of mock weak lensing catalogs which are taken into account

non-linearity due to gravitational growth and observational effects (e.g., intrinsic ellip-

ticity of sources and finite sky coverage, etc.) simultaneously. In this thesis, we try to

construct the theoretical template of lensing MFs with mock galaxy lensing catalogs and

examine the utility and the applicability of lensing MFs as a cosmological probe.

3.4 Numerical Simulation of Weak Lensing

Here, we summarize the algorithm to simulate weak lensing effects of distant source

objects with cosmological N -body simulations.

We first run a number of cosmological N -body simulations to generate a three-dimensional

matter density field. We use the parallel Tree-Particle Mesh code Gadget2 [128]. We

generate the initial conditions using a parallel code developed by Refs. [129, 130], which

employ the second-order Lagrangian perturbation theory, e.g., [131]. The initial red-

shift is set to zinit = 50, where we compute the linear matter transfer function using

CAMB [81]. Our fiducial cosmology adopts the following parameters: matter density

Ωm0 = 0.279, dark energy density ΩΛ0 = 0.721, the amplitude of curvature fluctuations

As = 2.41 × 10−9 at the pivot scale k = 0.002Mpc−1, the parameter of the equation

of state of dark energy w0 = −1, Hubble parameter h = 0.700 and the scalar spectral

index ns = 0.972. These parameters are consistent with the WMAP nine-year results

[19]. To investigate the degeneracy of the cosmological parameters in lensing statistics,

we also run the same set of simulations but with slightly different Ωm0, w0 and As. The

simulation parameters are summarize in Table 3.1.

For ray-tracing simulations of gravitational lensing, we generate light-cone outputs us-

ing multiple simulation boxes in the following manner. Our small- and large-volume

simulations are placed to cover the past light-cone of a hypothetical observer with some

angular extent, similarly to the methods in Refs. [132, 133].

All the quantities associated with weak lensing effects can be determined by the lens

equation as shown in Eq. (3.7). According to the lens equation, the deflection angle can

be described by the weighted integral of gravitational potential along a line of sight. In

the standard multi-plane algorithm, the integral found in the lens equation is devided

into N intervals with the separated comoving distance of ∆χ. The surface matter density

on lens planes is obtained by the projection of the three-dimensional matter density field

realized in N -body simulations. Hence, the surface matter density on p-th lens plane
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Σp(θ) is calculated by

Σp(θ) =
∫ χp

χp−1

dχ δ(χθ,χ), (3.100)

where δ = ρ/ρ̄ − 1, χp is the comoving distance of p-th lens plane and θ represents the

angular coordinate on sky. According to Poisson equation, Σp(θ) can be related to the

two-dimensional gravitational potential as follows;

∇2Φp(θ) =
3ΩmH2

0

c2
Σp(θ), (3.101)

where Φp(θ) is the gravitational potential on p-th lens plane. One can obtain the

first and second derivatives of Φp(θ) under the periodic boundary condition by fourier-

transforming Eq. (3.101). The derivatives of Φp(θ) is used to evaluate the distortion

tensor and the deflection angle on n-th lens plane;

θn = θ1 −
n−1∑

p=1

r(χn − χp)
a(χp)r(χn)

∇⊥Φp (3.102)

An = I −
n−1∑

p=1

r(χp)r(χn − χp)
a(χp)r(χn)

Up, (3.103)

Up
ij =

(
Φp

,11 Φp
,12

Φp
,12 Φp

,22

)
(3.104)

Φp
,ij ≡ ∂2Φp

∂xi∂xj
, (3.105)

where xi = χθi and An and θn represent the distortion tensor and the deflection angle

on n-th lens plane, respectively. In practice, we evaluate the matter density field in

N -body simulations with the triangular shaped cloud (TSC) assignment scheme [134].

Then, the surface matter density is obtained as follows in Eq. (3.100) and the derivatives

of the gravitational potential on each plane is provided by Eq. (3.101). In these steps,

the pixelation on the surface matter density maps is required. Therefore, we have the

following numerical parameters in weak lensing simulations: the number of particles in

N -body simulation Nsim, the box size of N -body simulation on a side Lbox, an angular

extent in lensing simulations θsim, the comoving width in multi-plane algorithm ∆χ,

and the number of pixels in the surface matter density maps on each lens plane Npix.

First of all, θsim can be determined by the request how large sky coverage is needed.

In this thesis, θsim is set to be 10 deg, which is large enough to consider the case of

the current lensing data set. Nsim, Lbox, Npix and ∆χ are associated with generating

the surface mass density on each lens plane. Let us consider the simple case: Lbox is

chosen so that they are multiples of ∆χ. In this case, Ref. [133] tested some cases and
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found that Nsim/(Lbox/∆χ) ∼ O(1) × Npix is optimal in considering the case of source

redshift of zsource ∼ 1 and the spatial resolution of ∼ 0.1 arcmin. In order to take into

account the objects with mass of ∼ 1014 M"h−1 appropriately in simulations, the mass

of particle in N -body simulation should be set to an order of ∼ 1011 M"h−1 at least.

From these conditions, we choose that Nsim = 5123, Lbox = 480 or 960 h−1Mpc (to

cover 10× 10 deg2, from z = 0 to 3), ∆χ = 120 h−1Mpc, and Npix = 81922. The similar

set-up has been tested in e.g., Ref. [38]. The configuration of our simulation is found

in Figure 3.2. Note that we reduce the number of pixel on a side by a factor of 2 in

the step of Eq. (3.102) and Eq. (3.103). This is because the path of each ray does not

necessarily pass through the pixel on each lens plane due to the deflection of path of

each ray. Therefore, the angular grid size of our maps is 10 deg/4096 ∼ 0.15 arcmin

and 40962 rays are traced backward from the observer point. For each ray, we first

computed ray positions on all lens planes in an iterative manner, using the lens equation

Eq. (3.102). The derivatives of gravitational potentials on a ray position are linearly

interpolated from four nearest grids on the pre-computed maps with 81922 pixels. We

use outputs from independent realizations when generating the light-cone outputs. We

also randomly shift the simulation boxes in order to avoid the same structure appearing

multiple times along a line of sight. In total, 40 independent shear maps are generated

from four N -body simulations for each cosmological model.



Chapter 3. Weak Gravitational Lensing 45

Figure 3.2: The configuration of our ray-tracing simulation. Each red line shows a
boundary of N-body simulations. We avoid the overlap of N-body boxes along the line

of sight with use of a part of box.

Ωm0 w0 As × 109 σ8 # of N -body sims # of maps
Fiducial 0.279 -1.0 2.41 0.823 4 40

High Ωm0 0.304 -1.0 2.41 0.878 4 40
Low Ωm0 0.254 -1.0 2.41 0.763 4 40
High w0 0.279 -0.8 2.41 0.768 4 40
Low w0 0.279 -1.2 2.41 0.862 4 40
High As 0.279 -1.0 2.51 0.840 4 40
Low As 0.279 -1.0 2.31 0.806 4 40

Table 3.1: Cosmological parameters for our N -body simulations used in this thesis.
We also show the resulting σ8. For each parameter set, we run 4 N -body realizations
and generate 40 weak-lensing shear maps. We utilize the set of simulations shown here

to generate the mock weak lensing catalog for CFHTLenS data.



Chapter 4

Weak Lensing Morphological

Analysis

Here, we will study the true utility and applicability of weak lensing Minkowski func-

tionals (MFs) in terms of statistical tool for precision cosmology. The previous studies

on weak lensing MFs shown in Section. 3.3.3 often consider idealized cases. However,

there are many observational effects in real weak lensing measurements, for example,

imperfect shape measurement due to seeing and optical distortion, selection effects of

galaxies, uncertain redshift distribution of galaxies due to photometric redshift error

(e.g., [135]), noise-rectification biases (e.g., [136, 137, 138]), and complicated survey ge-

ometry due to masked regions. Refs. [44, 139] have studied some of these effects on

cosmic shear power spectrum analysis. A comprehensive study of observational effects

on lensing MFs is also necessary for purpose of making the best use of the data from

upcoming wide cosmological surveys.

4.1 Impact of Masked Region

First, we investigate the impact of masked regions on the measurement of weak lensing

MFs. Masking effect on sky could be one of the major systematics because MFs are

defined by morphological quantities such as contours. We use a large set of numeri-

cal simulations of weak lensing to examine the masking effect. We then compare the

measured MFs from real data obtained from a Subaru survey with the results of our

ray-tracing simulations that include the effect of masked regions as same as the observed

sky.

46
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4.1.1 Estimation of Lensing MFs from Cosmic Shear Data

The smoothed lensing map (i.e. K) would be constructed from the observed ellipticity of

source galaxies by the method in Section. 3.3.2. In the measurement of lensing MFs, we

convert a weak lensing field K to x = (K−〈K〉)/σ0 where σ0 is the standard deviation of

K. In binning the thresholds, we set ∆x = 0.2 from x = −5 to x = 5. We then follows

the method shown in Section. 3.3.3 in order to estimate the lensing MFs from K field.

The above normalization can affect the MFs through the variance of σ0 for each field.

In light of this problem, there is an alternative definition of the threshold suggested in

Ref. [112] as follows:

f = (2π)−1/2
∫ ∞

νV

e−t2/2dt, (4.1)

where νV is a density contour with a certain threshold and f represents the fraction of

volume. We can apparently avoid the normalization issue by using νV instead of x for

measurement of MFs. However, even with νV , it is difficult to eliminate the effect of the

variance between multiple fields because we have to use the f − νV mapping for each

field or for each sample, rather than by using some global quantity calculated for all the

samples. Here, we have tested the effect of the sample variance of σ0 on MFs against

νV and x with 1000 Gaussian simulations1.

Figure 4.1 shows the comparison of the mean of V2 over our 1000 Gaussian maps with

the Gaussian prediction given by Eq. (3.88). For the Gaussian prediction, we evaluate

the quantities 〈K〉, σ0 and σ1 by averaging over 1000 realizations; these quantities serve

as “global” values. The error bars in each panel represent the variance of V2 around the

global mean. The three top panels show the different cases that the MFs are plotted as a

function of, from left to right, K−〈K〉, (K−〈K〉)/σ0, and νV , respectively. The apparent

variation of the MF in the middle and right panels is partly caused by the variance of

the measured σ0 for each field. The lower panels represent the difference between the

mean V2 and the Gaussian prediction. The difference should be compared with the field

variance, namely error bars. We find that the difference from the Gaussian prediction

is larger than the field variance when the MFs are evaluated with normalization as

(K − 〈K〉)/σ0 or by using νV associated with volume fraction (see, Eq. (4.1)). As a

matter of course, the Gaussian prediction describes the mean MFs well as long as the

MFs are evaluated without normalization of K by σ0 (left panel). However, we cannot

use unnormalized weak lensing field K on morphological analysis when we compare

1 We generate the Gaussian convergence maps for ΛCDM cosmology. In Gaussian simulation, we use
the fitting formula of Ref. [140] to calculate the matter power spectrum P (k; z). We then obtain the
convergence power spectrum by integrating the matter power spectrum over redshift z with a weighting
function for the source redshift zsource = 1. Each map is defined on 20482 grid points with an angular
grid size of 0.15 arcmin.
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theoretical predictions with the observation of a limited area (with masks). This is

because theoretical predictions for MFs are always given as a function of some normalized

threshold. This means that one needs either to de-normalize the theoretical prediction

by using an appropriate variance for the observed field, or to normalize the observed K in

some way. In other words, field-to-field variance of the weak lensing MFs is originated

partly from the variance σ0. Thus, in cosmological parameter estimation with such

measurement, one should take into account the field variance of σ0. In the rest of this

thesis, we simply use the normalized field x = (K − 〈K〉)/σ0 for estimation of MFs.

When estimating lensing MFs on a K map with mask, we discard the pixels within 2θG

from the boundaries of mask, because K data on the vicinity of the mask boundaries

are affected by the lack of shear data.

4.1.2 Data

4.1.2.1 Suprime-Cam

In this section, we summarize i′-band data from the Subaru/Suprime-Cam data archive

SMOKA1. The observation have been performed in the contiguous area with at least

four pointings. In the observation, the exposure time for each pointing is longer than

1800 sec and the seeing full width at half-maximum (FWHM) is better than 0.65 arcsec.

The same data are found in Table A1 in Ref. [141], denoted to “COSMOS”.

In this thesis, we use the data only within a 15 arcmin radius from the field center of

Suprime-Cam, because the elongation of point spread function (PSF) becomes signifi-

cant outside of the central area, which makes PSF correction inaccurate in the shape

measurement. Then we performed mosaic stacking with SCAMP [142] and SWarp [143].

We use SExtractor [144] and hfindpeaks of the software IMCAT software [145], and

then we merged the two catalogs by matching positions of the detected objects with a

tolerance of 1 arcsec.

For weak lensing analysis, we adopt the KSB method (e.g., [145, 146, 147]). We selected

stars in the standard way by finding the appropriate branch in the magnitude half-light

radius (rh) plane, along with the detection significance cut S/N > 10. Number density

of stars is ∼ 1 arcmin−2. We then select the galaxy images by the following three

conditions; (i) the detection significance of S/N > 3 and ν > 10 where ν is an estimate

of the peak significance given by hfindpeaks, (ii) rh is larger than the stellar branch,

and (iii) the AB magnitude is in the range of 22 < i′ < 25 (where MAG_AUTO given by

SExtractor is used for the magnitude and slightly different from [141]). The resulting

1http://smoka.nao.ac.jp/
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Figure 4.1: The effect of sample variance of field variance σ0 on weak lensing MFs
(taken from [1]). The three panels show the comparison of the mean V2 over 1000 maps
with the Gaussian prediction of Eq. (3.88) for three different estimations of V2. In the
left panel, V2 is calculated without normalization, while that in the middle panel is
calculated for each K field normalized by its variance and that in the right panel is
calculated for each νV . The gray points in the lower panels represent the differences
between the mean V2 and the Gaussian prediction. The differences should be compared
with the variance of V2 estimated from our 1000 gaussian maps (black error bars), that

is the standard deviation of V2 divided by
√

1000.

number density of galaxies ngal is then 15.8 arcmin−2. We measured the shapes of the

objects with getshapes in IMCAT, and corrected for the PSF with the KSB method. The

rms of the galaxy ellipticities after the PSF correction is found to be 0.314.

We next define data and masked regions by the observed positions of the source galaxies

as follows. We consider the pixelated map on the observation area with rectangular

pixels of width 0.15 arcmin. For each pixel, we check whether there is a galaxy within

θD = 0.4 arcmin from the pixel center or not. We set the value of θD so that mean

number of galaxies within πθ2
D would be equivalent to ∼ 3σ confidence levels of poisson

distribution (i.e. ngalπθ2
D/
√

ngalπθ2
D , 3). If we can find no galaxies, then the pixel is
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Figure 4.2: The lensing field K reconstructed from the Subaru Suprime-Cam data.
The ellipticity of 102342 source galaxies are used for reconstruction of the convergence
K. The masked survey area (black portion) is found to be 0.34 deg2. The color bar

represents the value of (K − 〈K〉)/σ0.

marked as a mask pixel. After performing the procedure for all the pixels, the marked

pixels are masked regions, whereas the other pixels are data regions. However, we do

not mask “isolated” masked pixels whose surrounding pixels are all data pixels.

We computed weak lensing convergence field K from the galaxy ellipticity data as in

Eq. (3.73) on regular grids with a grid spacing of 0.15 arcmin. Figure 4.2 shows the

resulting mass map and masked regions. The masked regions cover 0.34 deg2 in total.

The area on unmasked regions are 1.79 deg2. Note that we use only 0.575 deg2 in

unmasked regions for lensing MFs analysis because we remove the pixels within 2θG = 2

arcmin from the mask boundaries.

4.1.2.2 Ray-tracing Simulation from Sato et al. (2009)

In order to study the impact of masked regions on lensing MFs, we use 1000 weak

gravitational lensing ray-tracing simulations from Ref. [38]2. The ray-tracing simulations

are to cover a past light-cone of a hypothetical observer with an angular extent of 5◦×5◦,

from redshift z = 0 to z = 3.5, similarly to the methods in Section. 3.4. We use the

ray-tracing simulations with the source redshift of zsource = 1. Each map is defined on

2 For the simulations, the authors in Ref. [38] adopted the cosmological model which is consistent
with WMAP three-years results [148].



Chapter 4. Weak Lensing Morphological Analysis 51

20482 grid points with an angular grid size of 0.15 arcmin. Details of the ray-tracing

simulations are found in Ref. [38].

It is well-known that the intrinsic ellipticity of source galaxies is one of the main con-

taminants on lensing shear maps. We take into account the noise by adding random

ellipticities drawn from a two-dimensional Gaussian to the simulated shear data. The

root-mean-square of intrinsic ellipticities is set to be 0.314 and we set the number of

source galaxies is 15.8 arcmin−2. Note that these values are obtained from the actual

weak lensing observations in Section 4.1.2.1.

4.1.3 Bias due to Masking Effect

We then discuss the overall effect of masking on the lensing MFs. Here, we utilize ray-

tracing simulations of weak gravitational lensing in Section 4.1.2.2. We focus on non-

Gaussian features in the case with masked regions. The total non-Gaussianity probed

by the lensing MFs ∆V obs
i is given by

∆V obs
i = Vi(masked) − V G

i (masked), (4.2)

where Vi(masked) is i-th MF on a masked map and V G
i (masked) is the Gaussian term

of Vi(masked).

One can then decompose ∆V obs
i into three components:

∆V obs
i = ∆V gravity

i + ∆V bias
i − ∆V bias,G

i , (4.3)

∆V gravity
i = Vi(unmasked) − V G

i (unmasked), (4.4)

∆V bias
i = Vi(masked) − Vi(unmasked), (4.5)

∆V bias,G
i = V G

i (masked) − V G
i (unmasked), (4.6)

where ∆V gravity
i is the non-Gaussianity induced by non linear gravitational growth,

∆V bias
i represents the mask bias of MFs for non-Gaussian maps, and ∆V bias,G

i describes

the Gaussian term of ∆V bias
i . In order to evaluate these quantities, we first consider

V G
i (masked) and V G

i (unmasked). We measure the following three quantities from 1000

masked ray-tracing maps:

µ = 〈K〉, σ2
0 = 〈K2〉 − µ2, σ2

1 = 〈|∇K|2〉. (4.7)

The same quantities are also measured for the unmasked lensing maps. We can then esti-

mate V G
i (masked) and V G

i (unmasked) using these quantities and the theoretical formula

Eq. (3.86)-Eq. (3.88). For the Gaussian terms, we also take into account the correction
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Figure 4.3: The differences between the lensing MFs on masked ray-tracing simu-
lation maps and the Gaussian term (taken from [1]). In this figure, the various com-
ponents are plotted: the total non-Gaussianity obtained from the masked maps ∆V obs

i

(black line with closed circle), the non-Gaussianity caused by non-linear gravitational
growth ∆V gravity

i (black line with open circle), the bias of lensing MFs due to masked
regions for ray-tracing maps ∆V bias

i (gray line with closed circle), and the Gaussian
term of ∆V bias

i (gray line with open square). The definition of each component is given
by Eq. (4.2)-Eq. (4.6).

of the finite binning effect pointed out by Ref. [149]. The correction is caused by the

fact that the threshold ν to calculate the MFs V1 and V2 is not continuous but discrete

with some finite width. We calculate the correction by integrating the analytic formula

(Eq. (3.87),Eq. (3.88)) for finite binning width (see Ref. [149] for details). Vi(masked)

and Vi(unmasked) can be estimated directly from masked and unmasked maps with the

estimated V G
i (masked) and V G

i (unmasked). We show the various non-Gaussian con-

tributions (Eq. (4.3)-Eq. (4.6)) calculated directly from 1000 masked ray-tracing maps

in Figure 4.3. It is shown that ∆V bias
i is comparable to ∆V gravity

i in the ray-tracing

maps. We also find that the mask bias ∆V bias
i contributes significantly to the observed

non-Gaussianity ∆V obs
i . Note that ∆V bias,G

i is sub-dominant although not negligible for

V1 and V2. This indicates clearly that the mask bias can be a significant contaminant

for cosmological parameter estimation with the lensing MFs. The bias is expected to

be induced for the following two reasons: (i) sky masking effectively reduce the number

of sampling Fourier modes of cosmic shear and (ii) masked regions introduce scatter of

the variance of the reconstructed weak lensing mass field. The former can be corrected

analytically at least for a Gaussian random field as shown in the Appendix A, while nu-

merical simulations are needed to include the latter effect accurately. In the following,

we include the bias effect when comparing simulation data and observations.

4.1.4 Impact of Masking on Cosmological Parameter Estimation

We next consider cosmological information content in the lensing MFs with sky masking.

The cumulative signal-to-noise ratio S/N is often used for study of information content.
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S/N is defined by

(S/N)2 = µtC−1µ, (4.8)

where µ is a data vector that consists of the lensing MFs V0, V1, and V2, and C is the

covariance matrix. In order to calculate (S/N)2, the data vector are constructed from

a set of lensing MFs as

{µi} = {V0(x1), ..., V0(x10), V1(x1), ..., V1(x10),

V2(x1), ..., V2(x10)}, (4.9)

where xi = (Ki − 〈K〉)/σ0 is the binned normalized lensing field. We calculate the

covariance matrix of MFs using 1000 ray-tracing simulations.

We show the cumulative signal-to-noise ratio S/N as a function of xi in Figure 4.4. One

can find that clearly the information content is reduced by a factor of two in the case

with mask. We can explain the degradation by the reduced effective area. The solid line

corresponds to S/N by scaling C−1 with the effective survey area. It closely matches

the S/N calculated directly from the masked maps. For a Gaussian random field, it

is expected that the variance of MFs should be inversely proportional to the effective

survey area (e.g., [150, 151]). Thus, we expect that the effective survey area mainly

would determine how much cosmological information we can gain from weak lensing

MFs.

We further perform the following analysis to investigate the effect of the mask bias on

cosmological parameter estimation. For each realization r of our simulations, the χ2

value can be calculated as follows,

χ2(r) = (µi(r) − µtheory
i )C−1(µj(r) − µtheory

j ), (4.10)

where µi(r) represents the estimated lensing MFs from each realization r and µtheory
i

is the theoretical template for a given cosmology. In practice, we assume that µtheory
i

corresponds to the average over our 1000 ray-tracing simulations with or without masks.

We estimate the lensing MFs µi(r) for each masked map, and then we use the covariance

matrices of the MFs obtained from a total of 1000 masked maps. If µi(r) follows the

Gaussian distribution, the distribution of χ2(r) should follow a genuine χ2 distribution.

Hence, we can discuss the impact of bias due to masking on cosmological constraints

by comparing the resulting distribution of χ2(r) for µtheory
i estimated from unmasked

maps.
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Figure 4.4: The cumulative signal-to-noise ratio for the weak lensing MFs (taken
from [1]). The horizontal axis shows the maximum value of binned lensing field used in
the calculation of S/N . The open circles represent the S/N for unmasked ’clean’ lensing
maps whereas the black points correspond to the case with masked regions. The solid
line is S/N estimated with scaling the covariance matrices of MFs with the effective
survey area. In this figure, the masked regions are same as the Subaru Suprime-Cam

data (see Figure 4.2).

Figure 4.5: The distribution of χ2(r) for µtheory
i evaluated for 1000 masked maps

(black histogram) with that for µtheory
i evaluated for 1000 unmasked maps (taken from

[1]). In this figure, the thick solid lines represent a genuine chi-square distribution with
30 degrees of freedom, and dashed line shows the one sigma region.
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We show the resulting distribution of χ2(r) for our 1000 masked ray-tracing simulations

in Figure 4.5. The black histogram corresponds to the probability of χ2(r) for the

corresponding model using the average MFs over the masked maps whereas the gray

one is for the unmasked maps. The thick solid line represents a genuine χ2 distribution

with 30 degrees of freedom, and the dashed line is the 1σ region for the χ2 values. We

find an excellent agreement between the thin histogram and the solid line. This means

that the binned lensing MFs µi(r) can be described well by a Gaussian distribution.

Interestingly, most of the resulting χ2(r) without mask lie outside 1σ regions. When

we do not include bias due to masked regions, 55.3%, 59.4%, 74.9% and 85.4% of the

realizations lies outside 1σ regions of the χ2 values for V0, V1, V2 and all MFs. Therefore,

we conclude that the bias of lensing MFs due to masked regions can crucially affect a

cosmological parameter estimation.

4.1.5 Application to Subaru Suprime-Cam Data

Here, we test whether we can extract cosmological information from masked noisy shear

data using the lensing MFs. In this section, we utilize available Subaru Suprime-Cam

data. In order to compare with the observed lensing map and the simulated maps, we

include two observational effects directly in our simulations, i.e., masked regions and

shape noises as described in Section 4.1.2.2. Figure 4.6 shows the comparison with the

lensing MFs for the Subaru data and those calculated for the ray-tracing simulations.

The MFs V0, V1, and V2 are plotted in the top panels. In the bottom panels, the thick

error bars represent the cosmic variance of lensing MFs estimated from our 1000 simu-

lated maps, whereas the thin error bars describe the sum of the cosmic variance and the

statistical error. The statistical error is estimated from 1000 randomized realizations, in

which the ellipticity of each source galaxy is rotated randomly. We find the statistical

error is approximately ∼ 1.5 times the cosmic variance for each bin. In order to quantify

the consistency of our results, a so-called χ2 analysis is performed. We compute the χ2

statistics for the observed lensing MFs,

χ2 = (di − mi)Ccv+stat
−1(dj − mj) (4.11)

where di is the lensing MFs in the i-th bin for observation, mi is the theoretical model,

and Ccv+stat is the covariance matrix of lensing MFs including the cosmic variance and

the statistical error. We again estimated the cosmic variances from 1000 ray-tracing

simulations and the statistical errors from 1000 randomized galaxy catalogs, respectively.

We estimate mi by averaging the MFs over 1000 ray-tracing simulations. We adopt 10

linear binning in the range of x = [−3, 3] for each MF. For the binning, we have a

large number of simulations enough to evaluate the covariance matrix of the lensing



Chapter 4. Weak Lensing Morphological Analysis 56

Figure 4.6: The comparison the observed MFs with those from cosmological ray-
tracing simulations (taken from [1]). In the upper panels, the black line corresponds
to the observed lensing MFs and the gray one shows the simulation results. The gray
error bars represent the cosmic variance obtained from 1000 ray-tracing simulations.
In the lower panels, the black line shows the difference between the obtained MFs and
the simulation results. The thin error bars indicate the sum of the cosmic variance
and the statistical error while the thick error bars show only the cosmic variance. 1000
randomized galaxy catalogues have been used for estimation of the statistical errors.

MFs. The resulting value of χ2 per number of freedoms is found to be χ2/ndof =

3.35/10, 9.69/10, 12.8/10 and 29.6/30 for V0, V1, V2 and all the MFs. Thus, we conclude

that the observed lensing MFs are consistent with the standard ΛCDM cosmology in

the case of the observation with the small sky coverage (i.e. 0.575 deg2).

4.2 Statistical and Systematic Error of Minkowski Func-

tionals

In Section 4.1, we present the effect of masked regions on the measurement of weak lens-

ing MFs. There, we showed that sky masking induces large non-Gaussianities, which

could compromise measurement of the true non-Gaussianity associated with gravita-

tional growth. This result leads that it is important to include directly realistic observa-

tional effects in order to apply the lensing MFs to data from future cosmology surveys.

Here, we further explore several observational effects using the real data set from the

Canada-France-Hawaii Lensing Survey (CFHTLenS). We use a large set of simulations

described in Section 3.4 in order to study possible systematics in detail one by one. We

finally present a forecast for future surveys such as Subaru HSC and LSST.
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4.2.1 Mock weak lensing catalogs

4.2.1.1 Canada-France-Hawaii Telescope Lensing Survey

We use the data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS;

[97]). CFHTLenS is a 154 deg2 multi-color optical survey in the five optical bands

u∗, g′, r′, i′, and z′. CFHTLenS has been optimized for weak-lensing analysis with a

full multi-color depth of i′AB = 24.7 with optimal sub-arcsecond seeing conditions. The

survey consists of four regions called W1, W2, W3 and W4, with an area of ∼ 72, 30,

50 and 25 deg2, respectively.

The CFHTLenS survey analysis mainly consists of the following processes: weak-lensing

data processing with THELI [152], shear measurement with the lensfit [153], and pho-

tometric redshift measurement [154]. A detailed systematic error study of the shear

measurements in combination with the photometric redshifts is presented in Ref. [97].

The additional error analyses of the photometric redshift measurements are presented

in Ref. [155].

The ellipticities of the source galaxies in the data have been obtained with the lensfit

algorithm. The lensfit performs a Bayesian model fitting to the imaging data by consid-

ering various ellipticity and size of a galaxy, and by taking into account the uncertainty of

the centroid position. It also takes into account a forward convolution process expressed

by convolving the galaxy model with the point-spread function (PSF) to estimate the

posterior probability of the model given the data. The lensfit estimates the ellipticity ε

of each galaxy as the mean likelihood of the model posterior probability after marginal-

izing over galaxy size, centroid position, and bulge fraction. Then, an inverse variance

weight w is given by the variance of the ellipticity likelihood surface and the variance

of the ellipticity distribution of the galaxy population. The lensfit algorithm has been

tested with image simulations in detail. The observed ellipticities εobs with any shape

measurement method are calibrated in practice as

εobs = (1 + m)εtrue + c, (4.12)

where m is a multiplicative bias and c is an additive bias. In the case of lensfit, c

is consistent with zero for a large set of simulated images but m cannot be negligible

and it depends on both galaxy signal-to-noise ratio and size. On a weight average, this

multiplicative bias corresponds to a 6 % correction. In terms of statistical quantities

such as two point correlation function, this bias is easily corrected by multiplying an

overall factor (see Ref. [153] for further details).
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In the catalog of source galaxies of CFHTLenS, the photometric redshifts zp are esti-

mated by the BPZ code [156, Bayesian Photometric Redshift Estimation]. Ref. [155]

has been shown that the true redshift distribution is well described by the sum of the

probability distribution functions (PDFs) estimated from BPZ. The galaxy-galaxy lens-

ing redshift scaling analysis in Ref. [97] confirms that contamination is unimportant for

galaxies selected at 0.2 < zp < 1.3. In this redshift range, the weighted median redshift

is found to be ∼ 0.7 and the effective weighted number density neff is 11 per arcmin2.

In the following, we have used the source galaxies with 0.2 < zp < 1.3 to make the

smoothed lensing mass map.

The effective survey area is an important quantity for lensing MFs. Ref. [97] performs

systematic tests in order to find clean data in terms of two point correlation of cosmic

shear. The fraction of data flagged by their procedure amounts to 25 % of the total

CFHTLenS; this is indeed significant. In Section 4.1.4, it is shown that the effective

survey area mainly determines the cosmological information content in the lensing MFs.

More importantly, however, complicated geometries of the masked regions induce non-

Gaussianities that contaminate the lensing MFs as shown in Figure 4.3. We thus have

decided to use all the available data of CFHTLenS to make a wide and continuous map.

We expect the systematics associated with the PSF to be relatively small compared to the

masking effect on morphological statistics (see, e.g., Refs [97, 157]). When calculating

the two point correlation function (2PCF), we use the clean sample of Ref. [97].

In order to construct the smoothed lensing convergence field K, we use the estimator

as in Eq. (3.73). We adopt the truncated Gaussian filter (for U) with the parameters

of θG = 1 arcmin and θo = 15 arcmin. The weak-lensing convergence field K is then

computed from the galaxy ellipticity data on regular grids with a grid spacing of 0.15

arcmin. In making the convergence map, we discard the pixels when the denominator in

Eq. (3.73) is equal to zero. We define the boundaries by masking a pixel if the number

of sources within θo from the pixel is less than 5
√

15πθ2
o . This critical value effectively

sets the signal-to-noise ratio of the number of sources inside a circle with radius of θo

to be less than 5, on the assumption that the distribution of sources is approximated

by a Poisson distribution. We repeat the above procedure for all the pixels. Note that

the details of the procedure do not affect the final results significantly as long as we

impose the same conditions to on all of the pixels, because our analysis is based on the

comparison of two maps that have the same configuration of source positions. Figure

4.7 shows the obtained mass map in the CFHTLenS W1 field.
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Figure 4.7: Reconstructed convergence field K in the CFHTLenS W1 field (taken
from [2]). In this figure, the ellipticities of 2570270 source galaxies are used in the
reconstruction of the K map. The color-scale bar represents the normalized value

(K − 〈K〉)/σ0.

4.2.1.2 Algorithm for mock catalogs

In order to study observational effects on weak-lensing morphological statistics, we gen-

erate realistic mock weak-lensing catalogs by combining ray-tracing simulations and the

CFHTLenS data [157]. The main advantage of these mock catalogs is that we can di-

rectly use the observed positions on the sky of the source galaxies. This enables us to

keep all the characteristics of the survey geometry the same as in CFHTLenS.

We locate the source galaxies in the pixel unit of our lensing map and then calculate

the reduced shear signal g = γ/(1 − κ) at the galaxy positions. Ray-tracing is done

up to the redshift of the galaxy as described in Section 3.4. In this step, a galaxy’s

redshift is set to be at the peak of the posterior PDF obtained from BPZ. This could

cause systematic effects on morphological statistics originating from the inaccuracy of

the photometric redshift estimation. We discuss the impact of the redshift distribution

of sources on lensing morphological statistics later.

We next consider the intrinsic ellipticity that is known to be a major error source in cos-

mic shear measurement. To model the intrinsic ellipticity of each galaxy, we randomize

the orientation of the observed ellipticity, while keeping its amplitude. The randomized

ellipticity is then assigned as the intrinsic ellipticity εint at each galaxy’s position. The
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final “observed” ellipticity is given by, as shown in Eq. (3.36),

εmock =
εint + g

1 + g∗εint
, (4.13)

where εmock is represented as a complex ellipticity.

Finally, we incorporate calibration correction in the shear measurement. We assign

the weight associated with the shape measurement of lensfit and the shear calibration

correction following Ref. [97]. The two factors determine the potential additive shear

bias c and multiplicative bias m. We then apply the shear calibration correction to

εmock by using bias factors m and c as

εmock → (1 + m)εmock + c. (4.14)

In this step, we assume that there is no correlation between ε and m, c. We have

explicitly calculated the correlation between ε and m, c at the source galaxy positions

using the CFHTLenS data set, and found that there is indeed no significant correlation

between the quantities.

Through the above procedures, we have successfully included the following observational

effects in the morphological analysis that all or many of these effects are often ignored

in previous works: (1) non-linear relation between the observed ellipticities and cosmic

shear, (2) non-Gaussian distribution of the intrinsic ellipticities, (3) the masked survey

area of CFHTLenS and the inhomogeneous angular distribution of the source galaxies,

(4) imperfect shape measurements and (5) the redshift distribution of the source galaxies.

Figure 4.8 shows the two point correlation function measured from 40 mock catalogs.

For simplicity, we estimate the two point correlation function without shape noises

and calibration biases. Also, the weight associated with shape measurements is set to

be unity. The colored points with error bars are the average ξ± in our mock lensing

catalogs. The error bars show the standard deviation of estimator Eq. (3.61) over 40

realizations. For comparison, we also represent the theoretical prediction Eq. (3.60) with

the model of non-linear matter power spectrum in Ref. [158]. Our mock catalogs provide

a reasonable fit of the theoretical prediction with a level of two point statistics. In the

following, we utilize these mock catalogs to discuss higher order statistics of interest, i.e.

Minkowski functionals of smoothed convergence field.
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Figure 4.8: The two point correlation function of cosmic shear in our mock lensing
catalogs. In this figure, we shows the average of ξ± over 40 realizations for our fiducial
cosmological model. The points with error bars represent the results of ξ± measured
from mock catalogs. The colored line is the theoretical prediction shown in Section 3.3.1.

4.2.2 Realistic forecast of cosmological constraints

4.2.2.1 Fisher analysis

In this section, we perform a Fisher analysis to produce a forecast for parameter con-

straints on Ωm0, As, and w0 with future weak-lensing surveys.

For a multivariate Gaussian likelihood, the Fisher matrix Fij can be written as

Fij =
1
2
Tr
[
AiAj + C−1Mij

]
, (4.15)

where Ai = C−1∂C/∂pi, Mij = 2 (∂µ/∂pi) (∂µ/∂pj), C is the data covariance matrix, µ

represents the assumed model, and p = (Ωm0, As, w0) are the main parameters. Here,

we consider only the second term in Eq. (4.15). Because C is expected to scale propor-

tionally inverse to the survey area, the second term will be dominant for a large area

survey (see, e.g., Ref. [159]). We model the theoretical template by averaging the MFs

over 40 convergence maps with appropriate noises for each CFHTLenS field. Figure 4.9

shows the cosmological dependence of our model MFs thus calculated. We find the clear

behavior of the MFs as a function of p even in the presence of various observational

effects.
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Figure 4.9: Variation of the lensing MFs for different cosmological parameters (taken
from [2]). Each panel shows the differences of V0, V1, and V2 with respect to those of our
fiducial cosmology. In all of the panels, the thick (thin) black line represents the case
of cosmological model with higher (lower) Ωm0. The thick (thin) red one corresponds
to the result of the cosmological model with higher (lower) As, and the thick (thin)
blue one is for the model with higher (lower) w0. For reference, the typical statistical
errors of V0,V1, and V2 at (K − 〈K〉)/σ0 = 0 are ∼ 10−3, 10−4, and 10−5, respectively,

for CFHTLenS.

We also calculate the model 2PCFs using the fitting formula of non-linear matter power

spectrum of Ref. [158], on the assumption that the source redshift distribution is well

approximated by the sum of the posterior PDF with 0.2 < zp < 1.3 given in Ref. [160].

To calculate the matrix Mij , we approximate the first derivatives of the 2PCF and MFs

with respect to cosmological parameter pi as

∂µ

∂pi
=

µ(p(0)
i + ∆pi) − µ(p(0)

i − ∆pi)
2∆pi

, (4.16)

where p(0) = (0.279, 2.41 × 10−9,−1.0) gives our fiducial model parameters and we set

∆p = (0.025, 0.1 × 10−9, 0.2).

We construct the data vector D from a set of binned MFs and 2PCFs,

Di = {V0(x1), ..., V0(x10), V1(x1), ..., V1(x10), V2(x1), ..., V2(x10),

ξ+(θ1), ..., ξ+(θ10), ξ−(θ1), ..., ξ−(θ10)}, (4.17)

where xi = (Ki−〈K〉)/σ0 is the binned normalized lensing field. For the Fisher analysis,

we use 10 bins in the range of xi = [−3, 3] 3. In this range of x, Eq. (4.16) gives smooth

estimates for Mij . For the 2PCFs, we use 10 bins logarithmically spaced in the range of

3 In principle, one can use regions with x > 3 as well. Such regions usually correspond to the positions
of massive dark matter halos, which are thought to be sensitive to cosmological parameters. On the
other hand, such regions are extremely rare, and thus the first derivatives in Eq. (4.16) are not evaluated
accurately even with our large number of K maps. We thus do not use high K regions with x > 3 in the
analysis.
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θi = [0.9, 300] arcmin. A data vector has 50 elements, 3× 10 MFs and 2× 10 2PCFs, in

total.

We therefore need a 50 × 50 data covariance matrix for the Fisher analysis. In order

to estimate the sampling variance, we use 1000 shear maps made by Ref. [38] or in

Section 4.1.2.2. The maps have almost the same design as our simulations, but are

generated for slightly different cosmological parameters (consistent with WMAP three-

years results [148]). The actual parameter differences are small, and also the dependence

of the covariance matrix on cosmological parameters is expected to be weak. We model

the intrinsic ellipticities by adding random ellipticities drawn from a two-dimensional

Gaussian to the simulated shear data. We here set the rms of the intrinsic ellipticities to

be 0.38 and the number of source galaxies is set to be 10 arcmin−2. These are reasonable

choices for the study here. In making the smoothed lensing map from the simulation

outputs, we set the weight related to shape measurement to be unity. From the 1000

shear maps with appropriate noises, we can estimate the variances of the 2PCFs and

MFs. The statistical errors can be estimated from randomized catalogs with rotating

the observed orientation of the ellipticities. Using these randomized catalogs, the data

covariance matrices in each CFHTLenS field can be estimated by the sum of sampling

variance and the statistical error as

Ceach = Ccosmic

(
Aeach deg2

25 deg2

)−1

+ Cstat, (4.18)

where Ccosmic is sampling variance, Cstat represents the statistical error in each CFHTLenS

field, and Aeach corresponds to the effective survey area. In the following, we assume

that the four CFHTLenS fields are independent of each other statistically. The total

inverse covariance matrix for the whole CFHTLenS data is the sum of C−1
each over the

W1, W2, W3 and W4 fields. We forecast for future lensing surveys by simply scaling

the data covariances by the survey area, assuming that the statistical error is identical

to that in CFHTLenS. When calculating the inverse covariance, we include a debiasing

correction, the so-called Anderson-Hartlap factor α = (nreal − nbin − 2)/(nreal − 1) with

nrea = 1000 being the number of realization of simulation sets and nbin = 50 being the

number of total bins in the data vector [161].

We expect that Eq. (4.18) provides a good approximation to the full covariance, but

the accuracy needs to be addressed here. In the case of shear correlation functions,

the covariance matrix consists of three components: a sampling variance, the statistical

noise, and a third term coupling the two as shown in Section 3.3.1. However, because

the MFs do not have the additivity of, e.g., Vi(ν1 +ν2) = Vi(ν1)+Vi(ν2), it is not clear if

the MF covariance can be expressed similarly as the sum of the three contributions. We

thus resort to estimating the MF covariance in a direct manner by using the large set of
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mock catalogs generated by the procedure shown in Section 4.2.1.2. Note that, in the

procedure, we perform two randomization processes for a fixed cosmological model. One

is to generate multiple realizations of the large scale structure (by N -body simulations)

and the other is to randomize intrinsic ellipticities of the source galaxies. We perform

each process separately, technically by fixing a random seed of the other process, to

evaluate each term in Eq. (4.18). In principle, one can perform both of the processes si-

multaneously and derive the full covariance. However, this would require a huge number

of mock catalogs. In Appendix C, we have done a simple but explicit check to validate

that Eq. (4.18) indeed provides a reasonably good approximation. The details of our

test and the result are shown there.

4.2.2.2 Forecast for Upcoming Survey

We now present a forecast for upcoming surveys such HSC and LSST. We first derive

constraints on the cosmological parameters for a 154 deg2 area survey, for which we have

the full covariance matrix obtained in the previous sections. We then consider two wide

surveys with an area coverage of 1400 deg2 (HSC) and 20000 deg2 (LSST). We simply

scale the covariance matrix by a factor of 154/1400 or 154/20000 for them.

Let us begin with quantifying the statistical error associated with the real data. We

have performed a Fisher analysis including the sampling variance and the statistical

error. When including the statistical error, we found that the cosmological constraints

are degraded by a factor of ∼ 2 for the CHFTLens survey as shown in Figure 4.10. In

Figure 4.10, the red error circle corresponds to the 1σ cosmological constraints including

the sampling variance and the statistical error, while the blue one is obtained from the

Fisher analysis without the statistical error.

We are now able to present a forecast for future lensing surveys covering larger sky areas

on the assumption that the data covariance is same as that of CFHTLenS. Figure 4.11

shows the derived parameter constraints. The blue error circles corresponds to the 1σ

constraints from the shear 2PCFs, whereas the red circles are cosmological constraints

obtained from the lensing MFs. It is promising that, with Subaru HSC, we can constrain

the dark energy equation of state w0 with an error of ∆w0 ∼ 0.25 by the lensing MFs

alone. Table 4.1 summarizes the expected constraints by future surveys. Combining

the 2PCFs and the MFs can improve the constraints by a factor of ∼ 2 by breaking the

degeneracy between the three parameters. It should be noted that this conclusion might

seem slightly different from that of Ref. [126], who argue that adding the power spectrum

does not effectively improve the constraints when all three MFs are already used. Our

result suggests that combining the 2PCFs and the MFs improves cosmological parameter
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Figure 4.10: Impact of statistical errors on the cosmological parameter estimation
(taken from [2]). Each panel shows the expected 1σ cosmological constraints by the
lensing MFs in the CFHTLenS case. The red error circle presents forecast that includes
sampling variance and the statistical error associated with the observational effects. The

blue circle is obtained with only sampling variance included.

Ωm0 As × 109 w0

MFs only (1400 deg2) 0.0190 0.143 0.248
MFs only (20000 deg2) 0.00503 0.0380 0.0658

MFs + 2PCFs (1400 deg2) 0.0110 0.132 0.139
MFs + 2PCFs (20000 deg2) 0.00293 0.0351 0.0369

Table 4.1: The 1σ constraint on Ωm0, As, and w0, when marginalized over the other
two parameters (taken from [2]). In this table, we take into account the sampling
variance and the statistical error estimated from statistical analysis with CFHTLenS
data. Two surveys are considered: one with a survey area of 1400 deg2 (HSC) and

another with 20000 deg2 (LSST).

constraints appreciably. A precise account for the difference is not given by our analysis

only, but there are many factors that can affect the parameter constraint. First of all, we

characterize the amplitude of the matter power spectrum by the amplitude of curvature

perturbations As at the cosmological recombination epoch whereas Ref. [126] adopt σ8

at the present epoch as a parameter. The latter is the so-called derived parameter and

has an internal degeneracy with Ωm and w0. Our result suggests that including the

2PCFs in the analysis can better constrain As, which in turn yields tighter constraints

on the other parameters. Furthermore, our analysis includes observational effects such

as survey mask regions and the source distribution directly. Altogether, these differences

make it difficult to compare our results with those of previous works that mostly adopt

idealized configurations.
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Figure 4.11: Forecast for cosmological parameter constants by lensing statistics for
the Subaru Hyper Suprime Cam survey (1400 deg2) (taken from [2]). The blue error
circle shows the constraints from the 2PCFs, whereas the red one is expected from
the MFs. We can improve cosmological constraints as indicated by the green circle by
combining the two statistics. The data covariances for this plot are estimated from
1000 ray-tracing simulations and 1000 randomized catalogs based on the CFHTLenS

data.

4.2.3 Possible Systematics

In this section, we examine the effect of known systematics on measurement of the MFs.

We follow Ref. [44] to estimate the bias in the cosmological parameter due to some

possible systematics

δpα = F−1
αβ

∑

i,j

C−1
ij (Dtest

i − Dfid
i )

∂Dfid
j

∂pβ
(4.19)

where δpα is the bias in the αth cosmological parameter, Fαβ is a Fisher matrix, D

is the data vector and C is the data covariance. The data vector Dfid is the theoret-

ical template for the fiducial model and Dtest is the test data vector that includes a

known systematics effect. In this section, we use the data vector D consisting of the

lensing MFs only. For Dfid, we use the average MFs over 40 mock catalogs from our

fiducial cosmological model described in Section 4.2.1.2. The mock samples are used as

reference model, for which we have assumed that (1) the source galaxy redshift is well

approximated by the peak of the posterior PDF of photometric redshift, and (2) the

observed shear is perfectly calibrated by a functional form shown in Ref. [97]. We test

these assumptions and quantify the net effects in a direct manner by generating and

using another set of the mock catalogs for Dtest using the same N -body realizations as

for our fiducial case.
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Figure 4.12: Redshift distribution function of sources p(z) (taken from [2]). The red
histogram corresponds to the sum of the posterior PDF over galaxies with 0.2 < zp <
1.3. The black one is calculated from the peak value of the posterior PDF, i.e., the
best-fit photometric redshift. The mean redshift is slightly different: 0.69 for the black

histogram and 0.748 for the red one.

4.2.3.1 Redshift Distribution

It is important to quantify the effect of the source redshift distribution and of the error in

photometric redshifts on the lensing MFs, or indeed on any lensing statistics. We perform

ray-tracing simulations by shooting rays to the farthest lens plane at z = 3, weighting

the lensing kernel using a redshift distribution function of the sources. Specifically, we

follow the same manner in Section 3.4 to simulate the weak-lensing effect but the lensing

kernel is slightly different from their simulation because of the wider source redshift

distribution. When one assume zp = 1 so that the lensing kernel can be calculated by

the simple expression, i.e., r(χs − χl)r(χl)/r(χs), where χs and χl are the comoving

distance of sources and of the lens, respectively. When one consider source redshift

distribution p(χ), the lensing kernel for the lensing objects at χl should be replaced with
∫ χH

χl
dχsp(χs)r(χs − χl)r(χl)/r(χs). The source positions on the sky and all the other

characteristics are kept the same as in the original mock catalogs, which themselves

are derived from CHFTLenS. For the redshift distribution, we adopt the sum of the

posterior PDF of photometric redshift for the galaxies with 0.2 < zp < 1.3. Figure 4.12

compares the integrated redshift distribution with the histograms of the source redshifts.

The latter is used in the fiducial simulations. The test data vector Dtest is calculated by

averaging the MFs over the new 40 catalogs with the posterior weight described above.

The main difference caused by the different redshift distributions is the amplitude of the

standard deviation of K. Figure 4.13 shows that the net difference is as large as those

found for cosmological models differing by ∆w0 = 0.2; this can obviously be a significant

source of error in cosmological parameter constraints with upcoming future surveys. We
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estimate the resulting bias in the derived w0 by using Eq. (4.19). The uncertainties in

the photometric redshifts can indeed induce a ∆w0 ∼ 0.1 bias in w0. The exact values

are summarized in Table 4.2.

We have also studied the effect of source redshift clustering on the lensing MFs. The

results are presented in Appendix B. Briefly, the source redshift clustering is found to be

a minor effect, but we note that it could cause non-negligible bias in “ultimate” galaxy

imaging surveys, for example, the LSST lensing survey.

4.2.3.2 Shear Calibration Correction

We next study the effect of shear calibration correction. Here, we consider the standard

correction that describes the calibration as ε = (1 + m)εmock + c with a multiplicative

component m and an additive component c. The former is calibrated by analyzing

simulated images whereas the latter is calibrated empirically using the actual data. An

ideal case would be one with m = c = 0, which might possibly be realized if a perfect

calibration is done. We compare the lensing maps with and without the calibration

factors m and c in order to quantify how important the shear calibration is. We simply

reanalyze the fiducial mock catalogs by setting m = c = 0 for all of the source galaxies.

The resulting 40 mock catalogs are used to obtain the data vector Dtest for this study.

We find that the additive calibration induces negligible effect but that the multiplicative

calibration affects the lensing MFs appreciably. In the case of CFHTLenS, the multi-

plicative calibration results in a ∼ 6 % correction with 〈1 + m〉 , 0.94. Note that m

is a function of both the galaxy signal-to-noise ratio and the size. Thus the calibration

differs from position to position and introduces effectively additional non-Gaussianities

to the K map. Figure 4.13 shows that the non-Gaussianities actually cause biases in the

lensing MFs. The biases cannot simply be described by the difference of the standard

deviation of K, i.e., by the normalization of the lensing MFs. The resulting bias in

the cosmological parameter estimate is close to the 1σ level for an HSC-like survey as

shown in Table 4.2. The study presented here suggests that the multiplicative correc-

tion needs to be included in model predictions of the MFs for producing robust forecasts

for upcoming surveys. We here emphasize that our theoretical templates are based on

mock catalogs that directly include the multiplicative correction obtained from the real

observational data.
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Figure 4.13: Impact of possible systematics on lensing MFs (taken from [2]). Each
panel plots the differences of average MFs over 40 catalogs between the fiducial cos-
mology and another one that includes a given systematic. The red line presents the
difference owing to source redshift distribution whereas the black one shows the ef-
fect of shear calibration correction on the lensing MFs. For comparison, the case of a

cosmological model with higher (lower) w0 is plotted as the thick (thin) blue line.

Ωm0 As × 109 w0

Redshift distribution 0.00707 -0.0254 -0.122
Calibration correction -0.0224 0.110 -0.234

Table 4.2: The bias of cosmological parameter estimation due to possible systematics
(taken from [2]). Here, we show the bias of Ωm0, As, and w0. We consider two possible
systematics on morphological analysis of weak lensing data: one is the uncertainty
of redshift of source galaxies and another corresponds to the calibration correction in

shape measurement of galaxies.

4.3 Application to CFHTLenS

We then apply all the methods developed and examined in the previous sections to

the CFHTLenS data. We have already shown in Section 4.2.2.2 that the statistical

error in CFHTLenS degrades the constraints on cosmological parameters if we use only

the lensing MFs. It would be ideal to utilize other cosmological probes to put tighter

constraints. We will use the CMB data from WMAP.

Even though the likelihood analysis in this section includes the systematics studied in

Section 4.2.3, our result could be “correctly” biased. Hence we need comprehensive

studies to mitigate the effect of possible systematics for the more accurate cosmologi-

cal constraints from lensing MFs. Although it is difficult to derive constraints on the

cosmological parameters by lensing MFs correctly at present, we can test how helpful

lensing MFs are for parameter estimation by using the current data set. In the following

analysis, we simply assume the flat universe with w0.
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4.3.1 Data Sets

We utilize multiple data sets. As a probe of large-scale structure, we use data from the

nine-year WMAP data release [19, 162]. We use the output of Monte Carlo Markov

Chains (MCMC) derived from the likelihood analysis with the CMB temperature and

polarization power- and cross-spectrum in the WMAP9 data. Note that the MCMC we

use here does not include other external data sets, such as small-scale CMB measure-

ments, galaxy redshift surveys, and Hubble constant. We then calculate the likelihood

in the parameter space p = (Ωm0, As, w0) after marginalizing over the following three

parameters: the reionization optical depth τ , scalar spectral index ns and Hubble pa-

rameter H0.

As a probe of matter distribution at low redshifts, we use the lensing MFs and the 2PCF

calculated from the CFHTLenS data.

We evaluate a pixelated K map in the same manner as Section 4.2.1.1. We then convert

K to x = (K− 〈K〉)/σ0 where σ0 is the standard deviation of K. We follow the method

in Ref. [149] to calculate the MFs from pixelated K maps. We set ∆x = 0.2 from

x = −5 to x = 5 for binning the threshold value. We construct the data vector and

covariances in the same manner as in Section 4.2.2.1, but we assume no covariances

between the MFs and the 2PCF. To validate the assumption, we have actually calculated

the expected parameter constraints by the Fisher analysis with/without covariances

between the MFs and the 2PCF. We have found that the approximation does not affect

the final results significantly for the current data set. The error in Ωm0 increases only

by ∆Ωm0 = 5 × 10−4.

We sample the posterior of the cosmological parameters from the lensing 2PCF data set

using the Population Monte Carlo (PMC) using the publicly available code COSMO_PMC

[163]. Details of the PMC are found in Ref. [164]. We adopt the method described

in Ref. [159], which incorporates the cosmological dependence of the shear covariance.

The same model parameters are adopted as in Ref. [160], with the smallest and largest

angular bins being 0.9 and 300 arcmin. The following set of cosmological parameters

are considered: p = (Ωm0, Ωb0,σ8,H0, ns, w0), where Ωb0 is the baryon density and σ8

normalizes the matter power spectrum. For comparison the result derived from CMB

and that from the lensing MFs, we calculate the value of As at each sample point in

parameter space by using the following relation:

As = As,fid

(
σ8

σ8,fid

)2 SD2
+|fid

SD2
+

, (4.20)

S =
∫ ∞

0

d3k

(2π)3
knsT (k)2|W8(k)|2, (4.21)



Chapter 4. Weak Lensing Morphological Analysis 71

where D+ is the linear growth factor of matter density, T (k) is the transfer function,

and W8(k) is the top-hat function with scale of 8 Mpc/h in the Fourier space. For the

fiducial parameter set, we adopt the same parameters as the WMAP9 best-fit values.

In the PMC run, we perform 30 iterations to find a suitable importance function com-

pared to the posterior. Also 100,000 sample points are generated for each iteration. To

obtain a large sample set, we combine the PMC samples with the five highest value of

perplexity p, which is the conventional diagnostic that indicates the quality and effec-

tiveness of the sampling. The PMC run achieves p > 0.7 for the final samples; this

criterion is the same as that adopted in the analysis in Ref. [160].

In the following, we study the following three cases: (1) likelihood analysis with the

lensing MFs alone, (2) combined analysis with the lensing MFs and the 2PCF, and (3)

combined analysis with the lensing MFs and CMB anisotropies. In the last analysis, we

treat the lensing MFs data and the CMB data as being independent of each other.

4.3.2 Likelihood Analysis of Lensing MFs

In the maximum likelihood analysis, we assume that the data vector D is well approxi-

mated by the multivariate Gaussian distribution with covariance C. This assumption is

reasonable for the case of joint analysis of the CMB and lensing power spectrum [165].

In this case, the χ2 statistics (log-likelihood) is simply given by

χ2 = (Di − µi(p))C−1(Dj − µj(p)) (4.22)

where µ(p) is the theoretical prediction as a function of cosmological parameters. The

theoretical prediction is computed in a three-dimensional parameter space. In sampling

the likelihood function, we consider the limited parameter region as follows: Ωm0 ∈ [0, 1],

As × 109 ∈ [0.1, 8.0] and w0 ∈ [−6.5, 0.5]. The sampling number in each parameter is

set to 100.

In order to estimate the MFs components in µ, we assume that the lensing MFs de-

pend linearly on the cosmological parameters with the first derivatives calculated from

Eq. (4.16). We consider two components of the contribution of the data covariance in

the likelihood analysis; one is the statistical error and sampling variance, which are es-

timated as in Section 4.2.2.1 while the other originates from the possible systematics as

studied in Section 4.2.3. We denote the latter contribution as Csys. We estimate Csys

in a simple and direct manner using the differences of the MFs, as shown in Figure 4.13:

Csys
ij =

[
(Dzdist

i − Dfid
i )2 + (Dscc

i − Dfid
i )2

]
δ2D
ij , (4.23)
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Ωm0 σ8

2PCF alone 0.396±0.177
0.185 0.695±0.203

0.202

MFs alone 0.295 ± 0.020 0.855±0.060
0.060

MFs + 2PCF 0.282 ± 0.022 0.782±0.042
0.042

Table 4.3: Cosmological parameter constraints obtained from the maximum likeli-
hood analysis (taken from [2]). Weak lensing data set is obtained from CFHTLenS. We
consider three analyses: Two-point correlation function (2PCF), Minkowski Function-
als (MFs) and the combined analysis of 2PCF and MFs. The error bar corresponds to
the 68% confidence level. Note that the concordance ΛCDM model is assumed in this

table.

Figure 4.14: Marginalized 2D confidence level (68% and 95%) obtained from cosmic
shear data (taken from [2]). The red region shows the cosmological results by lensing
MFs alone and the blue region represents the cosmological constraints by 2PCF alone.
The green circle corresponds to the result of our combined analysis with the lensing
MFs and 2PCF. The concordance ΛCDM model (i.e., w0 = −1) are assumed in this

figure.

where Dfid is the template MFs for our fiducial mock catalogs, Dzdist is the average

MFs over 40 catalogs reflecting the different source redshift distribution as shown in

Figure 4.12, and Dscc is estimated by averaging the MFs over 40 catalogs without shear

calibration correction. The total covariance is the sum of the above two contributions.

4.3.3 Breaking Degeneracies

We would like to examine the ability of the lensing MFs to break degeneracies between

cosmological parameters. We first consider the concordance ΛCDM model, i.e. w0 = −1.

Figure 4.14 presents the marginalized constraints on Ω0 and σ8 in the two-parameter

plane. This figure shows clearly the lensing MFs can break the well-known degeneracy

between Ω0 and σ8 that is apparent in the analysis using only the 2PCF. Interestingly,

the marginalized constraints on each parameter can be improved by a factor of five
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to eight by adding the MFs. The final constraints in the case of ΛCDM model are

summarized in Table 4.3.

We expect that this improvement would be caused by the cosmological information from

the higher-order moment of the K map. As shown in Section 3.3.3, the lensing MFs have

the non-Gaussian correction originated from the third-order moment of K. We here

present the qualitative interpretation how we can break degeneracy between σ8 and Ωm0

by using the information from the higher-order moment of K. As an order of magnitude

calculations, we regard K as a quantity of O(Ωm0δ) where δ is the matter over-density. In

this case, the second-order moment of K would be expressed as O(Ω2
m0〈δδ〉) ∼ Ω2

m0σ
2
8,

while the third-order moment of K is given by O(Ω3
m0〈δδδ〉). At weakly non-linear

regime, the three-point correlation function of δ would be calculated by the standard

perturbation theory (e.g., [166]), which predicts O(〈δδδ〉) ∝ O(〈δδ〉2) ∼ σ4
8. As a result,

the third-order moment of K would be the quantity of O(Ω3
m0σ

4
8). Therefore, in principle,

we can break the degeneracy between Ωm0 and σ8 by combining with measurement of

two- and three-point correlation of K. Recently, Ref. [167] has measured the second-

and third-order moments of K as a function of smoothing scale in K map by using

CFHTLenS data set. They have confirmed that the 10% improvement of the constraint

on σ8Ωα
m0 where α ∼ 0.5 − 0.7 when using smoothed maps with smoothing scale of

2−15 arcmin. Their result indicates that we can extract some cosmological information

from higher-order moment of K in the realistic case. Our analysis presented here would

correspond to the extended analysis in Ref. [167] by taking into account the moments

higher than third-order one.

Figure 4.15 shows a simple comparison of lensing MFs. In this figure, we consider the

two ΛCDM model: one is the best fit model shown in Table 4.3 and another model is

consistent with lensing 2PCF with a ∼ 2σ level. In upper panel, we show the measured

MFs with statistical and systematic errors by black points. Although the error bar is too

small compared to the signal in upper panels, bottom panels clearly show the magnitude

relation of error bars and signals. In bottom panel, we show the differences between our

modelling MFs and the measured one. There, we simply assume that lensing MFs can

be describe as the linear function of cosmological parameters. Even though we do not

consider the detailed modeling of lensing MFs, Figure 4.15 implies that lensing MFs

might be useful to improve the cosmological parameter estimation in a cosmic shear

analysis.

Next, we explore models with a variant of dark energy. The equation of state parameter

w0 serves as an additional parameter here. The left panel in Figure 4.16 presents the

marginalized constraints in the 2D plane by the lensing MFs and 2PCF. The red circle

shows the result from the lensing MFs alone, whereas the green circle is the estimate
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Figure 4.15: The comparison with our theoretical template and the observed MFs.
In upper panel, the black point shows the observed MFs whereas the error bars are
too small. The error bars include the statistical and systematic error described in
Section 4.3.2. The colored line shows our model of lensing MFs based on mock catalogs.
The red line corresponds to the best fit ΛCDM model and the green line represents the
cosmological model with higher Ωm0 and lower σ8. Bottom panels show the differences

of lensing MFs between our measurement and different models.

Ωm0 As × 109 w0

MFs alone 0.205 ± 0.060 2.18±0.60
0.60 −2.2 ± 0.8

MFs + 2PCF 0.256±0.054
0.046 1.92±0.65

0.65 −1.60±0.76
0.57

MFs + CMB 0.290±0.016
0.028 2.39 ± 0.07 −0.90 ± 0.11

Table 4.4: The parameter constraints obtained from the maximum likelihood analysis
of lensing MFs and others. The error bar indicates the 68% confidence level.

derived from combining the lensing MFs and 2PCF. Interestingly, with the lensing MFs

alone, the data set favors a low w0
4. We have checked that our theoretical MF template

can recover correctly the input cosmological parameters for the 40 mock data with a

similar confidence level expected from the Fisher analysis. We thus argue that the

trend of favoring low w0 is likely attributed to the possible systematics as studied in

Section 4.2.3, or to imperfect modeling of the dependence of the lensing MFs on the

cosmological parameters.

The right panel of Figure 4.16 presents the 68% and 95% confidence regions obtained

from our joint analysis with the WMAP9 CMB data. The red region represents the

results from lensing MFs alone. The blue region is the result obtained from CMB, and

the green one represents constraints by combining the both. These figures show clearly

that the lensing MFs are useful to improve the cosmological constraints by breaking

the parameter degeneracies. The marginalized constraints for the three parameters are

summarized in Table 4.4.

4 We have also examined which MFs (V0, V1, V2) cause this trend. We have performed likelihood
analysis using each MF only. Both V1 and V2 prefer lower w0. The 68 % marginalized constraints on w0

using each MF are found to be −0.30±0.77
0.84, −3.31±0.60, and −2.48±0.91

0.84 for V0, V1, and V2, respectively.
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Figure 4.16: Marginalized 2D confidence level (68% and 95%) obtained from the
lensing MFs and additional probes. The left panel shows the cosmological constraints
by our combined analysis with the lensing MFs and the 2PCF. The right panel shows
the result of the joint analysis with the lensing MFs and CMB. In each panel, the red
region shows the constraint from the lensing MFs alone and the blue region shows those
from the 2PCF or CMB alone. The green one shows the result of the combined analysis

with the lensing MFs and another data set.

We derive the above cosmological constraints by assuming that our modeling of lensing

MFs is correct. However, there are possible systematics in lensing MFs as shown in

Section 4.2.3. We consider the possible bias in parameter estimation with our modeling

of lensing MFs. As pointed out in Section 4.2.3, the uncertainty of photometric redshift

and imperfect shape measurement of source galaxies would cause the biased parameter

estimation with lensing MFs. For the main three parameters, we would evaluate the

systematic uncertainty as summarized in Table 4.2: ∆Ωm0 = ±0.0224±0.00707, ∆(As×
109) = ±0.0254± 0.110, and ∆w0 = ±0.122± 0.234. Here, the former error corresponds

to the systematic error related with the uncertainty of photometric redshift, while the

latter is the error associated with imperfect shape measurement. We can easily relate

these uncertainties to the uncertainty of σ8 by using Eq. (4.20): ∆σ8 = ±0.042± 0.064.

It is worth making further effort to reduce the systematic errors in measurement of the

lensing MFs.



Chapter 5

Cross correlation with Dark

Matter Annihilation Sources

Here, we present the first measurement of the cross-correlation between cosmic shear

and the extragalactic gamma-ray background (EGB). This measurement is performed

with the largest cosmic shear data set currently available from the Canada-France-

Hawaii Lensing Survey (CFHTLenS) and gamma-ray photon data from the Fermi LAT

telescope. The measured cross correlation is utilized to place constraints on the dark

matter annihilation cross section. The resulting constraint is based on the information

at cosmological scales, and is complementary to dark matter search in local galaxies. In

this chapter, we assume the standard cosmological parameters H0 = 100h km s−1 with

h = 0.7, Ωm0 = 0.279, and ΩΛ = 0.721.

5.1 Dark Matter Annihilation

The existence of dark matter (DM) is supported with high significance by a number

of astrophysical observations as shown in Section 1.2. While we still know little of the

DM particle properties, if DM particles annihilate into standard model particles, as is

typically expected for their production in the early universe, underlying matter density

field in the universe will be a source of gamma rays.

5.1.1 Relic density

Here, we summarize the relic density of the annihilating dark matter. A particle in the

early universe has to experience various interactions in efficient way. As the universe

76
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expands and cools down, the local thermal equilibrium can not be maintained because

the interaction rate can not overcome the expansion rate of the universe at some time.

At that time, the particle is so-called decoupled and the time evolution of mean number

density of the particle can be determined by the expansion rate of the universe.

The time evolution of number density of a particle can be determined by the Boltzmann

equation. In the case of the annihilating DM, the governing equation is given by

dndm

dt
+ 3Hndm = −〈σv〉(n2

dm − n2
dm,eq), (5.1)

where ndm is the number density of DM, ndm,eq represents the number density at thermal

equilibrium, H is Hubble constant and 〈σv〉 is the annihilation cross section times the

relative velocity averaged with the velocity distribution function. Here, ndm,eq is given

by the Maxwell-Boltzmann approximation:

ndm,eq = g

(
mdmT

2π

)3/2

exp
(
−mdm

T

)
, (5.2)

where g is the internal degrees of freedom, mdm is the DM particle mass, and T represents

the temperature of thermal equilibrium. It is useful to introduce the following new

variables;

Y =
ndm

s
, (5.3)

Yeq =
ndm,eq

s
, (5.4)

where s is the entropy density s = 2πg∗T 3/45 and g∗ represents the number of relativistic

degrees of freedom. With Y and Yeq, one can obtain the following equation from Eq. (5.1)

during the radiation domination1;

dY

dx
= −〈σv〉s

Hx

(
Y 2 − Y 2

eq

)
, (5.5)

where we use the conservation of entropy per comoving volume and x is defined by

mdm/T . Furthermore, we introduce the variable ∆ = Y − Yeq and finally obtain the

equation as follows;

d∆
dx

= −dYeq

dx
− f(x)∆(2Yeq + ∆), (5.6)

1 During the radiation domination, the following equation holds; t = 0.301g−1/2
∗ (mPl/T 2) where mPl

is the planck mass.
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where f(x) is given by

f(x) =
√

πg∗
45

mdmmPl〈σv〉x−2 (5.7)

For simplicity, in this thesis, we consider the s-wave annihilation, i.e. the case where

〈σv〉 is constant. In this case, Ref. [168] found the accurate approximate formula of Y

in the limit of x → ∞:

Y −1
∞ =

√
πg∗
45

mdmmPlx
−1
F 〈σv〉, (5.8)

where xF is evaluated at the freeze-out temperature where 〈σv〉ndm|T = H|T . Then, one

can estimate the present mean matter density of the annihilating DM as ρ̄m0 = mdms0Y∞

where s0 = 2889.2 cm−3 is the present entropy density. Finally, the relic density of DM

is given by

Ωm0h
2 , 1.07 × 109 GeV−1

mPl

xF√
g∗

1
〈σv〉 . (5.9)

An order-of-magnitude estimate is found in Ref. [169]. That is given by

Ωm0h
2 , 3 × 10−27 cm3 s−1

〈σv〉 . (5.10)

The above estimate and the current constraints on Ωm0h2 ∼ 0.1 (e.g., [19]) lead to the

canonical thermal cross-section of DM annihilation:

〈σv〉themal , 3 × 10−26 cm3 s−1. (5.11)

5.1.2 Gamma-ray intensity

The intensity is defined by the number of photons per unit energy, area, time, and solid

angle. Thus, the contribution of DM annihilation to the intensity at gamma-rays Iγ can

be expressed by

EγIγ =
c

4π

∫
dz

Pγ(E′
γ , z)

H(z)(1 + z)4
e−τ(E′

γ ,z), (5.12)

where Eγ is the observed gamma-ray energy, E′
γ = (1 + z)Eγ is the energy of the

gamma ray at redshift z, H(z) = H0[Ωm0(1 + z)3 + ΩΛ]1/2 is the Hubble parameter in

a flat ΛCDM universe, and the exponential factor in the integral takes into account the

effect of gamma-ray attenuation during propagation owing to pair creation on diffuse

extragalactic photons. In this thesis, we adopt the model in Ref. [170] for the gamma-ray

optical depth τ
(
E′

γ , z
)
. The volume emissivity, denoted by Pγ , defined by the photon
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energy emitted per unit volume, time, and energy range. Hence, Pγ is given by

Pγ(Eγ , z) = Eγ
dNγ

dEγ

〈σv〉
2

[
ρdm(x|z)

mdm

]2

, (5.13)

where dNγ/dEγ is the gamma-ray spectrum per annihilation and ρdm(x|z) is the DM

mass density distribution at redshift z as a function of spatial coordinate x.

Since the DM annihilation rate is proportional to the DM density squared, highly over-

dense regions in the universe would dominate the volume emissivity. Therefore, it is use-

ful to consider the intensity at gamma-ray in terms of an overdensity δ(z) = ρdm/ρ̄dm(z)

where ρ̄dm(z) = Ωm0ρcrit,0(1 + z)3 and ρcrit,0 is the critical density today. Let us con-

sider the mean intensity at gamma-ray originated from the DM annihilation. In order

to calculate the mean value of Eq. (5.12), we need to evaluate the ensemble average of

the overdensity squared, 〈δ2(z)〉 = 〈ρ2
dm(z)〉/ρ̄2

dm(z). This factor is called the intensity

multiplier (or the clumping factor), and characterizes the enhancement in the DM an-

nihilation rate due to dense DM halos. It is obtained by integrating over the DM halo

mass function n(M, z),

〈δ2(z)〉 =
1

ρ̄2
dm(z)

∫ ∞

Mmin

dM n(M, z)
∫

dV ρ2
dm(r|M, z), (5.14)

where ρdm(r|M, z) describes the density profile as a function of radius r for a DM halo

with mass M at redshift z, and Mmin is the smallest DM halo mass.

Therefore, the contribution to mean intensity of gamma-rays is obtained by

Iγ =
〈σv〉
8π

∫
c dz

dNγ

dEγ

∣∣∣∣∣
E′

γ

e−τ(E′
γ ,z)

H(z)(1 + z)3

(
ρ̄dm(z)
mdm

)2

〈δ2(z)〉. (5.15)

Eq. (5.15) clearly shows that the particle properties of DM – mdm, 〈σv〉, and dNγ/dEγ –

are conveniently decoupled from the physics determining its spatial distribution, 〈δ2(z)〉.
Note that Eq. (5.14) would provide us the contribution at “extragalactic scales”. Al-

though the galactic dark matter distribution would also contribute to the observed

gamma-ray emission (see e.g., Ref. [171]), it is not of great importance as long as we

consider the cross correlation analysis of cosmic shear, which is the subject of this thesis.

Estimates of the flux multiplier depend on the value of Mmin, the halo mass function,

the DM density profile, and how the DM profile depend on halo mass and evolve in

redshift. Among these, the value of Mmin has the largest impact. The smallest DM halo

mass could be determined from the DM particle properties, being the Jeans mass of dark

matter particles. For supersymmetric neutralinos and ∼ MeV DM, this is some 10−6M"

[172], while other DM particles have Mmin that vary by orders of magnitudes [173, 174,
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175]. However, the situation would be more complicated because of hierarchical structure

formation thorough various processes such as accretion, stripping and mergers. These

processes make some DM halos destructed. In particular, much of the smallest DM

halos may be absorbed into larger halos and their central densities disrupted before they

appreciably contribute to the extragalactic gamma-ray emission (e.g., [176, 177]). The

DM Jeans mass is therefore simply a lower limit. Furthermore, the additional gamma-

ray could be produced by interactions of the annihilation products with the environment.

Such gamma-rays are called secondary gamma-rays. An example of secondary gamma-

ray emission is when DM annihilation produces a positron, which, in turn, finds an

electron in the galactic halo and annihilates to produce gamma rays. For secondary

gamma-ray emission, the relevant minimum mass is set by the Jeans mass of the baryons,

which is on the order of ∼ 106M" (e.g., [172]).

The gamma-ray emission due to DM annihilation is expected to be anisotropic because

of the highly non-linear gravitational growth of the DM density distribution (e.g., [178]).

Hence, the expected anisotropy should correlate with another tracer of the DM density

distribution, e.g., gravitational lensing effects of distant galaxies called cosmic shear. Al-

though the DM distribution in the universe can be traced in a number of ways, among

the most powerful is gravitational lensing, which has the advantage of not requiring

any assumptions such as the relation between luminosity and mass and/or hydrostatic

equilibrium. The simple idea naturally occurs: the DM distribution that generate cos-

mic shear would also be a gamma-ray source. In Ref. [179], the authors first consider

the cross-correlation between cosmic shear and the extragalactic gamma-ray background

(EGB) and also explored how astrophysical sources contribute to the cross-correlation

signal. Their conclusion is that even without detailed astrophysical modeling, the ad-

ditional information derived by the cross-correlation would be helpful for exploring the

DM contribution in extragalactic gamma-ray emission.

5.2 Extragalactic Gamma-ray Background

The origin of the extragalactic gamma-ray background (EGB) emission is among the

most interesting problems in astrophysics. The EGB was first detected by the OSO-3

satellite [180] and subsequently deduced by the SAS -2 satellite [181] and the Ener-

getic Gamma-Ray Experiment Telescope onboard the Compton Gamma-ray Observa-

tory [182]. Most recently, the Large Area Telescope (LAT) onboard the Fermi Gamma-

ray Space Telescope has derived the most accurate EGB based on new data and improved

modeling of the Galactic gamma-ray foreground emission. The Fermi LAT observation
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shows a featureless power-law spectrum for the EGB in the energy range 0.1–300 GeV

[183].

Multiple astrophysical sources of gamma rays have been proposed as contributors to the

EGB. Unresolved astrophysical point sources, such as blazars and star-forming galaxies

(SFG), are guaranteed sources and have been investigated by many groups. However,

the modeling of the sources’ faint end distributions is non-trivial, and estimates of the

contribution to the EGB from unresolved blazars range from ∼15 per cent to ∼100

per cent (e.g., [184, 185, 186]). On the other hand, the intrinsic spectral and flux

properties of blazars constructed by Fermi LAT data, as well as the auto-correlation

of EGB anisotropies [187], suggest that unresolved blazars can only contribute up to

∼20 per cent of EGB (e.g., [188, 189, 190, 191]). Similarly, the contribution from SFGs

and radio galaxies to the EGB can be significant but is subject to large uncertainties

[192, 193]. These previous works show that while the EGB intensity can be explained

by the superposition of multiple astrophysical source classes, there appears to remain

large uncertainties and thus, at present, an appreciable contribution from unknown or

unconfirmed sources of gamma rays is allowed.

5.2.1 Data

In this thesis, we use Fermi -LAT Pass 7 Reprocessed gamma-ray photon data taken

from August 2008 to January 20142. Our interest is the cross correlation analysis of

cosmic shear data obtained from CFHTLenS as summarized in Section 4.2.1.1. For each

CFHTLenS patch, we download photons within a circle of radius 10◦ around the center

of each region and work with a 14◦×14◦ square region of interest (ROI). In analyzing the

data, we use the Fermi Tools version v9r32p53. Using the gtmktime tool, we remove data

taken during non-survey modes and when the satellite rocking angle exceeds 52◦ with

respect to the zenith (DATA QUAL=1, LAT CONFIG=1, and ABS(ROCK ANGLE)<52). This

standard procedure removes epochs with potentially significant contamination by the

gamma-ray bright Earth limb. Unless otherwise stated, we work with only ULTRACLEAN-

class photons, which are events that pass the most stringent quality cuts, and we use

photons between 1–500 GeV in energy. In Section 5.4.1, we discuss using SOURCE-class

photons. Then, using the gtbin tool, we bin the photons in a stereographic projection

into pixels of 0.2◦ × 0.2◦ and into 30 equal logarithmically-spaced energy bins. These

binning sizes are taken from the official recommended values that are chosen to ensure
2 We also performed the cross correlation analysis for Pass 7 Reprocessed gamma-ray photon data

take from different two periods: August 2008 to May 2012 (data1) and May 2012 to January 2014
(data2). Even though we consider only CFHTLenS W1 field for this analysis, we find that the resulting
signal is also consistent with a null signal. The value of chi-squared statistics for 10 bins is found to be
7.93 and 3.64 for data1 and data2, respectively.

3 http://fermi.gsfc.nasa.gov/ssc/data/analysis/
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reasonable analysis outcomes, namely, to ensure that rapid variations of the effective

area with energy is taken into account (e.g., as discussed in the binned likelihood tu-

torial of the Fermi Analysis Threads). With the data selection cuts in place, we use

the gtltcube tool to generate integrated live times and the gtexpcube2 tool to generate

the integrated exposure maps. Throughout, we work with the P7REP ULTRACLEAN V15

instrument response function (IRF), unless otherwise stated.

In order to obtain the extragalactic diffuse photons, for each ROI we subtract the best

fit Galactic foreground emission model from the raw data. We then mask out point

sources using a mask of 2◦ radius around each point source. The mask size corresponds

to a generous estimate of the PSF of the Fermi -LAT detector, which decreases with

energy: the 68% containment angle is ∼ 0.9 deg at 1 GeV and ∼ 0.26 deg at 10 GeV,

both for combined front and back conversion tracks. Since most point sources have steep

spectra and hence dominated by low-energy photons, our adopted mask is chosen to be

sufficiently larger than the containment angle at our lower energy limit of 1 GeV. When

we adopt a smaller mask of 1◦ radius around each point source, we find that the final

constraint would change with a level of only 10%.

We also estimate the best fit Galactic diffuse emission model separately for each ROI, by

including all the point sources in the ROI in the 2FGL catalog, together with the recom-

mended Galactic diffuse emission model (gll iem v05) and the recommended isotropic

emission model (iso clean v05). We have checked that our four ROIs are sufficiently

far from the large-scale diffuse gamma-ray sources such as the Fermi bubbles [194] which

would otherwise complicate fitting. We find 9, 11, 11, and 12 point sources in W1, W2,

W3 and W4 field, respectively. In order to perform a binned likelihood analysis, we

use the gtlike tool by varying all point source spectra as well as the diffuse emission

normalizations. We then use the gtmodel tool to generate photon counts maps based

on the best fit Galactic diffuse model and exposure maps. Finally, we subtract these

from the raw counts maps. We checked that the procedure yields a flux spectrum for

the EGB, estimated as the raw counts minus a model without the isotropic component,

divided by the exposure map, that is very similar to the −2.41 power-law spectrum of

the EGB reported in Ref. [183]. In Figure 5.1, we show how the residuals of the raw

counts minus the Galactic diffuse model, demonstrate structureless spatial maps in all

four CFHTLenS fields.
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Figure 5.1: Residual maps in the CFHTLenS W1, W2, W3, and W4 fields, where
residual is defined as the fluctuation in the EGB photon count map from its mean value
(taken from [3]). In each panel, the color-scale bar represents both the positive and
negative difference between the EGB count map and the mean of each field indicated
above the panels: 0.66, 0.70, 0.86, and 0.20 in W1, W2, W3 and W4 fields, respectively.
Overlaid by thick lines are the average ellipticities of source galaxies over 1 deg2 with
arbitrary scaling. The circles represent the point-source masked regions. For visual-
ization purposes, a Gaussian smoothing is performed on the map with a width of 0.6

deg.

Ref. [195] modeled the point spread function (PSF) in the case of Fermi-LAT with the

following functional form:

WPSF(θ, Eγ) = A(Eγ) [fcoreK(x,σcore, γcore) + (1 − fcore)K(x,σtail, γtail)] ,(5.16)

fcore =
1

1 + Ntailσ2
tail/σ2

core
, (5.17)

K(x, σ, γ) =
1

2πσ2

(
1 − 1

γ

)[
1 +

1
2γ

x2

σ2

]−γ

, (5.18)

where x is a scaled-angular deviation defined by x = θ/SP(Eγ) and A(Eγ) is the nor-

malization factor such that
∫

d2θ WPSF(θ, Eγ) = 1. The scale factor SP(Eγ) is found in
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[195],

SP(Eγ) =

√√√√
[
c0

(
Eγ

100MeV

)−β
]2

+ c2
1, (5.19)

and the normalization is given by A(Eγ) = [SP(Eγ)]2. In this thesis, we adopt the

parameters estimated in the latest in-flight PSF for ULTRACLEAN photons4, i.e., c0 = 3.16

deg and c1 = 0.034 deg for front-converting events, and c0 = 5.32 deg and c1 = 0.096

deg for back-converting events, along with β = 0.8, Ntail = 0.08639, σcore = 0.5399,

σtail = 1.063, γcore = 2.631, and γtail = 2.932 for both events [195].

5.3 Cross Correlation of Extragalactic Gamma-ray Back-

ground and Cosmic Shear

5.3.1 Theoretical model

In this section, we summarize our benchmark model for the cross-correlation signal

between cosmic shear and the EGB. The theoretical framework for the angular power

spectrum analysis of the EGB has been developed in Refs. [178, 179, 196, 197]. We

calculate the cross-correlation of cosmic shear and the EGB as follows.

In general, the number of EGB photons along the line of sight θ can be expressed by

δn(θ) =
∫

dχ g(χ,θ)Wg(χ), (5.20)

where χ is the comoving distance, g is the relevant field for gamma-ray sources, and

Wg is the window function. As shown in Section 5.1.2, for gamma-ray emission from

DM annihilation, the relevant field is the overdensity squared δ2. With Eq. (5.12), the

window function in Eq. (5.20) is given by

Wg(χ) =
∫ Eγ,max

Eγ,min

dEγ
〈σv〉
8π

(
ρ̄dm,0

mdm

)2

[1 + z(χ)]3
dNγ

dEγ

∣∣∣∣∣
E′

γ

exp
[
−τ
(
E′

γ ,χ
)]

η(Eγ),(5.21)

where ρ̄dm,0 is the mean density of DM at present, E′
γ = (1 + z(χ))Eγ and Eγ are the

energy of the gamma ray when it is emitted at χ and when it is observed, respectively.

Here, η(Eγ) is the exposure which is the integral of effective area over time taking

into account the orbits of Fermi and data cuts. We use a standard model of τ [170],

and we estimate η(Eγ) by averaging the exposure maps over the ROI in each of the
4made publicly available at

http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone LAT IRFs/IRF PSF.html
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CFHTLenS patches. For the gamma-ray spectrum per annihilation dNγ/dEγ , we adopt

two characteristic spectra corresponding to annihilation with 100% branching ratios to

bb̄ and τ+τ− final states. These are calculated with the PPPC4DMID package [198] that

is based on PYTHIA (v8.135) and HERWIG (v6.510) event generators. The spectra are

dominated by emission from the decay of neutral pions. These are primary gamma-

ray emissions, and are distinguished from secondary emission. Also, the gamma-ray

emission can be noticeably softened by the bremsstrahlung emission from leptonic final

states [199]. We do not include secondary emission in this thesis simply because their

effect depends strongly on the astrophysical environment and furthermore since they

would be only critical for annihilation in regions of high baryon density, e.g., the planes

of galaxies. Additional contributions can arise from three-body final states such as

internal bremsstrahlung [200]. However, we do not include this because it can only be

included in the framework of a precise DM model e.g., [198].

We next consider gravitational lensing by large-scale structure. Weak lensing conver-

gence field is then given by

κ(θ) =
∫

dχWκ(χ)δ(θ,χ), (5.22)

where window function for κ is given by

Wκ(χ) =
3
2

(
H0

c

)2

Ωm0(1 + z(χ))
∫ ∞

χ
dχ′ p(χ′)g(χ′,χ), (5.23)

where we denote the source distribution by p(χ). In this thesis, for p(χ), we use the sum

of the posterior probability distribution function of photometric redshift [160].

Using Eqs. (5.20) and (5.22) with Limber approximation [98, 201], we obtain the angular

cross power spectrum of δn and κ as

Pδn−κ(') =
∫

dχ

χ2
Wg(χ)Wκ(χ)Pδ−δ2('/χ, z(χ)). (5.24)

The direct observable in the present study is the cross-correlation function in real space,

which is calculated as

ξδn−γt(θ) =
∫

d''

2π
Pδn−κ(')J2('θ), (5.25)

where J2(x) represents the second-order Bessel function [52, 202].

We adopt the so-called halo model approach [77] to estimate the integrand Pδ−δ2(k, z) in

Eq. (5.24). The halo model is a useful approach for incorporating the non-linear growth

of the overdensity δ that determines the anisotropy of the EGB. With the halo model
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approach, Pδ−δ2(k, z) can be expressed as a sum of two terms called the one-halo term

and the two-halo term. The former represents the two-point correlation within a given

DM halo, and the latter corresponds to the correlation due to clustering of DM haloes.

These two terms can be written as, respectively,

P 1h
δ−δ2(k, z) =

(
1

ρ̄m

)3 ∫

Mmin

dM n(M, z)M u(k|M, z)

×(1 + bsh(M))v(k|M, z)
∫

dV ρ2
h(r|M, z), (5.26)

P 2h
δ−δ2(k, z) = P lin(k, z)

(
1

ρ̄m

)3 [∫

Mmin

dM n(M, z)bh(M, z)M u(k|M, z)
]

×
[∫

Mmin

dM n(M, z)bh(M, z)(1 + bsh(M))v(k|M, z)
∫

dV ρ2
h(r|M, z)

]
, (5.27)

where n(M, z) is the halo mass function, and bh(M, z) is the linear halo bias [87, 203].

We adopt the Navarro-Frenk-White (NFW) DM density profile as shown in Eq. (2.59).

In this thesis, we adopt the functional form of the concentration parameter in Ref. [69].

The volume integral of the density squared with Eq. (2.59) is then

∫
dV ρ2

h(r|M, z) =
4πr3

sρ
2
s

3

[
1 − 1

(1 + cvir)3

]
. (5.28)

Here, u(k|M, z) and v(k|M, z) describe the fourier transform of density profile and den-

sity squared profile, respectively. Both u(k|M, z) and v(k|M, z) are normalized so as

to become unity in the limit of k → 0. We use the fourier transform of normalized

NFW profile for u(k|M, z) as given in Ref. [77], and the functional form of v(k|M, z) in

Ref. [197]. Finally, bsh is the boost factor, which is essentially equal to the flux multiplier

〈δ2(z)〉 described in Section 5.1.2. However, another important effect should be consid-

ered: the DM annihilation rate could be boosted due to subhalos that reside within

halos. We adopt the fitting formula for bsh provided by Ref. [204] that includes this ex-

tra effect. Based on recent high-resolution dissipationless N -body numerical simulations,

they find that bsh = 1.6 × 10−3 (M/M")0.39 provides a satisfactory fit.

The minimum halo mass Mmin in Eq. (5.26) and Eq. (5.27) is one of the largest model

uncertainties. As discussed in Section 5.1.2, it has a large range of possibilities. In this

thesis, we consider two cases: a conservative case with Mmin = 106M" that corresponds

to the typical baryonic Jeans mass [172], and an optimistic case with Mmin = 10−6M"

which is the typical free streaming scale for neutralino DM. In our benchmark model,

we find that the difference in Mmin changes the amplitude of cross-correlation signal

ξδn−γt(θ) by a factor of ∼ 10. We regard this variation as our model uncertainty. Namely,

the uncertainty of our benchmark model is a factor of ∼ 10. Note that this model
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uncertainty likely dominates over the systematic uncertainties in the Galactic diffuse

template and those due to sample variance in our weak lensing shear measurement.

Recently, Refs. [205, 206] have argued that the halo profile concentration shows a pe-

culiar dependence on the halo mass, and that the simple power-law extrapolation for

concentration used in Ref. [204] results in an overestimate of the boost factor by a factor

of ∼ 50 depending on Mmin. Because most of the cross-correlation signal comes from

clustering at large angular scales (see Figure 5.9 later in Section 5.5.2), our results are

not strongly affected by the choice. Also, the universality of density profile of DM halo

is still unclear. Although we assume the NFW profile in our benchmark model, there

exist the different parameterizations of density profile ρh (e.g., [207]). Since the cross

correlation signal is of the order of
∫

dV ρ2
h, the inner slope of density profile could affect

the cross-correlation signal even at large angular scales. We discuss these points further

in detail in Appendix D.

5.3.1.1 Astrophysical source contribution

Next, we consider astrophysical contributors to the EGB, i.e. blazars and SFGs. The

contribution to Pδn−κ(') can be calculated as

Pδn−κ(') =
∫

dχ

χ2
Wg,ast(χ)Wκ(χ)Pδ−L('/χ, z(χ)), (5.29)

where Wg,ast(χ) is the window function of gamma rays from astrophysical sources and

Pδ−L(k, z) represents the three dimensional cross power spectrum of matter over density

and luminosity. The weight function Wg,ast is given by

Wg,ast(χ) =
∫ Emax

Emin

dEγ

4π
N0(χ)

(
E′

γ

E0

)−α

exp
[
−τ
(
E′

γ ,χ
)]

η(Eγ), (5.30)

where E0 = 100 MeV, E′
γ = (1+ z(χ))Eγ , and N0(χ) (Eγ/E0)−α represents the gamma-

ray energy distribution of the astrophysical sources. In modeling Pδ−L, one can use a sim-

ilar formalism to Eq. (5.26) and Eq. (5.27) but replacing the mass function n(M, z)dM

by the luminosity function Φ(L, z)dL [179]. Assuming blazars and SFGs are well ap-

proximated as point sources, Pδ−L can be divided into two terms,

P 1h
δ−L(k, z) =

1
ρ̄m〈L〉(χ)

∫ Lmax(z)

Lmin(z)
dL Φ(L, z)L u(k|M(L), z) (5.31)

P 2h
δ−L(k, z) = P lin(k, z)

(
1

ρ̄m〈L〉(χ)

)[∫

Mmin

dM n(M, z)bh(M, z)u(k|M, z)
]

×
∫ Lmax(z)

Lmin(z)
dL Φ(L, z)L bh(M(L), z), (5.32)
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Figure 5.2: The effective redshift of cross correlation analysis. The black line shows
the window function appeared in lensing convergence field (see, Eq. (5.22)). The colored
line represents d ln I/dz for each contributor of EGB where I is the mean intensity. In
this figure, we consider three contributions: SFG (blue), blazers (cyan), and DM anni-
hilation (green). We assume that a 100 GeV DM annihilates into bb̄ with annihilation

cross section 〈σv〉 = 3 × 10−26 cm3 s−1.

where 〈L〉(χ) represents the mean luminosity at z(χ) and M(L) is the mass-luminosity

relation of astrophysical sources. We therefore need to set the specific functional form

of N0(χ), Φ(L, z), M(L), and the power-law index of energy distribution of gamma-ray

α in order to calculate Pδn−κ(') for each astrophysical source.

For the gamma-ray luminosity function of blazars, we adopt the luminosity-dependent

density evolution model [185, 196] with parameters in Ref. [197]. We set the power

law index α for blazars to be 2.4, which is consistent with the spectra of resolved

blazars. The gamma-ray luminosity of blazars is evaluated as νLν at 100 MeV. In

this case, N0 is given by 〈L〉/E2
0 . We adopt the mass-luminosity relation M(L) =

1011.3M"
(
L/1044.7 erg s−1

)1.7 that yields the desired bias of blazer host halos [196]. We

assume that there are no blazars fainter than the luminosity Lmin = 1042 erg s−1 at any

redshift. In estimating Lmax(z), we assume a blazar can be resolved if the gamma-ray

flux F at E > 100 MeV is larger than 2 × 10−9 cm−2 s−1.

For the gamma-ray luminosity function of SFGs, we use the tight correlation between

the infrared (IR) luminosity and the gamma-ray luminosity [192], and use the observed

IR luminosity function [208]. We define gamma-ray luminosity in the energy range

between 0.1 GeV and 100 GeV, and we assume a power-law spectrum with index α = 2.7

for SFGs. This leads to N0(χ) = (〈L〉/E2
0)(α − 2)/(1 + z(χ))2−α so that the mean

luminosity is obtained as 〈L〉 =
∫

dEγ EγN0(χ) (Eγ/E0)−α with the integral performed
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Figure 5.3: The expected cross-correlation signals of cosmic shear and important
components of the EGB: from SFG (blue), blazers (cyan), and DM annihilation. For
DM annihilation, the two cases are shown: a 100 GeV DM particle with annihilation
cross section 〈σv〉 = 3 × 10−26 cm3 s−1 and annihilation channels τ+τ− (red) and bb̄
(green). Furthermore the model uncertainty is also considered. In this figure, we set
two values for the minimum halo mass; Mmin = 10−6M" (solid) and Mmin = 106M"

(dashed). This figure is taken from [3].

from (1+z)E0 to (1+z)E1, where E0 = 100 MeV and E1 = 100 GeV. We use the mass-

luminosity relation for SFGs, M(L) = 1012M"
(
L/1039 erg s−1

)0.5 that is calibrated by

the Milky Way properties [179]. The minimum luminosity is set to 1030 erg s−1 at any

redshift, while the maximum luminosity is estimated in the same way as in the case of

blazars.

We first present the effective redshift of cross correlation of cosmic shear and EGB.

Figure 5.2 shows the mean intensity of EGB I from each contributor. There, d ln I/dz

for SFG, blazer and DM annihilation are summarized as blue, cyan and green line, re-

spectively. Also, we show the lensing kernel function found in Eq. (5.22) with source

galaxy distribution in CFHTLenS. Clearly, we can extract the information at cosmo-

logical scales (z = 0.2 − 0.4) from cross correlation analysis. Then, in Figure 5.3, we

summarize our benchmark model of cross-correlation signals in the case of DM annihi-

lation with mdm = 100 GeV and 〈σv〉 = 3×10−26 cm3 s−1. In this figure, the results for

two annihilation channels are shown, the τ+τ− channel (red lines) and the bb̄ channel

(green lines). We represent the level of model uncertainty due to the minimum halo

mass Mmin by plotting both the optimistic case with Mmin = 10−6M" (solid lines) and

the conservative case with Mmin = 106M" (dashed lines). The figure clearly shows the

sensitivity of the results on Mmin and the different annihilation channels. The blue and

cyan line in Figure 5.3 show the cross-correlation signals of cosmic shear and EGB con-

tributed by unresolved SFGs and blazars, respectively. Clearly, the contribution from
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astrophysical sources can be significant at all angular scales. We note that our adopted

model of blazars is different from the one in the previous work of Ref. [179]. Our model

reproduces the observed flux counts of resolved blazars, whereas the model in Ref. [179]

is aimed at reproducing the flux counts as well as the anisotropy of the EGB [190]. The

main difference lies in the faint slope of the gamma-ray luminosity function. Overall, our

model predicts a larger contribution from blazers to the EGB intensity than the model

of Ref. [179] by a factor of ∼ 10. In this thesis, we first examine the case where DM

annihilation is the sole contributor to the cross-correlation signal. Our analysis under

this assumption should provide a conservative constraint on DM annihilation, because

the cross-correlation signals due to astrophysical sources are expected to be positive

unless the sources are distributed in an anti-correlated manner with respect the under-

lying DM density field. Furthermore, we find that the statistical error in the current

dataset is larger than the expected cross-correlation signals due to astrophysical sources.

Therefore, the final result is not strongly affected by the details of the modelling for the

astrophysical sources.

5.3.1.2 Point spread function

Let us consider the smoothing effect of the point spread function. The observed number

of EGB photons along a line of sight θ is expressed by the convolution of the underlying

number of EGB photons with the PSF of the detector,

δnobs(θ) =
∫

d2θ′ WPSF(θ − θ′)δn(θ′), (5.33)

where δnobs is the observed number of EGB photons and WPSF is the PSF. This induces

an additional scale dependence of the weight function of EGB counts in Eq. (5.21) and

Eq. (5.30). Taking into account the energy dependence of the PSF, the scale-dependent

weight function is given by

Wg(χ) → Wg(χ, ') =
∫ Eγ,max

Eγ,min

dEγ
〈σv〉
8π

(
ρ̄dm,0

mdm

)2

[1 + z(χ)]3
dNγ

dEγ

∣∣∣∣∣
E′

γ

× exp
[
−τ
(
E′

γ ,χ
)]

η(Eγ)W̃PSF(', Eγ),(5.34)

Wg,ast(χ) → Wg,ast(χ, ') =
∫ Emax

Emin

dEγ

4π
N0(χ)

(
E′

γ

E0

)−α

× exp
[
−τ
(
E′

γ ,χ
)]

η(Eγ)W̃PSF(', Eγ),(5.35)

where W̃PSF(', Eγ) is the fourier transform of the PSF.

The effect of the PSF on the cross-correlation analysis can be evaluated with the specific

functional form shown in Eq. (5.16). Figure 5.4 shows the effect. In Figure 5.4, we
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Figure 5.4: The smoothing effect due to the PSF on the cross-correlation signals
of cosmic shear and EGB (taken from [3]). The thin lines show the original expected
signal as in Figure 5.3: annihilation of a 100 GeV mass DM with annihilation cross
section 〈σv〉 = 3 × 10−26 cm3 s−1 and minimum halo mass Mmin = 10−6M"; red and
green lines are for the τ+τ− and bb̄ channel, respectively. The thick lines represent the

signal with smoothing due to the PSF.

consider the cross-correlation signal due to the annihilation of DM with mdm = 100

GeV and 〈σv〉 = 3×10−26 cm3 s−1. To account for the PSF, we first calculate the cross-

correlation signals with the scale-dependent weight function in Eq. (5.34) and Eq. (5.35)

for front- and back-converting events, respectively. We then average these two signals

at a given angular separation assuming the number of front-converting events is equal

to that of back-converting events. Clearly, the smoothing effect significantly affects the

cross-correlation signal especially at smaller angular scales than the typical size of the

PSF, i.e. ∼ 50 arcmin. We also expect that the pixelization effect would be unimportant

in our analysis, because the pixel size is smaller than the size of the PSF (the pixel size

= 12 arcmin).

5.3.2 Cross-correlation estimator and covariance

We summarize the properties of the estimator for cross-correlation analysis. When we

measures galaxies’ ellipticities (ε) and counts extragalactic gamma-ray photons (δn)

from an observed data set precisely, the cross-correlation estimator is expressed by

ξ̂δn−γt(θ) =
1

Np(θ)

Npixel∑

i

Ngal∑

j

δn(φi)εt(φj |φi)∆θ(φi − φj), (5.36)

Np(θ) =
Npixel∑

i

Ngal∑

j

∆θ(φi − φj), (5.37)
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where Npix is the number of pixels in the gamma-ray counts map, Ngal is the number

of galaxies, δn(φi) is the observed number of EGB photons in pixel i in the gamma-ray

counts map, and εt(φj |φi) is the tangential component of the j-th galaxy’s ellipticity

with respect to the i-th pixel of the gamma-ray counts map, defined by

εt(φj |φi) = −ε1(φj) cos(2αij) − ε2(φj) sin(2αij), (5.38)

where αij is defined as the angle measured from the right ascension direction to a line

connecting the i-th pixel and the j-th galaxy. We define the function ∆θ(φ) = 1 for

θ−∆θ/2 ≤ φ ≤ θ+∆θ/2 and zero otherwise. Np(θ) represents the effective pair number

in cross-correlation analysis. We can find that this estimator is an unbiased estimator

of of cross-correlation signal ξδn−γt(θ) by taking the ensemble average of Eq. (5.36).

In order to discuss statistical significances of the measured estimator from real data, one

need to estimate the covariance of ξ̂δn−γt(θ). In particular, the covariance in the case

of 〈ξ̂δn−γt(θ)〉 = 0 is required for detection of cross-correlation signals. The covariance

matrix of Eq. (5.36) is defined by

Cov
[
ξ̂δn−γt(θ1), ξ̂δn−γt(θ2)

]
= 〈(ξ̂δn−γt(θ1) − ξδn−γt(θ1))(ξ̂δn−γt(θ2) − ξδn−γt(θ2))〉

=
1

Np(θ1)Np(θ2)

[
∑

i,j,k,&

〈n(φi)εt(φj |φi)n(φk)εt(φ&|φk)〉

×∆θ1(φi − φj)∆θ2(φk − φ&)

]

−ξδn−γt(θ1)ξδn−γt(θ2), (5.39)

where i and k represent the indices of summation over gamma-ray counts, and j and '

are for galaxies. When two fields δn and ε are independent of each other, the ensemble

average 〈δn εt δn εt〉 would simply reduce the product of the ensemble average of each

field, i.e. 〈δn δn〉〈εt εt〉. For shape of galaxies, the two point correlation function 〈εt εt〉
would be expressed by the summation of intrinsic variance and the correlation signal

due to large scale structure;

〈εt(φj)εt(φ&)〉 =
σ2

int

2
δj& + ξ+(|φj − φ&|), (5.40)

where σint represents the variance of intrinsic shape of galaxies and ξ+(θ) is the two

point correlation signal due to weak gravitational lensing. In a concordance ΛCDM

universe, ξ+(θ) would be expected to be on the order of 10−4. The latest cosmic shear

measurement [160] confirmed this expectation with high significance and shows that the

typical value of σint to be ∼ 0.4. For extragalactic gamma-ray counts, the origin is

still unknown. Hence, it is difficult to estimate the exact contribution to the two point
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correlation function 〈δn δn〉. At least, we expect that Poisson processes would dominate

on scales larger than the point spread function in gamma-ray surveys. We here assume

that photon count fluctuations follow a Poisson distribution with mean corresponding

to δnobs(φ), where δnobs(φ) is the observed gamma-ray count map. In this case, two

point correlation function 〈δn δn〉 would be expressed by

〈δn(φi)δn(φk)〉 = δnobs(φi)δik + δnobs(φi)δn
obs(φk), (5.41)

where the first term represents Poisson fluctuations in count maps and the second term

includes the effect of correlation due to the point spread function in gamma-ray surveys.

Eq. (5.41) would be a reasonable approximation when considering scales larger than the

size of point spread function, i.e. ∼ 1 deg in our analysis.

Using Eqs. (5.40) and (5.41), and 〈ξ̂δn−γt(θ)〉 = 0, one can divide the covariance of our

estimator into four contributions as follows:

Cov
[
ξ̂δn−γt(θ1), ξ̂δn−γt(θ2)

]
= CSN+p(θ1, θ2) + CWL+p(θ1, θ2)

+CSN+obs(θ1, θ2) + CWL+obs(θ1, θ2), (5.42)

CSN+p(θ1, θ2) =
1

Np(θ1)Np(θ2)

∑

i,j

δnobs(φi)
σ2

int

2
∆θ1(ij)∆θ2(ij), (5.43)

CWL+p(θ1, θ2) =
1

Np(θ1)Np(θ2)

∑

i,j,&

δnobs(φi)ξ+(|φj − φ&|)

×∆θ1(ij)∆θ2(i'), (5.44)

CSN+obs(θ1, θ2) =
1

Np(θ1)Np(θ2)

∑

i,j,k

δnobs(φi)δn
obs(φk)

σ2
int

2

×∆θ1(ij)∆θ2(kj), (5.45)

CWL+obs(θ1, θ2) =
1

Np(θ1)Np(θ2)

[
∑

i,j,k,&

δnobs(φi)n
obs(φk)ξ+(|φj − φ&|)

×∆θ1(ij)∆θ2(k')

]
, (5.46)

where ∆θ1(ij) = ∆θ1(φi −φj) and so on. According to the observational fact that ξ+ is

smaller than σ2
int by a factor of 10−3, the first term CSN+p and the third term CSN+obs

would be the dominant contributions in Eq. (5.42). CSN+p can be estimated from the

observed galaxy catalogue and random count maps based on Poisson distribution. We

can also estimate CSN+obs by cross-correlating the observed photon counts and random-

ized galaxy catalogues. The estimation of CSN+p and CSN+obs from the real data set is

found in Section 5.4.1.
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5.4 Application to Real Data Sets

We consider the cross correlation function of cosmic shear and EGB with real data sets

obtained from CFHTLenS surveys and Fermi LAT telescope. In this section, we have

used the source galaxies with 0.2 < zp < 1.3 to measure the cross-correlation of cosmic

shear and EGB. We use a total of 2570270, 679070, 1649718, and 770356 galaxies in the

W1, W2, W3, and W4 fields, respectively.

5.4.1 Analysis

In order to calculate the cross-correlation of cosmic shear and EGB, we generalize the

formula of Eq. (5.36) as follows:

ξδn−γt(θ) =

Npixel∑

i

Ngal∑

j

(nobs(φi) − ngm(φi))wjεt(φj |φi)∆θ(φi − φj)

(1 + K(θ))
Npixel∑

i

Ngal∑

j

wj∆θ(φi − φj)

, (5.47)

where nobs(φi) is the observed number of photons in pixel i in the gamma-ray counts

map, ngm(φi) is the contribution from the Galactic emission model estimated using the

Fermi -LAT diffuse template and detector modeling, and wj is the weight related to the

shape measurement. The overall factor 1 + K(θ) in Eq. (5.47) is used to correct for the

multiplicative shear bias m in the shape measurement with lensfit [153], which is given

by

1 + K(θ) =

Npixel∑

i

Ngal∑

j

wj(1 + m(φj))∆θ(φi − φj)

Npixel∑

i

Ngal∑

j

wj∆θ(φi − φj)

. (5.48)

We have checked that our estimator is consistent with a zero signal when applied to

randomized shear catalogues and the observed photon count map. We have also tested

a combination of random photon count map with the observed shear catalogue.

For binning in angular separation θ, we set the innermost separation bin to 1 arcmin

and use 10 bins logarithmically spaced in ∆ log10 θ = 0.2. In calculating Eq. (5.47), we

do not perform pixelization in the galaxy catalogue. We simply consider the center of

each pixel in the gamma-ray map as the angular position of the gamma-ray photons to

perform the summation in Eq. (5.47). To be precise, this induces an artificial smoothing
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Figure 5.5: The variance of cross-correlation signals estimated from a set of random-
ized realizations and the observed map (taken from [3]). The red line in each panel
shows the statistical error associated with the shape measurement. The black line rep-
resents the statistical error associated with the Poisson error from the finite number of

gamma-ray counts.

over smaller scales than the pixel size in our gamma-ray map, i.e., 0.2 deg. However,

we do not expect to detect physically important correlations over such small angular

scales due to blurring by the PSF of the Fermi -LAT detector, as we show in Section

5.3.1. In this thesis, we take the PSF smoothing into account in theoretical models

(see Figure 5.4). Note that the pixelization effect in the gamma-ray map is included in

the covariance of our estimator. The pixelization effect is found to be unimportant in

detection of the cross-correlation signals at large angular separations.

The statistical properties of our estimator Eq. (5.47) are summarized in Section 5.3.2.

There, we summarize the exact formulation of the covariance of our estimator and derive

two dominant contributions; they arise from the intrinsic shape variance of galaxies,

called shape noise, and the finite number of photon counts per pixel in the gamma-ray

maps, called photon noise. We utilize randomized shear catalogues in order to estimate

the statistical errors associated with the shape noise. We generate 500 randomized shear

catalogues by rotating the direction of each galaxy ellipticity but with fixed amplitude.

We then estimate the covariance matrix Cij of the estimator Eq. (5.47) by

Cij =
1

Nre − 1

∑

r

(ξr
δn−γt

(θi) − ξ̄δn−γt(θi))(ξr
δn−γt

(θj) − ξ̄δn−γt(θj)), (5.49)
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where ξr
δn−γt

(θi) is the estimator for the i-th angular bin obtained from the r-th realiza-

tion, and Nre = 500 is the number of randomized catalogues. The ensemble average of

the i-th angular bin over 500 realizations, ξ̄δn−γt(θi), is simply given by

ξ̄δn−γt(θi) =
1

Nre

∑

r

ξr
δn−γt

(θi). (5.50)

To estimate the statistical error associated with the photon count noise, we generate

500 randomized count maps assuming the photon counts in each pixel follows a Poisson

distribution with a mean of nobs(φ). We repeat the cross-correlation analysis with

the 500 count maps and the observed galaxy shear catalogue. We then estimate the

statistical error related to the photon noise in the same manner shown in Eq. (5.49). In

total, we estimate the statistical error associated with the shape measurement and the

photon noise by summing these two contributions. Figure 5.5 shows the variance of the

cross-correlation signal estimated from the two sets of randomized catalogs as described

above. In each panel, the red line shows the contribution from the shape noise and the

black line shows the variance due to the photon noise. Overall, the shape noise and the

photon noise contribute to the statistical error of our estimator at similar levels.

The cross-correlation estimator adopted here is also dependent on the model for the

foreground astrophysical diffuse emission of our own Galaxy. We therefore investigate

alternate LAT diffuse models provided by the Fermi collaboration to assess differences

in the estimated EGB photons. First we work with Fermi LAT Pass 7 reprocessed

SOURCE-class photons. This class is made with a weaker set of cuts to remove cosmic-

ray induced backgrounds. We analyze them adopting the appropriate diffuse model

and IRF. Second, we work with the Fermi LAT Pass 7 photon pipeline instead of

Pass 7 reprocessed photons with respectively the appropriate diffuse emission model

(gal 2yearp7v6 v0 and iso p7v6clean) and IRF. In both cases, we first find the best

fit diffuse model normalizations, subtract the best fit Galactic diffuse maps from the raw

data, and then mask the point sources, to obtain finally the EGB photons. We have

explicitly checked that the different Galactic diffuse models do not significantly affect

our cross-correlation analyses at present. We discuss this issue later in Section 5.4.2.

It may be necessary to consider another important contribution to the covariance, i.e.,

the sampling variance. To estimate the sampling variance, one could use the halo model

approach as shown in Section 5.3.1, but it is uncertain how the astrophysical sources are

included in the model. We expect the sampling variance to be less important compared

to the uncertainty of the halo model itself . In this thesis, we simply ignore the sampling

variance but include the model uncertainty as presented in Section 5.3.1 when deriving

the constraints on DM annihilation.
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The PSF in optical imaging surveys is one of the major systematics of galaxy shape

measurement. The optical PSF originates from diffraction, the atmospheric turbulence,

optical aberration, the misalignment of CCD chips on a focal plane, and pixelization

effects. Anisotropy of the PSF causes a coherent deformation of images that might mimic

the tangential shear pattern due to large scale structure in the universe. Often in cosmic

shear measurement, systematic effects are tested through statistical analyses of the 45◦

rotated component of galaxy ellipticities. This is because the 45◦ rotated component of

cosmic shear should vanish statistically as shown in Section 3.1. In Section 5.4.2, we

perform statistical analysis by using the 45◦ rotated component of galaxy ellipticities

and we quantify systematics, if any, of the lensing data set.

5.4.2 Result

Here, we present the measurement of the cross-correlation signals of the cosmic shear and

the EGB. Figure 5.6 shows the cross-correlation signals obtained for each CFHTLenS

patch. In each panel of Figure 5.6, we also show the cross-correlation using another

component of weak lensing shear that is rotated 45◦ from the tangential shear compo-

nent. We refer to this component as γ×. In practice, γ× is often used as an indicator of

systematics in the shape measurement. In the case of perfect shape measurement and no

intrinsic alignment, the correlation signal with γ× should vanish statistically. In order

to quantify the significance of the measured cross-correlation signals with respect to the

statistical error, we use the χ2 statistics defined by

χ2 =
∑

i,j

ξδn−γt(θi)C−1
ij ξδn−γt(θj), (5.51)

where C−1 denotes the inverse covariance matrix estimated from the randomized re-

alization shown in Section 5.4.1. In our analysis, the number of deg of freedom is 10.

The resulting values of χ2/ndof for γt and for γ× are shown in each panel. The result is

consistent with null detection in each CFHTLenS patch. We confirm that the combined

four field together is also consistent with null detection (χ2/ndof = [7.80 + 6.87 + 6.49 +

7.39]/40 = 28.55/40 in total).

For the diffuse model subtraction, we have made an attempt to estimate the system-

atics by employing different gamma-ray datasets and different Galactic diffuse emission

models. The resulting χ2 values in each of the CFHTLenS patches are summarized

in Table 5.1, and show how the typical systematic error associated with Fermi photon

analysis are very small (∆χ2 ∼ 1–5).
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Figure 5.6: The cross-correlation signal of cosmic shear and the EGB. Each panel
corresponds to each of the CFHTLenS patches W1-W4 (taken from [3]). The red points
correspond to the result using tangential shear γ+, while the black points are for γ×.
The error bars represent the standard deviation estimated from our 500 randomized

shear catalogues and 500 randomized photon count maps.

SOURCE/Pass 7 SOURCE/Pass7 rep ULTRACLEAN/Pass 7 ULTRACLEAN/Pass7 rep
W1 6.91/10 6.22/10 8.58/10 7.80/10
W2 12.26/10 12.32/10 6.98/10 6.87/10
W3 7.62/10 7.11/10 8.77/10 6.49/10
W4 12.88/10 12.95/10 7.57/10 7.39/10

Table 5.1: The impact of Fermi Galactic diffuse model on the cross-correlation
analysis of cosmic shear and the EGB (taken from [3]). The χ2 value of the cross-
correlation signal in each CFHTLenS patch are summarized with different models and

photon selections.
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5.5 Constraint and Forecast

5.5.1 DM annihilation constraint

We are now able to use the null detection of the cross-correlation to place constraints on

the DM annihilation cross-section. For this purpose, we use the maximum Likelihood

analysis. We assume that the data vector D is well approximated by the multivariate

Gaussian distribution with covariance C. In this case, χ2 statistics (log-likelihood) is

given by

χ2(p) =
∑

i,j

(Di − µi(p))C−1
ij (Dj − µj(p)), (5.52)

where µ(p) is the theoretical prediction as a function of parameters of interest. In this

thesis, we use the halo model approach shown in Section 5.3.1 to calculate the theoretical

prediction. For parameters of interest p, we simply adopt the DM particle mass and the

annihilation cross-section, mdm and 〈σv〉5. The data vector D consists of the measured

cross-correlation signals with the range of θ = [1, 100] arcmin as

Di = {ξδn−γt(θ1), ξδn−γt(θ2), ..., ξδn−γt(θ10)}, (5.53)

where θi is the i-th bin of angular separation. The inverse covariance matrix C−1

includes the statistical error of the shape measurement and the photon Poisson error. In

our likelihood analysis, we assume that the four CFHTLenS patches are independent of

each other. With this assumption, the total log-likelihood is given by the summation of

Eq. (5.52) in each CFHTLenS patch. In order to constrain mdm and 〈σv〉, we consider

the 68 % confidence level of posterior distribution function of parameters. This is given

by the contour line in the two dimensional space (mdm and 〈σv〉), which is defined as

∆χ2(p) = χ2(p) − χ2(µ = 0) = 2.30. (5.54)

As discussed in Section 5.3.1, the minimum halo mass causes the uncertainty of the

theoretical predictions by a factor of about ten. We therefore derive constraints based

on the optimistic case with Mmin = 10−6M" and on the conservative case with Mmin =

106M".

5 Strictly speaking, we need to consider other parameters associated with the model of substructure
within DM haloes. These are, for example, the concentration parameter cvir of host halo, subhalo
density profile and subhalo mass function. Although we do not include these parameters explicitly in
our analysis, we explore the overall effect by considering two cases with the different minimum halo mass
Mmin as the most important effective uncertainty of our benchmark model.
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Figure 5.7: The 68 % confidence level upper limits on 〈σv〉 as a function of DM
mass (taken from [3]). The red shaded region represents the upper bound for the τ+τ−

channel and the green region is for the bb̄ channel. Here, the widths of the shaded
regions indicate the model uncertainty: for each shaded region, the upper curve is
derived by our benchmark model with Mmin = 106M" and the lower curve is obtained

from the model with Mmin = 10−6M".

In Figure 5.7, we show the result of our likelihood analysis on the DM parameter space

mdm and 〈σv〉. We plot the constraints for two representative particle physics model,

the τ+τ− channel and the bb̄ channel. We also show the results for the two choices

of Mmin. The constraint for the case of Mmin = 10−6M" is significantly stronger, as

expected. At low DM mass, the annihilation cross-section is more severely constrained

for the τ+τ− channel, because of its harder gamma-ray spectra that contribute photons

at sensitive energies than for the bb̄ channel of the same DM mass. For reference, the

horizontal dashed line indicates the canonical cross section of 〈σv〉 = 3 × 10−26 cm3 s−1

for a thermally produced DM.

5.5.2 Future forecast

It is interesting to explore the discovery potential of the upcoming cosmology surveys in

terms of the DM particle properties. In this section, we consider two of these wide surveys

with an area coverage of 1400 deg2 (HSC) and 20000 deg2 (LSST), by simply scaling

the covariance matrix by a factor of 154/1400 or 154/20000, respectively. Assuming the

same number density and redshift distribution of source galaxies as in the CFHTLenS,

the expected constraints can be scaled by the effective survey area. The result suggests

that the upper limit will be improved by a factor of
√

1400/154 ∼ 3 for HSC and by a

factor of
√

20000/154 ∼ 11 for LSST. In particular, for a 100 GeV DM, the upper limit

of 〈σv〉 with 68 % confidence level could reach 2.7− 22.2× 10−26 cm3 s−1 for bb̄ channel

and 1.1− 8.51× 10−25 cm3 s−1 for τ+τ− channel in the case of the LSST-like survey. It
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Figure 5.8: The expected 68 % confidence level upper limit on 〈σv〉 as a function
of the DM mass for upcoming surveys (taken from [3]). This figure shows the case
with a sky coverage of survey area 1400 deg2. The red shaded region corresponds to
the expected upper limit for the τ+τ− channel and the green one for the bb̄ channel.
The left panel represents that the conservative case assuming the DM annihilation
contribution only, while the right panel shows the optimistic case taking into account

astrophysical sources.

will be important to include the uncertainty in the model template of galactic emission

and also the sampling variance that is neglected in this thesis. Then we will be able to

derive robust and complementary probes of DM annihilation from the cross-correlation

signal of cosmic shear and EGB.

As shown in Figure 5.3, the expected cross-correlation of astrophysical sources can

be comparable to the DM annihilation signal with mdm = 100 GeV and 〈σv〉 = 3 ×
10−26 cm3 s−1. Thus it will be even more important to accurately take into account

of the contribution of astrophysical sources such as blazars and SFG for future surveys.

We include the contribution from the astrophysical sources on the assumption that the

contribution of blazars and SFGs can be estimated as in our benchmark model described

in Section 5.3.1. The sum of the three contributions is given by

ξδn−γt(θ) = ξdm
δn−γt

(θ|mdm, 〈σv〉) + ξblazer
δn−γt

(θ) + ξSFG
δn−γt

(θ). (5.55)

Using this as a theoretical model template, we perform the likelihood analysis to make

forecast for DM constraints. For simplicity, we assume that the observed cross-correlation

is identical to the one of the CFHTLenS W1 patch but that the covariance matrix can

be scaled by the survey area. The expected constraint from the HSC-like survey is found

in Figure 5.8. The left panel represents the conservative case with no contribution from

the astrophysical sources whereas the right panel shows the case with including the

astrophysical sources. With the astrophysical sources in the model prediction, we can
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Figure 5.9: The cumulative signal-to-noise ratio for the cross-correlation of cosmic
shear and the EGB (taken from [3]). The figure shows the case with a sky coverage of
survey area 20000 deg2, i.e., a LSST like survey. The red shaded region corresponds to
the signal-to-noise ratio for the τ+τ− channel and the green one for the bb̄ channel. In
this figure, we consider the sum of the DM annihilation contribution of a 10 GeV mass

DM and the astrophysical sources for these plots.

place tighter upper bound by ∼ 40− 70% for the sky coverage of 1400 deg2. It is clearly

important to treat the contribution from the astrophysical sources carefully for future

wide-field surveys.

We further study information content in the cross-correlation signal of cosmic shear

and EGB. An important quantity is the cumulative signal-to-noise ratio S/N , which is

defined by

(S/N)2 =
∑

i,j

µi(p)C−1
ij µj(p). (5.56)

In order to calculate S/N , we consider DM models with 〈σv〉 = 3 × 10−26 cm3 s−1 for

a 10 GeV and 100 GeV dark matter and use the covariance matrix estimated by the

randomized method shown in Section 5.4.1.

Figure 5.9 shows the S/N as a function of the minimum angular scale included in the

cross-correlation analysis. In this figure, we consider the annihilation signal of a 10 GeV

DM particle and we set the maximum angular scale to 100 arcmin. Large-scale cross-

correlations determine the information content, and including data at small angular

scales does not improve the significance. The same can be said of a 100 GeV DM

particle. This is simply because we can not extract information from cross-correlations

on scales smaller than the size of the gamma-ray PSF. At large angular scales, θ ∼
100 arcmin, the signals are mainly contributed by the DM annihilation. We expect

that the cross-correlation analysis with upcoming survey with a large sky converge of
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∼ 1000 deg2 will be a powerful probe of dark matter annihilation. We also discuss

the detectability of the cross-correlation signal with upcoming lensing surveys. In our

benchmark model, the S/N is almost proportional to 〈σv〉 because the DM contribution

dominates over astrophysical contributions. We can thus detect at a 3-σ confidence

level the DM signature with 〈σv〉 , 3 × 10−26 cm3 s−1 for a 10 GeV dark matter and

〈σv〉 , 1 × 10−25 cm3 s−1 for a 100 GeV dark matter in a LSST-like survey. It is

important to note that S/N will likely increase significantly if cross-correlations at very

large angular scales ( >∼ 100 arcmin) are included. In this thesis, the statistical error

estimated from the real dataset is limited to the range of 1–100 arcmin. However, for

upcoming wide-field surveys, we can measure the cross-correlation signal to much larger

angular scales where the smoothing effect due to PSF is unimportant.



Chapter 6

Summary and Conclusion

In this thesis, we have paid special attention to statistical analyses of gravitational

lensing for purpose of understanding the nature of dark energy and dark matter.

Lensing Minkowski Functionals

In order to constrain on the nature of dark energy, we consider the morphological statis-

tics called Minkowski Functionals (MFs). We have studied various observational effects

on lensing MFs with numerical simulations and real data set of cosmic shear in Chapter

4.

Subaru Suprime-Cam

At first, we have examined how mask regions affect the lensing MFs with a large number

of numerical simulations. We found that the weak lensing MFs are affected by the lack of

cosmic shear data due mostly to foreground contamination. The expected values of the

MFs are biased even for a Gaussian convergence field. Masked regions induce the bias

of lensing MFs due to (i) effective reduction in the number of sampling Fourier modes

of cosmic shear and (ii) scatter of variance of the reconstructed weak lensing mass field

for each field of view. The former can be corrected analytically as shown in AppendixA,

while it is difficult to study the latter effect without numerical simulations.

Also, we have shown that masked regions significantly contaminate the pure gravita-

tional signals in morphological analysis. We also have performed simple analysis to study

the impact of masked regions on cosmological parameter estimation. From the cumu-

lative signal-to-noise ratio for the lensing MFs, we have found that the effective survey
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area largely determine the cosmological information content in the MFs. By studying

the resulting distribution of χ2 value for simulated maps with masks, we have shown

that most of the resulting χ2 values are found outside the expected one sigma region,

when the mask is not considered. Thus, the mask bias could compromise significantly

the cosmological parameter estimation.

Adopting the actual sky-mask used for a Subaru observation, we have compared the

observed lensing MFs with the results of cosmological simulations to test the consistency

of the observed MFs with the standard cosmological model. We have calculated the

lensing MFs to the observed weak lensing shear map obtained from a Subaru Suprime-

Cam imaging survey. Our analysis shows the resulting χ2/ndof = 29.6/30 for all the

MFs suggests that the observed MFs are consistent with the adopted standard ΛCDM

cosmology.

Canada-France-Hawaii Telescope Lensing Survey

Next, we have performed mock lensing observations by incorporating the three-dimensional

distribution of the source galaxies and the effect of imperfect shape measurement in the

same manner as in the analysis of the real Canada-France-Hawaii Telescope Lensing

Survey (CFHTLenS) data. We have made realistic forecast for cosmological parameters

from lensing MFs by using the mock catalogs and a Fisher analysis. We have also studied

the possible systematics in the lensing MFs measurement that are crucial for cosmolog-

ical studies. Finally, we have applied the developed method to real cosmic-shear data,

to show that the lensing MFs are powerful probe of cosmology.

We found that the overall statistical error would be comparable to the sampling variance

for the CFHT survey area. This leads that the accuracy of cosmological parameter con-

straints is degraded by a factor of ∼ 2. Assuming that the statistical error in upcoming

wide-field surveys scales to the effective survey area, we found that the lensing MFs can

constrain the equation of state parameter of dark energy w0 with an error of ∆w0 ∼ 0.25

for Hyper Suprime-Cam survey with a sky coverage of ∼ 1400 deg2.

We then have investigated the effects of the two major systematics; the uncertainties

in photometric redshifts of the source galaxies and the shear calibration correction. We

have found that an error of ∆z = 0.05 in the mean source redshift induces biased dark

energy parameter estimation of ∆w0 ∼ 0.2 for CFHTLenS. Furthermore, the shear

calibration correction causes non-negligible errors that can bias cosmological parameter

estimation as large as the 1σ confidence level for HSC survey.
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We also have performed the Likelihood analysis with the lensing MFs template based

on our mock catalogs. Although our mock catalogs consist of the limited cosmologi-

cal models and our cosmological constraints shown in Chapter 4 would be biased, we

found that the lensing MFs can, even in realistic case, break the degeneracy of cosmo-

logical parameters appeared in the two-point statistics of cosmic shear. This results

indicate that lensing MFs enable us to constrain cosmological models by cosmic-shear

observations even without any prior from the cosmic microwave background (CMB)

anisotropies or from the galaxy clustering measurement. Since an independent probe

is always important in cosmological analysis, lensing MFs provide a robust test of the

standard ΛCDM model which is in good agreement with multiple cosmological analyses,

e.g., CMB measurement.

Future Work

There still remain important issues when measuring the MFs from real data set.

With lensing MFs, we can probe the crucial length scales of structure where perturbative

approaches break down because of the non-linear gravitational growth (e.g., [125, 209]).

This means that we need accurate theoretical predictions of the lensing MFs beyond

perturbation methods [120, 210] in order to sample accurately likelihood functions for

a wide range of cosmological parameters. Another important issue is theoretical uncer-

tainties associated with baryonic effects. Previous studies (e.g., [211, 212]) studied the

effect of including baryonic components to the 2PCFs and consequently to cosmological

parameter estimation. The baryonic effect could also be important for the MFs anal-

ysis because the MFs generally contain the information at arcminute scales, i.e., the

typical virial radius of galaxy clusters. Ref. [213] shows appreciable baryonic effects on

peak statistics using a simple model applied to dark-matter-only simulations. Obviously

the most straightforward way to include the baryonic effect would be to perform weak-

lensing simulations with outputs of hydrodynamic simulations. We continue studying

the MFs along this idea.

There are also other possible systematics than those studied in this thesis. For example,

source-lens clustering (e.g., [214]) and the intrinsic alignment (e.g., [41]) are likely to

compromise cosmological parameter estimation. The statistical properties and the cor-

relation of source galaxies and lensing structures are still uncertain but could be critical

when making lensing mass maps. A promising approach in theoretical studies would

be associating the source positions with their host dark matter halos on the light cone.

This is along the line of our ongoing study using a large set of cosmological simulations

in combination with actual observations.
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Cross-Correlation Analysis of Cosmic Shear and Extragalac-

tic Gamma-ray Background

In Chapter 5, we have studied the utility of a cosmic shear analysis in terms of probe of

the nature of dark matter (DM). There, we have focused on a hypothetical annihilating

DM and examined the detectability of the imprint of DM annihilation in real data sets.

We have performed cross-correlation analysis of cosmic shear and extragalactic gamma-

ray background using observational data from the CFHTLenS and the Fermi satellite.

We found that the measured cross-correlation signal is consistent with null detection

for the 154 square-degrees sky coverage. Using theoretical models based on large-scale

DM structure formation and the statistical error estimated from real data together with

a large set of mock observations, we have placed constraints on the DM annihilation

cross section. We have considered different DM annihilation channels and varied the

minimum mass of DM halos. The derived constraint is 〈σv〉 < 10−25−10−24 cm3 s−1 for

a 100 GeV DM, depending on the assumed parameters and annihilation channel. The

constraint improves for smaller DM mass.

In fact, stronger constraints for DM annihilation is found in recent analyses of the Fermi

observations of dwarf galaxies [215, 216, 217]. However, our constraints are derived

using a completely different statistical method based on the cross-correlation of the

EGB and cosmic shear. More importantly, our method is based on exactly extragalactic

(or cosmological) scales where is completely different from galactic scales. Our limits

compete favorably with the constraints of Ref. [218] that use galaxy clusters and those

of Ref. [197] that use anisotropies of the EGB. Also, the cross-correlation signal provides

an opportunity for testing the DM interpretation of a ∼GeV excess towards the Galactic

center [219, 220, 221, 222, 223, 224, 225, 226]

We then have investigated the improvement expected with upcoming gravitational lens-

ing survey with the sky coverage of 20000 square degrees. We have shown that con-

straints on DM annihilation cross section 〈σv〉 would reach 2.7 − 22.2 × 10−26 cm3 s−1

for the bb̄ channel and 1.1 − 8.51 × 10−25 cm3 s−1 for the τ+τ− channel, both for a

100 GeV DM. For lighter DM motivated by the Galactic center excess, the constraints

would reach 1.34 − 10.96 × 10−26 cm3 s−1 for the bb̄ channel (assuming 40 GeV mass)

and 0.39− 3.24× 10−26 cm3 s−1 for the τ+τ− (assuming 10 GeV mass), allowing a test

of the DM origin of the Galactic center excess. Furthermore, if we can made accurate

modeling of astrophysical contributions to the cross-correlation, the expect constraints

on 〈σv〉 would be improved by 40-70% for a broad range of DM mass.
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We have studied some systematic effects on gamma-ray data. In Chapter 5, we have

used a conservative mask of 2◦ around each point-source. While more aggressive masks

or point-source modeling will increase photon statistics, these must be weighed by their

larger systematic uncertainties. Also, at present, when we adopt a smaller mask of 1◦

radius around each point source, we find that the errors on ξ improved by only 10%.

For the galactic diffuse model subtraction, we have made an attempt to estimate the

systematics by employing different gamma-ray datasets and different Galactic diffuse

emission models. Table 5.1 shows the typical systematic error associated with Fermi

photon analysis (∆χ2 ∼ 1–5). In the case of a LSST-like survey (see Section 5.5.2), this

difference could induce a systematic error of 〈σv〉 for a 100 GeV DM on the level of

∼ 3 × 10−26 cm3 s−1 for both the bb̄ channel and the τ+τ− channel.

Future Work

There are a few issues in the cross-correlation analysis of cosmic shear and the EGB

for upcoming surveys. First, in this thesis, we have only implemented a crude estimate

of the systematic error associated with the gamma-ray foreground subtraction. Second,

we have not included the sampling variance. While these are not expected to be a

significant source of uncertainties at present, mainly because of the large statistical

error in the current data sets, they would become more important for analyses using

data from upcoming surveys.

Detailed comparisons with numerical simulations would also be required to test the

accuracy of our benchmark model based on halo model approach (see also Appendix

D). Combined with other observations such as the mean intensity of the EGB, angu-

lar correlation of the EGB and the cross-correlation of galaxy position and the EGB

[227], one can expect that some of the degeneracies between the DM annihilation and

astrophysical sources may be broken. It is therefore important to investigate how much

information of the EGB can be extracted from such combined analyses using multiple

astrophysical datasets. Gamma-ray analyses with future cosmological surveys would be

very powerful methods for understanding the origin of the EGB and the indirect search

of DM annihilation.



Appendix A

Effect of Masks on Variance of

Smoothed Convergence Field

Here, we summarize the effect of masked regions on the variance of a smoothed conver-

gence field K. In the presence of masked regions in a survey area, one needs to follow a

special procedure in order to construct a smoothed convergence field. Let us define the

masked region Ms(θ) in a survey area as

Ms(θ) =

{
1 where θ lies in data region

0 otherwise.
(A.1)

When the area with mask Ms(θ) is smoothed, there would exist ill-defined pixels due

to the convolution between Ms and a filter function for smoothing U(θ). We thus

need to discard the ill-defined pixels to perform statistical analyses. The removal of the

ill-defined pixels is equivalent to pasting a new mask M1(θ) so that we can mask the

ill-defined pixels as well. We then get

Kobs(θ) = M1(θ)K1(θ), (A.2)

where

K1(θ) =
∫

d2φ U(θ − φ)Ms(φ)κ(φ). (A.3)
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The variance of the smoothed field is given by

σ2
0 =

1
S

∫
d2θ〈Kobs(θ)2〉

=
1
S

∫
d2θM1(θ)〈K1(θ)2〉

=
1
S

∫
d2θM1(θ)

∫
d2'

(2π)2
d2'′

(2π)2
〈K1(%)K∗

1(%
′)〉 exp

(
i(% − %′) · θ

)

=
1
S

∫
d2'

(2π)2
d2'′

(2π)2
M1(% − %′)〈K1(%)K∗

1(%
′)〉, (A.4)

where we use the relation M1(θ)2 = M1(θ). The Fourier mode of K1 is given by

K1(%) =
∫

d2θd2φ U(θ − φ)Ms(φ)κ(φ) exp (i% · θ)

= U(%)
∫

d2'′

(2π)2
Ms(%′)κ(% − %′),

〈K1(%)K∗
1(%

′)〉 = U(%)U∗(%′)
∫

d2'1

(2π)2
d2'′1
(2π)2

Ms(%1)M∗
s(%

′
1)〈κ(% − %1)κ∗(%′ − %′1)〉

= U(%)U∗(%′)
∫

d2'1

(2π)2
d2'′1
(2π)2

Ms(%s)M∗
s(%

′
1)(2π)2δ(2)(% − %1 − %′ + %′1)Pκ(|% − %1|)

= U(%)U∗(%′)
∫

d2'1

(2π)2
Ms(%1)M∗

s(%1 + %′ − %)Pκ(|% − %1|) (A.5)

Here, we assume that, with M1(θ), there remains only clean regions where the smoothed

convergence is not affected by the original masked regions Ms(θ). In this case, the

measured K field is given by

Kobs(θ) , M1(θ)
∫

d2φ U(θ − φ)κ(φ). (A.6)

The fourier mode of Kobs can then be given by

Kobs(%) =
∫

d2θ Kobs(θ) exp (i% · θ)

,
∫

d2θ M1(θ)
∫

d2φ U(θ − φ)κ(φ) exp (i% · θ)

=
∫

d2θ′d2θd2φ M1(θ′)δ(2)(θ − θ′)U(θ − φ)κ(φ) exp (i% · θ)

=
∫

d2'′

(2π)2

∫
d2θ′d2θd2φ M1(θ′)U(θ − φ)κ(φ) exp (i% · θ) exp

(
−i%′ · (θ − θ′)

)

=
∫

d2'′

(2π)2
M1(%′)

∫
d2θd2φ U(θ − φ)κ(φ) exp

(
i(% − %′) · θ

)

=
∫

d2'′

(2π)2
M1(%′)U(% − %′)κ(% − %′). (A.7)
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Figure A.1: The test the validity of Eq. (A.6). The figure is taken from [1]. The
gray points with error bars represent P obs(') obtained from 1000 Gaussian maps with
mask Ms(θ). The gray dashed line is the theoretical prediction of Eq. (A.11). The
black points with error bars show P obs(') obtained from 1000 maps without mask. The

black dashed line is the input power spectrum smoothed by the Gaussian filter U .

The variance of the smoothed convergence field is calculated as

σ2
0 =

1
S

∫
d2θ〈Kobs(θ)2〉

=
1
S

∫
d2θ

∫
d2'

(2π)2
d2'′

(2π)2
〈Kobs(%)Kobs(%′)〉 exp

(
−i(% − %′) · θ

)

=
1
S

∫
d2'

(2π)2
〈Kobs(%)(Kobs)∗(%)〉, (A.8)

where the ensemble average of the Fourier mode is

〈Kobs(%)(Kobs)∗(%′)〉 ,
∫

d2'1

(2π)2
d2'′1
(2π)2

M1(%1)M∗
1(%

′
1)U(% − %1)U∗(%′ − %′1)

×〈κ(% − %1)κ∗(%′ − %′1)〉

=
∫

d2'1

(2π)2
d2'′1
(2π)2

M1(%1)M∗
1(%

′
1)U(% − %1)U∗(%′ − %′1)

×(2π)2Pκ(|% − %1|)δ(2)(% − %1 − %′ + %′1)

=
∫

d2'1

(2π)2
M1(%1)M∗

1(%1 + %′ − %)|U(% − %1)|2Pκ(|% − %1|).(A.9)

We have checked the validity of Eq. (A.6) by using 1000 Gaussian simulations. They

are the same set of simulations as in Section 4.1.1. For each Gaussian simulation, we

paste the observed masked region Ms(θ) from the Subaru Suprime-Cam observation.

We then smoothed the map with a Gaussian filter of Eq. (3.72) with smoothing scale of

1 arcmin. In order to avoid the ill-defined pixels, we paste a new mask M1(θ), which

is constructed conservatively to cover the regions within two times the smoothing scale
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from the boundary of the original mask Ms(θ). We then calculate

P obs(') ≡ 〈Kobs(%)(Kobs)∗(%)〉/S. (A.10)

If Kobs can be well-approximated by Eq. (A.6), this quantity should be given by

P obs(') , 1
S

∫
d2'1

(2π)2
|M1(%1)|2|U(% − %1)|2Pκ(|% − %1|). (A.11)

Figure A.1 compares Eq. (A.6) and Eq. (A.11). Clearly Eq. (A.6) is an excellent approx-

imation for the observed survey geometry. The ill-defined pixels are efficiently masked

by M1(θ). We also find the variance σ2
0 decreases by a factor of O(5%). This causes

the bias of MFs even if the lensing field is Gaussian.



Appendix B

Effect of Source Redshift

Clustering on Variance of

Smoothed Convergence Field

Here, we summarize the effect of source redshift clustering on the variance of a smoothed

convergence field. Weak lensing convergence κ is given by the integral of matter over

density with a weight along the line-of-sight θ:

κ(θ,χs) =
3
2

(
H0

c

)2

Ωm0

∫ χs

0
dχ& g(χs,χ&)

δ[r(χ&)θ,χ&]
a(χ&)

, (B.1)

g(χs,χ&) =
r(χs − χ&)r(χ&)

r(χs)
, (B.2)

where χ is comoving distance, r(χ) is angular diameter distance, and χs represents the

comoving distance to a source. One can assign a probability distribution p(χs) of a source

galaxy’s position, or in fact p(χs) for a population of source galaxies, and integrate as,

κ̄(θ) =
3
2

(
H0

c

)2

Ωm0

∫ χH

0
dχs p(χs)

∫ χs

0
dχ& g(χs,χ&)

δ[r(χ&)θ,χ&]
a(χ&)

. (B.3)

In the conventional multiple lens plane algorithm, one can calculate the both convergence

field κ and κ̄ by using a suitable weight function in the integral. In practice in ray-tracing

simulations, we shoot rays from the observer point to the source redshifts to obtain κ,

whereas we shoot rays up to some certain (high-)redshift but with weight p(χs) along

the line-of-sights to obtain κ̄. In the former case, the full three-dimensional positions of

the source galaxies are realized as in the observation considered, i.e., CFHTLenS in our

case. The difference between κ and κ̄ can be easily seen in a direct manner using the
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two sets of simulations, and the resulting variances of smoothed convergence field can

be explicitly compared.

The smoothed convergence field for κ is given by

K(θ) =
∑

i

U(θ − φi)κ(φi,χsi), (B.4)

where U(θ) is the filter function for smoothing and the summation is taken over the

source objects. The smoothed convergence field for κ̄ is also obtained in the same way.

The two-point correlation function of K is then given by

〈K(θ1)K(θ2)〉 = 〈
∑

i

∑

j

U(θ1 − φi)U(θ2 − φj)κ(φi,χsi)κ(φj ,χsj)〉

=
∫

d2φ1d2φ2 U(θ1 − φ1)U(θ2 − φ2)

×
∫

dχs1 dχs2 p(χs1)p(χs2) [1 + ξss(φ1 − φ2,χs1, χs2)]

×〈κ(φ1,χs1)κ(φ2,χs2)〉, (B.5)

where 〈· · · 〉 represents the operator of ensemble average and ξss represents the two point

correlation function of the sources. One can also calculate the two-point correlation of

K̄ in the similar manner. We then obtain the non-vanishing difference between 〈K̄K̄〉
and 〈KK〉 as

〈K̄K̄ −KK〉 =
∫

d2φ1d2φ2 U(θ1 − φ1)U(θ2 − φ2)

×
[
ξ̄ss(φ1 − φ2)wpp(φ1 − φ2) − Vpp(φ1 − φ2)

]
, (B.6)

ξ̄ss(φ1 − φ2) =
∫

dχs1dχs2 p(χs1)p(χs2)ξss(φ1 − φ2,χs1, χs2), (B.7)

wpp(φ1 − φ2) = 〈κ̄(φ1)κ̄(φ2)〉, (B.8)

Vpp(φ1 − φ2) =
9
4

(
H0

c

)4

Ω2
m0

∫
dχs1dχs2 p(χs1)p(χs2)ξss(φ1 − φ2, χs1,χs2)

×
∫

dχ&1dχ&2
g(χs1,χ&1)g(χs2,χ&2)

a(χ&1)a(χ&2)
〈δ[r(χ&1)φ1,χ&1]δ[r(χ&2)φ2,χ&2]〉.(B.9)

This non-vanishing term arises if the source clustering ξss evolves over redshift. Note

also that the MFs of K̄ and those of K can be, in general, different if their variances

differ (see, e.g. Ref. [1]).

In practice, the smoothed convergence field is often estimated from the shear field γ. In

this case, one can calculate K using the following equation,

K(θ) =
∑

i

Qt(θ − φi)γt(φi,χsi), (B.10)
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Figure B.1: Impact of a source redshift clustering on lensing MFs (taken from [2]).
This figure shows the differences of average MFs over 40 catalogs between our fiducial
cosmology and another one that includes a given systematic. The red line represents
the impact of the difference of source redshift distribution and the green one shows
the effect of source redshift clustering on lensing MFs. For comparison, the case of
cosmological model with higher (lower) w0 is also shown as the thick (thin) blue line.

where Qt(θ) is the filter function for the shear field which is related to U(θ) by Equa-

tion (3.74) and γt(θ, χs) is the tangential component of shear at the position θ when a

source is at χs from the observer. Using Eq. (B.10), one can derive the correspoding

non-vanishing term

〈K̄K̄ −KK〉 =
∫

d2φ1d2φ2 Qt(θ1 − φ1)Qt(θ2 − φ2)

×
[
ξ̄ss(φ1 − φ2)〈γ̄t(φ1)γ̄t(φ2)〉 − V γ

pp(φ1 − φ2)
]
, (B.11)

V γ
pp(φ1 − φ2) =

∫
dχs1dχs2 p(χs1)p(χs2)ξss(φ1 − φ2, χs1,χs2)

× 〈γt(φ1,χs1)γt(φ2,χs2)〉, (B.12)

〈γ̄t(φ1)γ̄t(φ2)〉 =
9
4

(
H0

c

)4

Ω2
m0

∫ χH

0

dχ

a2(χ)
W̄ 2(χ)

×
∫

'd'

2π
Pδ

(
k =

'

r(χ)
, z(χ)

)(
J0('φ12) + J4('φ12)

2

)
,(B.13)

W̄ (χ) =
∫ χH

χ
dχ′p(χ′)

r(χ′ − χ)
r(χ′)

, (B.14)

〈γt(φ1, χs1)γt(φ2,χs2)〉 =
9
4

(
H0

c

)4

Ω2
m0

∫ min(χs1,χs2)

0

dχ

a2(χ)
r(χs1 − χ)

r(χs1)
r(χs2 − χ)

r(χs2)

×
∫

'd'

2π
Pδ

(
k =

'

r(χ)
, z(χ)

)(
J0('φ12) + J4('φ12)

2

)
,(B.15)

where φ12 is the norm of φ1 −φ2 and Pδ(k, z) is the non-linear matter power spectrum

at redshift z.

Although we have derived the difference between K and K̄ at the two-point statistics,

it is extremely difficult to derive an explicit form for the corresponding difference in the

lensing MFs. We thus resort to comparing directly the two sets of simulated lensing
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MFs. One is our fiducial mock data used in Section 4.2.1.2. For the other, new set of

simulations, we calculate κ̄ at each source position on the sky using the source redshift

distribution (weight) that is shown as the black histograms in Figure 4.12. Figure B.1

shows the results. The red line represents the difference caused by the two different

source redshift distributions as described in Section 4.2.3. The green line shows the

difference of the lensing MFs with and without source redshift clustering. For reference,

the difference of lensing MFs between the different cosmological model by blue lines are

also presented. The thick (thin) blue lines correspond to the case of the cosmological

model with higher (lower) w0. Although the impact of source clustering (green) is

smaller than the effect of different source distribution (red), it or actually both could be

a major source of systematics for future survey with the sky coverage of 20000 deg2. The

induced biases in cosmological parameters due to the source clustering are estimated by

Eq. (4.19); the results are ∆Ωm0 = 0.00642, ∆As = −0.00467×109 and ∆w0 = 0.00487.



Appendix C

Estimating the Minkowski

Functionals Covariance Matrix

We describe an approximate way to evaluate the covariance matrix as given by Eq. (4.18)

and test its validity in this Appendix. We first generate 40 noise-free lensing maps by

the method in Section 3.4. For each realization of the 40 maps, we use a different

random seed for the intrinsic ellipticities to make mock source galaxy catalogs described

in Section 4.2.1.2. In this way, we generate 40 × 40 = 1600 catalogs in total, which can

be used to estimate the full covariance of the MFs.

Let us denote a mock catalogue as Km,n, which is generated by the mth noise free lensing

map with an nth random seed of the intrinsic ellipticity distribution. We then calculate

the full covariance of V0 as follows:

C(40,40)
ij ≡ 1

1600 − 1

40∑

m=1

40∑

n=1

∑

i,j

(V0(xm,n
i ) − V̄0(xm,n

i ))(V0(xm,n
j ) − V̄0(xm,n

j )),(C.1)

V̄0(xm,n
i ) ≡ 1

1600

40∑

m=1

40∑

n=1

V0(xm,n
i ), (C.2)

where xm,n
i = (Km,n

i −〈Km,n〉)/σm,n
0 and we here use five bins in the range of xi = [−3 :

3]. We also calculate our estimator adopted in this thesis:

Cij = C(40,1)
ij + C(1,40)

ij , (C.3)
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x1 x2 x3 x4 x5

x1 1.96 0.35 1.96 4.07 1.87
x2 1.53 1.51 1.27 1.46
x3 1.82 2.12 1.92
x4 1.14 0.98
x5 1.82

Table C.1: The ratio of the full covariance of V0 to our estimator (taken from [2]).
The full covariance is derived from the new 1600 maps with Eq. (C.1), whereas our

estimator is given by Eq. (C.3). x is defined by (K − 〈K〉)/σ0.

where

C(1,40)
ij ≡ 1

40 − 1

40∑

n=1

∑

i,j

(V0(x1,n
i ) − V̄0(x1,n

i ))(V0(x1,n
j ) − V̄0(x1,n

j )), (C.4)

C(40,1)
ij ≡ 1

40 − 1

40∑

m=1

∑

i,j

(V0(xm,1
i ) − V̄0(xm,1

i ))(V0(xm,1
j ) − V̄0(xm,1

j )), (C.5)

V̄0(x1,n
i ) ≡ 1

40

40∑

n=1

V0(x1,n
i ), (C.6)

V̄0(xm,1
i ) ≡ 1

40

40∑

m=1

V0(xm,1
i ). (C.7)

The ratio C(40,40)
ij /Cij then serves a check on the accuracy of our estimator. The ratio

for each component is summarized in Table C.1. The simple estimator Eq. (C.3) indeed

gives a good approximation to the full covariance. The ratio is typically within a factor

of two, and the same is also found for V1 and V2. Even if the ratio of the full covariance

and our estimator is 2 for all the matrix elements, the cosmological forecast shown in

this thesis would be degraded only by a factor of ∼ 21/3 (i.e., ∼ 20%).



Appendix D

Effect Of Dark Matter Halo

Profile Uncertainties On

Cross-Correlation Signals

Here, we quantity the effect of uncertainties of the DM halo profiles on the cross- cor-

relation between cosmic shear and the EGB. In order to calculate the theoretical model

of cross-correlation signals, we follow the halo model approach as in Section 5.3.1. In

the halo model, there are mainly two contributions of the cross-correlation signal: the

one-halo term and the two-halo term. For a given length scale k, the main contribution

to the one-halo term as calculated by Eq. (5.26) comes from galaxy cluster size halos

with 1013 − 1015M". This is valid for the two-halo term associated with density fluc-

tuations (i.e., the first integral in Eq. (5.27)). On the other hand, the two-halo term

associated with density squared (i.e., the second integral in Eq. (5.27)) is mainly deter-

mined by the smoothed profile contribution
∫

dV ρ2
h(r|M, z) with dominant contribution

from lower mass scales. Assuming the NFW profile and the concentration parameter

cvir = rvir/rs ∝ Mα with α ∼ −0.1 , Mn(M, z)
∫

dV ρ2
h(r|M, z) would scaled as ∼ M3α

for M < 1012M". This fact indicates that the low mass halos dominates the two-halo

term and that the overall amplitude of the two-halo term is sensitive to the minimum

halo mass. Thus, along with Mmin, cvir(z, M) is one of the most important parameters

in the halo model.

Recent numerical simulations (e.g. [70]) suggest a non-monotonic relation between the

concentration parameter and the mass of DM haloes. In this appendix, we test the

dependence of the cross-correlation signal on cvir(z, M) by comparing a simple power-

law model and the non-monotonic model. For the non-monotonic cvir(z, M) model, we

use the fitting function of Ref. [70] that determines cvir as a function of the linear rms
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Figure D.1: The typical uncertainty of cross-correlation signals of cosmic shear and
EGB from DM annihilation. We consider the signal from the annihilation of a 100 GeV
mass DM particle with annihilation cross section 〈σv〉 = 3 × 10−26 cm3 s−1 separately
for the τ+τ− channel (red lines) and the bb̄ channel (green lines). The left panel shows
the case of minimum DM halo mass Mmin = 106M", while we assume Mmin = 10−6M"
in the right panel. The solid lines correspond to the halo model with the power-law
model of cvir with the NFW profile. The dashed lines represent the halo model with
the power-law model of cvir with the Einasto profile. The dashed-dotted lines show the

halo model calculation with the non-monotonic model of cvir and the NFW profile.

density fluctuation σ(z, M). This fitting function successfully reproduces the complex

feature of cvir found in numerical simulations. For the power-law model, we apply the

functional form shown in Ref. [69] as in our benchmark model.

Even if we can determine the halo profile concentration, the inner shape of density profile

would make the cross-correlation signal uncertain. Although the inner slope of density

profile of DM halo is still unconcluded, e.g., [207, 228], we here examine the alliterative

model of DM density profile as proposed in Ref. [207]. This model is called Einasto

profile, which is defined by

ρh(r) =
ρs

4
exp

{(
− 2

α

)[(
r

rs

)α

− 1
]}

, (D.1)

where ρs and rs represent the scale density and radius, and α = 0.17. When using the

Einasto profile, we simply use the power-law concentration in Ref. [69] and derive ρs

and rs in the same manner as in Section 5.3.1.

In Figure D.1, we summarize the comparison between the halo model calculations with
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Figure D.2: The 68 % confidence level upper limits on 〈σv〉 as functions of the DM
mass (the left panel is taken from [3]). The left panel corresponds to the constraint
derived by the model with the NFW profile and the non-monotonic model of cvir. The
right panel represents the case where the model with the Einasto profile and the power-
law model of cvir. The red shaded region corresponds to the upper limit for the τ+τ−

channel and the green one for the bb̄ channel.

the power-law and non-monotonic models of cvir and/or the different parameterizations

of density profile. Each solid line is the same as our benchmark model, while each

dashed line correspond to the case with the Einasto profile and the power-law model

of cvir. The dashed-dotted lines show the halo model with the non-monotonic model of

cvir. We assume the minimum halo mass Mmin = 106M" and 10−6M" in the left and

right panel, respectively. We also take into account the smoothing effect of gamma-ray

point spread function (PSF) in Figure D.1.

For the non-monotonic model of cvir, we found that the final result is much less sensitive

to the minimum halo mass because of the flattening feature of cvir at low masses. The

most important result is perhaps that the cross-correlation signals would be dominated

by the one-halo term for the non-monotonic model. This is different from the result of our

benchmark model and from previous work [179] mainly due to the higher concentration

in massive DM haloes than in our benchmark model. Consequently, the expected signals

for the non-monotonic model would be ten times as large as our benchmark model for

smaller angular scale at θ < 10 arcmin when we do not include the effect of gamma-

ray PSF. However, for the angular scale larger than 30 arcmin, the two models with the

different cvir show quite similar amplitudes of the cross-correlation. Clearly, the choice of

cvir model would not affect the final constraints of DM annihilation significantly because

most of the information about DM annihilation come from the large scale clustering as

shown in Section 4.2.2.2. On the other hand, the inner slope of ρh has the larger impact

on the calculation of the expected cross-correlation. Assuming the Einasto profile, the

inner slope would gradually change as a function of radius. This induces the different
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scaling of the volume integral
∫

dV ρ2
h with respect to cvir. In both cases where Mmin =

106M" and 10−6M", the two-halo term of the cross correlation signal would change

with a level of ∼ 50− 70 %. Nevertheless, these uncertainties are smaller than an order

of ∼ 10, which is the model uncertainty in our benchmark model.

In Figure D.2, we show the 68 % confidence upper limit of DM annihilation obtained from

the measurement shown in Section 5.4.2 with two different model of cross correlation

signals as discussed above. For constraints, we simply assume that DM annihilation is

the only contribution to the cross-correlation signals and take into account the smoothing

effect due to PSF in the same manner shown in Section 5.3.1. When assuming the non-

monotonic model of cvir, we found the constraints on 〈σv〉 degrade by ∼ 10 % over a

wide mass range of 5–1000 GeV. Also, the constraints would be affected by the shape

of DM density profile with a level of ∼ 70 %.
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Nolta, C. L. Bennett, J. Dunkley, G. Hinshaw, N. Jarosik, E. Komatsu, L. Page,

H. V. Peiris, L. Verde, M. Halpern, R. S. Hill, A. Kogut, M. Limon, S. S. Meyer,

N. Odegard, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright,

Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications

for cosmology, Astrophys.J.Suppl. 170 (2007) 377, [astro-ph/0603449].



Bibliography 138

[149] E. A. Lim and D. Simon, Can we detect Hot or Cold spots in the CMB with

Minkowski Functionals?, JCAP 1201 (2012) 048, [arXiv:1103.4300].

[150] S. Winitzki and A. Kosowsky, Minkowski functional description of microwave

background Gaussianity, New Astronomy 3 (Mar., 1998) 75–99,

[astro-ph/9710164].

[151] S. Wang, Z. Haiman, and M. May, Constraining Cosmology with

High-Convergence Regions in Weak Lensing Surveys, Astrophys.J. 691 (Jan.,

2009) 547–559, [arXiv:0809.4052].

[152] T. Erben, H. Hildebrandt, L. Miller, L. van Waerbeke, C. Heymans, H. Hoekstra,

T. D. Kitching, Y. Mellier, J. Benjamin, C. Blake, C. Bonnett, O. Cordes,

J. Coupon, L. Fu, R. Gavazzi, B. Gillis, E. Grocutt, S. D. J. Gwyn, K. Holhjem,

M. J. Hudson, M. Kilbinger, K. Kuijken, M. Milkeraitis, B. T. P. Rowe,

T. Schrabback, E. Semboloni, P. Simon, M. Smit, O. Toader, S. Vafaei, E. van

Uitert, and M. Velander, CFHTLenS: the Canada-France-Hawaii Telescope

Lensing Survey - imaging data and catalogue products, Mon.Not.Roy.Astron.Soc.

433 (Aug., 2013) 2545–2563, [arXiv:1210.8156].

[153] L. Miller, C. Heymans, T. D. Kitching, L. van Waerbeke, T. Erben,

H. Hildebrandt, H. Hoekstra, Y. Mellier, B. T. P. Rowe, J. Coupon, J. P.
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S. Prunet, and C. P. Robert, Estimation of cosmological parameters using

adaptive importance sampling, Phys.Rev. D80 (July, 2009) 023507,

[arXiv:0903.0837].



Bibliography 140

[165] M. Sato, K. Ichiki, and T. T. Takeuchi, Precise Estimation of Cosmological

Parameters Using a More Accurate Likelihood Function, Physical Review Letters

105 (Dec., 2010) 251301, [arXiv:1011.4996].

[166] J. N. Fry, The Galaxy correlation hierarchy in perturbation theory, Astrophys. J.

279 (Apr., 1984) 499–510.

[167] L. Fu, M. Kilbinger, T. Erben, C. Heymans, H. Hildebrandt, H. Hoekstra, T. D.

Kitching, Y. Mellier, L. Miller, E. Semboloni, P. Simon, L. Van Waerbeke,
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