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Response of understory vegetation to variable tree mortality following a mountain pine 

beetle epidemic in lodge pole pine stands in northern Utah 

 

William E. Stone, Utah State University 

Michael L. Wolfe, Utah State University 

 

Abstract  

We examined the response of understory vegetation beneath monotypic, even-aged stands of 

lodgepole pine to increasing tree mortality following an epidemic of mountain pine beetles. 

We hypothesized that understory biomass would increase continually as the tree canopy was 

reduced and competition with trees for light and soil moisture decreased, but that plant 

species diversity and heterogeneity would peak at intermediate levels of beetle-caused tree 

mortality. Mean understory biomass clipped from 50 1-m2 circular plots/stand was an order of 

magnitude greater  

(40 g m-2) in beetle-killed stands, with typical levels of overstory tree mortality (50-75%), than 

in unaffected stands (4 g m-2); and it increased exponentially with disturbance severity. 

Frequency of fruit occurrence was positively related to increasing tree mortality, but was 

highly variable. Understory plant species richness and, to lesser degrees indices of diversity 

that incorporate evenness, peaked in stands with moderate mortality. Measures of vegetation 

patchiness (the coefficient of variation in mean plot biomass and an index of habitat 

interspersion) also peaked in stands with intermediate levels of disturbance. The response of 

understory plant species diversity to increasing disturbance severity is consistent with the 

pattern predicted by the intermediate disturbance hypothesis. However, other explanations of 

this pattern are discussed. Although understory plant community richness was higher in 

beetle-killed stands than in unaffected stands, new species were not abundant and therefore 

did not contribute substantially to greater evenness in understory plant diversity.  

 

Introduction  

The role of natural disturbances in determining community states and transitions in various 

ecosystems throughout the world has received increasing attention from ecologists and land 

managers (Sprugel 1991). Disturbances influence the abundance, composition, and distribution 

of vegetation through modification of the physical environment and the spatial and temporal 

distribution of resources (Tilman 1982; Bazzaz 1983; White & Pickett 1985; Chaneton & Facelli 

1991). Specifically, disturbance reduces live plant biomass (Reader et al. 1991), releases 

resources (light, space, soil moisture, nutrients) to surviving plants (Canham & Marks 1985), 

and permits new species to colonize the site (Grime 1973; Collins 1987). 

 

The effects that natural disturbances have on communities depend on the disturbance type 

and regime (White & Pickett 1985). Moderate disturbances, in either frequency or severity, are 

hypothesized to enhance species diversity (Connell 1978) and maintain plant richness (Grime 



1979; Huston 1979). Much of the attention that the 'intermediate disturbance hypothesis' has 

received focuses on the frequency rather than the intensity of the disturbance regime. Reader 

et al. (1991) provided a notable exception in the vegetation literature when they demonstrated 

that understory plant species composition changed following tree harvesting in a deciduous 

forest, but that plant diversity was not significantly higher on sites with intermediate levels of 

harvest compared to sites with low or complete tree removal. 

 

The mountain pine beetle (Dendroctonus ponderosae) is the primary insect agent affecting the 

lodgepole pine (Pinus contorta) forest ecosystem, and, in association with fire, largely 

determines the successional dynamics in these forests (Cole & Amman 1980). Schowalter et al. 

(1981) concluded the same about the influence of southern pine beetles (Dendroctonus 

frontalis) on pine-hardwood forests in the southern United States. A mountain pine beetle 

epidemic differs from other types of disturbance because: (1) larger and older trees are 

selectively killed by the disturbance agent; (2) the understory and soil layers are not directly 

affected by the disturbance agent; (3) the return of nonvolatile nutrients to the soil and the 

response of vegetation production are slower than that which would occur following a stand-

replacing fire; (4) it hastens successional progress towards a climax when lodgepole pine is 

seral; (5) repeated epidemics shift the stand structure from even-aged to uneven-aged; (6) 

disturbance severity can range widely with environmental conditions (elevation, climate, 

topography), but overs tory tree mortality is typically moderate, removing approximately 50% 

of the canopy cover and basal area in a few years; and (7) widely distributed gaps in the forest 

canopy may be created when six to seven neighboring trees succumb during the epidemic 

(Cole & Amman 1969; Roe & Amman 1970; Brown 1975; Cole & Amman 1980; Romme et al. 

1986; W. H. Romme, personal communication).  

 

The abundance and composition of understory vegetation in coniferous forests are 

significantly altered following epidemic attacks by bark beetles. Leuschner & Maine (1980) 

estimated a 340 to 1700 kg ha-I increase in herbage production beneath loblolly pine (Pinus 

taeda) stands following defoliation by the southern pine beetle. McCambridge et al. (1982) 

documented increases of555 and 962 kg ha -I in understory forbs, grasses, and sedges beneath 

two ponderosa pine (Pinus ponderosa) stands 3 years after a mountain pine beetle epidemic in 

Colorado. Kovacic et al. (1985) demonstrated that herbaceous biomass was 50100 times as 

great (increases of 1000-2000 kg ha -I) in ponderosa pine stands 5 years after mountain pine 

beetle infestation than in uninfested stands. Yeager & Riordan (1953) reported a 45% increase 

in herbaceous cover in stands of spruce-fir (Picea engelmannii-Abies lasiocarpa) following an 

epidemic of spruce beetles (Dendroctonus engelmannii), and more interestingly, twice as 

many understory plant species in beetle-killed stands than in similar uninfested stands (based 

on elevation, slope, aspect, soil type, and fire history). The biomass response following this 

type of disturbance is predictable because an exponential inverse relationship between 

understory biomass and overstory canopy cover is well documented for many forest 



ecosystems (Ehrenreich & Crosby 1960; Halls & Schuster 1965; Blair 1967; Blair & Enghardt 

1976; Ford & Newbould 1977; Satoo & Madgwick 1982). However, the response of plant 

diversity in the understory to increasing levels of tree canopy removal is not as well 

understood (Reader et al. 1991). 

 

Mountain pine beetle epidemics of moderate mortality are likely to increase heterogeneity in 

the distribution of understory plant biomass. Herbaceous vegetation rapidly colonizes the 

forest floor beneath the canopy openings created when a group of large trees is killed by bark 

beetles (Kovacic et al. 1985). Sunny forest floor patches beneath canopy openings of >0.0145 ha 

often contain more abundant vegetation than shaded patches (Maine 1979). Amman (1977) 

reported that patches beneath lodgepole pine canopy openings created by the mountain pine 

beetle are eventually reseeded by the dominant overs tory species. Whether these patches are 

dominated by trees or herbaceous plants, the distribution of understory vegetation in the stand 

becomes more heterogeneous when production increases beneath these openings and remains 

low in shaded microsites. Understory production is likely to increase uniformly throughout 

the forest floor when epidemics result in nearly complete overstory tree mortality. This 

reduces heterogeneity in the distribution of understory vegetation.  

 

We conducted this research to examine the understory vegetation response to a mountain pine 

beetle epidemic. Specifically, we sought to quantify the effects of decreasing overs tory tree 

canopy on the production, distribution and diversity of understory vegetation. Research 

opportunities in post-epidemic stands are uncommon because these stands are typically 

salvage-logged when economically feasible. Consequently, this is a type of disturbance that is 

poorly understood. The effects of bark beetle epidemics on the magnitude and duration of 

understory biomass production have received some attention (McCambridge et al. 1982; 

Kovacic et al. 1985), but the response of plant species diversity and distribution following an 

epidemic are generally unknown. Our study focused on the intensity of a single disturbance 

rather than the frequency of disturbance. The diversity response is the same for frequency and 

intensity of disturbance, but the mechanisms are slightly different (Connell 1978). Competition 

from survivors prevents new species from colonizing sites following a low intensity 

disturbance. Competitive exclusion of established species is the mechanism leading to low 

diversity when disturbances are infrequent. Severe disturbances operate similarly for both 

intensity and frequency by excluding all but the most tolerant species. Our research does not 

attempt to prove or disprove the tenets of the intermediate disturbance hypothesis, but our 

results can be viewed in that context to determine if the response of plant species diversity to 

increasing disturbance intensity is consistent with the pattern predicted by the hypothesis.  

 

Methods  

Study area and disturbance agent 



We chose forty I-ha stands of mature lodgepole pine on the northern slope (elevation: 2770-

2940 m) of the Uinta mountains in the Wasatch National Forest, Utah. An epidemic of 

mountain pine beetles occurred in this area from 1980 to 1987. We established three 30 m x 30 

m plots in each stand to collect forest inventory data in order to select stands that had similar 

structure prior to the epidemic. In each 30 m x 30 m plot, we measured the diameter at breast 

height (dbh) of every tree taller than 2 m in height, assessed mortality (alive or dead) of each 

tree, aged 10 overstory trees with an increment borer, and determined the heights of 30 

dominant trees with a clinometer and metric tape. The stand's basal area and mean percent 

tree mortality were computed from these data. In addition, the slope, aspect, and elevation of 

each stand was determined from U.S. Forest Service maps to ensure that the research stands 

were as similar as possible. These even-aged stands ranged from 87 to 117 years in age, and 

originated following stand-replacing fires near the turn of the century. Cumulative tree 

mortality during the epidemic typically ranged from 50 to 75% of overstory trees (U.S. Forest 

Service unpublished inventory data), but stand mortality ranged from 14 to 95% in the stands 

that we studied. Tree densities and basal area in these stands range from 1100 to 1500 trees ha-

1 and 28 to 44 m2 ha-1, respectively. Most stands were located on gently rolling terrain with no 

appreciable slope, but several were located on 20 to 40% slopes.  

The understory vegetation was sampled in 10 of these 40 stands in 1988 and again in 1989. 

Tree mortality in five of the stands ranged from 56 to 70%. Five stands were outside of the 

epidemic area and served as controls for initial biomass comparisons. These control stands 

experienced slight tree mortality from dwarf mistletoe and Armillaria root rot in the recent 

past. We sampled 10 additional stands ranging from 26 to 94% mortality in 1990, and 20 more 

ranging from 14 to 95% mortality in 1991, for a total of40 stands. Patton's (1975) edge index 

was computed from data collected in 1991 only.  

 

Understory vegetation 

We randomly chose fifty I-m2 plots in each stand, clipping the aboveground vegetation below 

2 m in height in each plot in late August. The samples were separated by species, oven-dried at 

50°C for 1 week, and weighed to the nearest 0.5 g. The presence of fruit was recorded in each 

plot by species.  

 

The patchiness of plant distribution was assessed, in part, by measurement of intra-stand edge 

between sunny patches beneath canopy gaps and shady patches beneath the forest canopy. 

Patches of sun and shade (150 m2 or larger) on the forest floor were mapped in each stand 

using the compass-traverse method (Mosby 1980) at or near midday. Forest floor patches from 

the maps were digitized using a digitizing tablet and ERDAS (ERDAS 1990) software to obtain 

patch perimeters and area. The intrastand edge of these sunny versus shaded patches was 

computed using Patton's (1975) edge index. This diversity index was plotted against percent 

tree mortality to determine if this indicator of vegetation patchiness was a function of 



epidemic severity.  

 

Data analysis  

The plot mean, standard error, and coefficient of variation of understory plant biomass were 

computed for each stand. We used the coefficient of variation of plot biomass as another 

indicator of the distribution of understory vegetation and regressed it against percent tree 

mortality. We also summed biomass values in each stand by four vegetation classes: trees ( <2 

m), shrubs, forbs, and grasses/sedges.  

 

Initially, we tested for significant differences in mean plot biomass between typical beetle-

killed stands and similar, but unaffected, stands using a split-plot analysis of variance 

(ANOVA), with mortality status and sampling year as variables. On the basis of these results, 

we grouped all of the stands into classes of similar mortality (0 -25%,26-50%,51-75%,76-100%) 

by sampling year and examined the data for significant year effects using several one-way 

ANOVAs. We also tested for differences in the functional responses of mean plant biomass to 

tree mortality in different years by linearizing the responses with a log transformation of mean 

plot biomass for each year and testing the homogeneity of their slopes with an analysis of 

covariance. Results from these comparisons allowed us to pool the data from the 40 stands that 

were sampled from 1989 to 1991 for further analyses because the slopes of the log-transformed 

responses of vegetation to increasing tree mortality were not significantly different in those 

years.  

 

The response of vegetation abundance to increasing epidemic severity was examined by 

regressing mean plot biomass by percent tree mortality with an exponential function. This 

approach does not determine causality between beetle-caused canopy removal and understory 

biomass, and it is limited by the inherent environmental variability in these different sites. 

However, it may be the only feasible approach to investigating the biomass response without 

introducing other extraneous variables, including annual variation in plant production, 

variation due to time since disturbance, and lag time in biomass response following successive 

removals of canopy cover. Finally, the frequency of fruit in the 50 plots sampled in each stand 

was computed and its response to increasing beetlecaused tree mortality was examined.  

 

Species richness is simply the number of species detected in each stand. Diversity indices were 

computed using biomass (g) as a measure of the relative importance of an individual species in 

the understory community. We computed three diversity indices that vary in their sensitivity 

to richness versus evenness (Hill 1973): the Shannon-Wiener index (Shannon & Weaver 1963), 

Margalet's index (Margalef 1958), and the inverse of Simpson's index (Simpson 1949; Hill 

1973). We calculated these values for stands with progressively higher beetle-caused tree 

mortality.  

 



Results  

Understory biomass 

We identified 101 vascular plant species in the understories of the 40 forest stands; and 10 of 

these species produced fruit to varying degrees (Appendix). All are perrenials except for 

Collinsia parviflora. Four species of mushrooms, Aleuria aurantia, Armillaria mellea, Boletus 

crysenteron, and Russula emetica, were encountered, but they were infrequent and were not 

included in further analyses.  

 

Mean plot biomass ranged from 3.4 to 7.0 g m-2 in stands with 0-25% tree mortality, 8.8 to 27.4 

g m-2 in stands with 26-50% tree mortality, 28.7 to 52.1 g m-2 in stands with 51-75% tree 

mortality, and 60.1 to 108.8 g m-2 in stands with 76-100% tree mortality (Table 1). Mean plot 

biomass was significantly higher (p =0.003) in beetle-killed lodgepole pine stands than in 

unaffected stands (Table 2). Production of understory vegetation was also higher (p<0.001) in 

these stands in 1989 than in 1988, possibly due to extremely dry conditions in 1988. Further 

analysis (one-way ANOVA) revealed that the year effect was due to the biomass increase in 

the five beetle-killed stands rather than in all 10 stands (Table 2). We failed to detect significant 

(p =0.274) year effects in an examination of the slopes of the linearized mean biomass response 

functions to percent tree mortality (Fig. 1). Pooling all 40 stands (data from 1989 used for the 10 

stands sampled twice) demonstrated that mean plot biomass increased exponentially as beetle-

caused tree mortality became more severe (Fig. 2).  

 

The frequency of fruit for all fruiting species combined was positively correlated (p<0.001, 

r=0.733) with beetle-caused tree mortality (Fig. 2), but the variability in the presence of fruit 

was high in moderately to severely infested stands.  

 

Understory plant distribution  

The coefficient of variation in mean understory biomass peaked at moderate levels of beetle-

caused tree mortality (Fig. 2). This parameter, as well as the standard error (Fig. 2), indicates 

that variability in plot biomass peaks in stands with moderate mortality, and that the biomass 

of low and high mortality stands is more uniform. Intrastand habitat edge between sunny, 

vegetated patches beneath canopy gaps and shady, nearly-barren patches beneath forest 

canopies was highest in stands with intermediate levels of tree mortality (Fig. 2). 

Understory plant diversity  

Understory plant species richness and other indices of species diversity were highest at 

intermediate levels of beetle-caused tree mortality (Fig. 3). Richness demonstrated the 

strongest quadratic response to increasing tree mortality. Indices that are more sensitive to 

evenness demonstrated a poorer fit. Grasses/sedges dominate the understory community in 

stands with moderate and severe tree mortality. Forbs and shrubs had greater biomass in 

beetle-killed stands with 60% or more tree mortality than in stands with lower mortality (Fig. 

4). Understory tree biomass appeared to increase in moderately killed (61-80% mortality) 



stands.  

 

Table 1. Means and standard deviations of understory vegetation in beetle-killed lodgepole pine stands 

with different tree mortalities sampled in different years.  

 
  

 



 
Fig. 1. Relationship of log-transformed mean biomass production of understory vegetation and percent 

tree mortality in 40 beetle-killed lodgepole pine stands (10 stands sampled twice) for four consecutive 

years in the Uinta mountains north slope, Utah.  

 

Discussion 

Understory biomass 

The observed responses of understory vegetation to increasing beetle-caused tree mortality is 

similar to those observed as the tree canopy is reduced by tree harvesting (Halls & Schuster 

1965). Release from competition with trees for light, water, and nutrients probably allows 

many plants in the forest understory to grow and reproduce at higher rates. The curvilinear, 

exponential response of understory biomass to increasing tree mortality suggests that the 

effects of competition with trees are additive. Our results indicate that epidemics of bark 

beetles in coniferous forests increase the availability of forage and browse to livestock and 

wildlife. In the absence of intense grazing pressure by wild and domestic herbivores, these 

stands offer nesting and foraging cover to small mammals and birds. 

 
Table 2. Test statistics for one-way analysis of variance comparisons of mean plot biomass of understory 

vegetation in beetle-killed lodgepole pine stands of similar tree mortality levels sampled in different 

years.  



 

 
Fig. 2. Relationship of (a) mean biomass of understory vegetation, (b) frequency of fruit presence, (c) 

coefficient of variation of mean biomass, and (d) intrastand edge index between sunny and shady forest 

floor patches to percent tree mortality in 40 beetle-killed lodgepole pine stands in the Uinta mountains 

north slope, Utah.  



 

  
Fig. 3. Relationship of understory plant species biomass diversity, measured by four diversity indices, 

(a) species richness, (b) Margalef's simple diversity index, (c) the Shannon-Wiener diversity index, and 

(d) the inverse of Simpson's diversity index to percent tree mortality in 40 beetle-killed lodgepole pine 

stands in the Uinta mountains north slope, Utah, 1989-1991 (pooled).  

 

The frequency of fruit presence is positively correlated to beetle-caused tree mortality. Most 

fruiting species are shrubs (Appendix) and the presence of fruit is partially a function of shrub 

abundance. Shrub biomass was highest in stands with greater mortality, but it is apparent 

from the variability in fruit frequency that other factors are contributing to the presence of fruit 

in these stands. One plausible factor is irradiance level, given the type of disturbance. Brighter 

light increases sexual reproductive effort (Pitelka et al. 1980; Bernier et al. 1981; Zimmer 1985; 

Dahlem & Boerner 1987) and reduces fruit absorption (Dahlem & Boerner 1987) in forest herbs. 

Pitelka et al. (1980) determined that sexual reproductive effort in Aster acuminatus increased 

linearly as light intensity increased, once a minimum light level was reached. The pattern of 

increasing fruit frequency in stands with higher tree mortality appears to be partly attributable 

to increased light levels following reduction of canopy cover in these stands.  

 

Understory plant distribution  

The detection of a peak in understory biomass variation in stands with moderate levels of 

beetle-caused tree mortality indicates that the distribution of understory vegetation is more 

heterogeneous in typical beetlekilled stands than in unaffected or severely disturbed stands. 

Additionally, the response of intrastand habitat edge to percent tree mortality refiects the 



patchier distribution of understory vegetation in beetle-killed stands of intermediate mortality. 

Increases in vegetation abundance below a canopy gap are well documented (Moore & Vankat 

1986; Mladenoff 1990). When this process is viewed at the landscape scale where many forest 

gaps are created by an intermediate disturbance, we observe an increase in the heterogeneity 

of vegetation distributed across the forest floor.  

 

Understory plant diversity  

Our results are consistent with the predictions of the intermediate disturbance hypothesis 

(Connell 1978). An examination of the responses of the different diversity indices suggests that 

plant species richness, but not the evenness of understory species, is substantially higher in 

stands with moderate tree mortality than in stands with low or high mortality. Richness and 

evenness are the components of indices that measure changes in diversity and indicate how 

community composition has been altered following environmental change. A few species of 

grass, especially Elymus elymoides, dominated the understory community in stands that had 

experienced severe epidemics. Trees appeared to increase in abundance in stands with 

intermediate mortality. However, this increase is a result of a previous epidemic (1959-1962) in 

stands where aspen contributed greatly to the understory and midstory vegetation layers. 

Mean tree biomass in this mortality class is comparable (3.80 g m-2) to that in the class above 

and below when these two stands are excluded from the analysis.  

 

Alternative explanations of the plant species diversity response to disturbance that we 

observed include, but are not limited to, the environmental heterogeneity model (Bratton 1976; 

Ricklefs 1977), the intermediate productivity model (Tilman 1982), and the species-abundance 

curve model (Christensen & Peet 1982). Tilman & Pacala (1993) discuss the ecological merits of 

many of the competing hypotheses explaining the humpback diversity curve. Proponents of 

the environmental heterogeneity model could interpret our results to be caused by greater 

structural diversity in forest canopy cover in stands with moderate mortality. The 

heterogeneity in light and thermal regimes in these stands provides more niches  

(incorporating MacArthur's 1965 niche differentiation hypothesis) to plant species than a 

homogeneous environment. 



 
Fig. 4. Relationship of understory vegetation class biomass to levels of percent tree mortality in 40 

beetle-killed lodgepole pine stands in the Uinta mountains north slope, Utah, 1989-1991 (pooled). 

  

  

This model views competition as a force that maintains high diversity by restricting species to 

narrowly defined niches. In contrast, competition is perceived to exclude species in the 

absence of disturbance or predation by proponents of reduction-mediated models, of which 

the intermediate disturbance hypothesis is one variant. Tilman (1982) asserted that many 

features of plant communities change simultaneously along productivity gradients, including 

diversity. He hypothesized that plant species diversity is highest at intermediate levels of 

productivity which could occur without disturbance or nonequilibrium between species 

abundance. The species-abundance curve model maintains that an increase in plant abundance 

is sufficient to explain an increase in species richness. This model fits our results except in 

stands with severe tree mortality. Huston's (1979) general hypothesis of species diversity 

focuses on the nonequilibrium interactions of competing populations as the important 

mechanism leading to species diversity regardless of the cause of the nonequilibrium 

condition. Reader et al. (1991) listed several reasons to explain the failure of plant diversity to 

respond to disturbance intensity as predicted by the intermediate disturbance hypothesis. 

Further research on colonization and extinction rates in disturbed sites with varying levels of 

disturbance frequency or severity needs to be conducted to determine the role of competition 

and disturbance in shaping plant communities.  



 

A stand with a high degree of interspersion of forest gaps, shaded areas, and boundary zones 

of intermediate conditions provides suitable conditions to a wider range of species with 

different physiological tolerances. Collins et al. (1985) discussed three types of understory 

plant responses to different light intensities, temperatures, soil moisture levels, and nutrient 

availabilities in forest gaps created by natural disturbances: sun herbs, light-flexible herbs, and 

shade plants. The modified environment within the gap (provided it is large enough) is more 

favorable to species of the first type and can be too harsh for the last (Collins et al. 1985). 

  

The severity of a mountain pine beetle epidemic may have successional consequences for 

lodgepole pine stands. Cole & Amman (1980) measured a greater growth rate of subalpine fir 

beneath lodgepole pine stands with higher beetle-caused tree mortality, indicating a hastening 

of succession toward the climax forest. We observed that severely disturbed stands often 

(except on steep slopes) resemble wet meadows with dense stands of grasses and sedges. The 

few trees in the understories of these stands are sufficiently large to be considered residuals 

that were present prior to the disturbance. Grasses appear to suppress lodgepole pine 

regeneration in these stands. However, grass is less abundant in gaps of stands with moderate 

mortality, and there are numerous small seedlings of lodgepole pine and/or aspen present in 

these gaps (with no influence of fire). The presence and relative dominance of aspen in the 

understory communities of many disturbed stands with intermediate mortality are intriguing 

because of the consequences for the future development and management of disturbed stands. 

A reoccurrence of epidemic mountain pine beetle activity in stands where lodgepole pine is 

persistent could give aspen a competitive advantage in the midstory layer, allowing it to 

dominate lodgepole pine in the overstory for a number of years. An introduced or natural fire 

might favor the regeneration of lodgepole pine where cones are serotinous (Brown 1975), but 

many environmental factors would affect the outcome. Silvicultural techniques directed at 

favoring one outcome or the other (thinning pine or introducing fire) could be used when 

environmental conditions are appropriate for achieving management objectives in these 

disturbed areas.  
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Appendix 1. Plant species collected in random plot biomass samples in beetle-killed stands in the Uinta 

mountains north slope, Utah, 1988-1992. 
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