Nechani stic I nvestigation of Rhl-Cat al yzed Cycl oi soner i zat i on of Benzyl al I ene I nt er nal Al kynes via C-H Activation

著者	Kawaguchi Yasuaki, Yasuda Shi geo, Mukai Chi sat o
j ournal or publ i cat i on title	Jour nal of Organi c Chemi stry
vol une	82
nunber	14
page range	$7666-7674$
year	$2017-07-21$
URL	ht tp: //hdl . handl e. net /2297/48552
doi: 10.1021/acs.joc.7b01048	

The Journal of Organic Chemistry

Note

Rh ${ }^{\text {I }}$-Catalyzed Cycloisomerization of Benzylallene-Internal Alkynes via C-H

Activation

Yasuaki Kawaguchi, Shigeo Yasuda, and Chisato Mukai*

Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa

University, Kakuma-machi, Kanazawa 920-1192 (Japan)

Tel: (+81)76-234-4411

Fax: (+81)76-234-4410

E-mail: mukai@p.kanazawa-u.ac.jp

Abstract

Treatment of the benzylallene-internal alkynes with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ effected a novel cycloisomerization via a $\mathrm{C}_{\text {sp2 }}-\mathrm{H}$ bond activation to produce the tricyclo $\left[9.4 .0 .0^{3,8}\right]$ pentadecapentaene skeleton. The plausible reaction mechanism via consecutive formation of the rhodabicyclo[4.3.0] intermediates and σ-bond metathesis between the $\mathrm{C}_{\text {sp2 }}-\mathrm{H}$ bond on the benzene ring and the $\mathrm{C}_{\mathrm{sp} 2}-\mathrm{Rh}^{\mathrm{III}}$ bond $\left(\mathrm{C}_{\mathrm{sp} 2}-\mathrm{H}\right.$ bond activation step) was proposed based on the experiments using deuterated substrates. In addition, a plausible alternative mechanism for the previously reported cycloisomerization of the benzylallene-terminal alkynes could also be proposed based on the current mechanistic study.

Cyclization reactions utilizing the transition-metal-catalyzed $\mathrm{C}-\mathrm{H}^{1}$ and/or $\mathrm{C}-\mathrm{C}^{2}$ bond activation provide a powerful step- and atom-economical methodology for the straightforward construction of complex polycyclic skeletons inaccessible by other conventional methods. Recent efforts from this laboratory disclosed that the $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$-catalyzed cycloisomerization of the benzylallene-terminal alkynes $\mathbf{1}$ ($\mathrm{Y}=\mathrm{SO}_{2} \mathrm{Ph}$, alkyl) took place via the $\mathrm{C}_{\mathrm{sp} 2}-\mathrm{H}$ bond activation on the benzene ring to produce the tricyclo[9.4.0.0 $0^{3,8}$]pentadecapentaene derivatives 2 [Scheme 1, Eq. (1)]. ${ }^{3}$ Based on preliminary investigations using deuterated substrates, ${ }^{3}$ we tentatively interpreted this ring-closing reaction as follows: (i) oxidative addition of the acetylenic $\mathrm{C}-\mathrm{H}$ bond to Rh^{I} would form the intermediate 3 as the first step, (ii) ene-type cyclization of $\mathbf{3}$ would lead to the unique vinylidenecarbene-Rh intermediate $4,{ }^{4}$ which is electrophilically captured by benzene to form 5, and (iii) migration of the proton of benzene of 5 to $\mathrm{Rh}\left(\mathrm{C}_{\mathrm{sp} 2}-\mathrm{H}\right.$ bond activation) would finally be followed by reductive elimination. ${ }^{5}$ We subsequently focused on the ring-closing reaction using the internal alkyne instead of the terminal acetylene species. As a result, treatment of the benzylallene-internal alkyne species $6\left(\mathrm{R}^{1} \neq \mathrm{H}, \mathrm{Y}=\right.$ alkyl $)$ with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ dramatically
changed the ring-closing mode to furnish the hexahydrophenanthrene skeleton 7 in high yields [Scheme 1, Eq. (2)]. ${ }^{6}$ The reaction likely proceeds by consecutive formation of a rhodabicyclo[4.3.0] intermediate $\mathbf{8}$, σ-bond metathesis between the $\mathrm{C}_{\text {sp } 2}-\mathrm{H}$ bond on the benzene ring and the $\mathrm{C}_{\text {sp } 2}-\mathrm{Rh}$ bond ($\mathrm{C}_{\mathrm{sp} 2}-\mathrm{H}$ bond activation step), and isomerization between three σ-, π-, and σ-allylrhodium species ($\mathbf{9}$ and $\mathbf{9}^{\mathbf{\prime}}: \sigma$-allylrhodium). This plausible mechanism was proposed on the basis of several experiments using deuterated substrates. ${ }^{6}$

Scheme 1. Our Previous Study: Rh ${ }^{\text {I}}$-Catalyzed Cycloisomerization of Benzylallene-Alkynes via C-H Bond Activation

During the course of our investigation of the Rh^{I}-catalyzed cyclization of
allenes possessing an additional π-component, ${ }^{7,8}$ we generally assumed the formation of the rhodabicyclic intermediate, such as $\mathbf{8}$, as the first step in order to understand the experimental results. However, the proposed mechanism for the construction of $\mathbf{2}$ from $\mathbf{1}$ is quite different from our precedents, whereas the mechanism for the formation of $\mathbf{7}$ from 6 is in line with our previously proposed one involving the rhodabicyclic intermediate. Therefore, at this stage we wondered if the rhodabicyclo[4.3.0]nonadiene intermediate might be involved in the transformation of $\mathbf{1}$ into $\mathbf{2}$. On the other hand, we had already observed that the substituent on the allenyl moiety significantly affected the reactivity and chemoselectivity of several reactions. ${ }^{8 c, g, h}$ Thus, our next efforts directed towards making the reaction mechanism for the transformation of $\mathbf{1}$ into $\mathbf{2}$ clearer using benzylallene-alkyne substrates $\mathbf{6}^{9}$ with varying substituents on the allenyl moiety and at the alkyne terminus. Herein we describe the preparation of other type of tricyclo[9.4.0.0 $0^{3,8}$] derivative 10, a double bond isomer of 2, from the benzylallene-internal alkynes 6 with an electron-withdrawing group (EWG) on the allenyl moiety $\left(\mathrm{R}^{1} \neq \mathrm{H}, \mathrm{Y}=\mathrm{SO}_{2} \mathrm{Ph}, \mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2}\right)$. With three transformations (the newly obtained results with the previous ones) considered, we now propose the reaction
mechanism that can rationalize the formation of all tricyclic compounds $\mathbf{2}, \mathbf{7}$, and $\mathbf{1 0}$ from benzylallene-alkyne substrates $\mathbf{1}$ and $\mathbf{6}$ via the common rhodabicyclo[4.3.0] intermediate (Scheme 2).

Scheme 2. This Study: $\mathbf{R h}^{\mathbf{1}}$-Catalyzed Cycloisomerization of Benzylallene-Internal

Alkynes via C-H Bond Activation

The benzylallene-internal alkyne 6a having a dimethyl group at the benzylic position ${ }^{10}$ was exposed to the optimized conditions $\left(\left[\operatorname{RhCl}(\mathrm{CO})_{2}\right]_{2}\right.$ in 1,2-dichloroethane (DCE) heated at $110{ }^{\circ} \mathrm{C}$ by microwave (MW) irradiation) to provide the tricyclo $\left[9.4 .0 .0^{3,8}\right]$ pentadecapentaene derivative $\mathbf{1 0 a}$ with a trans stereochemistry between the n-butyl residue and the phenylsulfonyl group (64%, entry 1). ${ }^{11,12}$ Compound 10a has the benzene-fused seven-six membered structure similar to that of $\mathbf{2}$, but different regarding the position of the two double bonds. The allene-alkyne $\mathbf{6 b}$ also
gave the tricyclic product $\mathbf{1 0 b}$ in 66% yield (entry 2). In the cases of the benzylallenes possessing a phosphonate group on the allenyl moiety $\mathbf{6 c}$ and $\mathbf{6 d}$, the reaction occurred in refluxing toluene to afford $\mathbf{1 0 c}(64 \%$ yield) and $\mathbf{1 0 d}(73 \%$ yield), respectively (entries 3 and 4). The substrate having a benzyloxymethyl group at the alkyne terminus $\mathbf{6 e}$ provided the corresponding cycloadduct $\mathbf{1 0 e}$ in 52% yield (entry 5). The cyclic ketal derivative $\mathbf{6} \mathbf{f}^{13}$ was exposed to the standard conditions to furnish $\mathbf{1 0 f}$ in 41% yield (entry 6). Both compounds $6 \mathbf{g}\left(\mathrm{R}^{3}=\mathrm{Me}\right)$ and $\mathbf{6 h}\left(\mathrm{R}^{3}=\mathrm{Cl}\right)$ with substituents at the para-position on the benzene ring produced $\mathbf{1 0 g}$ in 56% yield (entry 7) and $\mathbf{1 0 h}$ in 62% yield (entry 8), although a longer reaction time was needed in the latter case. Thus, it became clear that the benzylallene-internal alkynes $\mathbf{6}$ with an EWG on the allenyl moiety consistently produced the third type of compound $\mathbf{1 0}$ being obviously different from compounds $\mathbf{2}$ and 7.

Table 1. $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$-Catalyzed Cycloisomerization of Benzylallene-Alkynes $\mathbf{6}^{\text {a }}$

entry	substrate	R^{1}	R^{2}	R^{3}	X	time (h)	product and yield (\%) ${ }^{\text {b }}$
1	6a	$n \mathrm{Bu}$	$\mathrm{SO}_{2} \mathrm{Ph}$	H	$\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$	12	10a: 64
2	6b	Me	$\mathrm{SO}_{2} \mathrm{Ph}$	H	$\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$	10	10b: 66
$3{ }^{\text {c }}$	6 c	$n \mathrm{Bu}$	$\mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2}$	H	$\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$	3	10c: 64
$4^{\text {c }}$	6d	Me	$\mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2}$	H	$\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$	3	10d: 73
5	6 e	$\mathrm{CH}_{2} \mathrm{OBn}$	$\mathrm{SO}_{2} \mathrm{Ph}$	H	$\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$	7	10e: 52
6	6 f	$n \mathrm{Bu}$	$\mathrm{SO}_{2} \mathrm{Ph}$	H	$\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{CMe}_{2}$	20	10f: 41
7	6 g	$n \mathrm{Bu}$	$\mathrm{SO}_{2} \mathrm{Ph}$	Me	$\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$	4	10g: 56
8	6 h	$n \mathrm{Bu}$	$\mathrm{SO}_{2} \mathrm{Ph}$	Cl	$\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$	20	10h: 62

aReaction conditions: A solution of 6 in DCE was heated in a microwave reactor at $110^{\circ} \mathrm{C}$. ${ }^{\text {b }}$ Isolated yield. ${ }^{\text {CReaction }}$ was performed in refluxing toluene. $\mathrm{DCE}=1,2$-dichloroethane, MW=microwave.

To obtain information about the mechanism for the stereoselective production of 10, we performed three experiments with the deuterated substrates, $\left[D_{5}\right] \mathbf{6 a},\left[\mathrm{D}_{2}\right] \mathbf{6} \mathbf{a}$, and $\left[D_{1}\right] \mathbf{6 a}$ (Scheme 3). Treatment of the pentadeuterated substrate $\left[D_{5}\right] \mathbf{6 a}$ with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ in refluxing toluene ${ }^{14}$ produced the deuterated product $\left[\mathrm{D}_{5}\right] \mathbf{1 0 a}$ in 54% yield. It became apparent that one deuterium atom on the benzene ring was exclusively incorporated at the benzylic position of the seven-membered ring of $\left[D_{5}\right] \mathbf{1 0 a}$ in a highly stereoselective manner. In the case of the dideuterated substrate $\left[D_{2}\right] \mathbf{6 a}$, one of the deuterium atoms at the propargylic position was stereoselectively transferred into the allylic position of the six-membered ring of $\left[D_{2}\right] \mathbf{1 0 a}$. For the monodeuterated substrate $\left[D_{1}\right] 6 a$, the deuterium atom at the allenic position was completely incorporated into the
olefinic position of the seven-membered ring in $\left[D_{1}\right] \mathbf{1 0 a}$. In other words, migration of the deuterium atom could not be observed.

Scheme 3. $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$-Catalyzed Cycloisomerization of $\left[\mathrm{D}_{5}\right] \mathbf{6 a},\left[\mathrm{D}_{2}\right] \mathbf{6 a},\left[\mathrm{D}_{1}\right] \mathbf{6 a}$

These deuteration experiments provided a fairly informative insight into the mechanistic consideration for the cycloisomerization of $\mathbf{6}$ into $\mathbf{1 0}$ (Scheme 4). The first two steps should be in accordance with those described for the mechanism involving the production of 7 from 6 [Scheme 1, Eq. (2)]. Namely, the oxidative cyclization of an allenic distal double bond and an alkyne in $\mathbf{6}$ with Rh^{I} would initially occur as usual to
form the bicyclic rhodacyclopentene intermediate \mathbf{A}. The σ-bond metathesis ${ }^{15}$ between the $\mathrm{C}_{\text {sp2 }}-\mathrm{H}$ bond on the benzene ring and the $\mathrm{C}_{\text {sp2 }}-\mathrm{Rh}^{\text {III }}$ bond of \mathbf{A} would form the arylrhodium intermediate \mathbf{B}. The insertion of the exocyclic olefin of \mathbf{B} into the $\mathrm{C}_{\mathrm{sp} 2}-\mathrm{Rh}^{\text {III }}$ bond would result in the formation of the intermediate \mathbf{C}, which collapsed to the σ-allylrhodium intermediate \mathbf{D} via β-hydride elimination with H_{A}. The intermediate D can be considered being in equilibrium with another σ-allylrhodium intermediate \mathbf{F} through the π-allylrhodium intermediate \mathbf{E}. The reductive elimination of $\mathrm{Rh}^{\mathrm{III}}$ from \mathbf{F} would produce the final product $\mathbf{1 0}$.

Scheme 4. Plausible Mechanisms for the Formations of 2, 7, and 10

As already mentioned, we previously presumed that the cycloisomerization of benzylallene-terminal alkynes $\mathbf{1}^{3}$ proceeded via the mechanism involving the vinylidenecarbene-Rh intermediate 4 [Scheme 1, Eq. (1)]. ${ }^{4}$ By taking into consideration the mechanism for the formation of $\mathbf{1 0}$ into account, we reconsidered the mechanism for the cycloisomerization of $\mathbf{1}$ into $\mathbf{2}$ and the following plausible alternative is now proposed (Scheme 4). Benzylallene-terminal alkynes 1 must undergo the consecutive
oxidative cyclization and the σ-bond metathesis to form the intermediate $\mathbf{C}\left(\mathrm{R}^{1}=\mathrm{H}\right)$ in a way similar to the formation of $\mathbf{C}\left(R^{1} \neq H\right)$ (Scheme 4). This intermediate $\mathbf{C}\left(R^{1}=H\right)$ now has two β-protons. The molecular model analysis of $\mathbf{C}\left(\mathrm{R}^{1}=H\right)$ indicated that the down side hydrogen atom on the seven-membered ring became closely oriented to the Rh center. Thus, β-hydride elimination with H resulting from the acetylenic proton might exclusively occur to produce the σ-allylrhodium intermediate \mathbf{G}. The reductive elimination of $\mathrm{Rh}^{\text {III }}$ from \mathbf{G} finally leads to $\mathbf{2}$. The newly proposed mechanism for the production of $\mathbf{2}$ from $\mathbf{1}$ does not contradict the experimental results using deuterated substrates shown in a previous paper. ${ }^{3}$

On the other hand, we already proposed the mechanism for the formation of 7 from $6\left(\mathrm{R}^{1} \neq \mathrm{H}, \mathrm{Y}=\right.$ alkyl $)$, which involved intermediates \mathbf{A} and $\mathbf{B} .{ }^{6}$ The intermediate \mathbf{B} would be in equilibrium with another σ-allylrhodium intermediate \mathbf{H}, which should collapse into 7.

In summary, treatment of the benzylallene-internal alkynes possessing an EWG $\left(\mathrm{SO}_{2} \mathrm{Ph}, \mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2}\right)$ on the allenyl moiety with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ produced tricyclo[9.4.0.0 $0^{3,8}$]pentadecapentaene derivatives. With the aid of deuteration
experiments, we proposed the reaction mechanism that gave us other possibilities about the reaction mechanism for the transformation of benzylallene-terminal alkynes $\mathbf{1}$ into the tricyclic compounds $\mathbf{2}$. The three types of products $\mathbf{2}, \mathbf{7}$, and $\mathbf{1 0}$ can be now rationalized in terms of the initial formation of rhodabicyclo[4.3.0]nonadienes as a key and common intermediate in the $\left[\operatorname{RhCl}(\mathrm{CO})_{2}\right]_{2}$-catalyzed cycloisomerzation of allene-alkyne species (Scheme 4).

Experimental Section

General. Melting points were measured with YANAGIMOTO micro melting point apparatus, and are uncorrected. Infrared spectra were measured with a SHIMADZU FTIR-8700 spectrometer for samples in $\mathrm{CHCl}_{3} .{ }^{1} \mathrm{H}$ NMR spectra were measured with JNM-ECS400 or JNM-ECA600 spectrometers for samples in chloroform- $d\left(\mathrm{CDCl}_{3}\right)$, using either tetramethylsilane (for compound with a phenyl group, 0.00 ppm), CHCl_{3} (7.26 ppm) as an internal reference. ${ }^{13} \mathrm{C}$ NMR spectra were measured with JNM-ECS400 or JNM-ECA600 spectrometers for samples in $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ as an internal reference. High-resolution mass spectra were measured with JMS-T100TD
(DART) mass spectrometers, and mass spectra were measured with JMS-T100TD (DART) mass spectrometers. Microwave reactions were performed in sealed reaction vessels under N_{2} atmosphere with a low-power, focused microwave (Biotage initiator ${ }^{\mathrm{TM}}$ 2.5) and the reaction temperatures were monitored by an external surface sensor. Single-crystal X-ray diffraction was measured with R-AXIS RAPID II. Commercially available anhydrous $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF, toluene and 1,2-dichloroethane were employed for reactions. $\mathrm{Et}_{3} \mathrm{~N}$ was distilled from CaH_{2}. Commercially available $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ (Kanto Chemical Co.) were employed for reactions. Commercially available hept-2-ynoic acid (Tokyo Chemical Industry), dimethyl 2-(prop-2-ynyl)malonate (Sigma-Aldrich) were employed for reactions. 4-(benzyloxy)but-2-ynol (S1e), ${ }^{16}$ 5-(hept-2-ynyl)-2,2-dimethyl-5-(prop-2-ynyl)-1,3-dioxane (S2f), ${ }^{\text {8i }} \quad$ dimethyl 2-(hept-2-ynyl)-2-(prop-2-ynyl)malonate \quad (S2a), ${ }^{6} \quad$ 2-methyl-2-phenylpropanal, ${ }^{17}$ 2-methyl-2-(p-tolyl)propanal, ${ }^{17} \quad$ 2-(4-chlorophenyl)-2-methylpropanal, ${ }^{18}$ dimethyl 2-(but-2-ynyl)-2-(4-hydroxy-5-methyl-5-phenylhex-2-ynyl)malonate (S3b), ${ }^{6}$ dimethyl 2-(hept-2-ynyl)-2-[4-hydroxy-5-methyl-5-(phenyl- d_{5})hex-2-ynyl]malonate ($\left.\left[\mathrm{D}_{5}\right] \mathbf{S 3 a}\right),{ }^{6}$ dimethyl 2-(hept-2-ynyl)-2-(4-hydroxy-5-methyl-5-phenylhex-2-ynyl-4-d)malonate
$\left(\left[\mathrm{D}_{1}\right]\right.$ S3a $),{ }^{6}$

2-(hept-2-ynyl)-2-(4-hydroxy-5-methyl-5-phenylhex-2-ynyl)malonate (S3a), ${ }^{6}$ dimethyl 2-(hept-2-ynyl)-2-[5,5-dimethyl-5-phenyl-2-(phenylsulfonyl)hexa-2,3-dienyl]malonate $(\mathbf{6 a})^{3}$ were known compounds and prepared according to literature procedures. Silica gel (Silica gel $60 \mathrm{~N}, 40-50 \mu \mathrm{~m}$, Kanto Chemical Co.) was used for chromatography. All reactions were carried out under N_{2} atmosphere. Organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. All other reagents were obtained from commercial sources and used as received.

Preparation of Hept-2-yn-1,1-d $\mathbf{d}_{\mathbf{2}}$-1-ol ([D $\left.\mathrm{D}_{2}\right]$ S1a).

added hept-2-ynoic acid $(250 \mathrm{mg}, 2.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred for 1 h at room temperature, the reaction was quenched by addition of water at $0{ }^{\circ} \mathrm{C}$, dried, and passed through a pad of Celite. The filtrate was concentrated to dryness, and the residue was chromatographed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $\left[\mathrm{D}_{2}\right] \mathbf{S 1 a}$ ($120 \mathrm{mg}, 52 \%$ yield) as a colorless oil: IR $3325 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.19(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $1.99(\mathrm{~s}, 1 \mathrm{H}), 1.49-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR
(151 MHz, CDCl_{3}) $\delta 86.4,78.2,50.7$ (quin, $J=23.1 \mathrm{~Hz}$), $30.6,21.8,18.3,13.5$; DART MS $m / z 115\left(\mathrm{M}^{+}+1,22.9\right)$; DART HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{D}_{2} \mathrm{O}$ 115.1092, found 115.1091.

General Procedure for Preparation of Diynes S2e, $\left[D_{2}\right]$ S2a from S1e, $\left[D_{2}\right]$ S1a. To a solution of alcohol $\mathbf{S 1}(7.5 \mathrm{mmol}), \mathrm{PPh}_{3}(2.4 \mathrm{~g}, 9.0 \mathrm{mmol})$ and imidazole $(610 \mathrm{mg}, 9.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added $\mathrm{I}_{2}(2.3 \mathrm{~g}, 9.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for 1 h at the same temperature, the reaction was quenched by addition of saturated aqueous NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane to afford the crude propargylic iodide. To a suspension of $\mathrm{NaH}(220 \mathrm{mg}, 5.5 \mathrm{mmol}, 60 \%$ in mineral oil) in THF (25 mL) was added dimethyl 2-(prop-2-ynyl)malonate ($850 \mathrm{mg}, 5.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 30 min at room temperature, the crude propargylic iodide was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was further stirred for additional 30 min at room temperature. The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with AcOEt. The extract was washed with water and brine,
dried, and concentrated to dryness. The residue was chromatographed with hexane-AcOEt to afford the corresponding diyne S2.

Dimethyl 2-[4-(Benzyloxy)but-2-ynyl]-2-(prop-2-ynyl)malonate (S2e).

yield as a pale yellow oil: IR $3287,1736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.35$ $(\mathrm{m}, 4 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{t}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz}), 3.765(\mathrm{~s}, 3 \mathrm{H}), 3.764$ $(\mathrm{s}, 3 \mathrm{H}), 3.07(\mathrm{t}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz}), 3.01(\mathrm{~d}, 2 \mathrm{H}, J=2.7 \mathrm{~Hz}), 2.05(\mathrm{t}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 169.1,137.4,128.4,128.1,127.8,80.8,79.5,78.3,71.8$, $71.2,57.3,56.5,53.1,23.0,22.8$; DART MS $m / z 329\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{5} 329.1389$, found 329.1375.

Dimethyl 2-(Hept-2-ynyl-1,1-d \boldsymbol{d}_{2})-2-(prop-2-ynyl)malonate ([D $\left.\mathbf{D}_{2}\right] \mathbf{S 2 a}$).

$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.73(\mathrm{~s}, 6 \mathrm{H}), 2.94(\mathrm{~d}, 2 \mathrm{H}, J=2.7 \mathrm{~Hz}), 2.09(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.00(\mathrm{t}$, $1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 1.43-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.3,83.9,78.6,73.6,71.4,56.7,52.9,30.8,22.8-22.2(\mathrm{~m}), 21.7,18.2,13.5 ;$

DART MS $m / z 267\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{D}_{2} \mathrm{O}_{4} 267.1565$, found 267.1572.

General Procedure for Preparation of Propargylic Alcohols S3e-h, [$\left.\mathbf{D}_{2}\right]$ S3a from

S2e-h, $\left[\mathbf{D}_{\mathbf{2}}\right] \mathbf{S 2 a}$. To a solution of diyne $\mathbf{S 2}(1.0 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added LHMDS ($1.2 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in THF) at $-78{ }^{\circ} \mathrm{C}$. After being stirred for 30 min , aldehyde (1.3 mmol) was added to the mixture, and the reaction mixture was further stirred for additional 5 min at the same temperature. The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was chromatographed with hexane-AcOEt to afford the corresponding propargylic alcohol S3.

Dimethyl 2-[4-(Benzyloxy)but-2-ynyl]-

2-(4-hydroxy-5-methyl-5-phenylhex-2-ynyl)malonate (S3e).

a colorless oil: IR 3533, $1739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.40(\mathrm{~m}, 2 \mathrm{H})$,
$7.35-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.40-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{t}, 2 \mathrm{H}, J=$ $2.1 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.93(\mathrm{~m}, 4 \mathrm{H}), 1.62(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}), 1.42(\mathrm{~s}$, $3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 169.2,144.9,137.4,128.4,128.2$, $128.1,127.8,126.7,126.5,82.7,80.9,80.7,79.4,71.23,71.18,57.3,56.5,53.1,42.9$, 25.1, 23.2, 23.13, 23.06; DART MS $m / z 477\left(\mathrm{M}^{+}+1,22.6\right)$; DART HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{6} 477.2277$, found 477.2275.

6-[5-(Hept-2-ynyl)-2,2-dimethyl-1,3-dioxan-5-yl]-2-methyl-2-phenylhex-4-yn-3-ol

(S3f).
2-methyl-2-phenylpropanal and was obtained in 52% yield as a colorless oil: IR $3449 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.44-7.42 (m, 2 H), 7.35-7.33 (m, 2H), 7.25-7.22(m, 1H), 4.45-4.44 (m, 1H), 3.73-3.70(m, 2H), 3.63(d, $1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 3.60(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 2.42(\mathrm{~d}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz}), 2.21(\mathrm{t}, 2 \mathrm{H}, J=$ $2.4 \mathrm{~Hz}), 2.17(\mathrm{tt}, 2 \mathrm{H}, J=6.9,2.4 \mathrm{~Hz}), 1.64(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}), 1.50-1.39(\mathrm{~m}, 16 \mathrm{H})$, $0.91(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.2,128.2,126.7,126.5,98.0$, 83.4, 82.6, 82.0, 75.0, 71.4, 66.09, 66.07, 43.1, 35.5, 31.1, 24.9, 24.4, 23.5, 23.1, 23.0,
21.9, 18.4, 13.6; DART MS $m / z 397\left(\mathrm{M}^{+}+1,58.6\right)$; DART HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{3}$ 397.2743, found 397.2735.

Dimethyl 2-(Hept-2-ynyl)-2-[4-hydroxy-5-methyl-5-(p-tolyl)hex-2-ynyl]malonate (S3g).

Compound S3g was prepared from S2g and 2-methyl-2-(p-tolyl)propanal and was obtained in 73% yield as a colorless oil: IR $3536,1738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, 2 \mathrm{H}$, $J=8.2 \mathrm{~Hz}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 4.36-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.733(\mathrm{~s}, 3 \mathrm{H}), 3.726(\mathrm{~s}, 3 \mathrm{H})$, $2.99(\mathrm{~d}, 2 \mathrm{H}, J=1.4 \mathrm{~Hz}), 2.90-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{tt}, 2 \mathrm{H}, J=7.2,2.4 \mathrm{~Hz})$, $1.59(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}), 1.47-1.34(\mathrm{~m}, 10 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.5,141.9,136.0,128.9,126.7,83.9,82.5,80.9,73.8,71.3,56.9$, $52.9,42.6,30.9,25.4,23.2,23.0,22.9,21.8,20.9,18.3,13.5 ;$ DART MS $m / z 427$ $\left(\mathrm{M}^{+}+1,2.14\right)$; DART HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{O}_{5} 427.2485$, found 427.2482.

Dimethyl 2-[5-(4-Chlorophenyl)-4-hydroxy-5-methylhex-2-ynyl]-

2-(hept-2-ynyl)malonate (S3h).

Compound S3h was prepared from S2h and

2-(4-chlorophenyl)-2-methylpropanal and was obtained in 55\% yield as a colorless oil: IR 3519, $1738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}$, $2 \mathrm{H}), 4.34-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~d}, 2 \mathrm{H}, J=1.8 \mathrm{~Hz}), 2.84(\mathrm{t}, 2 \mathrm{H}$, $J=2.3 \mathrm{~Hz}), 2.12(\mathrm{tt}, 2 \mathrm{H}, J=6.9,2.3 \mathrm{~Hz}), 1.66(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 1.47-1.32(\mathrm{~m}, 10 \mathrm{H})$, $0.90(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,143.6,132.3,128.3$, $128.1,84.0,82.3,81.4,73.6,71.0,56.8,52.9,42.7,30.9,24.9,23.4,23.2,22.9,21.8$, 18.3, 13.5; DART MS $m / z 447\left(\mathrm{M}^{+}+1,9.27\right)$; DART HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{ClO}_{5}$ 447.1938, found 447.1933.

Dimethyl 2-(Hept-2-ynyl-1,1- \boldsymbol{d}_{2})-

2-(4-hydroxy-5-methyl-5-phenylhex-2-ynyl)malonate ([D2]S3a).

 a colorless oil: IR $3538,1739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.40(\mathrm{~m}, 2 \mathrm{H})$, 7.34-7.32 (m, 2H), 7.24-7.21 (m, 1H), $4.38(\mathrm{brs}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~d}$, $2 \mathrm{H}, J=1.0 \mathrm{~Hz}), 2.11(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.82(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 1.45-1.33(\mathrm{~m}, 10 \mathrm{H})$, $0.89(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,145.0,128.1,126.7$,
$126.3,83.9,82.4,80.8,73.7,71.1,56.7,52.8,42.9,30.8,25.0,23.0,22.9-22.3$ (m), 21.7, 18.2, 13.5; DART MS $m / z 415\left(\mathrm{M}^{+}+1,9.95\right)$; DART HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{D}_{2} \mathrm{O}_{5}$ 415.2454, found 415.2454.

General Procedure for Preparation of Benzylallene-Alkynes $\mathbf{6 b}, \mathbf{e}-\mathbf{h},\left[\mathbf{D}_{\mathbf{5}}\right] \mathbf{6 a},\left[\mathrm{D}_{\mathbf{2}}\right] \mathbf{6 a}$,

 $\left[\mathbf{D}_{1}\right] \mathbf{6 a}$ from S3b,e-h, $\left[\mathbf{D}_{\mathbf{5}}\right]$ S3a, $\left[\mathbf{D}_{\mathbf{2}}\right]$ S3a, $\left[\mathbf{D}_{\mathbf{1}}\right]$ S3a. To a solution of propargylic alcohol $\mathbf{S 3}(1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.56 \mathrm{~mL}, 4.0 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added a solution of $\operatorname{PhSCl}(0.39 \mathrm{~mL}, 3.5 \mathrm{mmol})$ in THF $(3.5 \mathrm{~mL})$ slowly at $-78^{\circ} \mathrm{C}$. After being stirred for 1 h at the same temperature, the reaction was quenched by addition of saturated aqueous NaHCO_{3}, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane-AcOEt to afford the crude sulfoxide. To a solution of the crude sulfoxide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $m \mathrm{CPBA}(260 \mathrm{mg}, 1.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for 1 h at the same temperature, the reaction was quenched by addition of saturated aqueous NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water, brine, dried, and concentrated to dryness. The residue was chromatographed with hexane-AcOEt to afford thecorresponding benzylallene-alkyne 6 .

Dimethyl 2-(But-2-ynyl)-2-[5-methyl-5-phenyl-

2-(phenylsulfonyl)hexa-2,3-dienyl]malonate (6b).

Compound 6b was prepared from S3b and was obtained in 96% yield as a colorless crystal: m.p. $86-88{ }^{\circ} \mathrm{C}$ (hexane-AcOEt); IR 1956, 1736, 1317, $1148 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{t}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 3.67$ $(\mathrm{s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, 1 \mathrm{H}, J=16.2,2.7 \mathrm{~Hz}), 3.07(\mathrm{dd}, 1 \mathrm{H}, J=16.2,2.7 \mathrm{~Hz})$, $2.88-2.81(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{t}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.3,169.6,169.4,147.1,140.1,133.3,129.0,128.4,128.3,126.5$, $126.0,112.8,110.5,79.5,72.9,56.6,52.92,52.89,40.9,29.1,28.9,28.0,23.1,3.5 ;$

DART MS m/z $495\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{~S} 495.1841$, found 495.1847.

Dimethyl 2-[4-(Benzyloxy)but-2-ynyl]-

2-[5-methyl-5-phenyl-2-(phenylsulfonyl)hexa-2,3-dienyl]malonate (6e).

Compound $\mathbf{6 e}$ was prepared from S3e and was obtained in 88% yield as a yellow oil: IR

1955, 1737, 1305, $1149 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.82(\mathrm{~m}, 2 \mathrm{H})$, 7.58-7.55 (m, 1H), 7.48-7.45 (m, 2H), 7.41-7.39 (m, 2H), 7.36-7.27 (m, 7H), $7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 5.99(\mathrm{dd}, 1 \mathrm{H}, J=3.1,2.4 \mathrm{~Hz}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{t}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz})$, $3.67(\mathrm{~s}, 6 \mathrm{H}), 3.15(\mathrm{dd}, 1 \mathrm{H}, J=15.8,3.1 \mathrm{~Hz}), 3.10(\mathrm{dd}, 1 \mathrm{H}, J=15.8,2.4 \mathrm{~Hz})$, 2.970-2.968 (m, 2H), $1.46(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.2$, $169.3,169.2,146.9,139.9,137.4,133.4,129.0,128.4,128.3,128.1,127.8,126.5,125.9$, $113.0,110.4,80.8,79.7,71.1,57.2,56.4,53.0,40.8,29.2,29.0,28.0,23.1 ;$ DART MS $m / z 601\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{O}_{7} \mathrm{~S} 601.2260$, found 601.2271.

5-(Hept-2-ynyl)-2,2-dimethyl-5-[5-methyl-5-phenyl-2-(phenylsulfonyl)hexa-2,3-

dienyl]-1,3-dioxane (6f).

Compound $\mathbf{6 f}$ was prepared from S3f and was obtained in 76% yield as a colorless oil: IR 1953, 1306, $1149 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.58$ $(\mathrm{m}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H})$, $5.95(\mathrm{dd}, 1 \mathrm{H}, J=3.4,2.1 \mathrm{~Hz}), 3.72(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.7 \mathrm{~Hz}), 2.57(\mathrm{dd}, 1 \mathrm{H}, J=15.5,3.4 \mathrm{~Hz}), 2.44-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{dt}, 1 \mathrm{H}, J=16.8,2.4$ $\mathrm{Hz}), 2.10(\mathrm{tt}, 2 \mathrm{H}, J=7.2,2.4 \mathrm{~Hz}), 1.46-1.32(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$

NMR (151 MHz, CDCl_{3}) $\delta 203.7,147.0,140.1,133.3,129.0,128.4,128.3,126.5,126.0$, $111.9,111.1,98.1,83.5,75.3,66.41,66.37,40.9,36.4,31.1,29.6,29.1,28.5,24.5,23.0$, 22.6, 22.0, 18.4, 13.6; DART MS $m / z 521\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{~S} 521.2726$, found 521.2729.

Dimethyl 2-(Hept-2-ynyl)-2-[5-methyl-2-(phenylsulfonyl)-

5-(p-tolyl)hexa-2,3-dienyl]malonate (6g).

Compound $\mathbf{6 g}$ was prepared from S3g and was obtained in 23% yield as a colorless oil: IR 1954, 1738, 1305, $1150 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.83(\mathrm{~m}, 2 \mathrm{H})$, $7.61-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=7.9$ $\mathrm{Hz}), 5.96(\mathrm{dd}, 1 \mathrm{H}, J=3.4,2.4 \mathrm{~Hz}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{dd}, 1 \mathrm{H}, J=16.2$, $3.4 \mathrm{~Hz}), 3.07$ (dd, $1 \mathrm{H}, J=16.2,2.4 \mathrm{~Hz}$), 2.90-2.83 (m, 2H), 2.33 (s, 3H), 2.05 (tt, 2H, J $=6.9,2.4 \mathrm{~Hz}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 7 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.3,169.6,169.4,144.1,140.2,136.0,133.3,129.01,128.97,128.3$, $125.9,112.9,110.4,84.2,73.7,56.7,52.9,52.8,40.6,30.8,29.2,28.8,28.1,23.1,21.8$, 20.9, 18.3, 13.5; DART MS $m / z 551\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{O}_{6} \mathrm{~S}$ 551.2467, found 551.2474.

Dimethyl 2-[5-(4-Chlorophenyl)-5-methyl-2-(phenylsulfonyl)hexa-2,3-dienyl]-

2-(hept-2-ynyl)malonate (6h).

Compound $\mathbf{6 h}$ was prepared from S3h and was obtained in 61% yield as a colorless oil: IR 1954, 1738, 1305, $1150 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.81(\mathrm{~m}, 2 \mathrm{H})$, 7.63-7.60 (m, 1H), 7.53-7.50 (m, 2H), 7.37-7.35 (m, 2H), 7.30-7.28 (m, 2H), 5.93 (dd, $1 \mathrm{H}, J=3.1,2.4 \mathrm{~Hz}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{dd}, 1 \mathrm{H}, J=15.8,3.1 \mathrm{~Hz}), 3.04(\mathrm{dd}$, $1 \mathrm{H}, J=15.8,2.4 \mathrm{~Hz}$), 2.85 (brs, 2H), $2.04(\mathrm{tt}, 2 \mathrm{H}, J=6.9,2.4 \mathrm{~Hz}), 1.46(\mathrm{~s}, 3 \mathrm{H})$, $1.41-1.29(\mathrm{~m}, 7 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.2$, $169.5,169.3,145.6,140.0,133.4,132.3,129.0,128.4,128.2,127.5,112.4,110.7,84.3$, 73.6, 56.7, $52.91,52.87,40.6,30.8,29.1,28.8,28.0,23.1,21.8,18.2,13.5 ;$ DART MS $m / z 571\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{ClO}_{6} \mathrm{~S} 571.1921$, found 571.1921.

Dimethyl 2-(Hept-2-ynyl)-

2-[5-methyl-5-(phenyl- d_{5})-2-(phenylsulfonyl)hexa-2,3-dienyl]malonate ([D $\left.\mathrm{D}_{5}\right] \mathbf{6 a}$).

Compound $\left[D_{5}\right] \mathbf{6 a}$ was prepared from $\left[D_{5}\right]$ S3a and was obtained in 84% yield as a colorless oil: IR 1955, 1737, 1305, $1148 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.83$ $(\mathrm{m}, 2 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{dd}, 1 \mathrm{H}, J=3.1,2.4 \mathrm{~Hz}), 3.66(\mathrm{~s}$,
$3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, 1 \mathrm{H}, J=16.2,3.1 \mathrm{~Hz}), 3.08(\mathrm{dd}, 1 \mathrm{H}, J=16.2,2.4 \mathrm{~Hz})$, $2.90-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{tt}, 2 \mathrm{H}, J=6.9,2.4 \mathrm{~Hz}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 7 \mathrm{H}), 0.87$ $(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.2,169.5,169.3,146.8,140.1$, 133.3, $129.0,128.2,127.8(\mathrm{t}, J=24.6 \mathrm{~Hz}), 125.9(\mathrm{t}, J=24.6 \mathrm{~Hz}), 125.5(\mathrm{t}, J=24.6 \mathrm{~Hz})$, $112.7,110.5,84.2,73.7,56.7,52.80,52.78,40.7,30.8,29.1,28.8,27.9,23.1,21.7,18.2$, 13.5; DART MS $m / z 542\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{D}_{5} \mathrm{O}_{6} \mathrm{~S} 542.2625$, found 542.2638.

Dimethyl 2-(Hept-2-ynyl-1,1- \boldsymbol{d}_{2})-

2-[5-methyl-5-phenyl-2-(phenylsulfonyl)hexa-2,3-dienyl]malonate ([D] ${ }_{2}$ [6a).

Compound $\left[D_{2}\right] \mathbf{6 a}$ was prepared from $\left[D_{2}\right] \mathbf{S 3 a}$ and was obtained in 84% yield as a colorless oil: IR 1954, 1737, 1306, $1148 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.83$ $(\mathrm{m}, 2 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.21 (m, 1H), $5.97(\mathrm{dd}, 1 \mathrm{H}, J=3.1,2.4 \mathrm{~Hz}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.14$ (dd, $1 \mathrm{H}, J=16.2,3.1 \mathrm{~Hz}), 3.08(\mathrm{dd}, 1 \mathrm{H}, J=16.2,2.4 \mathrm{~Hz}), 2.04(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.46(\mathrm{~s}$, $3 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 7 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.2$, $169.5,169.3,147.0,140.1,133.3,128.9,128.3,128.2,126.4,125.9,112.7,110.5,84.2$,
$73.6,56.6,52.79,52.77,40.8,30.8,29.1,28.7,27.9,22.6$ (quin, $J=20.0 \mathrm{~Hz}$), 21.7, 18.2, 13.5; DART MS $m / z 539\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{D}_{2} \mathrm{O}_{6} \mathrm{~S} 539.2436$, found 539.2432.

Dimethyl 2-(Hept-2-ynyl)-2-[5-methyl-5-phenyl-2-(phenylsulfonyl)-4- d]malonate ([D1]6a).

Compound $\left[D_{1}\right] \mathbf{6 a}$ was prepared from $\left[D_{1}\right]$ S3a and was obtained in 84% yield as a colorless oil: IR 1948, 1737, 1305, $1149 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.83$ $(\mathrm{m}, 2 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 3.08(\mathrm{~d}, 1 \mathrm{H}, J$ $=16.2 \mathrm{~Hz}), 2.90-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{tt}, 2 \mathrm{H}, J=6.9,2.4 \mathrm{~Hz}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.29(\mathrm{~m}$, $7 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.3,169.6,169.4,147.1$, $140.1,133.3,129.0,128.4,128.3,126.5,126.0,112.5(\mathrm{t}, J=24.6 \mathrm{~Hz}), 110.6,84.3,73.7$, 56.7, $52.87,52.85,40.8,30.8,29.1,28.8,28.0,23.1,21.8,18.3,14.2,13.5 ;$ DART MS $m / z 538\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{DO}_{6} \mathrm{~S} 538.2374$, found 538.2384.

General Procedure for Preparation of Benzylallene-Alkynes $\mathbf{6 c}$, d from S3a,b. To a solution of propargylic alcohol $\mathbf{S 3}(1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.28 \mathrm{~mL}, 2.0 \mathrm{mmol})$ in THF
$(10 \mathrm{~mL})$ was added $(\mathrm{EtO})_{2} \mathrm{PCl}(0.43 \mathrm{~mL}, 3.0 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After being stirred for 1.5 h at the same temperature, the reaction mixture was refluxed, and further stirred for additional 1.5 h . Then, the reaction was quenched by addition of saturated aqueous NaHCO_{3}, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried and concentrated to dryness. The residue was chromatographed with hexane-AcOEt to afford the corresponding benzylallene-alkyne 6 .

Dimethyl 2-[2-(Diethoxyphosphoryl)-5-methyl-5-phenylhexa-2,3-dienyl]-

2-(hept-2-ynyl)malonate (6c).

Compound $\mathbf{6 c}$ was prepared from S3a and was obtained in 33% yield as a colorless oil: IR 1950, $1737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}$, 2H), $7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{dt}, 1 \mathrm{H}, J=13.1,2.7 \mathrm{~Hz}), 4.13-3.98(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{t}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz}), 2.12-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}$, $3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{td}, 6 \mathrm{H}, J=7.2,3.8 \mathrm{~Hz}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.2$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.3(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 170.0,169.8,147.9(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}), 128.1,126.2,126.0,105.0(\mathrm{~d}, J=17.3 \mathrm{~Hz}), 91.5(\mathrm{~d}, J=189.3 \mathrm{~Hz}), 83.8,74.3$, $62.2(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 62.1(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 57.1(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 52.68,52.65,39.9(\mathrm{~d}, J=$
$4.3 \mathrm{~Hz}), 30.9,29.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 29.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 28.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 22.9,21.7$,
18.3, $16.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 16.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 13.5 ;{ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
17.9; DART MS $m / z 533\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{P} 533.2668$, found 533.2683.

Dimethyl 2-(But-2-ynyl)-

2-[2-(diethoxyphosphoryl)-5-methyl-5-phenylhexa-2,3-dienyl]malonate (6d).

Compound $\mathbf{6 d}$ was prepared from S3b and was obtained in 54% yield as a colorless oil: IR 1949, $1736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}$, 2H), 7.21-7.19 (m, 1H), $5.60(\mathrm{dt}, 1 \mathrm{H}, J=13.1,2.4 \mathrm{~Hz}), 4.13-3.99(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{q}, 2 \mathrm{H}, J=2.4 \mathrm{~Hz}), 1.74(\mathrm{t}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz}), 1.50$ (s, 3H), $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{td}, 6 \mathrm{H}, J=6.9,3.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $208.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 170.0,169.9,148.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 128.2,126.2,126.0,105.0(\mathrm{~d}$, $J=15.9 \mathrm{~Hz}), 91.5(\mathrm{~d}, J=189.3 \mathrm{~Hz}), 79.0,73.5,62.2(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 62.1(\mathrm{~d}, J=5.8$ $\mathrm{Hz}), 57.0(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 52.8,52.7,39.9(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 29.7(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 29.4(\mathrm{~d}$, $J=2.9 \mathrm{~Hz}), 28.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 22.9,16.31(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 16.28(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 3.5$;

[^0]calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{P} 491.2199$, found 491.2189 .

General Procedure for $\left[\operatorname{RhCl}(\mathbf{C O})_{2}\right]_{2}$-Catalyzed Cycloisomerization of 6 with

 Microwave Reactor (Table 1). A solution of the benzylallene-alkyne 6 (0.10 mmol) and $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(1.9 \mathrm{mg}, 0.0050 \mathrm{mmol})$ in $\mathrm{DCE}(1.0 \mathrm{~mL})$ was heated at $110^{\circ} \mathrm{C}$ under microwave irradiation until the starting material was completely consumed (monitored by TLC analysis). The reaction mixture was subsequently cooled to $50{ }^{\circ} \mathrm{C}$ with compressed air, the vessel was opened, and DCE was evaporated off. The residue was chromatographed with hexane-AcOEt to afford the corresponding cyclized product $\mathbf{1 0}$. The chemical yields are summarized in Table 1.($2 S^{*}, 12 R^{*}$)-2-Butyl-14,14-Bis(methoxycarbonyl)-9,9-dimethyl-

12-(phenylsulfonyl)tricyclo[9.4.0.0 ${ }^{3,8}$ pentadeca-1(15),3(8),4,6,10-pentaene (10a).

Compound 10a was a colorless plate: m.p. $129-132{ }^{\circ} \mathrm{C}$ (chloroform-hexane); IR 1734, $1308,1146 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 1 \mathrm{H})$, 7.58-7.56(m, 2H), 7.23-7.17(m, 3H), 7.12-7.09(m, 1H), $5.88(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H})$, $3.99(\mathrm{dd}, 1 \mathrm{H}, J=7.2,4.7 \mathrm{~Hz}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.92$ (dd, $1 \mathrm{H}, J=14.8,4.7 \mathrm{~Hz}), 2.79(\mathrm{dd}, 1 \mathrm{H}, J=14.8,7.2 \mathrm{~Hz}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H})$,
$1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 7 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 170.4,169.4,144.4,144.1,141.3,138.1,137.5,133.5,129.5$, $128.9,127.0,126.1,126.0,125.2,124.3,118.9,66.7,54.0,53.1,53.0,45.6,41.2,33.3$, 30.3, 29.5, 28.9, 27.0, 23.0, 14.1; DART MS $m / z 537\left(\mathrm{M}^{+}+1,31\right)$; DART HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{~S} 537.2311$, found 537.2311 . The structure of $\mathbf{1 0 a}$ was unambiguously determined by an X-ray crystallography (See the Supporting Information for details).

$\left(2 S^{*}, 12 R^{*}\right)$-14,14-Bis(methoxycarbonyl)-2,9,9-trimethyl-

12-(phenylsulfonyl)tricyclo[9.4.0.0 $\left.{ }^{3,8}\right]$ pentadeca-1(15),3(8),4,6,10-pentaene (10b).

Compound 10b was a colorless crystal: m.p. $166-169^{\circ} \mathrm{C}$ (hexane-AcOEt); IR 1732, $1306,1144 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H})$, 7.57-7.54 (m, 2H), 7.24-7.23 (m, 2H), 7.20-7.17 (m, 1H), 7.13-7.11 (m, 1H), $5.94(\mathrm{~s}$, $1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{t}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 3.96(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}$, $3 \mathrm{H}), 2.83(\mathrm{~d}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 1.49(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 170.4,169.3,144.6,143.9,141.7,139.2,137.4,133.5,129.6$, $128.8,127.0,126.2,125.7,125.2,124.1,118.9,67.0,53.9,53.1,52.9,41.2,39.8,33.1$,
30.4, 27.2, 15.7; DART MS m/z $495\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{~S}$ 495.1841, found 495.1840.
($2 S^{*}, 12 R^{*}$)-2-Butyl-12-(diethoxyphosphoryl)-14,14-bis(methoxycarbonyl)-

9,9-dimethyltricyclo $\left[9.4 .0 .0^{3,8}\right]$ pentadeca-1(15),3(8),4,6,10-pentaene (10c).

Compound 10c was a colorless oil: IR $1735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 55^{\circ} \mathrm{C}\right) \delta$ $7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.10$ $(\mathrm{m}, 4 \mathrm{H}), 3.84(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{ddd}, 1 \mathrm{H}, J=22.0,8.9$, $5.8 \mathrm{~Hz}), 2.65(\mathrm{ddd}, 1 \mathrm{H}, J=17.9,13.7,5.8 \mathrm{~Hz}), 2.32(\mathrm{ddd}, 1 \mathrm{H}, J=13.7,11.3,8.9 \mathrm{~Hz})$, $2.05-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}), 1.38-1.26(\mathrm{~m}, 10 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}, 55^{\circ} \mathrm{C}$) $\delta 170.8,170.1,145.0,141.7,140.5(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 139.7(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}), 126.7,126.4,126.1,119.3,62,0(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 61.9(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 55.1$ (d, $J=10.1 \mathrm{~Hz}), 52.7,52.5,50.0,42.1,38.4(\mathrm{~d}, J=143.1 \mathrm{~Hz}), 33.6,32.0,31.5,30.0$, 29.5, 22.7, $16.50(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 16.46(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 13.9$; ${ }^{31} \mathrm{P}$ NMR (243 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 28.4; DART MS $m / z 533\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{P}$ 533.2668, found 533.2667.
($2 S^{*}, 12 R^{*}$)-12-(Diethoxyphosphoryl)-14,14-bis(methoxycarbonyl)-

2,9,9-trimethyltricyclo $\left[9.4 .0 .0^{3,8}\right]$ pentadeca-1(15),3(8),4,6,10-pentaene (10d).

Compound 10d was a pale yellow crystal: m.p. $134-136^{\circ} \mathrm{C}$ (hexane-AcOEt); IR 1733 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.19$ $(\mathrm{m}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.83-5.82(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{q}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz})$, 4.12-4.05 (m, 4H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=$ 24.7, 14.1, 6.9 Hz), $2.47(\mathrm{td}, 1 \mathrm{H}, J=14.1,6.2 \mathrm{~Hz}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~d}, 3 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{td}, 6 \mathrm{H}, J=6.9,3.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7$, $169.9,144.8,142.1,140.2(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 140.1(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 127.0(\mathrm{~d}, J=7.2 \mathrm{~Hz})$, 126.7, 126.1, 125.4, 124.5, 118.4, $62.0(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 54.4(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 52.84$, 52.76, $41.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 40.7,38.4(\mathrm{~d}, J=140.2 \mathrm{~Hz}), 33.5,30.9(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 28.4$ (d, $J=4.3 \mathrm{~Hz}), 16.6,16.51(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 16.48(\mathrm{~d}, J=2.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (243 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 28.5; DART MS $m / z 491\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{P}$ 491.2199, found 491. 2198.
$\left(2 S^{*}, 12 R^{*}\right)$-2-[(Benzyloxy)methyl]-14,14-bis(methoxycarbonyl)-9,9-dimethyl-12-(phenylsulfonyl)tricyclo $\left[9.4 .0 .0^{3,8}\right]$ pentadeca-1(15),3(8),4,6,10-pentaene (10e).

Compound 10e was a yellow amorphous solid: IR 1735, 1307, $1146 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.41-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 1 \mathrm{H})$, 7.14-7.10(m, 2H), $5.79(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.61(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.0 \mathrm{~Hz}), 4.21(\mathrm{dd}, 1 \mathrm{H}, J=9.3,8.6 \mathrm{~Hz}), 4.12(\mathrm{dd}, 1 \mathrm{H}, J=8.6,5.5 \mathrm{~Hz}), 4.03(\mathrm{dd}, 1 \mathrm{H}, J$ $=6.9,5.5 \mathrm{~Hz}), 3.87(\mathrm{dd}, 1 \mathrm{H}, J=9.3,5.5 \mathrm{~Hz}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.80(\mathrm{~m}$, $2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.2,169.2,144.6$, 144.1, 138.7, 138.2, 137.3, 136.4, 133.5, 129.6, 128.9, 128.3, 127.9, 127.6, 127.0, 126.3, $125.5,124.8,119.4,73.4,68.5,66.6,54.0,53.2,53.0,45.9,41.3,33.1,30.4,27.1 ;$

DART MS $m / z 601\left(\mathrm{M}^{+}+1,12.1\right)$; DART HRMS calcd for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{O}_{7} \mathrm{~S} 601.2260$, found 601.2271 .
($2 S^{*}, 12 R^{*}$)-2-Butyl-2', $\mathbf{2}^{\prime}, 9,9-$ tetramethyl-12-(phenylsulfonyl)
spiro\{tricyclo $\left[9.4 .0 .0^{3,8}\right]$ pentadeca-1(15),3(8),4,6,10-pentaene-14,5'-[1,3]dioxane\}
(10f).

Compound $\mathbf{1 0 f}$ was a pale yellow oil: IR $1306,1149 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H})$, $7.13-7.11(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{dd}, 1 \mathrm{H}, J=11.7,1.4 \mathrm{~Hz}), 3.93(\mathrm{~s}$,
$1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 3.89(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.80(\mathrm{dd}, 1 \mathrm{H}, J=7.6,3.1 \mathrm{~Hz}), 3.42(\mathrm{~d}, 1 \mathrm{H}, J$ $=11.3 \mathrm{~Hz}), 3.22(\mathrm{dd}, 1 \mathrm{H}, J=11.3,1.4 \mathrm{~Hz}), 2.73(\mathrm{dd}, 1 \mathrm{H}, J=15.5,3.1 \mathrm{~Hz}), 2.08-1.93$ $(\mathrm{m}, 3 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 7 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, 3 \mathrm{H}, J=6.9$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.2,142.8,142.2,137.9,137.6,133.4,129.4$, $128.8,127.9,127.0,125.9,125.2,124.3,123.1,97.7,69.2,68.0,67.9,45.3,41.1,34.5$, $33.3,30.5,29.5,28.9,27.8,25.9,23.0,21.4,14.1$; DART MS $m / z 521\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{~S} 521.2726$, found 521.2735.

($2 S^{*}, 12 R^{*}$)-2-Butyl-14,14-bis(methoxycarbonyl)-5,9,9-trimethyl-

12-(phenylsulfonyl)tricyclo[9.4.0.0 $\left.{ }^{3,8}\right]$ pentadeca-1(15),3(8),4,6,10-pentaene (10g).

Compound $\mathbf{1 0 g}$ was a pale yellow oil: IR 1736, 1307, $1146 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.88-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.2 \mathrm{~Hz}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{dd}, 1 \mathrm{H}, J$ $=7.2,4.5 \mathrm{~Hz}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{dd}, 1 \mathrm{H}, J=15.1$, $4.5 \mathrm{~Hz}), 2.78(\mathrm{dd}, 1 \mathrm{H}, J=15.1,7.2 \mathrm{~Hz}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.35(\mathrm{~m}$, $7 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,169.5$, 144.7, 141.2, 138.0, 137.6, 136.4, 133.5, 129.5, 128.9, 126.6, 126.0, 125.2, 125.1, 118.9,
$66.8,54.0,53.1,53.0,45.5,40.9,33.3,30.4,29.5,28.9,26.9,23.0,21.0,14.1$; DART MS $m / z 551\left(\mathrm{M}^{+}+1,66.6\right)$; DART HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{O}_{6} \mathrm{~S}$ 551.2467, found 551.2458.
($2 S^{*}, 12 R^{*}$)-2-Butyl-5-chloro-14,14-bis(methoxycarbonyl)-9,9-dimethyl-12-(phenylsulfonyl)tricyclo $\left[9.4 .0 .0^{3,8}\right]$ pentadeca-1(15),3(8),4,6,10-pentaene (10h).

Compound 10h was a pale yellow oil: IR 1736, 1308, $1146 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.88-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.14(\mathrm{~m}, 2 \mathrm{H})$, 7.08-7.06 (m, 1H), $5.90(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{dd}, 1 \mathrm{H}, J=7.6,4.5 \mathrm{~Hz}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.79$ (t, 1H, $J=7.5 \mathrm{~Hz}$), 3.49 (s, 3H), 2.92 (dd, $1 \mathrm{H}, J=15.1,4.5 \mathrm{~Hz}), 2.80(\mathrm{dd}, 1 \mathrm{H}$, $J=15.1,7.6 \mathrm{~Hz}), 2.01-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.35(\mathrm{~m}, 7 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, 3 \mathrm{H}, J=$ 7.2 Hz); ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 170.3,169.4,143.9,143.5,142.7,137.5,137.2$, $133.6,132.7,129.5,128.9,126.8,126.2,125.9,124.5,119.7,66.6,54.0,53.13,53.11$, 45.4, 41.0, 33.3, 30.2, 29.3, 28.8, 26.9, 22.9, 14.1; DART MS $m / z 571\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{ClO}_{6} \mathrm{~S} 571.1921$, found 571.1926.

General Procedure for $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$-Catalyzed Cycloisomerization of Deuterated

Substrates $\left[D_{5}\right] 6 a, \quad\left[D_{2}\right] 6 a, \quad\left[D_{1}\right] 6 a \quad$ (Scheme 3). To a solution of the
benzylallene-alkyne $\left(\left[D_{5}\right] \mathbf{6 a},\left[D_{2}\right] \mathbf{6 a},\left[D_{1}\right] \mathbf{6 a}, 0.10 \mathrm{mmol}\right)$ in toluene $(1.0 \mathrm{~mL})$ was added $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(1.9 \mathrm{mg}, 0.0050 \mathrm{mmol})$ under N_{2} atmosphere. Then the reaction mixture was heated to reflux until the starting material was completely consumed (monitored by TLC analysis). Toluene was evaporated off, and the residue was chromatographed with hexane-AcOEt to afford the corresponding cyclized product $\left(\left[D_{5}\right] \mathbf{1 0 a},\left[\mathrm{D}_{2}\right] \mathbf{1 0 a},\left[\mathrm{D}_{1}\right] \mathbf{1 0 a}\right)$. Chemical yields are summarized in Scheme 3.

($2 S^{*}, 12 R^{*}$)-2-Butyl-14,14-bis(methoxycarbonyl)-9,9-dimethyl-12-(phenylsulfonyl)

 tricyclo $\left[9.4 .0 .0^{3,8}\right]$ pentadeca-1(15),3(8),4,6,10-pentaene-2,4,5,6,7- d_{5} ([D $\left.\left.D_{5}\right] 10 a\right)$.Compound $\left[\mathrm{D}_{5}\right] \mathbf{1 0 a}$ was a colorless crystal: m.p. $155-157{ }^{\circ} \mathrm{C}$ (hexane-AcOEt); IR 1734, 1307, $1145 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 1 \mathrm{H})$, $7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{~d}, 1 \mathrm{H}, J=0.7 \mathrm{~Hz}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{dd}, 1 \mathrm{H}, J=7.2,4.5 \mathrm{~Hz})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{dd}, 1 \mathrm{H}, J=15.1,4.5 \mathrm{~Hz}), 2.79(\mathrm{dd}, 1 \mathrm{H}, J=15.1,7.2$ $\mathrm{Hz}), 2.06-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 7 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, 3 \mathrm{H}$, $J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3,169.4,144.4,144.0,141.2,138.0$, $137.5,133.5,129.5,128.8,126.5(\mathrm{t}, J=23.1 \mathrm{~Hz}), 126.0,125.4(\mathrm{t}, J=23.1 \mathrm{~Hz}), 124.7(\mathrm{t}$, $J=23.1 \mathrm{~Hz}), 123.9(\mathrm{t}, J=23.1 \mathrm{~Hz}), 118.9,66.7,53.9,53.0,52.9,45.1(\mathrm{t}, J=18.8 \mathrm{~Hz})$,
41.2, 33.2, 30.3, 29.4, 28.7, 27.0, 22.9, 14.0; DART MS $m / z 542\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{D}_{5} \mathrm{O}_{6} \mathrm{~S} 542.2625$, found 542.2635.
($2 S^{*}, \mathbf{1 2} R^{*}$)-2-Butyl-14,14-bis(methoxycarbonyl)-9,9-dimethyl-

12-(phenylsulfonyl)tricyclo $\left[9.4 .0 .0^{3,8}\right]$ pentadeca-1(15),3(8),4,6,10-pentaene-12,15- \boldsymbol{d}_{2} ([D $\left.\left.D_{2}\right] 10 a\right)$.

Compound $\left[\mathrm{D}_{2}\right] \mathbf{1 0 a}$ was a colorless crystal: m.p. $153-156^{\circ} \mathrm{C}$ (hexane-AcOEt); IR 1733, $1305,1146 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H})$, 7.58-7.55 (m, 2H), 7.23-7.17 (m, 3H), 7.12-7.09 (m, 1H), 5.19-5.18 (m, 1H), 3.99 (q, $28 / 100 \times 1 \mathrm{H}, J=7.2,4.8 \mathrm{~Hz}$), 3.81-3.79(m, 4H), $3.43(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.92(\mathrm{~m}, 1 \mathrm{H})$, 2.81-2.77 (m, 1H), 2.08-2.02 (m, 1H), 1.99-1.94 (m, 1H), 1.49-1.38 (m, 7H), 1.28 (s, $3 \mathrm{H}), 0.98(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.3,169.4,144.43$, $144.39,144.1,141.3,137.9,137.5,133.5,129.5,128.8,127.0,126.1,126.03,125.98$, 125.2, 124.3, $118.6(\mathrm{t}, J=24.6 \mathrm{~Hz}), 66.7,66.3(\mathrm{t}, J=21.7 \mathrm{~Hz}), 53.8,53.0,52.9,45.5$, $41.2,33.3,30.3,29.4,28.8,26.9,26.8,22.9,14.1$; DART MS $m / z 539\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{D}_{2} \mathrm{O}_{6} \mathrm{~S} 539.2436$, found 539.2425.
($2 S^{*}, 12 R^{*}$)-2-Butyl-14,14-bis(methoxycarbonyl)-9,9-dimethyl-

```
12-(phenylsulfonyl)tricyclo[9.4.0.0}\mp@subsup{}{}{3,8}]\mathrm{ pentadeca-1(15),3(8),4,6,10-pentaene-10-d
([D1]10a).
```

Compound $\left[\mathrm{D}_{1}\right] \mathbf{1 0 a}$ was a colorless crystal: m.p. $154-156^{\circ} \mathrm{C}$ (hexane-AcOEt); IR 1735, $1307,1146 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 1 \mathrm{H})$, 7.58-7.56 (m, 2H), 7.23-7.17 (m, 3H), 7.12-7.09 (m, 1H), $5.88(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{dd}, 1 \mathrm{H}, J$ $=7.2,4.5 \mathrm{~Hz}), 3.81-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{dd}, 1 \mathrm{H}, J=15.1,4.5 \mathrm{~Hz}), 2.79(\mathrm{dd}$, $1 \mathrm{H}, J=15.1,7.2 \mathrm{~Hz}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 7 \mathrm{H}), 1.28$ (s, 3H), $0.98(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,169.4$, 144.1-143.9 (m), 141.3, 138.0, 137.5, 133.5, 129.5, 128.9, 127.0, 126.00, 125.98, 125.2, $124.3,118.9,66.6,53.9,53.1,53.0,45.6,41.1,33.2,30.3,29.5,28.9,27.0,23.0,14.1 ;$

DART MS $m / z 538\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{DO}_{6} \mathrm{~S} 538.2374$, found 538.2374.

Acknowledgment

This work was financially supported by JSPS KAKENHI Grant Numbers 15H02490 (C.
M.) and 15K18826 (S. Y.), for which we are thankful.

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra for new compounds (PDF)

X-ray crystallographic data for 10a (CIF)

References

(1) For selected recent reviews, see: (a) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215-1292. (b) Ackermann, L. Chem. Rev. 2011, 111, 1315-1345. (c)

McMurray, L.; O’Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885-1898. (d)

Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem. Int. Ed. 2012, 51, 8960-9009. (e) Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369-375. (f)

Gulías, M.; Mascareñas, L. Angew. Chem. Int. Ed. 2016, 55, 11000-11019.
(2) For selected recent reviews, see: (a) Murakami, M.; Matsuda, T. Chem. Commun. 2011, 47, 1100-1105. (b) Aïssa, C. Synthesis 2011, 3389-3407. (c) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410-9464. (d) Chen, P.-H.; Billet, B. A.; Tsukamoto, T.; Dong, G. ACS Catal. 2017, 7, 1340-1360.
(3) Kawaguchi, Y.; Yasuda, S.; Kaneko, A.; Oura, Y.; Mukai, C. Angew. Chem. Int. Ed. 2014, 53, 7608-7612.
(4) For a review about the vinylidene rhodium complexes, see: (a) Lynam, J. M. Chem. Eur. J. 2010, 16, 8238-8247. For selected examples of the cyclization reactions via vinylidene rhodium intermediates, see: (b) Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 2003, 125, 7482-7483. (c) Kim, H.; Lee, C. J. Am. Chem. Soc. 2005, 127, 10180-10181. (d) Fukumoto, Y.; Kinashi, F.; Kawahara, T.; Chatani, N. Org. Lett. 2006, 8, 4641-4643. (e) Kim, H.; Lee, C. J. Am. Chem. Soc. 2006, 128, 6336-6337. (f) Joo, J. M.; Yuan, Y.; Lee, C. J. Am. Chem. Soc. 2006, 128, 14818-14819. (g) Trost, B. M.; McClory, A. Angew. Chem., Int. Ed. 2007, 46, 2074-2077.
(5) For cyclization reactions involving nucleophilic substitution at the α-carbon of the vinylidenecarbene-rhodium species and subsequent proton transfer, see Ref. (4e,g).
(6) Kawaguchi, Y.; Yasuda, S.; Mukai, C. Angew. Chem. Int. Ed. 2016, 55, 10473-10477.
(7) For recent reviews on the transition-metal-catalyzed cycloaddition or cycloisomerization of allene compounds, see: (a) Chen, G.; Jiang, X.; Fu, C.; Ma, S. Chem. Lett. 2010, 39, 78-81. (b) López, F.; Mascareñas, J. L. Chem. Eur. J. 2011, 17, 418-428. (c) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M. Chem. Rev. 2011, 111, 1954-1993. (d) Inagaki, F.; Kitagaki, S.; Mukai, C. Synlett 2011, 594-614.
(8) (a) Mukai, C.; Nomura, I.; Yamanishi, K.; Hanaoka, M. Org. Lett. 2002, 4, 1755-1758. (b) Inagaki, F.; Mukai, C.; Org. Lett. 2006, 8, 1217-1220. (c) Inagaki, F.; Narita, S.; Hasegawa, T.; Kitagaki, S.; Mukai, C. Angew. Chem. Int. Ed. 2009, 48, 2007-2011. (d) Inagaki, F.; Sugikubo, K.; Miyashita, Y.; Mukai, C. Angew. Chem. Int. Ed. 2010, 49, 2206-2210. (e) Inagaki, F.; Sugikubo, K.; Oura, Y.; Mukai, C. Chem. Eur. J. 2011, 17, 9062-9065. (f) Mukai, C.; Ohta, Y.; Oura, Y.; Kawaguchi, Y.; Inagaki, F. J. Am. Chem. Soc. 2012, 134, 19580-19583. (g) Iwata, T.; Inagaki, F.; Mukai, C. Angew. Chem. Int. Ed. 2013, 52, 11138-11142. (h)

Sugikubo, K.; Omachi, F.; Miyanaga, Y.; Inagaki, F.; Matsumoto, C.; Mukai, C. Angew. Chem. Int. Ed. 2013, 52, 11369-11372. (i) Ohta, Y.; Yasuda, S.; Yokogawa, Y.; Kurokawa, K.; Mukai, C. Angew. Chem. Int. Ed. 2015, 54, 1240-1244.
(9) For selected examples of the Rh^{I}-catalyzed cycloisomerization or cycloaddition of the allene-alkyne substrates, see: (a) Brummond, K. M.; Chen, H.; Sill, P.; You, L. J. Am. Chem. Soc. 2002, 124, 15186-15187. (b) Jiang, X.; Ma, S. J. Am. Chem. Soc. 2007, 129, 11600-11607. (c) Oonishi, Y.; Hosotani, A.; Sato, Y. J. Am. Chem. Soc. 2011, 133, 10386-10389. (d) Oonishi, Y.; Kitano, Y.; Sato, Y. Angew. Chem. Int. Ed. 2012, 51, 7305-7308. (e) Oonishi, Y.; Yokoe, T.; Hosotani, A.; Sato, Y. Angew. Chem. Int. Ed. 2014, 53, 1135-1139.
(10)Regarding all the substrates, a dimethyl group was introduced at the benzylic position to avoid the unfavorable β-hydride elimination of the possible rhodacyclic intermediate such as $\mathbf{8}$ [Scheme 1, Eq (2)]. For examples of the Rh^{I}-catalyzed cycloisomerization of the allene-alkyne substrates involving a β-hydride elimination of a similar rhodacyclic intermediate, see: (a) Mukai, C.; Inagaki, F.; Yoshida, T.; Kitagaki, S. Tetrahedron Lett. 2004, 45, 4117-4121. (b) Mukai, C.;

Inagaki, F.; Yoshida, T.; Yoshitani, K.; Hara, Y.; Kitagaki, S.; J. Org. Chem. 2005, 70, 7159-7171, and Ref. (7c).
(11)Other catalysts, such as $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}, \mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{RhCl}(\mathrm{dppp})_{2}$, and $[\mathrm{RhCl}(\mathrm{CO}) \mathrm{dppp}]_{2}$, furnished poor results.
(12)X-ray analysis of 10a unambiguously established its tricyclo $9.4 .0 .0^{3,8}$]pentadecatepentaene structure (see the Supporting Information for details). CCDC999277 (10a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
(13)The cyclic ketal derivative $\mathbf{6 f}$ as well as other substrates $\mathbf{6}$ possessing the diester moiety at their tether part would benefit from a geminal disubstituent effect. For a review about the geminal disubstituent effect, see: Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735-1766.
(14)The deuteration experiments were performed under conditions different from the optimized ones because we carried out these experiments before optimizing the reaction conditions.
(15)For examples of the cyclization reactions involving the σ-bond metathesis between the C-H bond and C-Rh bond, see: (a) Souillart, L.; Cramer, N. Chem. Sci. 2014, 5, 837-840. (b) Masutomi, K.; Noguchi, K.; Tanaka, K. J. Am. Chem. Soc. 2014, 136, 7627-7630. (c) Matsuda, T.; Yuihara, I. Chem. Commun. 2015, 51, 7393-7396, and Ref. (9d).
(16)Pacheco, M. C.; Gouverneur, V. Org. Lett. 2005, 7, 1267-1270.
(17)Wang, Z.; Li, M.; Zhang, W.; Jia, J.; Wang, F.; Xue, S. Tetrahedron Lett. 2011, 52, 5968-5971.
(18)Yamashita, M.; Ono, Y.; Tawada, H. Tetrahedron 2004, 60, 2843-2849.

[^0]: ${ }^{31} \mathrm{P}$ NMR (243 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 17.8; DART MS $m / z 491\left(\mathrm{M}^{+}+1,100\right)$; DART HRMS

