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A Multi-Learning Immune Algorithm for Numerical Optimization

Shuaiqun WANG†, Nonmember, Shangce GAO†† ,†††a), Member, Aorigele†††, Yuki TODO††††, Nonmembers,
and Zheng TANG†††, Member

SUMMARY The emergence of nature-inspired algorithms (NIA) is a
great milestone in the field of computational intelligence community. As
one of the NIAs, the artificial immune algorithm (AIS) mimics the princi-
ples of the biological immune system, and has exhibited its effectiveness,
implicit parallelism, flexibility and applicability when solving various en-
gineering problems. Nevertheless, AIS still suffers from the issues of evo-
lution premature, local minima trapping and slow convergence due to its in-
herent stochastic search dynamics. Much effort has been made to improve
the search performance of AIS from different aspects, such as population
diversity maintenance, adaptive parameter control, etc. In this paper, we
propose a novel multi-learning operator into the AIS to further enrich the
search dynamics of the algorithm. A framework of embedding multiple
commonly used mutation operators into the antibody evolution procedure
is also established. Four distinct learning operators including baldwinian
learning, cauchy mutation, gaussian mutation and lateral mutation are se-
lected to merge together as a multi-learning operator. It can be expected
that the multi-learning operator can effectively balance the exploration and
exploitation of the search by enriched dynamics. To verify its performance,
the proposed algorithm, which is called multi-learning immune algorithm
(MLIA), is applied on a number of benchmark functions. Experimental
results demonstrate the superiority of the proposed algorithm in terms of
convergence speed and solution quality.
key words: artificial immune algorithm, mutation operators, immune al-
gorithm, hybridization, multi-learning

1. Introduction

Nature-inspired algorithms (NIA, including evolutionary al-
gorithms, swarm intelligence, artificial immune systems,
simulated annealing, etc.) have received much attention
regarding their potential as complex problem-solving tech-
niques [1], [2]. The main idea of NIA is to develop com-
putational algorithms by taking inspiration from nature (ei-
ther biology or physics) for the solution of complex prob-
lems. Among all nature-inspired algorithms, the artificial
immune system (AIS) [3]–[6], which is inspired by the the-
ory of biological immune system, is one of the recently de-
veloped population based problem-solving techniques. AIS
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mimics the mechanisms of the biological (either innate or
adaptive) immune response, which depicts the procedures
of responses when a biological immune system is exposed
to an antigen. The most commonly used mechanisms of
the biological immune response are clonal proliferation [7],
negative selection [8], immune network [9], danger theory
[10], and dendritic cell model [11]. Until now, AIS has been
successfully applied on various complex problems, such as
traveling salesman problems [12], [13], automatic cluster-
ing [14], pattern classification [15], graph drawing problems
[16], mobil robot control [17], numerical optimization prob-
lems [18], and so on.

For solving optimization problems, AIS utilizes a col-
lective learning process of a population of antibodies, and
undergoes a cycle process of clonal proliferation, matura-
tion and antibody selection. According to a fitness function,
the clonal proliferation in AIS favors better antibodies to
reproduce more often than those that are relatively worse.
During the period of maturation, descendants of antibodies
are generated using randomized learning operators. There-
after, fitter antibodies are selected to be reserved to enter into
the next generation. Although AIS has exhibited its promis-
ing applicability in solving difficult optimization problems,
its performance is limited with the increment of dimension
or multimodality of the problem [19], indicating that AIS
still suffers from the traditional drawbacks of optimization
algorithms, such as search stagnation, evolution premature,
local minima trapping, parameter tuning and slow conver-
gence [20].

To alleviate these drawbacks of AIS, much effort has
been made and a number of AIS variants have been pro-
posed. By revising the representation method of solutions,
Jiao et al. [21] proposed a quantum encoding-based AIS us-
ing quantum rotation gates to avoid premature convergence.
Aiming to resolve the parameter tuning problem, Garrett
[22] proposed a parameter-free AIS by removing the user-
defined parameters of population size, clonal size, and the
amount of mutations of clones. To enhance the exploration
of global and local optima, especially to lead antibodies to
unexplored areas, a vaccine injected AIS was proposed in
[23] where vaccines are extracted from equally divided de-
cision space of the problem. To speed up the convergence
of each antibody and reduce the computational effort nec-
essary to simulate the whole population, a cluster and gra-
dient based AIS was proposed in [18]. Other attempts to
develop AIS in optimization scenarios are made to com-
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bine AIS with one of the other intelligent algorithms, such
as simulated annealing [24], [25], ant colony optimization
[26], genetic algorithm [27], fuzzy self-organized network
[28], particle swarm optimization [29], and so on.

In this paper, we tried to develop AIS by enriching its
searching dynamics, i.e. developing a novel learning opera-
tor to mature the antibodies in the population. By doing so,
it was expected that the learning capacity of AIS can be im-
proved. In optimization scenarios, learning capacity is the
most critical component of an optimization algorithm [30].
It determines the search scope and search efficiency of the
current population. A well-designed learning operator can
not only guide the search to promising areas which are near
to the global optima with a high probability, but also reduce
the number of useless or redundant search times. In the lit-
erature, there are various learning (mutation) operators [31],
wherein gaussian mutation [32], cauchy mutation [32], [33],
lateral mutation [34], [35] and baldwinian learning [36] are
commonly used by many researchers due to their simplici-
ties and easy implementations. However, the efficiencies of
these operators are problem-independent. In other words,
each learning operator is designed for specific problems
with distinct characteristics. For example, the gaussian mu-
tation is more capable of exploitation in small regions of a
smooth decision space, while cauchy mutation enables the
search to carry out long distance jumps, thus specializing in
exploring unvisited regions [32], [37]. As a result, cauchy
mutation is more suit to optimize the problems with plenty
of local optima. After realizing this, Khilwani et al. [38] has
proposed a fast AIS by combining gaussian mutation with
cauchy mutation for an expectation of mixing the search dy-
namics of both ones. But the question remains if such fusion
of two different learning operators is sufficient to improve
the search performance of AIS.

Intuitively, the combination of more than two different
learning operators is a feasible method to further enhance
the learning capacity of the algorithm. Based on the analy-
sis of the properties of each learning operator (i.e. the above
mentioned four operators), we propose a framework to em-
bed all selected operators into a union, thus forming a novel
multi-learning operator to perform the search procedure of
the algorithm. In this framework, each selected single op-
erator is assigned a probability of being implemented, and
the cumulative probability is used to control which operator
should be carried out to perform the search. It can be ex-
pected that the multi-learning operator can take advantage of
the search properties of each single learning operator, thus
possessing a more abundant search dynamics. Therefore,
the resultant multi-learning immune algorithm (MLIA) is
more capable of balancing the exploration and exploitation
of the search. Experimental results based on fifteen numeri-
cal benchmark functions verified the superiority of MLIA.

The rest of the paper is organized as follows: Sect. 2
describes the generic immune algorithm and four commonly
used learning operators. Section 3 elaborates more about the
multi-learning operator and MLIA. Section 4 describes the
experiment based on several benchmark functions includ-

ing comparative results between MLIA and other variants of
AIS. Finally, concluding remarks are presented in Sect. 5.

2. Learning Operators in AIS

Artificial immune algorithms are a special class of biologi-
cally inspired algorithms, which are based on the biological
immune system of vertebrates and derive from various im-
munological theories, namely the clonal selection principle,
negative selection, immune networks or the danger theory
[4], [5]. Besides the natural tasks of anomaly detection and
classification, they are often applied to function optimiza-
tion. In this context, mostly algorithms are based on the
principles of clonal selection and antibody maturation in the
adaptive immune response [39].

The generic computational framework of AIS is de-
picted in Fig. 1. From this figure, it is clear that the qual-
ity of mutated populations is determined by the capacity of
learning operators [31], [40], thus directly influencing the
performance of the algorithm. Many researchers have de-
signed and investigated an amount of learning operators,
some of which are widely used in evolutionary algorithms
[32], [33], while others are specifically designed based on
the mechanisms in biological immune systems [34], [36],
[41]. It should be noted that it is not our task in this work to
make a comprehensive review of all learning operators used
in AIS. Instead, some of the typical operators are selected
and investigated to be used in the proposed MLIA. The rules
to select learning operators in AIS are two: first, it should be
widely used in AIS community and also has been demon-
strated to be effective; second, sophisticated operators are
ignored due to their hard programming and implementation.

In this section, four learning operators including gaus-
sian mutation (GM), cauchy mutation (CM), lateral muta-
tion (LM) and baldwinian learning (BL) are briefly intro-
duced. For the sake of simplification of the description,
we unify the representation of the current population of an-
tibodies to be {X1, ..., Xi, ..., XN}, where the i-th antibody

Fig. 1 Computational procedure for a generic immune algorithm.



364
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.1 JANUARY 2015

Xi = (xi1, ..., xi j, ..., xiD), N is the number of antibodies in
the population, and D denotes the dimension of the opti-
mization problem. Manipulated by learning operators, the
mutated population is represented by {X′1, ..., X′i , ..., X′N} =
L{X1, ..., Xi, ..., XN}, where X′i = (x′i1, ..., x

′
i j, ..., x

′
iD), L repre-

sents the learning operator, and L ∈ {GM,CM, LM,BL}.

2.1 Gaussian Mutation

The gaussian mutation (GM) has two parameters: the mean
value μ and the standard deviation σ, which are used to de-
termine the step size for the mutation. The one-dimension
gaussian density function with the mean value μ and the
standard deviation σ is defined by:

fgau(x) =
1

σ
√

2π
exp−

(x−μ)2
2σ2 (1)

In most studies, the simplified mutation strategy of GM
based on the origin-centered gaussian density function with
μ = 0, σ = 1 is used [32], [33], [38]. The GM is imple-
mented in the learning procedure based on the following
equations:

x′i j = xi j + sgNj(0, 1), for j = 1, ...,D (2)

where Nj(0, 1) is the normally distributed gaussian random
number with the mean value of 0 and the standard deviation
of 1. The symbol i denotes the serial number of the antibody
in the population, while j denotes the dimension. sg is the
step size of mutation, and it is generated by [32], [38]:

sg = random(+,−)
√

2 ln(wg
√

2π) (3)

where wg is a random number uniformly generated in the
range of [0, fgau(0)], and random(+,−) returns a uniformly
generated negative or positive sign.

2.2 Cauchy Mutation

The cauchy mutation (CM) is mainly based on the cauchy
distribution which is shown in Eq. (4).

fcauchy(x) =
1
π

1
1 + x2

(4)

The important characteristic of cauchy distribution is that its
expectation does not exist [32], [38]. The shape of fcauchy(x)
is exactly similar with the gaussian density function but ap-
proaches the axis very slowly. The CM is implemented as
follows [38]:

x′i j = xi j + scδ j, for j = 1, ...,D (5)

where δ j is a cauchy random variable, sc is the step size of
cauchy mutation which is generated by:

sc = random(+,−)

√
1
wcπ
− 1 (6)

where sc is a random number uniformly generated in the
range of [0, fcauchy(0)].

2.3 Lateral Mutation

In immune systems, the lateral interaction during different
antibodies usually takes place according to the idiotypic net-
work theory [9], [42]. In other words, each paratope on an
antibody can not only recognize a foreign antigen, but also
can be recognized by external idiotopes. Motivated by this
mechanism, the lateral mutation (LM) [34], [35], [43] is im-
plemented as:

x′i j = (1 − β)xi j + βxk j, for j = 1, ...,D (7)

where k ∈ {1, 2, ...,N} and k � i. The learning rate β ∈ (0, 1)
is a randomly generated real number.

2.4 Baldwinian Learning

Learning mechanism can provide an easy evolutionary path
towards co-adapted alleles in environments, by means of
employing differential information during other antibodies
[36]. It is realized as: for j = 1, ...,D

x′i j =

{
xi j + s · (xp j − xq j) if rand() ≤ Q

xi j otherwise
(8)

where p, q ∈ {1, 2, ..., n}, p � q � i, s indicates the strength
of baldwinian learning, rand() is a random number uni-
formly generated in the interval of [0, 1]. Q ∈ (0, 1] con-
trols the probability of the BL to be implemented. In our
experiments, the value of Q is set to be 0.8 as suggested in
[36].

2.5 Search Dynamics Analysis

Intuitively, all the above four learning operators are able to
evolve antibodies into matured ones in semi-blind manners,
although some of the matured ones might possess lower
affinities. However, due to the parallel feature of the im-
mune algorithm, there does exist a probability of making
progress to improve the affinity of antibodies. After the
clonal selection progress, the most improved antibodies are
reserved and enter into the next generation of evolution. In
Fig. 2, we summarize the characteristics of the learning op-
erators. The solid rectangle S shows the solution space of
the optimization problem. The dashed circles denote con-
tour lines of affinity, and the inner circles indicate that they
represent higher affinities than the outer ones. From Fig. 2,
we can see that the learning mechanisms used in GM and
CM on the antibody Xi only utilize random perturbation on
the antibody itself, while those in LM and BL make use of
information in the environment.

As noticed by Yao et al. [32], CM is more likely to
generate an offspring that is far away from its parent than
GM due to its long flat tails of the density function. It is
more likely to carry out large variations in antibodies due
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Fig. 2 The learning characteristics of the operators.

to its chance to execute longer jumps with higher probabil-
ity, thus often being used to act as a learning method that
can solve the local optima trapping problem. On the other
hand, as reported in [34], [36], learning from the environ-
ment provides an encouraging alternative method, probably
a more easy way to achieve better search performance. In
details, the mechanism in LM uses the information of a ran-
domly selected antibodies in the population to guide the cur-
rent search. A successful guide is strongly depending on
the quality of the selected guiding antibody Xj, implying
that there must be amount of redundant search if the guid-
ing antibody is far away from the global optimal solution.
Instead, the mechanism in BL utilizes the differential infor-
mation between two other antibodies Xp and Xq in the pop-
ulation. The learning acting on this differential information
might have ability to use the mutual beneficial components,
thus exhibiting more promising properties for searching.

3. Multi-Learning Immune Algorithm

The analysis of the search characteristics of the four learning
operators indicates that different learning strategy strongly
influences the performance of the algorithm. In order to
improve the search effectiveness of the learning operator,
a multi-learning operator which actually is a hybridization
of different existing learning operators is proposed. Due
to the fact that different learning operators have distinct
search dynamics, the multi-learning operator can be ex-
pected to possess a more abundant search dynamics. Before
describing the proposed multi-learning immune algorithm
(MLIA), some immunological concepts and metaphors are
introduced to make this paper self-explanatory.

3.1 Immunological Inspirations

The biological immune system is a complex pattern recog-
nition and optimization device with the main goal of pro-
tecting our body from malefic external invaders, called
antigens. The primary elements are the antibodies, which
bind to antigens for their posterior destruction by other cells.

Table 1 Corresponding relationships (i.e. Metaphors) between MLIA
and inspirations by immune system.

MLIA Immune Inspirations
Problem Antigen

Solution (Candidate Solution) Antibody (B Cell)
Population Diversity Immune Diversity
Quality of Solutions Affinity
Solution Replication Clonal Proliferation

Solution Improvement Affinity Maturation
Learning Operators Antibody Mutations

Affinity is the key measure to represent the fitness of an-
tibody to antigen. When there are detected antigens, the
immune system will choose B cells with higher affinity to
proliferate, which is called clonal selection and prolifera-
tion. When the antigen are eliminated, the B cells with lower
affinity will be chosen for elimination. The two procedures
make the antibody population stable. Although the reper-
toire of antibodies in the immune system is limited; though
affinity maturation, it is capable of evolving antibodies to
successfully recognize and bind with known and unknown
antigens, leading to their eventual elimination. Thus, a rapid
accumulation of mutations of the antibody is necessary for a
fast maturation of the immune response. Table 1 depicts the
corresponding relationships between MLIA and inspirations
by the biological immune system.

Mathematically, antigens which refer to the optimiza-
tion problem itself can be formulated as (without loss of
generality, a minimization problem is considered in this
study):

minimize : f (X) (9)

where X ∈ Ω, X is a variable vector in RD, Ω � RD, Ω
defines the feasible solution space and f (X) is the objective
function which calculates out the quality of the candidate
solutions. An antibody represents a candidate solution of
the problem, and its representation Xi = (xi1, ..., xi j, ..., xiD)
can be in forms of binary strings, symbolic sequences, real-
valued number sequences [38] or quantized values [21]. In
this paper, we adopt the real-valued number representation.

3.2 Framework of the Multi-Learning Operator

In order to merge multiple different learning operators to-
gether, we propose a general framework to realize this. As-
sume that there are K learning operators which will be com-
bined together, represented by LOi (i = 1, 2, ...,K). First,
each embedded single learning operator LOi is assigned a
probability Probi of being implemented, then the cumula-
tive probability

∑i
j=1 Probj is used to control which opera-

tor should be carried out to perform the search. The gen-
eral framework can be illustrated as in Fig. 3, where q =
rand() ∈ (0, 1) is a random number, and

∑K
j=1 Probj = 1.

In this framework, each embedded single learning opera-
tor LOi will be carried out if its corresponding probability
Probi � 0, inferring that the search dynamic of this opera-
tor contributes to the search of the whole algorithm. On the
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Fig. 3 General framework of the multi-learning operator.

Fig. 4 The learning characteristics of the multi-learning operator.

other hand, due to the stochastic nature of q, the single oper-
ator is implemented randomly rather than deterministically,
in spite of the deterministic setting values of implementation
probabilities. Additionally, it is flexible to adjust the im-
plementation probabilities of each single learning operator,
suggesting that the search dynamics of the resultant multi-
learning operator can be well tuned by resetting the values of
these probabilities. As discussed at the previous section, the
adopted four learning operators (GM, CM, LM, BL) have
their distinct search dynamics. It worth emphasizing that
any other learning operator in AIS or evolutionary computa-
tion communities can also be employed as a embedded sin-
gle learning operator in the general multi-learning operator
construction framework. In this research, only four typical
ones (i.e., K = 4) are investigated and utilized to merger to-
gether as a novel multi-learning operator (ML). The basic
idea behind this hybridization is illustrated as in Fig. 4.

As shown in Fig. 4, the multi-learning operator ML
consists of four single learning operators, i.e., GM, CM,
LM, BL. The current antibody Xi mutates to X′i by GM, to
X′′i by CM, to X′′′i by LM, and finally to X′′′′i by BL. In each
iteration of the antibody maturation, only one of the learn-
ing operators is carried out; however, after a large number

of iterations, each single learning operator will be imple-
mented with plenty times, implying that ML will possess
all the search dynamics of embedded single learning oper-
ators. To conclude, the search characteristics of ML can be
remarked as:

• ML has a capacity of carrying out fine-grained searches
within a relative small neighborhood of the antibody,
which inherits from the exploitation ability of GM.

• ML is capable to perform coarse-grained searches in a
wider neighborhood of the antibody due to occasional
long-distance mutations from the CM, and sometimes
these long-distance mutations are beneficial to make
the algorithm jump out local optima.

• ML is able to use information from the environment by
LM, i.e., from a guided antibody Xj. If the guide an-
tibody is already near the global optima, such learning
is very effective to accelerate the convergence speed,
and meanwhile to greatly improve the average quality
of the solutions.

• ML can also utilize some specific differential informa-
tion from the environment by BL, i.e. by the differen-
tial information of other two trial antibodies Xq − Xp,
indicating that a more effective way to learn from the
environment can be realized [36].

The pseudocode of implementing the multi-learning
operator ML is shown in Algorithm 1.

Algorithm 1– Implementation of ML in MLIA
Begin-learning: Input an antibody Xi

initialize ProbGM , ProbCM, ProbLM and ProbBL

set q = rand()
If 0 < q < ProbGM , execute the gaussian mutation GM
Else-If q < ProbGM +ProbCM, execute the cauchy mutation
CM
Else-If q < ProbGM + ProbCM + ProbLM, execute the literal
mutation LM
Else execute the Baldwinian learning BL
End-If
End-learning: Output the matured antibody X′i

3.3 The Whole Procedure of MLIA

The complete procedure of the proposed algorithm MLIA
can be represented as in Fig. 5.

Step 1. Set all user-defined parameters in MLIA;
Step 2. A number of N antibodies Xi (i = 1, 2, ...,N)

are randomly generated within the search space [lowi, upi]D,
where D is the dimension of the optimization problem.
Each antibody is represented by a real-valued vector Xi =

(xi1, ..., xi j, ..., xiD) using the following formula:

xi j = lowi + μ(upi − lowi) (10)

where μ ∈ [0, 1] is a random number with the uniform dis-
tribution. lowi and upi is the lower and upper bounds of the
search space respectively.
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Fig. 5 Flowchart of the proposed algorithm.

Step 3: Evaluate affinity f (Xi), i = 1, ...,N, for each
antibody in the antibody population.

Step 4: All antibodies are undergone the clonal prolif-
eration procedure. First, sort all antibodies in an ascending
order, i.e., f (X1) < f (X2) < ... < f (XN), for the minimiza-
tion problems. Then, for each antibody Xi, asexually pro-
duce mi clones where

mi =

⌈
M ∗ N − i

N

⌉
(11)

Here, M is the multiplying factor which determines the
scope of the clone and 	.
 is the operator which returns
the nearest integer greater than or equal to the argument.
It is clear that the amount of generated clones of an an-
tibody is inversely proportional to its affinity. In other
words, the better the antibody, the more clones it pro-
duces. After this step, we can obtain

∑
mi antibodies just

as (X1,1, X1,2, ..., X1,m1 ; ...; XN,1, XN,2, ..., XN,mN );
Step 5: Apply the multi-learning operator ML on each

clone of the antibody using the procedures in Algorithm 1.
After learning,

∑
mi mutated antibodies are generated.

Step 6: Evaluate the mutated antibodies according to
the affinity function.

Step 7: The clonal selection procedure utilizes the elite
reservation strategy. The fittest antibodies Yi (i = 1, 2, ...,N)
of all the clones of each parent antibody are firstly selected,
i.e., Yi = Xi, j = minj{ f (Xi,1), ..., f (Xi, j), ..., f (Xi,mi)}. Then,
a hill climbing update rule [3], [42] is used to replace the
parent antibodies Xi with selected clones Yi according to a
updating probability P(Xi ← Yi):

P =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if f (Yi) < f (Xi)
0 if f (Y1) ≥ f (X1)
exp( f (Xi)− f (Yi)

α
) otherwise

(12)

Based on Eq. (12), if the fittest antibody of the clones
Yi has a smaller affinity (i.e. better quality for the minimiza-
tion problems) than its parent antibody Xi, update it with
probability “1”. As a result, the elites in the offspring have
been preserved and enter into the following generation. On
the contrary, if Yi is not better than its parent, then update
according to an exponential function to maintain the diver-
sity of the population, where α is a positive value related
to the diversity. Generally, the better the diversity is, the
bigger α is, and vice versa. Furthermore, in order to save
the information of the original population such that the best
antibody during the parents could not be replaced, the expo-
nential function is not used for X1.

Step 8: If the termination condition (in most cases
the maximum iteration number Tmax; or some special ones
which will be described in Sect. 4.5) is not fulfilled, goto
Step 4. Otherwise, output the best antibody in the current
population.

4. Experimental Studies

To evaluate the performance of MLIA, fifteen benchmark
functions are chosen. The algorithms are implemented in
Microsoft Visual Studio 2005 and run on a personal com-
puter with Intel Core(TM)2 Duo CPU 2.10 GHz and 3 GB
memory. All simulation results are based on 30 runs to
make some statistical analyses. In this section, the bench-
mark functions are presented. Then, the parameter settings
and the benefit of ML for MLIA are discussed. Finally, the
algorithms chosen for comparison are given, and the sim-
ulation results obtained from different experimental studies
are also analyzed.

4.1 Benchmark Functions

The description of the selected fifteen benchmark functions
is given in Table 2, where the function definition gives the
affinity formula of the optimization problem. The symbol
“Dim.” denotes the dimension of the function. The domain
S = [low, up]D represents the search space of feasible solu-
tions for the D dimension problem. fmin is the known affinity
of the global optimal solution.

The selected functions are widely used in evaluating
global numerical optimization algorithms [32], [44], [45].
Furthermore, these functions are used to evaluate the perfor-
mance of the algorithm for giving a generalized conclusion
[46]. The first eight functions ( f1 to f8) are high-dimension
problems, where functions f1 and f2 are unimodal functions;
the function f3 is a step function; functions f4 to f8 are mul-
timodal functions with plenty of local minima and the num-
ber of the local minima in these functions increases expo-
nentially with the dimension of the function. In addition,
functions f9 to f15 are low-dimension functions that only
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Table 2 Benchmark problems used in the experiments.

Function Definition Dim. Domain [low, up]D fmin

f1(X) =
∑n

i=1 x2
i 30 [−100, 100]D 0

f2(X) =
∑n

i=1 |xi| +∏n
i=1 |xi| 30 [−10, 10]D 0

f3(X) =
∑n

i=1(
xi + 0.5�)2 30 [−100, 100]D 0
f4(X) =

∑n
i=1 −xisin(

√|xi|) 30 [−500, 500]D −418.9829D
f5(X) =

∑n
i=1[x2

i − 10cos(2πxi) + 10] 30 [−5.12, 5.12]D 0

f6(X) = −20exp(−0.2
√

1
n

∑n
i=1 x2

i )

−exp( 1
n

∑n
i=1 cos(2πxi)) + 20 + e 30 [−32, 32]D 0

f7(X) = 1
4000
∑n

i=1 x2
i −
∏n

i=1 cos( xi√
i
) + 1 30 [−600, 600]D 0

f8(X) = π
n {10sin2(πy1) +

∑n−1
i=1 (yi − 1)2[1 + 10sin2(πyi+1)]

+(yn − 1)2} +∑n
i=1 u(xi, 10, 100, 4), 30 [−50, 50]D 0

yi = 1 + 1
4 (xi + 1)

u(xi, a, k,m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k(xi − a)m, xi > a
0, −a ≤ xi ≥ a
k(−xi − a)m, xi < −a

f9(X) = [ 1
500 +

∑25
j=1

1
j+
∑2

i=1(xi−ai j)6 ]−1 2 [−65.536, 65.536]D 0.998

f10(X) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]D −1.0316285
f11(X) = (x2 − 5.1

4π2 x2
1 +

5
π x1 − 6)2 + 10(1 − 1

8π cosx1 + 10 2 [−5, 10] × [0, 15] 0.398
f12(X) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1 − 14x2 + 6x1 x2 + 3x2
2)]×

[30 + (2x1 − 3x2)2(18 − 32x1 + 12x2
1 + 48x2 − 36x1 x2 + 27x2

2] 2 [−2, 2]D 3
f13(X) = −∑5

i=1[(X − ai)(X − ai)T + ci]−1 4 [0, 10]D −10.1422
f14(X) = −∑7

i=1[(X − ai)(X − ai)T + ci]−1 4 [0, 10]D −10.3909
f15(X) = −∑10

i=1[(X − ai)(X − ai)T + ci]−1 4 [0, 10]D −10.53

Fig. 6 The 2-dimension sketch (a) and the contour (b) for the unimodal
function f1 and the multimodal function f4 respectively.

have a few local minima. Figure 6 depicts the characteris-
tics of the unimodal function f1 and the multimodal function
f4 respectively, in terms of the two-dimension sketch and the
contour. The different types of benchmark functions can test
the searching ability of learning operators from different as-
pects: unimodal functions trend to reflect the convergence
speed of the operator in a direct manner, while multimodal
functions are likely to estimate the operator’s capacity of es-
caping from local optima.

4.2 Verification of Search Dynamics in Learning Opera-
tors

The first set of experiments was aimed to compare the search

Fig. 7 The comparative results of the convergence graphs and box-and-
whisker diagrams of solutions during MLIA, SLIA-1, SLIA-2, SLIA-3 and
SLIA-4 for high dimensional unimodal benchmark functions f1, f2 and the
step function f3.

dynamics of the multi-learning operator and single learning
operators. To realize this, we constructed four variants of
MLIA using only one single learning operator by turns. The
resultant variants including SLIA-1, SLIA-2, SLIA-3, and
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Fig. 8 The comparative results of the convergence graphs and box-and-
whisker diagrams of solutions during MLIA, SLIA-1, SLIA-2, SLIA-3 and
SLIA-4 for high dimensional multimodal benchmark functions f4 - f8.

SLIA-4 denote the utilization of BL, CM, GM and LM in
the algorithm respectively. Figures 7–9 depict the compar-
ative results by means of convergence graphs and box-and-
whisker diagrams of solutions for all tested problems. Ta-
ble 3 summarizes the statistical results obtained by the com-
pared algorithms. It should be noted that the results obtained
are under the settings for parameters by ProbGM = 0.1,
ProbCM = 0.1, ProbLM = 0.4, ProbBL = 0.4 in MLIA,
and for the rest parameters by N = 30, M = 5, α = 100, and
Tmax equals to 2000 for high-dimensional problems, to 100
for low-dimensional problems in all compared algorithms.
In addition, the parameter settings ProbGM = 0.1, ProbCM =

0.1, ProbLM = 0.4, and ProbBL = 0.4 is a reasonable choice
which will be explained in Sect. 4.3.2 in detail.

From Figs. 7–9, it is apparent that MLIA performs bet-

Fig. 9 The comparative results of the convergence graphs and box-and-
whisker diagrams of solutions during MLIA, SLIA-1, SLIA-2, SLIA-3 and
SLIA-4 for low dimensional benchmark functions f9 - f15.
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Table 3 The statistical results obtained by MLIA, SLIA-1, SLIA-2, SLIA-3 and SLIA-4 algorithms
for all benchmark functions.

Func. MLIA SLIA-1 SLIA-2 SLIA-3 SLIA-4
Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

f1 4.87E-33±8.43E-33 5.62E-20±7.56E-20 2.39E+02±5.96E+02 1.23E+02±4.09E+02 4.19E-05±1.54E-04
f2 1.05E-13±7.36E-14 6.81E-12±9.76E-12 2.59E+01±5.41E+00 4.31E+01±5.78E+00 9.54E-05±2.22E-04
f3 0±0 2.08E+01±1.28E+01 1.96E+03±1.51E+03 3.05E+03±3.15E+03 0 ± 0
f4 −12569.5±0.00000 −12569.5±0.00000 −12078.93±3.40E+02 −7522.94±6.36E+02 −11934.03±2.64E+02
f5 0±0 3.90E-02±2.04E-01 2.54E+02±2.25E+01 2.32E+02±2.16E+01 1.66E-05±4.73E-05
f6 8.38E-15±2.41E-15 1.32E-11±8.94E-12 1.18E+01±2.68E+00 7.82E+00±4.24E+00 2.71E-03±8.12E-03
f7 0±0 0±0 7.26E-01±1.780000 1.15E+01±2.14E+01 8.02E-04±2.29E-03
f8 6.14E-24±9.58E-24 4.27E-16±8.10E-16 4.02E-02±6.59E-02 1.96±3.05 5.90E-06±2.69E-05
f9 0.998004±6.78E-16 0.998004±6.78E-16 0.998004±6.78E-16 0.998004±6.78E-16 0.998645±3.42E-03
f10 −1.031628±0 −1.03161±2.50E-05 −1.03162±3.32E-05 −1.03133±3.88E-04 −1.03162±1.81E-05
f11 0.397887±1.69E-16 0.397934±9.69E-05 0.397887±3.46E-07 0.398229±3.19E-04 0.397963±1.89E-04
f12 3±0 3.001010±1.40E-03 3.001012±2.62E-03 3.011812±2.15E-02 3.061650±1.39E-01
f13 −10.0535±9.03E-15 −10.0535±9.03E-15 −7.7341±1.9900 −7.84994±2.24000 −10.0535±9.03E-15
f14 −10.0637±1.81E-15 −10.0637±1.81E-15 −8.3001±1.9600 −7.7082±1.8100 −10.0637±1.81E-15
f15 −10.0750±5.42E-15 −10.0750±5.42E-15 −7.420±2.460 −8.126±1.600 −10.075±5.42E-15

ter than its four variants in terms of the convergence speed
and solution quality for all tested problems, indicating that
the best learning capacity is possessed by the multi-learning
operator ML rather than any of the single learning operators.
On the other hand, it also suggests that the hybridization of
multiple single learning operators using the proposed frame-
work shown in Fig. 3 is a promising method to enrich and
promote the searching performance of learning operators.

In details, the algorithms’ behaviors on f1 are quite il-
luminating to further elaborate the search dynamics of the
multi-learning operator ML and its four component single
learning operators. In the beginning, SLIA-4 displays the
fastest convergence speed among all algorithms, suggesting
that the lateral mutation operator LM possesses the best lo-
cal exploitation ability. However, it quickly approaches sta-
ble solutions that still be far away from the global optimum
and cannot improve the solution qualities any further, imply-
ing that LM is not good at global exploration. The under-
lying reason for the behaviors of SLIA-4 is the frequently
information exchange of search dynamics in LM. During
the whole search progress, SLIA-1 displays the second best
search performance in terms of the solution quality and ro-
bustness, and exhibits the third fastest convergence speed.
This implies that the operator BL can well balance the ex-
ploitation and exploration of the search. Compared with
SLIA-1 and SLIA-4, SLIA-2 and SLIA-3 show low-grade
learning capacities in terms of the convergence speed and
solution qualities. Considering the differences between the
two kinds of variants, the comparative results demonstrate
that the effectiveness of the search driven by GM and CM
which only utilize random perturbations on the antibody it-
self is not as good as those operators (i.e. BL and LM) which
make use of information in the environment. It further ver-
ifies the fact that learning from environment is a more easy
way to achieve better search performance as demonstrated in
[36]. Especially, we find that SLIA-2 performs better than
SLIA-3 on most functions by comparing their convergence
and learning performances. It is evident that GM in SLIA-3
prefers carrying out fine-grained searches within the small

Table 4 User-defined parameters used in MLIA.

population size N
clone size M
antibody updating parameter α
maximum iteration number Tmax

probability of implementing GM ProbGM

probability of implementing CM ProbCM

probability of implementing LM ProbLM

probability of implementing BL ProbBL

neighborhood of the solution, hence usually suffering from
the local minimum trapping problem, while CM in SLIA-2
enables the algorithm to perform coarse-grained search and
thus to have the capacity of escaping from local optima.

To sum up, a direct conclusion can be drawn: the multi-
learning operator is more effective than single learning op-
erators for searching better solutions by using the proposed
construction framework illustrated in Fig. 3, wherein the
component operators can play complementary search effects
to each other no matter how inferiority of their own search
capacities.

4.3 Investigation on User-Defined Parameters

Appropriate values of the parameter strongly influence the
performance of the algorithm. MLIA has several user-
defined parameters needed to be fine-tuned before it can be
applied to optimization problems. Table 4 summarizes the
parameters used in MLIA, namely, N, M, α, Tmax, ProbGM

and ProbCM, ProbLM, ProbBL. The analyses are undertaken
using the unimodal function f1 and the multimodal func-
tion f6 respectively. Except for the parameter under test,
simulations are implemented under the following condition:
N = 30, M = 5, α = 100, Tmax = 2000 for high dimen-
sional functions f1- f8 and Tmax = 100 for low dimensional
functions f9- f15.

4.3.1 Setup of Learning Irrelevant Parameters

The user-defined parameters N, M, α and Tmax are com-
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monly used in immune algorithms involving MLIA. MLIA
is initialized with N randomly generated B cells. N deter-
mines the population size of the antibodies. Intuitively, the
larger value of N, the better performance and meanwhile
the more computational cost of the algorithm. According
to [38], [42], a reasonable value for N is 30. The parame-
ter M is responsible for controlling the clonal size. Large
values for M result in large clones produced in the algo-
rithm and more implemental times of learning operators in
each generation, thus requiring more computational times.
However, as suggested in [23], [36], a trade-off between the
quality of solution and computational time is to set M as 5.
The parameter α indicates the acceptance probability of a
temporary worse antibody, thus maintaining the population
diversity to some extent, and it is set to be 100 based on the
analyses in [42]. The value of the parameter Tmax directly
influences the generation size of the evolution. To make the
further comparisons fair, the values for Tmax are set the same
as in [38], that is, Tmax = 2000 for high dimensional func-
tions and Tmax = 100 for low dimensional functions.

4.3.2 Setup of Learning Relevant Parameters

Further considerations deal with the setting of the imple-
mentation probabilities of each single learning operator in
ML. It is impossible to test all possible combinations of
these probabilities under the constrain of ProbGM+ProbCM+

ProbLM + ProbBL = 1 within reasonable simulation time
since the number of combinations is infinite. As a result, fi-
nite number of typical combinations should be selected and
tested, aiming to find the optimal setting of these probabili-
ties.

Alternatively, experimental design with mixtures [47],
[48] can accomplish the above task. Experiments with mix-
tures are experiments in which the variants are proportions
of ingredients in a mixture. An example is an experiment
for determining the proportion of ingredients in a polymer
mixture that will produce plastics products with the highest
tensile strength. Designs for deciding how to mix the in-
gredients are called experimental designs with mixtures. A
design of R runs for mixtures of m ingredients is a set of R
points in the domain:

Tm= (λ1, ..., λm) : λ j≥0, j=1, ...,m, λ1+...+λm=1 (13)

In this study, the simplex-lattice design introduced in [49]
was adopted. Suppose that the mixture has m components.
Let H be a positive integer and suppose that each component
takes (H + 1) equally spaced places from 0 to 1, i.e., λi =

0, 1/H, 2/H, ..., 1, i = 1, ...,m. Thus, {m,H}-simplex-lattice
can be used to represent this design which has Cm−1

H+m design
points.

In the experiment, fifteen representative design
points including ten points of the {4, 1}-simplex-lattice,
four of the {4, 2}-simplex-lattice, the centrobaric point
“0.25/0.25/0.25/0.25”, and an empirical trail point “0.1/0.1/
0.4/0.4” are used to make a comparison. Tables 5 and 6
record the statistical values of solutions obtained by MLIA

with different learning probabilities in ML for the unimodal
function f1 and the multimodal function f6, respectively.
These learning probabilities are taken from the above men-
tioned fifteen representative design points, where a, b, c and
d in “a/b/c/d” denote the assigned implementation probabil-
ities of GM, CM, LM and BL respectively. Tables 5 and 6
show that the setting of the implementation probabilities in
ML using “0.1/0.1/0.4/0.4” exhibits the best learning perfor-
mance in terms of solution qualities. It is worth emphasiz-
ing that, although “0.1/0.1/0.4/0.4” might not be the opti-
mal setting of the probabilities, it outperforms most of the
other settings due to the usage of experimental design with
mixtures. Thus, we can conclude that a reasonable setting
of the learning relevant parameters is that ProbGM = 0.1,
ProbCM = 0.1, ProbLM = 0.4 and ProbBL = 0.4.

4.4 Investigation on Learning Sequences in ML

In the Algorithm 1 of MLIA, the sequence of single learn-
ing operators to be implemented is LM-BL-GM-CM. As
discussed in Sect. 3.2, although the setting values of imple-
mentation probabilities in ML are deterministic, each single
operator is carried out with randomness due to the stochas-
tic nature of the control parameter q. Thus, on condition of
that these probabilities have been determined, the influence
of using different learning sequences on MLIA was inves-
tigated. Table 7 summarizes the simulation results of all
the twenty-four possible sequences of learning operators on
f1 and f6 under 30 independent runs, where the Wilcoxon
signed ranks test [50]–[52] is used to detect significant dif-
ferences between the behavior of two algorithms. In Table 7,
R+ denotes the sum of ranks for the problems in which the
base algorithm outperformed the competitive one, and R−
the sum of ranks for the opposite. Once the R+ and R− re-
lated to the comparisons between the sequence LM-BL-GM-
CM and the rest of sequences are obtained, their associated
p-values can be computed. It is worth pointing out that,
from the statistical point of view, the Wilcoxon signed ranks
test is more sensitive and safer than the t-test, because it does
not assume normal distributions and meanwhile the outliers
have less effect on the Wilcoxon test than on the t-test [50].
As Table 7 states, LM-BL-GM-CM shows no significant im-
provement over other learning sequences at a level signifi-
cance α = 0.05, with only one exception on f1. Therefore,
we can conclude that the sequence of single learning op-
erators in ML makes little influence on the performance of
MLIA.

4.5 Performance Comparison

To further validate the proposed MLIA, an intensive com-
parisons with existing AISs including FCA [38], CLON-
ALG [53], SIA [54], Opt-IMMALG [34], PAISA [55], dopt-
aiNet [56], QICA [21] and Vaccine-AIS [23] have been car-
ried out. The specific details of the compared AISs are brief
given as follows:

1) FCA [38] is a fast clonal algorithm incorporating
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Table 5 The statistical values of solutions obtained by MLIA with different learning probabilities in
ML for f1 under 30 runs.

f1 : Probability Mean Std. Median Min Max
1/0/0/0 1.23E+02 4.09E+02 1.13E-02 8.80E-08 1.71E+03
0/1/0/0 2.39E+02 5.96E+02 2.22E-02 1.24E-05 2.34E+03
0/0/1/0 4.19E-05 1.54E-04 1.11E-10 1.10E-39 6.26E-04
0/0/0/1 5.62E-20 7.56E-20 2.06E-20 1.57E-22 3.22E-19
0.5/0.5/0/0 3.31E+01 1.54E+02 8.54E-02 5.94E-06 8.44E+02
0.5/0/0.5/0 3.66E+02 6.70E+02 1.21E+02 1.71E-05 3.23E+03
0.5/0/0/0.5 1.42E+01 1.32E+01 1.13E+01 2.09E-09 5.24E+01
0/0.5/0.5/0 2.00E+01 7.49E+01 5.17E-06 1.00E-12 3.61E+02
0/0.5/0/0.5 4.19E+01 6.51E+01 1.56E-04 2.00E-10 2.16E+02
0/0/0.5/0.5 1.31E-30 1.87E-30 4.52E-31 3.43E-32 9.80E-30
1
3 /

1
3 /

1
3 /0 7.00E+01 2.19E+02 9.13E-02 1.64E-07 9.22E+02

1
3 /

1
3 /0/

1
3 4.91E+00 1.60E+01 2.06E-02 1.68E-08 8.44E+01

1
3 /0/

1
3 /

1
3 9.69E+01 3.52E+02 6.85E-02 9.41E-08 1.82E+03

0/ 13 /
1
3 /

1
3 1.97E+02 8.47E+02 1.71E-01 8.19E-07 4.58E+03

0.25/0.25/0.25/0.25 6.75E+01 3.56E+02 4.92E-03 5.36E-06 1.95E+03
0.1/0.1/0.4/0.4 4.87E-33 8.43E-33 1.47E-33 5.65E-35 3.91E-32

Table 6 The statistical values of solutions obtained by MLIA with different learning probabilities in
ML for f6 under 30 runs.

f6 : Probability Mean Std. Median Min Max
1/0/0/0 7.82E+00 4.24E+00 7.44E+00 1.16E+00 1.49E+01
0/1/0/0 1.18E+01 2.68E+00 1.22E+01 5.22E+00 1.53E+01
0/0/1/0 2.71E-03 8.12E-03 2.32E-06 3.24E-14 4.15E-02
0/0/0/1 1.32E-11 8.94E-12 1.05E-11 3.00E-12 4.82E-11
0.5/0.5/0/0 4.21E+00 3.42E+00 3.51E+00 5.08E-02 1.17E+01
0.5/0/0.5/0 4.23E+00 3.83E+00 3.33E+00 5.50E-03 1.24E+01
0.5/0/0/0.5 4.69E+00 8.23E-01 4.53E+00 3.59E+00 7.68E+00
0/0.5/0.5/0 2.70E-01 7.81E-01 1.89E-02 3.91E-03 3.30E+00
0/0.5/0/0.5 8.35E+00 1.05E+00 8.29E+00 6.58E+00 1.09E+01
0/0/0.5/0.5 6.75E-13 3.44E-13 5.96E-13 2.35E-13 1.49E-12
1
3 /

1
3 /

1
3 /0 6.94E+00 4.44E+00 6.49E+00 1.16E+00 1.55E+01

1
3 /

1
3 /0/

1
3 9.19E+00 4.41E+00 9.60E+00 1.16E+00 1.63E+01

1
3 /0/

1
3 /

1
3 6.72E+00 4.51E+00 4.88E+00 9.31E-01 1.53E+01

0/ 13 /
1
3 /

1
3 8.57E+00 3.98E+00 8.47E+00 9.31E-01 1.61E+01

0.25/0.25/0.25/0.25 9.09E-02 5.32E-02 7.32E-02 2.70E-02 2.17E-01
0.1/0.1/0.4/0.4 8.38E-15 2.41E-15 7.55E-15 4.00E-15 1.47E-14

a parallel mutation operator, comprising of Gaussian and
Cauchy mutation strategy. Meanwhile, it utilizes chaotic ini-
tialization and elitist immune memory mechanisms to fur-
ther improve the efficiency of the algorithm. 2) CLONALG
[53] is the original clonal selection algorithm which manip-
ulates the affinities of antibodies with proportional cloning
and counter-proportional hypermutation. 3) SIA [54] is a
simple but effective immunological approach where only
two parameters and simple immune operators are used. 4)
opt-IMMALG [34] is an extension of SIA to solve more
complex and high-dimensional problems. The algorithm
uses an inversely proportional hypermutation operator, a
novel aging operator together with the (μ + λ)-selection to
maintain the population diversity. 5) PAISA [55] is a pop-
ulation based immune algorithm using self/non-self learn-
ing operators and feedback rules on memory cells. 6) dopt-
aiNet [56] is an expanded version of opt-aiNet, which is ca-
pable of solving problems in both stationary and dynamic
environments. 7) QICA [21] is a quantum-inspired clonal
algorithm where the quantum rotation gate strategy and the
dynamic adjusting angle mechanism are applied to accel-

erate convergence. 8) Vaccine-AIS [23] is a diversity en-
hancement based immune algorithm by proposing a vaccine
injection operator for exploring all areas in the search space.

The first performance comparison was carried out dur-
ing MLIA, FCA, CLONALG, SIA, and opt-IMMALG on
all functions with 2, 4 and 30 dimensions. Table 8 sum-
marizes the experimental results of these compared algo-
rithms, where the reported results for FCA, CLONALG,
SIA and opt-IMMALG are taken from [34], [38]. Each re-
sult of MLIA is obtained from 30 independent runs. As can
be seen from Table 8, MLIA outperforms FCA on the func-
tions f3- f15 (13 out of 15 functions), outperforms CLON-
ALG on the functions f1, f3- f15 (14 out of 15 functions),
outperforms SIA on all the 15 functions, outperforms opt-
IMMALG on the functions f3, f4, f5, f7, f8, and f10- f12 (8
out of 15 functions). For functions f3- f5, f7, f8, and f10- f12,
MLIA shows the best performance in finding the global op-
tima. It is worth emphasizing that, although MLIA did not
perform significant better than its competitors, it has been
demonstrated to be an effective algorithm for solving opti-
mization problems. Furthermore, it is expected the perfor-
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Table 7 Results of the Wilcoxon signed ranks test at a level of significance α = 0.05 for LM − BL −
GM −CM versus the competitors on f1 and f6.

Order f1 f6
R+ R− p-value Significant R+ R− p-value Significant

BL −CM −GM − LM 171.5 263.5 1 No 235.0 230.0 0.950798 No
BL −CM − LM −GM 275.5 159.5 0.172398 No 231.0 234.0 1 No
BL −GM −CM − LM 270.5 164.5 0.072094 No 253.0 212.0 0.665789 No
BL −GM − LM −CM 263.5 201.5 0.36803 No 176.0 289.0 1 No
BL − LM −CM −GM 258.0 177.0 0.277395 No 130.0 335.0 1 No
BL − LM −GM −CM 207.5 257.5 1 No 266.0 199.0 0.48435 No
CM − BL −GM − LM 229.5 235.5 1 No 229.0 236.0 1 No
CM − BL − LM −GM 186.5 248.5 1 No 155.0 310.0 1 No
CM −GM − BL − LM 229.0 206.0 0.767681 No 242.0 223.0 0.837038 No
CM −GM − LM − BL 201.5 263.5 1 No 270.0 195.0 0.434452 No
CM − LM − BL −GM 159.5 275.5 1 No 247.0 218.0 0.757683 No
CM − LM −GM − BL 191.5 243.5 1 No 224.0 241.0 1 No
GM − BL −CM − LM 135.5 299.5 1 No 227.0 238.0 1 No
GM − BL − LM −CM 288.5 176.5 0.200319 No 225.0 240 1 No
GM −CM − BL − LM 265.5 199.5 0.451498 No 119.0 346.0 1 No
GM −CM − LM − BL 208.5 226.5 1 No 230.0 235.0 1 No
GM − LM − BL −CM 293.5 141.5 0.042012 Yes 285.0 180 0.275659 No
GM − LM −CM − BL 232.0 203.0 0.660224 No 236.0 229.0 0.934429 No
LM − BL −CM −GM 228.0 237.0 1 No 229.0 236.0 1 No
LM −CM − BL −GM 271.5 193.5 0.386557 No 270.0 195.0 0.434452 No
LM −CM −GM − BL 210.5 254.5 1 No 217.0 248.0 1 No
LM −GM − BL −GM 183.0 282.0 1 No 287.0 178.0 0.256721 No
LM −GM −CM − BL 220.5 214.5 0.907498 No 195.0 270.0 1 No

Table 8 Performance comparison between MLIA and other AISs including FCA, CLONALG, SIA
and opt-IMMALG in terms of solution qualities.

Func. MLIA FCA CLONALG SIA opt-IMMALG
Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

f1 4.87E-33 ± 8.43E-33 0 ± 0 7.36E-08 ± 5.15E-08 2.31E-08 ± 8.97E-09 0± 0
f2 1.05E-13 ± 7.36E-14 0 ± 0 0 ± 0 6.64E-08 ± 2.42E-08 0± 0
f3 0 ±0 0 ± 0 0 ± 0 0 ± 0 0± 0
f4 −12569.5 ± 0 −12569.46 ± 0.016 −12528.94 ± 21.48 −12518.19 ± 39.21 −12535.15 ± 62.81
f5 0 ± 0 0 ± 0 0.18 ± 0.75 1.12 ± 6.214 0.596 ± 4.178
f6 6.75E-13 ± 3.44E-13 1.56E-07 ± 3.12E-07 7.15E-04±1.27E-04 1.56E-03± 3.12E-04 0±0
f7 0 ± 0 0 ± 0 4.18E-04 ± 2.02E-04 6.47E-03 ± 7.04E-04 0±0
f8 6.14E-24 ± 9.58E-24 7.94E-11 ± 4.25E-12 3.27E-07 ± 8.54E-08 6.57E-03 ± 5.44E-03 1.77E-21 ± 8.77E-24
f9 0.998004 ± 0 1.04 ± 3.65E-02 1.21 ± 9.50E-01 1.34 ± 2.81E-01 0.998±1.1E-03
f10 −1.03163 ± 0 −1.03156 ±8.36E-06 −1.02377±1.58E-04 −1.01281±5.24E-02 −1.013±2.21E-02
f11 0.397887 ± 1.69E-16 0.401 ± 1.16E-03 0.501 ± 2.87E-03 0.527 ± 8.54E-01 0.423 ± 3.21E-02
f12 3± 0 3.0129 ± 2.15E-04 3.8791 ±6.86E-03 6.15813 ± 4.0252 5.837 ± 3.742
f13 −10.0535±9.03E-15 −9.9244 ± 0.0452 −9.8817 ± 0.1521 −9.2677± 0.2252 −10.153±1.03E-07
f14 −10.0637 ± 1.81E-15 −9.9438 ± 0.0384 −9.2691 ± 0.284 −8.9342 ± 0.8972 −10.402±1.03E-05
f15 −10.075± 5.42E-15 −9.9622 ± 0.0503 −9.1528 ± 0.2987 −8.6654 ±1.1503 −10.536±1.16E-03

mance of MLIA can be further improved by incorporating
the unique mechanisms proposed in its competitors, such as
the chaotic initialization in [38], the aging operator in [34],
the vaccine injection in [23], etc.

The second performance comparison was carried out
during MLIA, PAISA, dopt-aiNet, and Vaccine-AIS on
functions with 30 dimensions. Table 9 records the mean of
the function values found in 30 trials and the mean num-
ber of function evaluations of the algorithms. The data
of PAISA, dopt-aiNet and Vaccine-AIS were directly taken
form the reported tables, while there were not record for the
function f3. To obtain the mean number of function evalu-
ations for the algorithm, the termination criterion of MLIA
is one of the objectives, | fbest − fmin| < ε · | fmin| or | fbest | < ε
if fmin = 0, is achieved, where fbest and fmin denote the best
solution found until the current generation and the global

optimum, respectively. ε = 10−4 is used for all tested func-
tions, which is the same as that in the compared algorithms.

Compared with PAISA, MLIA can find better solutions
on all tested six functions in fewer evaluations. When im-
plemented on f4, unlike the competitors, MLIA produces
the global optimal value (i.e. −12569.5) of the function. For
f5 and f7, MLIA locates the global optimum value, whereas
PAISA fails in doing so while dopt-aiNet and Vaccine-AIS
take more fitness evaluations to find it. Although MLIA
cannot find the global optima solution for f1, f2 and f6 as
dopt-aiNet and Vaccine-AIS, it can find close-to-optimal so-
lutions (fitness errors ≤ 6.75E-13) with very few of evalua-
tions. In addition, considering the convergence performance
of MLIA on f1, f2 and f6 as shown in Figs. 7 and 8, we find
that MLIA is capable of finding better solutions if more fit-
ness evaluations are allowed, due to the fact that MLIA has
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Table 9 Performance comparisons between MLIA and other AISs including PAISA, dopt-aiNet, and
Vaccine-AIS in terms of solution qualities and the number of fitness evaluations on functions with 30
dimensions.

Func. Number of fitness evaluations Mean affinity value
MLIA PAISA dopt-aiNet Vaccine-AIS MLIA PAISA dopt-aiNet Vaccine-AIS

f1 2836 3956 6183 72633 4.87E-33 2.51E-17 0 0
f2 2590 3206 406150 51267 1.05E-13 7.E-14 0 0
f4 1952 1984 4169 172342 −12569.5 −12569.49 −12569.49 −12567.8
f5 1884 2528 3379 84339 0 1.71E-12 0 0
f6 2086 2774 5564 93363 6.75E-13 3.51E-16 0 0
f7 1582 2612 7276 57054 0 1.02E-15 0 0

Table 10 Mean number of function evaluations of MLIA, PAISA and QICA on f4- f6 with 20-1000
dimensions.

f4 f5
D MLIA PAISA QICA D MLIA PAISA QICA
20 331 957 2301 20 365 1497 4021
100 3010 2787 5295 100 2608 4914 9391
200 2074 3618 7083 200 5515 8937 13671
400 20154 6285 12,161 400 11,626 13,728 16421
1000 3400 10,920 21,729 1000 27,588 17,585 19091

f6 f7
D MLIA PAISA QICA D MLIA PAISA QICA
20 397 1372 3216 20 313 1018 2541
100 1812 3036 5137 100 1487 3990 4397
200 2777 4664 5746 200 2509 4982 5345
400 3976 6126 6372 400 3693 5740 6187
1000 4909 7192 6949 1000 5100 6988 7249

not been trapped in local minima. In general, MLIA obtains
better or competitive solutions than its competitors in AISs
at a lower computational cost, and is suitable for the numer-
ical optimization problems.

Finally, the performance of MLIA on four test func-
tions with 20–1000 dimensions was evaluated and compared
with those of PAISA and QICA. As can be seen from Ta-
ble 10, the number of evaluations of MLIA is smaller than
that of PAISA and QICA for all the functions except f4 and
f5 with specific dimensions. In other words, MLIA performs
better than PAISA for 17 (out of 20) instances, QICA for 18
instances, in terms of the number of fitness evaluations. The
convergence graphs of MLIA on the four functions with 20–
1000 dimensions are depicted in Fig. 10, which shows that
MLIA obtains acceptable solutions ε = 10−4 at reasonable
computational cost, and displays good performance in solv-
ing high-dimensional problems.

5. Conclusions

This paper has proposed a multi-learning immune algorithm
(MLIA) to solve global optimization problems. Our objec-
tive is to devise an effective learning operator for AIS to
facilitate the evolution of antibodies. The multi-learning
operator (ML) proposed herein is capable of meeting this
challenge. By incorporating four distinct single learning
operators including baldwinian learning, gaussian mutation,
cauchy mutation and lateral mutation, the multi-learning op-
erator can inherit the search characteristics from its com-
ponents, and thereby it has a powerful balance ability be-
tween exploration and exploitation. We executed MLIA to

Fig. 10 The convergence graphs of MLIA on functions f4- f7 with 20,
100, 200, 400, and 1000 dimensions respectively.

solve fifteen benchmark problems, with dimensions from 2
to 1000, and numerous local minima. The results show that
MLIA can find optimal or near-optimal solutions, exhibit-
ing superior or competitive performance than other immune
algorithms in terms of solutions quality and convergence
speed. Statistical analyses regarding the user-defined pa-
rameters as well as the learning sequence demonstrated that
MLIA can be well fine-tuned to a stable performance and is
insensitive to learning sequences.
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In addition, it should be pointed out that the learning
capacity of ML can be further enhanced by incorporating
more single learning operators, and the associated imple-
mentation probabilities can be self-adapted to improve the
applicability of the algorithm. In our future work, we plan
to verify the performance of MLIA on functions described
in CEC 2005 [57], especially on rotated or shifted functions
[58]. It is also meaningful to extend the utility of MLIA to
handle both single-objective and multi-objective optimiza-
tion problems under constrained or dynamic environments.
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