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ABSTRACT 

 

Introduction: The ability of football players to tolerate and recover from the physiological 

and psychological stressors of training and match play is critical to ongoing performance 

success. The ability to recover from these stressors is affected by numerous factors; 

including, experience, fitness, motivation and the natural fluctuation of physiological and 

behavioural processes – particularly the sleep-wake cycle. Indeed, sleep loss incurred prior to 

competition may reduce subsequent performance; whilst a reduction in sleep quantity or 

quality following competition may impede the recovery timeline. As such, sleep for athletes’ 

has been recognised anecdotally amongst coaches and players as critical to performance and 

recovery. However, normative sleep behaviour in football players remains unknown. 

Moreover, there is limited evidence to show that when sleep is disturbed, performance and 

recovery suffer within the elite football environment. Consequently, the potential positive 

impact of improving sleep parameters on the recovery and performance timeline therefore 

remains to be substantiated. Thus, the aim of this thesis was three-fold: i) to determine the 

sleeping patterns of football players and to assess whether and when disrupted sleep indices 

occurred and ensuing effect on perceptual recovery status; ii) to assess the sleep, travel and 

recovery responses of footballers during and following long-haul international air travel and 

ensuing matchplay; and iii) to investigate the effect of an acute sleep hygiene strategy on 

physical, physiological and psychological recovery of players following a late-night match. 

 

Methods: i) To determine the sleeping patterns in elite football, a group of sixteen elite 

football players completed a subjective online questionnaire twice a day (morning and night) 

for 21 days during the regular season. Subjective recall of sleep variables (duration, time of 

wake and sleep, wake episode duration), a range of perceptual variables related to recovery, 

mood and performance, internal training loads and non-exercise stressors were collected. ii) 

To assess the sleep, travel and recovery responses of footballers during and following long-

haul international air travel and match-play, fifteen national football players undertook 18 h 

of predominately westward international air travel from the United Kingdom to South 

America (-4 h time-zone shift) for a 10-day tour (including two night matches). Objective 

sleep parameters, external and internal training loads, subjective player match performance, 

technical match data and perceptual jet-lag and recovery measures were collected. iii) The 

final investigation determined the effect of an acute sleep hygiene strategy (SHS) on physical, 

physiological and psychological recovery of players following a late-night match. Two 



xii 
 

highly-trained amateur teams (20 players) played two late-night friendly matches (20:45 

start) against each other seven days apart. Players completed a sleep hygiene strategy after 

the match or undertook normal post-game routines in a randomised cross-over design. 

Objective sleep parameters, countermovement jump (CMJ), YoYo Intermittent Recovery test 

(YYIRT), venous blood and perceived recovery and stress markers were collected prior to 

and during the ensuing 48 h post-match. 

 

Results: In summary of the above studies; i) Elite club players appear to sleep within healthy 

adequate ranges following training days and match days. However, players report 

significantly reduced sleep duration and perceptual recovery following night matches 

compared to day matches and training. The reasons for this poor sleep were varied and very 

individualistic in nature. ii) Similarly, objective measurements of sleep show sleep duration is 

truncated during long-haul international travel with a 4 h time-zone delay in national level 

players. Furthermore, sleep duration is reduced following night matches, though limited 

effects on perceptual recovery were evident in this professional cohort. iii) To combat such a 

reduction in sleep duration in night matches, a SHS was shown to be able to improve sleep 

quantity following a late-night football match in highly trained amateur players. Despite such 

increased sleep duration, no improvement in physical performance, perceived stress and 

recovery or blood-borne markers of muscle damage and inflammation were evident.  

 

Discussion/conclusion: The first study in this dissertation provided evidence that sleep 

duration and quality is hindered following night matches in elite footballers, though sleep 

responses were deemed within normal population-based ranges following training and day-

based match days. In addition, perceptual recovery is significantly worse following these 

night matches compared to day matches and training. The second study showed that long-

haul international travel results in lower sleep quantities than healthy averages for adults. 

Further, there were limited changes in perceptual recovery markers due to reduced sleep; 

possibly due to increases in sleep duration on the days upon arrival. However, the effect of 

the reduction in sleep quantity on physiological and perceptual recovery (especially 

during/over the course of a season) remains unclear. In the final study of this thesis, results 

suggested football players might consider sleep hygiene strategies where possible following a 

late-night match to promote restorative sleep. There appeared to be no additional benefit for 

the acute recovery of exercise performance markers, perceptual stress, or blood-borne 

markers of muscle damage and inflammation. Accordingly, more research is required to 
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assess whether a larger sleep differential (e.g. longer duration/higher quality sleep) is required 

to affect the physical and physiological markers measured here. In addition, the effect of 

(chronic) SHS on recovery in real-world elite environments requires further research.
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1. INTRODUCTION 

1.1 Conceptual introduction to performance, fatigue and recovery in football 

Football performance requires the optimisation of a myriad of intertwined factors including, 

physical, tactical, technical and socio-psychological abilities [1-3]. Of these factors 

influencing football performance, a critical aspect involves  physical performance, and as 

shown in Figure 1.1, conceptually comprises endurance capacity, high intensity exercise, 

maximal sprint and peak muscular force performance [1, 4]. Whilst each capacity may be 

important within its own right, these abilities can also impact on one another. For instance, 

performance of respective physical capacities can be influenced by the maximal functioning 

of that capacity (i.e. training or injury) and the specific match demands requiring that 

capacity (i.e. playing position, tactical role, quality of the opponent [5]). In addition, these 

performance-related capacities can be affected by external (i.e. time of season, type of 

playing surface and environmental factors) and internal (i.e. sex and age) factors [1, 2].  

 

As an example of the demands on football players, training and match loads require 

professional players to endure varied physiological, psychological and neuromuscular 

stressors [2-4, 6]. Both training and matches require high loading stressors during different 

speeds of movement running (i.e. walking, jogging, sprinting) along with rapid changes in 

direction and accelerations in combination with jumps and tackles. For instance, on average 

professional players cover a total of 9-13 km per match [5], inclusive of around 700 changes 

of direction [7]. Additionally, players are required to perform numerous technical actions 

such as dribbling, shooting and passing [8], whilst also endure numerous psychological 

demands inducing various degrees of mental fatigue [9]. For example, players can be 

subjected to various levels of mental demands during matches due to level of opposition, 

importance of the match and changes in tactics [10]. Alternatively, they may face personal 

challenges caused by extraneous sources (i.e. media, fan pressure) that can affect the 

perception of these loads, if not the ability to perform them.   

 

Whilst coping with some or all of these demands, a decline in (physical, technical or 

perceptual) performance (i.e. fatigue) can occur throughout the duration of training or 

matches [9, 11]. A number of different operational definitions of fatigue exist. For instance, 

Pyne and Martin [12] define fatigue as ‘an inability to complete a task that was once 

achievable within a recent time frame’. However, fatigue is a complex and multifaceted 
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Figure 1.1: A model of football performance (adapted from a holistic model of sports 

performance by Bangsbo et al. [1]) 
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phenomenon, and can originate from a variety of possible mechanisms; thus operational 

definitions are predominately based upon the experiment used or the conditions under which 

they occur [13]. Regardless, the best football nations [14] and professional clubs [15] rate 

“fatigue” as the second most important factor contributing to injury risk (after a previous 

injury), suggesting the relevance of monitoring and understanding fatigue within the confines 

of elite football. For instance, it is well established that the amount of high-intensity running 

is reduced toward the end of a football match [11, 16, 17], whilst others have demonstrated 

that maximal sprint and intermittent-exercise performance after a match are both reduced 

[18]. This fatigue in a classical neuromuscular sense is defined as an exercise-induced 

reduction in force generating capacity of the muscle [19, 20]. In addition to within–match 

evidence, suppressed performance of physical capacities following a match further reinforces 

this concept.  For example, Rampinini and colleagues [21] found that after a 90-min game, 

there was a reduction in maximal voluntary contraction and sprint performance (-11%, P < 

0.001 and -3%, P < 0.001, respectively) compared with pre-match baseline in 20 professional 

players. Furthermore, 48 h had passed post-match before these values were returned to 

baseline. Whilst this decline in performance is a necessary and expected part of football, it 

requires sufficient reversal to allow optimal player performance in ensuing training or 

matches.   

 

To restore performance for the next ensuing bout, whether that is a training session or an 

additional match, there is a clear need to hasten the recovery of performance.  As such, there 

is a vital requirement for players to balance the numerous physiological, psychological and 

neuromuscular stressors during training and competition stressors with adequate recovery to 

maximise performance and ensure effective adaptation [22]. Recovery is a multidisciplinary 

process, classically defined by Kellmann and Kallus as “an inter-individual and intra-

individual multi-level (e.g. psychological, physiological, social) process in time for the re-

establishment of performance abilities” [23]. With the objective of improving and peaking for 

a specific event (e.g. match), football coaches, performance staff and researchers focus on 

developing the quantity, quality and composition of training and degree of recovery 

necessary to maximise performance [24]. As observed in Figure 1.2, a theoretical model of 

training load-recovery sequence depicts that if appropriate recovery is allowed following 

fatiguing stimuli (i.e. football demands) then a supercompensation effect (adaptive response) 

will occur, resulting in an improvement in the subsequent performance [24].   
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Figure 1.2: Adapted theoretical model of the relationship between the fatigue induced by 

training and/or match load, the recovery from such a performance and the subsequent effect 

of the next performance (reproduced from Kellmann [24]). The red arrow indicates the 

‘recovery time course’ from the end of one performance to the beginning of another.  
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However, from the end-point of a typical football performance, it can take more than 72 h to 

restore pre-match values of physical and mental performance [8]. As such, the time from the 

end of the game to ~ 72-96 h post-match is often referred to as the ‘recovery time course’ 

(Figure 1.2). Since professional players are often required to play three games in seven days, 

this may be insufficient to restore performance to desired match standards in professional 

players. Thus, understanding the time course of various physical and mental indices and the 

influence of a multitude of factors within this recovery time course is viewed as critical for 

player preparation and subsequent performance. 

 

Despite the myriad of factors affecting recovery, a key one often highlighted by practitioners 

is the influence of sleep. Since a variety of crucial cognitive, metabolic and immune 

processes occur during sleep, it is generally considered that a relationship exists between the 

quantity and quality of sleep and the capacity of athletes to perform and recover. However, 

regardless of this assumption, the role of sleep is perhaps the least understood factor within 

the 72-96 h recovery period. This is surprising since sleep will generally occupy a large 

proportion of this time due to biological requirements [25], and athletes often rate sleep as 

one of the most important factors hindering recovery [26]. Indeed, since the ability to tolerate 

these training and match stressors are affected by numerous factors; including, experience, 

fitness, motivation and the sleep-wake cycle; it would appear understanding the interaction of 

sleep and recovery is critical. However, there remains little research on the understanding of 

the role of sleep in the recovery of performance in athletes [27]. This is likely in part due to 

the complexity of sleep function, different athletic environments and the variability in the 

individual requirement for sleep [28, 29].  

 

As such, the evaluation of the interaction between sleep and recovery in football remains 

largely unanswered within the scientific literature. Given this lack of evidence, the interaction 

between sleep and recovery in football will become a primary focus of this thesis. However, 

prior to investigating this pertinent issue, this dissertation will endeavour to lay a 

foundational understanding regarding the fatigue induced from football-related activity and 

the numerous factors that need to be considered within the recovery process. This 

understanding is critical, as to appreciate the recovery process, an understanding of what is 

causing the need for recovery is pertinent – which in turn will assist explain the sleep-

recovery relationship.    
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1.2 Fatigue induced from football load 

When training or playing in matches, professional players endure numerous physiological, 

psychological and neuromuscular stressors [2-4, 6]. In response to these demands 

professional players show exacerbated physiological and psychological states, along with 

reductions in performance domains. This acute reduction in performance is referred to as 

transient or acute fatigue (Figure 1.3). When players suffer acute fatigue towards the end of 

the game it is postulated this is due to either a depletion in muscular glycogen stores, 

disturbances to skeletal muscle structure (which can be associated with a reduction in 

contractile function) and a concomitant rise in markers of contractile damage (such as 

creatine kinase; CK) [3, 8, 19, 30, 31]. It is also hypothesised from a muscular contractile 

perspective that transient fatigue is caused by either disturbances in muscle sodium, 

potassium and chloride homeostasis (causing depolarisation of the resting membrane 

potential) or the intramuscular accumulation of hydrogen ions [3, 6, 16]; although numerous 

other factors no doubt play a role. Indeed, fatigue related to either training or match load may 

be summarized as primarily determined by a combination of central and peripheral factors 

[8]. Fatigue can also remain present beyond the end of the match, as is termed residual or 

chronic fatigue (Figure 1.3). Chronic fatigue is often characterised by an ongoing suppression 

in performance or alterations of the markers mentioned above over the 72-96 h period 

following match play. Collectively, these acute and chronic alterations to physiological, 

perceptual and performance characteristics observed arise from a combination of 

mechanisms, which will be briefly discussed in the proceeding sections.  

 

1.2.1 Football load 

From a physical perspective, football involves many demanding activities including different 

levels of running (i.e. walking, jogging, sprinting) along with rapid changes in direction and 

running speed [2, 4]. These demands can be derived from time motion analysis (TMA) or 

global positioning system (GPS) devices  [5]. For instance, on average professional players 

cover a total of 9-13 km per match [5]. Typically the majority of this activity is performed at 

walking pace (speed zone 0.1-7 km/h) and lower intensities (7-14 km/h) [5]. To a lesser 

extent, match activity is also made up of high-intensity running (21–24 km/h) and sprinting 

(>24 km/h). As evidence, extensive analyses of Spanish La Liga and English FA Premier 

League players revealed that high-intensity running and sprinting accounted for 3.9% and 

5.3% of the total distance covered respectively [32]. In addition to performing various bouts 
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Figure 1.3: A theoretical model of the relationship between match-induced fatigue and 

training characteristics (reproduced from Mohr and Iaia [30]).  
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of intermittent running activity, professional players also encounter other physical demands 

such as tackles, jumps, accelerations, decelerations, headers and directional turns. For 

instance, it has been reported that English Premier League players complete on average 

around 700 changes of direction per match, with ~ 600 of these being in an arc of 0° to 90° to 

the left or right, and are involved in the equivalent of ~ 110 on the ball movement 

activitiesper match  [7]. Of further note, players can be subjected to various levels of mental 

demands during matches due to level of opposition, importance of the match and changes in 

tactics [10]. In a laboratory based-study, Greig and colleagues [33] investigated the 

performance on a vigilance task (continual attention and sporadic target response within a 

letter grid) of ten semi‐professional soccer players when completing a 90‐minute laboratory‐

based treadmill protocol replicating the activity profile of soccer match‐play. The authors 

found that performance was reduced during the latter stages of the second half, highlighting 

the psychological demands of soccer-related physical activity. Interestingly, this mental 

fatigue can also result in impacts on soccer-specific decision making [10] and physical and 

technical performance [34]. Taken collectively, professional players endure numerous 

physiological, psychological and neuromuscular loads during training and matches.  

 

1.2.2 Fatigue in physical performance   

This array of demands during matches generally results in players experiencing fatigue, 

shown by reductions in-game sprints from half time to the end of matches [11, 35], alongside 

further reductions in match running performance following intense match periods [16, 36, 

37]. For instance, Bradley [37] showed that high intensity running following the most intense 

5-min period during was significantly reduced, especially in attackers and central defenders 

(both P < 0.01) over 28 English FA Premier League games using a TMA system. Research 

also supports that the number of accelerations and decelerations performed are reduced in the 

final stage of matches compared to the opening stages, especially the final 15 min [38, 39], 

and at the end of a congested fixture period (five matches in 72 h [40]). This fatigue in 

movement patterns not only exists within the match but also remains after the match. For 

instance, there are several examples of reductions in single sprint, repeated sprint and shuttle 

run performance up to 72 h post-match or soccer specific exercise (Table 1.1). Rampinini and 

colleagues found an immediate significant reduction in the mean sprint performance (-3%) of 

20 professional players following a 90 min match, with this reduction taking 48 h to return to 

baseline values [21]. A collection of recent evidence shows these reductions in intermittent 

running performance range from decrements of -2 to -9%, with the recovery of these
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Table 1.1: Recovery time course for single sprint and repeated-sprint ability following soccer-specific exercise (reproduced from Nedellec et al. 

[8]). 
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parameters to performance baseline ranging from 5 to 96 h post-match (Table 1.1; [8]).   

 

As evidence of the above, reductions in lower-body peak power during countermovement 

jump (CMJ) performance following match-play are commonly reported ([8, 31, 41]; Table 

1.2).  For instance, Nedelec et al. [41] examined the relationship between the frequency of 

playing actions performed during 4 competitive matches and the recovery kinetics after the 

match of 10 professional players. The authors reported significant neuromuscular fatigue for 

up to 72 h post-match, with significant correlations between the number of short sprints (<5 

m) performed and the increase in muscle soreness at 48 and 72 h after match play. In 

addition, Russell et al. [42] examined a variety of GPS variables and the change from 

baseline in peak power output during the CMJ in fifteen English Premier League reserve 

team players at 24 h and 48 h post-match (1-4 matches). High-intensity distance covered, 

high-speed running distance and the number of sprints per min within the match were all 

significantly related to the change in peak power output at 24 h post-match. Given the 

importance of lower-body peak power for typical football specific physical performance, the 

post-match recovery of peak power can be an important determinant of ensuing training 

quality or match success in football [43]. 

 

Fatigue from a match can also result in reductions force production. For instance, concentric 

and eccentric maximal voluntary contraction (MVC) of the knee flexors can be reduced for 

up to 72 h post-match [44-46]. Ascensao et al. [44] found reductions in concentric knee 

flexion strength immediately following match play (~-15% compared to baseline) and up to 

72 h later ( ~-8%). In addition, Magalhaes and colleagues [45] found similar reductions (~-

12%) following match play and 72 h post match (~-8%). Knee flexors appear more 

susceptible to extensive periods of fatigue than knee extensors [8], with some authors 

reporting sufficient recovery of this muscle group 24 h post match [47]. The difference in 

findings between knee flexors and extensors is most likely due to the fact that flexors are the 

weaker of the two muscle groups and work eccentrically during high power efforts – 

suggesting being more prone to injury [41]. This seems a reasonable hypothesis given the 

knee flexors (i.e. hamstrings) are one of the most common injuries in professional football 

[48], and particularly towards the end of both halves [49]. Clearly, playing football leads to 

various decrements in force production that progressively return to initial values during the 

recovery process [8]. As such, the measurement of torque during maximal voluntary 

contraction is now considered an appropriate measure of quantifying muscular recovery with                                                                   
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Table 1.2: Recovery time course for jump performance following soccer-specific exercise (reproduced from Nedellec et al. [8]). 
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relation to football [50]. 

 

1.2.3 Muscle damage 

As mentioned, football players will endure various lower and upper body demands such as 

changes in direction, passes, shots on goal, tackles, jumps or contact with opposing players  

[2]. The high power and eccentric nature of contractions responsible for these movements 

most likely explain the subsequent occurrence of exercise-induced muscle damage and 

inflammation [42]. For instance, following match play an acute-phase inflammatory response 

occurs (Figure 1.4). Cellular disturbance caused by prolonged or intense muscular activity 

can cause CK to leak from the cell into blood serum and increasing serum CK activity [51]. 

Due to the inter-relationship with muscle damage and concomitant rise following exercise, 

CK is currently used to infer the extent of muscle fibre damage, and thus has a likely 

influence on fatigue and recovery [51-54]. The time course of CK release and return to 

baseline is extended, with elevated responses lasting up to 120 h post-match [8], further 

contextualising the prolonged post-match recovery time required by professional players.  

 

An example of the above concept is provided by the significant relationships between the 

change in CK from 24 h pre- to 24 h post-match with the amounts of high intensity distance 

covered (r = 0.386, P = 0.029), high speed running distance (r = 0.363, P = 0.041) and the 

number of sprints per min (r = 0.410, P = 0.020) performed in reserve English Premier 

League matches [42]. Despite such associations, the time course of CK release (e.g. 48-120 h 

[8, 31]), combined with between-player and between-match variability of CK responses to 

football match-play [55] hinders the interpretation of CK as an explicit marker of post-match 

recovery status [42]. Moreover, players who participate in regular training have consistently 

high CK values making it difficult to establish comparative baseline values [8]. Nonetheless, 

if sensitive and accurate baseline values can be established, then the magnitude of the 

increase of CK supports its use to infer the likelihood of muscular damage, and thus potential 

for ensuing fatigue.  

 

When the working musculature sustains damage to the contractile proteins, a local 

inflammatory response is initiated, involving the release of a suite of cytokines [8]. 

Specifically, this consists of an immediate post-game peak in leukocytes, the cytokines 

interleukin (IL) six and 1 (IL-6, IL-1), and cortisol. In turn, IL-6 promotes an infiltration  
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Figure 1.4: Model representing the muscle damage and repair cycle (reproduced from 

Kendall and Eston [56]) 
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C-reactive protein (CRP) over the ensuing 24h, alongside increases in thioburbituric acid-

reactive substances (TBARS) lactate dehydrogenase (LDH) and uric acid (UA), all 

representative of leakage due to damaged fibres [57]. A typical football match will also result 

in increases in reactive oxygen species, caused by either mitochondrial functioning as part of 

the oxidative cellular processes, ischaemia-reperfusion events in skeletal muscle or 

inflammatory response to exercise-induced muscle injury [44]. It should be noted that these 

biochemical parameters may not always be appropriate for indicating fatigue status; rather, 

they should be restricted to interpret skeletal muscle fibre disturbance. For instance, Meister 

et al. [58] investigated differences in blood count, CK, urea, UA, CRP and ferritin between 

high intensity match exposure (>270 min during 3 weeks before testing) and low intensity 

match exposure (<270 min) in 88 players of the first and second German leagues. The 

authors reported no differences between exposure periods for any of these parameters (P = 

0.36), limiting their inference as explicit markers of fatigue due to muscular disturbances in 

elite footballers. These results are possibly due to the typical group-based analysis of fatigue-

induced changes which will inevitably show high variability [59] and/or that that muscle 

contraction is not affected by cell content level [19]. There, whilst biochemical parameters 

can assist in determining disturbance in the working musculature it should be acknowledged 

that without any performance markers they may not always be appropriate for indicating 

ensuing fatigue. 

 

In summary, muscle fibre damage and subsequent increased exercise-induced muscle damage 

markers are likely induced by the various lower and upper body demands faced by the typical 

football player, such as changes in direction, ball kicks, shots on goal, tackles, jumps or 

contact with opposing players [2]. In collaboration, increased inflammation and up-regulation 

of oxidative stress markers appear in ensuing timelines, thus creating an elevated state of 

damage and inflammation. Collectively, these changes in damage and inflammatory states 

may partially explain the reduction in inability to reproduce peak power, force or match 

relevant performances within this 72 h post-match period.   

 

1.2.4 Energy demands and glycogen depletion 

The volume of work (i.e. 9-13km distance) and magnitude of intense actions performed 

during a football match (i.e. 150-200 actions) [11] suggest that the working musculature of 

footballers requires high aerobic and anaerobic energy demands. From an anaerobic 

perspective, glycolysis results in the catabolism of glucose to pyruvate, and production of 
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lactate when the presence of oxygen is limited. In footballers, mean blood lactate 

concentrations during matches have been observed ranging from 2–12 mM.L-1 [16], 

dependent on sampling time. Despite high variability in lactate values, the elevation in 

accumulated lactate response is likely resultant from the extensive high-intensity activities 

performed in a match [11, 60]. Although limited in linking lactate concentration with fatigue 

(given exercise performance can be maintained even with increasing muscle lactate), the 

finding of high blood lactate and moderate muscle lactate concentrations during matchplay 

highlights the regularity of high rates of anaerobic glycolysis [60]. In addition to the role of 

glycolysis during a football match, the reduction in muscle glycogen stores appear to be 

important substrates for football players. For example, Saltin indicates that matches typically 

(56), though not always, result in a substantial depletion of glycogen stores [16, 61]. This 

depletion in a significant number of muscle fibres would represent one of the most plausible 

physiological reasons as to why fatigue becomes more evident towards the end of a match 

[16]. For example, Krustrup et al. [16] found that 73% of muscle fibres were considered full 

of glycogen prior to three matches played by semi-professional Danish players, compared to 

~ 20% after the match (P < 0.05).  Replacing glycogen stores in the 24-48 h period following 

match play would thus appear a necessary part of the recovery process. Consequently, the 

optimal intake of carbohydrate is recommended as the most important nutritional requirement 

for footballers [3]. Taken collectively, players endure many aerobic and anaerobic energy 

demands during matches with perhaps the most significant factor to consider being the 

reduction in, and requirement to replenish, muscle glycogen stores.  

 

1.2.5 Thermoregulation and dehydration 

Limited information exists on the influence of thermoregulatory responses related to fatigue 

during football matches [18, 62], though core temperatures of 39-40°C have been suggested 

to occur during matches and training [63]. For instance, Duffield and colleagues examined 

the relationship between intensity of training "higher-intensity" (140 min), "lower-intensity" 

(120 min) and "game-simulation" (100 min) and changes in hydration status, core 

temperature, sweat rate and composition and fluid balance in thirteen professional football 

players training in the heat (3 training sessions; 26.9 ± 0.1 °C and 65.0 ± 7.0% relative 

humidity). The authors found that the biggest predictor of the rate of rise in core temperature 

was mean speed of the session (r = 0.85). Furthermore, there is evidence to suggest 

excessively elevated core temperature results in a reduction in physical performance. For 

instance, when the environmental temperature is increased from 20°C to 30°C the total 
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distance covered during a game is reduced [4]. Mohr et al. [64] reported that when 

environmental temperatures increases from ~21°C to ~43°C total distance and high intensity 

running distance  covered is reduced by 7% and 26% respectively. Interestingly, increases in 

core temperature in the 43°C conditions were correlated to total game distance in the heat (r = 

0.85; P < 0.05); however this relationship was not apparent for high intensity distance 

covered [64]. Together, this would suggest that the extent of core temperature increase, and 

resultant fluid replacement, are critical factors which can influence the recovery process, 

necessitating important considerations for experimental research design.  

 

In addition, some report that both match and simulated-match exercise in hot conditions 

results losses of ~5% of body mass [65] compared to 1.5–2% in thermoneutral conditions 

[18, 62]. Edwards et al. [66] assessed whether moderate water loss (1.5–2% of body mass) 

represented a significant impairment to football match-play and football-specific activities by 

comparing the effect of three different conditions: 1) fluid intake, 2) no fluid and 3) mouth 

rinse in a individually randomised order. Core temperature increased in the no fluid condition 

compared with the fluid condition (39.28°C (0.35°C) and 38.8°C (0.47°C), respectively; P < 

0.05), whilst the post-match performance of a sport-specific fitness test was significantly 

reduced with no fluid. However, whilst the authors showed moderate dehydration can be 

detrimental to football performance, interestingly the post-test evaluation of rating of 

perceived exertion and thirst was greatest (i.e. most challenging) in the no fluid condition. 

Therefore, whether this reduction in performance is attributable to water lost or the negative 

psychological associations derived from a greater perception of effort in the no fluid  

condition, remains unclear [66]. In summary, thermoregulatory and hydration effects on 

physiological and psychological performance need to be considered when investigating the 

recovery time course in football, including accounting for changes in sweat rate and 

electrolyte losses in response to football-related activity which suggest that rehydration 

practices should be adopted post-exercise [67].   

 

1.2.6 Mental fatigue 

Players can experience a vast array of psychological demands specific to football, such as 

motivation, anxiety, arousal, emotion, competitiveness, concentration, confidence and 

communication [68]. Furthermore, various cognitive abilities such as reaction time, decision 

making and spatial awareness are required to execute football-specific skills [8]. Indeed, 

psychological demands of sport are an often less examined, but by no means less important, 
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aspect to understanding the fatigue response relevant to football performance [69, 70]. 

Indeed, there are recent examples of mental fatigue impairing physical performance [9], 

soccer-specific physical and technical performance [34] and even soccer-specific decision-

making skill in footballers [10]. Furthermore, many authors hypothesise that subconscious 

pacing may take place when players are in a fatigued state (whether within a game or as a 

result of many games in a congested period) [71, 72].  

 

1.2.7 Subjective stress 

Perhaps the most important aspect of football psychology is how the player perceives the 

effort or load he or she is exerting during training or matches [10, 34, 73]. Indeed, the ability 

of scientists and coaches to accurately monitor training load is an important aspect of 

understanding the fatigue induced by training/matches leading to effective injury and 

recovery management. One aspect of quantifying this perception of training load is through 

collecting the player’s rating of perceived exertion (RPE; [74]) and multiplying it by the 

duration of the physical session (i.e. internal arbitrary training load = RPE  x  duration of 

session (min)) [75]. The use of RPE is now widespread in football due to its practicality, 

cheapness to operate, correlation with various HR-based training load (r = 0.50 to r = 0.85, P 

< 0.01 [76]) and relationship with injury occurrence [77]. For instance, using RPE compared 

to the assessment of other psychological demands is suggested as advantageous to represent 

the athlete’s own perception of training stress, which can include both physical (oxygen 

uptake, HR, ventilation, beta endorphin, circulating glucose concentration, and glycogen 

depletion) and psychological stress (motivation, anxiety) [76]. Overall, the use of RPE 

provides a valuable assessment of the perceived exertion involved in playing football, and as 

such may help one understand the fatiguing stimuli present in, and recovery from, training 

and matches.  

 

Outside markers to quantify the perception of effort during exercise or specific cognitive 

markers which assess psychological function per se, various subjective (self-reported) 

markers are used to assess players’ perceived wellbeing. Indeed, many authors and 

practitioners theorise that perceptual responses may reveal early-warning signs of developing 

chronic fatigue more readily than the various physiological or biochemical markers of fatigue 

[78]. For exmple, these perceptual scales  include the Recovery-Stress Questionnaire for 

Athletes (REST-Q-Sport; [23]), Daily Analysis of Life Demands For Athletes (DALDA; 

[79]), Profile of Mood States (POMS; [80]), feelings of soreness (delayed onset muscle 
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soreness (DOMS)), total quality recovery scale (TQR; [78]) and other more simple, singular 

Likert scales for psychological mood, wellbeing and stress [81]. For instance, Filaire and 

colleagues measured mood, as measured by the POMS, and performance four times during a 

season in seventeen professional male football players [82]. Iceberg profiles of POMS were 

observed during the first three quarters of the season, which coincided with successful 

performance. Subsequent decreased performance between the 3rd and 4th quarters of the 

season coincided with a decrease in vigor and an increase in tension and depression within 

the POMS [82]. Taken collectively, a range of subjective tools have shown reductions in 

mood, wellbeing and increases in fatigue, stress and muscle soreness immediately following  

match, with some aspects taking 48-72 h to return to normal values [31].  

 

In summary, match- and training-induced fatigue is a multifaceted phenomenon which could 

occur due to factors related to glycogen depletion, dehydration, muscle damage and mental 

fatigue [8]. For a wide variety of reasons (e.g. high inter- and intra-reliability, internal and 

external validity issues, difficulty in obtaining participants for experiments, difficulty in 

comparing matches) there is currently no deterministic marker for states of fatigue or 

recovery. [53, 81]. Thus, it the current consensus is that a combination of markers related to 

fatigue are best suited to then monitor the recovery status of a player [12, 13, 83].  

Accordingly, the return to (or near) baseline of these parameters (i.e. the state of recovery) is 

highly variable and dependant on several confounding factors including physiological and 

psychological load, fixture of matches, previous history of injury and the mode of recovery 

used [31]. As such, it is critical to understand the fatigue status of players from a variety of 

perspectives (i.e. physical, physiological, perceptual, neuromuscular), to then interpret the 

recovery state for professional level footballers.  

 

1.3 The importance of sleep in the recovery time course 

The post-match recovery timeline is a multi-day and multi-dimensional process, with large 

portions of this recovery time frame occurring during periods of sleep. A daily occurrence, 

sleep contributes heavily to cognitive development (learning, memory, and synaptic plasticity 

- as discussed in detail later), and is proposed as a crucial part of the stress-recovery balance 

[22]. Sleep also has several molecular purposes, with the release of growth hormone present 

when humans sleep, stimulating protein synthesis important for regeneration and muscle 

growth [84]. This process can potentially accelerate the rate of healing to repair peripheral 

muscular damage as well as support other training-induced anabolic processes [85-87]. For 
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example, it has been confirmed sleep is critical to metabolic homeostasis [88]. Since a variety 

of crucial metabolic and immune processes occur during sleep, it appears a conceptual 

relationship exists between the quantity and quality of sleep and the capacity of athletes to 

perform and recover [89]. Furthermore, since the perception of recovery and other 

psychological dimensions are just as important aspects of the holistic recovery status of an 

athlete [24], the cognitive restorative bases of sleep are also  likely to be important to aid this 

process. However, due to the complexity of sleep function, different athletic environments 

and the variability in the individual requirement for sleep [28, 29], the interaction between 

sleep and recovery in football remains largely unknown. Thus, to further explore this area it 

is pertinent to evaluate the theory and function of sleep, the different methods used to 

measure sleep, and the relationship between sleep and athletic performance and recovery 

outcomes with relevance to football.   
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2. SLEEP, PERFORMANCE AND RECOVERY 

2.1 A conceptual introduction to the theory and measurement of sleep  

Reoccurring at habitual intervals throughout a 24 h period in humans, sleep is a 

homeostatically controlled behavioural state of reduced movement and sensory 

responsiveness [90, 91]. Recognised in the early medical accounts of Aristotle and Galen [92, 

93], the process of sleep has widely been regarded as critical to both cognitive and 

physiological function [89, 91, 94-97]. Recent studies have shown sleep to regulate key 

molecular mechanisms (i.e. transcriptional regulatory proteins [90, 98, 99]), and have 

demonstrated that sleep has an integral role in metabolic homeostasis [88]. The duration and 

quality of sleep is manipulated by numerous environmental factors, among them light [100], 

time zone zeitgeists [101] and nutrition [26], though sleep architecture is also influenced by 

genetic predisposition [102, 103]. Notwithstanding the complexity surrounding the need, 

rationale and outcome of sleep, it seemingly must serve an important purpose for living 

organisms because it has survived so many years of evolution [102].  

  

A recent review by Frank [104] identified several theories of the function of sleep, including: 

1) the restorative effects on the immune and the endocrine systems, 2) a neuro-metabolic 

theory suggesting that sleep assists in the recovery of the nervous and metabolic cost imposed 

by the waking state, and 3) cognitive development, supposing that sleep has a vital role in 

learning, memory, and synaptic plasticity. A critical review of the literature by Frank and 

Bennington [104] concluded that sleep is a process which serves the brain rather than the 

body, with the neural processes instrumental in cognitive activity being the most disrupted by 

altered sleep. In part, these conclusions lead the authors to suggest that the evidence 

underpinning theories 1 and 2 above are either weak or equivocal, and based primarily on 

specific stages of sleep [104]. Such a conclusion is supported by Stickgold and Walker, 

whose reviews provide consistent and strong support for the existence of sleep-dependent 

memory consolidation and cognitive based development [105, 106]. These works summarize 

several studies reporting associations between slowed improvement in procedural memory 

tasks with various measures of reduced and interrupted sleep [105]. In spite of this perceived 

importance, the consensus regarding the rationale as to why humans sleep remains equivocal, 

if not robustly debated [91, 104]. Notwithstanding, an interaction between these theories is 

likely to contribute to the construct of several stages during sleep [104]. Although sleep is 

often referred to in a global context, the process of sleep comprises several ‘stages’ (Figure 

2.1). These respective stages not only differ in depth, but also in the frequency and intensity  
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Figure 2.1: The behavioural states of humans and phase changes throughout the sleep wake 

cycle, including states of waking, non-rapid-eyemovement sleep and rapid-eye-movement 

sleep. The first row depicts a visual representation of movements throughout the sleep night. 

The second row illustrates REM sleep and the four stages of NREM sleep. The third row 

includes sample polysomnography tracings (each 20 s) of an electromyogram, an 

electroencephalogram, and an electrooculogram to help determine the presence or absence of 

each stage. Rows four, five, and six portray a range of subjective and objective state 

variables. Reproduced from Hobson [107]. Abbreviations: EEG electroencephalogram, EMG 

electromyogram, EOG electrooculogram, NREM non-rapid-eye-movement, REM rapid-

eyemovement  
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of dreaming, eye movements, muscle tone, regional brain activation and communication 

between memory systems [105]. A typical night’s sleep is composed of approximately 90 

min cycles divided into periods of rapid-eye-movement sleep (REM; associated with 

dreams), and non-REM sleep (NREM) [108]. NREM sleep is further divided into three 

(formerly four) different stages (Figure 2.1). All stages are classified according to parameters 

such as electrical brain activity, blood pressure, and eye movement (Table 2.1 [109, 110]).  

NREM sleep is defined as the three (formerly four) stages of sleep which possess distinct 

electroencephalographic responses (Table 2.1), alongside other characteristics mainly 

comprising the beginning of sleep with slow eye movement (‘relaxed wakefulness’), no eye 

movement (‘easily awakened’) and slow wave sleep (‘deep sleep’). The determination of 

these stages is performed by the ‘gold standard’ of sleep quantity and quality monitoring, 

known as polysomnography (PSG). PSG involves the measurement of various parameters 

such as electroencephalogram (EEG), electrooculogram (EOG) and electromyography of the 

submentalis (EMG) to determine and classify these respective sleep stages ([92]; Table 2.1). 

For instance, SI NREM is defined by the attenuation of alpha rhythm greater than 50% of the 

epoch which can be replaced by a mixed frequency low amplitude rhythm ([92]; Table 2.1). 

Specifically, the role for NREM sleep is proposed to assist with energy conservation and 

nervous system recuperation. As an example of this proposition, it has been shown that 

growth hormone (GH), which is fundamental to tissue regeneration and growth, is released 

[84] and oxygen consumption is lowered [111] during phases of NREM sleep. Moreover, 

NREM sleep seems to be a stimulus for anabolic hormones that increase the synthesis of 

protein and mobilise free fatty acids to provide energy, thereby preventing amino acid 

catabolism [112]. Such processes would seem particularly pertinent for athletic populations 

requiring accelerated rates of healing to repair peripheral muscular damage [87].  

 

Comparatively, REM sleep is the ‘fourth’ stage of the sleep cycle which occurs following the 

three stages on NREM sleep, usually occurring at least 90 min after falling asleep. REM 

sleep is characterised by low amplitude, mixed frequency EEG responses, rapid eye 

movement EOG measurements and low muscle tone EMG ([92]; Table 2.1). Theories of 

REM sleep have suggested a role for this state in periodic brain activation, localized 

recuperative processes and emotional regulation [113]. Especially in the early stages of 

mammalian life, REM sleep is assumed to be critical in establishing brain connections [113], 

since neuronal activity is similar to waking in REM sleep [114]. Hence, sleep can be rather
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Table 2.1: The different stages of sleep and their related polysomnographic findings.  

 

 

Abbreviations: W: wakefulness; N1: NREM stage 1 sleep; N2: NREM stage 2 sleep; N3: NREM stage 3 sleep; R: REM sleep stage. Bolded 

items are requirements for staging. Italicized items are non-required, associated findings that may be present in that sleep stage. (reproduced 

from Vaughn and Giallanza [92], which was originally adapted from AASM Manual for the Scoring of Sleep and Associated Events [115].  

†Previously known as NREM stage 3 and NREM stage 4 sleep. 
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defined as an actively regulated process than a passive result of diminished waking, and can 

be viewed as a reorganisation of neuronal activity [114].  

 

The importance of sleep has also been discussed in regards to memory consolidation, 

especially to motor learning. REM, NREM stage 2 and slow-wave (SWS) sleep have all been 

implicated in sleep dependent memory procession [105]. For example, several studies 

showed improvements in motor task tests after a night of sleep, whereas this was not the case 

in subjects having an equivalent period of being awake [105, 106, 116, 117]. Since sleep loss 

reduces the overnight improvement in motor learning, it seems that motor task learning may 

be associated with the amount and duration of specific sleep stages, rather than just one 

specific aspect of sleep [105]. Ongoing motor learning and cognitive adaptation are crucial 

requirements for motor performance [118]. This combined with the numerous neurocognitive 

components of many sports [119], supports that ascertaining an optimal mental state for a 

range of distinct memory consolidation processes are pertinent for human physical and 

cognitive performance (this is further addressed from an athletic perspective in section 2.3  

[118]). Taken collectively, sleep likely contributes to several vital human functions including 

restorative effects on the immune and the endocrine systems, assisting in the recovery of the 

nervous and metabolic cost imposed by the waking state, and playing a critical the role in 

learning, memory, and synaptic plasticity. With such a critical role in human function there 

appears a requirement to measure sleep at some stage, especially for athletes. For instance, if 

sleep is restorative and given the high and intense training loads of present day sport, then 

sleep factors may be even more pertinent for professional athletes. However, the monitoring 

of sleep does create logistical issues that affect validity and interpretation challenges.  

 

2.2 Method of sleep data collection 

As suggested earlier, PSG remains the gold standard of sleep measurement. From a 

physiological perspective, the most sensitive indication of timing of sleep and onset of the 

various phases of sleep (through the measurement of a series of physiological responses) is 

PSG. Given its ability to measure brain activity, muscle tone and eye movements, PSG is 

considered the most accurate method to quantify sleep; thus its extensive use in clinical 

settings. This method measures many sleep indices including total sleep time, sleep-onset 

latency, wake after sleep onset, sleep efficiency, sleep fragmentation index, number of 

awakenings, time in each sleep stage, and sleep stage percentages [26, 27]. Other 

physiological parameters can also be measured during PSG including esophageal acid levels, 
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core body temperature, penile tumescence, sweat levels and hormonal levels [92]. Despite the 

greater accuracy, PSG is expensive, potentially invasive for participants and labour and 

technically intensive [27], possibly limiting its use in field-based environments and studies 

involving elite sporting populations such as footballers. For instance, it is unlikely that many 

clubs would invest copious amounts of money in a piece of equipment that requires specific 

expertise to operate and players may not like wearing on a continual basis. Moreover, since 

professional clubs are continually changing sleep environments (i.e. home to hotel to game to 

flight to new hotel), the use of PSG (which generally requires the use of an ‘in-house’ 

laboratory) is unlikely to be logistically feasible. Whilst portable PSG units have begun to 

show recent promise to alleviate this issue, the validity, accuracy and research pertaining 

these instruments remains limited at present [120]. In addition, participant issues with these 

devices (i.e. poor compliance linked to comfort of wearing the device) limit their use in elite 

sporting environments at present. Consequently, accurately measuring sleep in field based 

environments is difficult, though remains important to quantify sleep quantity and quality in 

ecologically valid field settings. With these difficulties in mind, other methods of collecting 

sleep data exist to aid obtaining sleep information in real-world settings.   

 

Actigraphy is another popular method of objectively estimating sleep parameters. These 

devices are usually worn either on either wrist of the upper-extremities  to continuously 

monitor body movement and activity (usually on the wrist), and thus estimate sleep based on 

algorithms primarily related to acceleration and movement [27]. Advantages of actigraphy 

compared to PSG are the size, transportability and ease of wear, making it more suitable for 

football-specific environments, especially those which are continually changing due to travel 

and other commitments. Furthermore, actigraphy is a popular method of measuring sleep due 

to its relatively un-invasive nature and comfort level compared to PSG. Although admittedly 

less accurate than PSG, actigraphs are still able to give reliable and valid sleep measures 

including total sleep time, sleep efficiency, wake episodes and wake episode duration [27], 

although there are reports of weakened correlations with PSG for sleep onset latency [121] 

and intermittent awakenings [122]. Signal et al. [123] compared PSG and actigraphy 

measurements of the in-flight and layover sleep of 21 flight crew. The authors reported that 

actigraphic and subjective estimates of sleep duration correlated highly with PSG (range r = 

0.84-0.95) with the mean differences relatively small between instruments (-36 and -20 min). 

However, actigraphic estimates of sleep latency and efficiency showed moderate to poor 

correlation (r= 0.04-0.53) with PSG [123]. In comparison, others have found no significant 
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differences for sleep efficiency between PSG and actigraphy [124]. For example, Kushida 

and colleagues compared the night responses of 100 sleep disorder patients between epoch-

by-epoch comparison of PSG, actigraphic and subjective sleep parameter data. The authors 

found no difference between PSG and actigraphy for total sleep time, sleep efficiency and 

number of awakenings [124]. Overall, whilst actigraphy appears to accurately measure sleep 

duration it remains unclear whether measures of sleep latency, awakening and efficiency are 

as accurate. Thus, the potential error and threshold for difference should be considered when 

estimating those other sleep variables from actigraphy [123]. From a practical perspective, in 

football-specific environments the variables acitgraphy can accurately measure are generally 

of primary interest in (i.e. sleep duration opposed to the amount of sleep spindles in stage N2; 

Table 2.1). If a player has a suspected sleep health issue then they may be referred to a sleep 

medical specialist through which PSG could of course be necessarily employed.  

 

Despite the ease of actigraphy, there are still costs and player comfort issues to consider. For 

instance, players are still required to wear a “foreign” object on their person at all times, and 

in many professional leagues around the world there are player agreements in place which 

restrict monitoring players outside club hours. Thus, normative sleep for players when not 

attending club practices and games is unknown. Notwithstanding, actigraphy devices only 

maintain the ability to estimate sleep when sleep diaries are used. Accordingly, the simplest 

method to monitor sleep involves subjective sleep diaries can also be used to monitor sleep 

quality and quantity. The reliability and validity of these measures depends on the 

questionnaire used. Indeed, previous work has shown subjective measurements can be 

imprecise [125] and can be influenced by mood, memory bias and personality characteristics 

[126]. However, it has also been shown that respondents are capable of estimating total sleep 

duration with significant accuracy [127]. Furthermore, the sleep indices within a newly 

developed subjective sleep questionnaire (RegMan for Sport) have been validated against 

objective measures of actigraphy, with time in bed (ICC = 0.93 to 0.95) and total sleep time 

(ICC = 0.90 to 0.92) revealing strong agreement [128]. Thus, if using objective 

measurements of sleep are not possible, the use of subjective measures can provide an 

accurate indication of some sleep parameters for athletes. From a practical perspective, 

subjective measurements of sleep are preferred within elite sport environments as they are 

less invasive than actigraphy or PSG. For instance, some players feel uncomfortable wearing 

the watches whilst they sleep and anecdotal reports suggest players are more anxious when 

they are wearing a device which is measuring their sleep. Further, the intrusion into private 
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life by such monitoring devices is becoming an issue with many player associations. Some 

medical practitioners additionally question the need for technology to report sleep 

parameters, when they see little reason for players to ‘lie’ about their sleep. This is obviously 

dependant on player-coach-medical team dynamic and relationship. These subjective 

methods can also be used to confirm actigraphic results [27]. Importantly, both actigraphy 

and subjective reports have been shown to not significantly differ between PSG data for total 

sleep time and sleep efficiency [124]. Taken collectively, this suggests that if PSG is not 

readily available or preferred for use and players are comfortable with other modes of data 

collection, actigraphy and subjective questionnaires offer the next reliable step with which to 

assess sleep data for athletes.  

 

Finally, outside the three main methods of quantifying sleep, the identification of athletes’ 

‘morning’ or ‘evening’ types (circadian phenotype) may be an important consideration for 

when quantifying sleep, especially for athletes. Such classification can be evaluated using the 

Morning-Evening Questionnaire (MEQ) [129] to determine if sleep chronotype influenced 

various sleep variables. This questionnaire uses 19 questions regarding sleep behaviour, with 

a cumulative score used to categorise individuals as ‘morning’ types (scores 59-86), 

‘evening’ types (14-41) and neither types (‘intermediate’; 42-58) [129, 130]. The inclusion of 

the questionnaire in experiments may be an important consideration, especially given the 

known variability in the intra-individual requirement for sleep [26, 28, 108]. For instance, 

whilst circadian rhythms have been shown to regulate key physiological processes involved 

in athletic performance (with personal best performances occurring generally in the 

evenings), there is recent evidence that time since awakening, along with the athlete's 

circadian phenotype (i.e. a preference for going to sleep early/later or arising early/later), are 

required for consideration when observing optimal athletic performance [131]. Indeed, 

understanding the interaction between sleep and athletic performance outcomes is one that 

warrants further examination. Taken collectively, the most sensitive indication of timing of 

sleep and onset of the various phases of sleep is PSG; thus its extensive use in clinical 

settings. However, this equipment is limited in field-based practical setting (such as 

footballers) due to cost, being potentially invasive for participants and labour and technically 

intensive [27]. Comparatively, actigraphy and subjective sleep diaries are preferred by 

professional athletes to measure sleep; however the accuracy of in measuring sleep is mixed. 

Thus, potential error and limitations in accuracy should be considered when interpreting 

results from these measures in athletes. Having discussed the methods to measure sleep, to 
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further understand the context of sleep loss within athletic performance domains, it is now 

pertinent to discuss the effects of sleep loss of exercise and physiological and cognitive 

responses to exercise.  

 

2.3 The effects of sleep loss on athletic performance 

Associated publication: 

Fullagar, H.H.K., Skorski, S, Duffield, R, Hammes, D, Coutts, A, Meyer, T. (2015). Sleep 

and athletic performance: The effects of sleep loss on exercise performance, and 

physiological and cognitive responses to exercise. Sports Medicine. 45(2):161-186. DOI: 

10.1007/s40279-014-0260-0 (Appendices 6.1). 

 

The ability of humans to cope with physiological and psychological stressors is critical to 

athletic performance outcomes [132], and is affected by numerous factors including 

experience, fitness, motivation and the natural fluctuation of physiological and behavioural 

processes across any given 24 h period (i.e. sleep-wake cycle, body temperature, hormone 

regulation [133]). These circadian rhythms are primarily controlled by the suprachiasmatic 

nucleus (SN) within the hypothalamus [91]. However, the SN is unable to always maintain 

control over these patterns, as humans are highly sensitive to alterations to their natural 

environment [68, 91], most notably through the light-dark cycle [134]. When athletes 

encounter disruptions to their environments (e.g. through travel or training/playing at night), 

endogenous circadian rhythms and normal sleep-wake cycles can become desynchronised 

[29, 91]. Such perturbations in sleeping patterns can cause an increase in homeostatic 

pressure and affect emotional regulation, core temperature and circulating levels of 

melatonin, causing a delay in sleep onset [135]. Following these periods there is potential for 

sleep loss to result in neurocognitive and physiological changes and performance to be 

compromised [25, 26, 89, 136]. Thus, since sleep disruption prior to important events are 

commonly found in elite athletes [137-139], there are numerous instances where the 

subsequent performance could be compromised [137, 140, 141].  

 

2.3.1 Sleep in normal vs. athletic populations 

Subjective mean total sleep duration has steadily reduced in healthy adults since the mid-

twentieth century from approximately 8–9 h per night in 1959 to 7–8 h in 1980 [142]. In a 

nationwide survey of the USA in 2013, data indicate adults slept for an average of 6 h:51 min 

on ‘workdays’ and 7 h:37 min on ‘non-workdays’ [143]. Interestingly, almost one-quarter of 
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adults who have similar sleep durations to current recommendations report ‘fairly–very bad’ 

sleep quality. However, such objective data is not currently present in the football related 

literature. As such, it remains unclear for how long and how well elite players sleep. From an 

elite athlete perspective, it is perhaps concerning when comparing with non-athletic 

populations, as Olympic athletes were reported to experience significantly poorer sleep 

durations and qualities compared to non-athletic controls [144]. Some limited data also exists 

from football case studies, for example elite youth players sleep for 6 h: 44 min ± 41 min at 

home and 7 h : 45 min ± 1:09 h following training [145].  Training in this study appeared to 

potentially offer benefits for the youth player’s sleep quality, with a training condition 

resulting in a significantly higher (7 ± 2; P < 0.01) rating of sleepiness at bedtime compared 

to a home condition (6 ± 1) [145]. In addition, sleep duration and quality have been shown to 

be significantly reduced on the night of away matches compared to the night prior in elite 

Australian football players, though normative sleep data for elite players is unclear [146].   

 

Despite sleep data in football players being limited, there is evidence of sleep data in other 

sports. Mah et al. [147]  reported mean average sleep durations of 6.7 ± 1.0 h in collegiate 

basketballers during a competitive season. Similarly, Lastella et al. [141] found a sample of 

58 elite Australian team-sport athletes slept for a mean duration of 7.0 ± 1.2 h during a 

regular training phase. Juliff et al. [139] reported that more than half of a sample of 283 elite 

individual and team-sport elite athletes (of which 210 were from team sports) indicated they 

had slept worse (perceptually reduced quantity and quality) than usual in the night(s) prior to 

an important competition or game in the past year. The same study also reports these team-

sport athletes slept for an average of 7 h: 36 min per night and this does not appear to differ 

between in- or out- of season. With regard to sleep following competition, Eagles et al. [148] 

found a significant reduction in sleep durations on game nights compared to non-game nights 

in rugby union players. Whilst caution needs to be taken in comparing across studies (i.e. due 

to differences in sleep-assessment methodologies), it seems reasonable to assume sleep in 

team-sport athletes (i.e. football) is dependent on many factors. These could include the type 

of sport, training and travel demands, age, personal situation, time of season and team culture 

[141]. In addition to the knowledge of how well and long footballers sleep, general sleep 

health is also important. 

 

Taken collectively, normative sleep quantity and quality for elite football players are scarce 

in the current literature. Furthermore, it remains unclear how sleep is affected by numerous 
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extraneous constraints (e.g. travel, late-might matches and congested schedules) experienced 

by professional players. However, before exploring the relationship between sleep, 

performance and recovery in football it is critical these observational studies are investigated 

to build the foundation for our understanding of sleep within a football context. Furthermore, 

perhaps it is most pertinent given the lack of specific sleep and football performance data to 

review the literature on sleep and performance from an over-arching athletic perspective. 

 

2.3.2 Effects of sleep loss on exercise performance 

Much of the previous research has reported that exercise performance is negatively affected 

following sleep loss; however, conflicting findings mean that the extent, influence, and 

mechanisms of sleep loss affecting exercise performance remain uncertain. For instance, 

research indicates some maximal physical efforts and gross motor performances can be 

maintained [149, 150]. In comparison, the few published studies investigating the effect of 

sleep loss on performance in athletes report a reduction in sport-specific performance [151-

153]. Perhaps most relevant for athletes, sports-specific skill execution [153], submaximal 

strength [149], and muscular and anaerobic power [154-158] seem to decline following sleep 

restriction (involving later sleep or earlier wake times disrupting normal sleep–wake cycle). 

Indeed, athletes are more likely to encounter this type of sleep restriction. For instance, Reilly 

and Deykin [159] reported no decrements in endurance running performance (time to 

exhaustion) following partial sleep loss (3 h of sleep per night for 3 nights). Furthermore, the 

total distance covered in a YoYo intermittent-recovery test level one was not different 

following SR [160]. In contrast, maximal work rate has been found to decrease (15 W 

decrease following SR) during incremental cycling to exhaustion (30 min at 75 % VO2max 

followed by 10 W increase every min [161]). Similarly, mean and peak power during 

Wingate anaerobic cycle tests have been shown to decrease in students [156], footballers 

[162], and judo competitors [154] following 4 h of SR for 1 night. Given these findings, 

whilst it seems that sleep restriction impedes some aspects of athletic (physical) performance, 

it remains unclear whether sleep is critical to performance for all athletes who experience 

small one-off sleep restriction periods. From a football perspective, there are no experiments 

to the authors’ knowledge that evaluate the impact of sleep loss on any performance 

parameter.  

 

Perhaps the only comparable study was a study by Skein et al. [163] whom reported 0 h of 

sleep compared to ~8 h of normal sleep to be associated with reductions in muscle glycogen, 
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perceptual stress, sprint performance and slowed pacing strategies during intermittent-sprint 

exercise for male team-sport athletes (all variables related to aspects of football performance 

[3]). However, the results of this study are difficult to extrapolate to footballers given it is 

unlikely players will incur such extreme cases of sleep deprivation. Nonetheless, it is 

important to consider these results as an example of what potentially occurs at the extremes 

of such circumstances. In contrast, it should be noted that sleep may not always be necessary 

for optimal performance outcomes. Although again an extreme case, it was found that non-

sleepers completed the North-Face Ultra-Trail du Mont-Blanc 2013 race faster than those 

who slept during the course [164]. To compensate for this, athletes appeared to increase sleep 

duration in the days prior to the race. Indeed, the effect of sleep on performance appears to 

very dependent on numerous factors such as the different exercise performance requirements 

and scheduling factors specific to each sport.  

 

Whilst not sports-specific, there have been reports of the effect of sleep restriction on 

occupational performance (i.e. military and fire-fighting; [165]). Indeed, there are numerous 

performance and physiological outcomes which are similar between physically demanding 

occupations and elite athletes [166]. In a recent study by Vincent et al. [165] thirty-five 

firefighters were randomly allocated to a control condition (8 h sleep opportunity) or a sleep 

restricted condition (4 h sleep opportunity) with subsequent performance on a range of 

physical work tasks (task completion and physical activity) evaluated over three days. Sleep 

restriction did not negate the ability of firefighters to perform relevant work tasks; however, 

their physical activity performed during fire-fighting tasks was reduced. Thus, those 

performing physically demanding tasks following sleep loss may aim to conserve physical 

exertion during rest periods in order to still complete the tasks. Indeed, this study supports the 

findings of Skein et al. [163], whom investigated the effects of 30 h of sleep deprivation on 

consecutive-day intermittent-sprint performance and muscle glycogen content. Following 30 

h of sleep deprivation, the distance covered during the initial and final 10 min periods of a 

50-min intermittent-sprint exercise protocol (including a 15-m maximal sprint every minute 

and self-paced exercise bouts of varying intensities) was reduced compared to a control 

condition [163]. Although speculative, this could be extrapolated to football performance 

following sleep loss where players may look to conserve energy during periods where the ball 

is not in their immediate vicinity.  
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Finally, it is also important to consider the timing of sporting performance. For instance, 

whilst circadian rhythms have been shown to regulate key physiological processes involved 

in athletic performance (with personal best performances occurring generally in the 

evenings), there is recent evidence that time since awakening, along with the athlete's 

circadian phenotype (i.e. a preference for going to sleep early/later or arising early/later), are 

required for consideration when observing optimal athletic performance [131]. Therefore, the 

identification of athletes’ ‘morning’ or ‘eveningness’ (circadian phenotype) may be an 

important consideration for future research. This can be evaluated using the Morning-

Evening Questionnaire (MEQ) [129] to determine if sleep chronotype influenced various 

sleep variables. This questionnaire uses 19 questions regarding to sleep behaviour, with a 

cumulative score used to categorise individuals as ‘morning’ types (scores 59-86), ‘evening’ 

types (14-41) and neither types (‘intermediate’; 42-58) [129, 130]. The inclusion of the 

questionnaire in experiments may be an important consideration, especially given the known 

variability in the intra-individual requirement for sleep [26, 28, 108] and variability in 

recovery time course of numerous recovery markers [8].  

 

2.3.3 Effects of sleep loss on physiological responses to exercise 

The effects of sleep loss on physiological responses to exercise also remain equivocal [152, 

167-169]; however, it appears a reduction in sleep quality and quantity can result in an 

autonomic nervous system imbalance, acutely simulating symptoms of the overtraining 

syndrome [170]. Additionally, and whilst speculative, increases in pro-inflammatory 

cytokines following sleep loss could promote immune system dysfunction [171]. Examples of 

the susceptibility of physiological responses to exercise following sleep restriction 

(applicable to footballers) are the increase in heart rate, minute ventilation, and plasma lactate 

concentration during submaximal and maximal exercise after a partially disrupted night’s 

sleep (3 h of sleep loss in the middle of the night) [167]. These responses are attributed to the 

increased metabolic demand [172], perceived effort [168], and catecholamine concentrations 

following SR [173]. This could be interpreted as SR acting as an additional stress to the 

exercise stress itself [174]. In contrast, Martin et al. [169] showed that 2 nights of fragmented 

sleep (eight ‘wake up’ calls ranging 30–75 min) had no significant effect on heart rate, 

oxygen consumption, minute ventilation, and core body temperature during 30 min of heavy 

treadmill walking. These differences are perhaps attributable to the exercise mode and SR 

protocol administered. However, knowledge of the effect of sleep loss on physiological 



33 
 

responses to exercise in footballers remains limited given the difficulty and challenges of 

employing an intervention that will likely not elicit a positive response.   

 

Perhaps the most important finding with relevance to football players is the reduction in the 

full restoration of muscle glycogen stores in team-sport athletes [163]. Without adequate 

intake, this could hinder the ability of players to perform for sustained periods, as muscle 

glycogen shortage is known to reduce muscle function and total work capacity [94, 175] and 

has been shown to be implicated in fatigue mechanisms in football [2, 3, 16, 63]. Indeed, 

energy imbalances are associated with sleep deprivation, potentially leading to decreased 

aerobic and anaerobic power production for players [29]. Since disruptions to the 

sympathetic–parasympathetic balance are also associated with overtraining [176], it is 

possible the disturbances to the autonomic nervous system following sleep deprivation could 

support the development of an over-reaching or over-training status [94, 177]. Nonetheless, it 

appears more extensive periods of sleep loss are required to affect the majority of 

physiological responses to exercise. More research is required to assess the impact of various 

experienced amounts of sleep loss on physiological responses to exercise in elite players; 

although admittedly this present numerous methodological and practicality issues.  

 

2.3.4 Effects of sleep loss on cognitive responses to exercise 

Numerous studies report that when sleep duration is less than 7 h in healthy adults, cognitive 

performance is poorer in tests for alertness, reaction time, memory and decision making [25, 

178-184]. For example, heightened levels of sleepiness, depression, confusion and poorer 

overall mood states have also been reported [185-188]. Decrements in cognitive performance 

have previously been attributed to disruptions to pre-frontal cortex functioning, as cognitive 

deficiencies which occur outside this area of the brain malfunction in qualitatively different 

ways [182]. Recently, a more universal effect of sleep disruption on cognition has been 

proposed [189], due to the sensitivity of cognitive performance to both arousal (not limited to 

pre-frontal activity) and attention in a sleep disrupted state [179]. The neuroanatomical 

mechanisms behind this state are intricately complex [190]. For instance, when the quality 

and quantity of human sleep is reduced, it appears the largest decreases in cerebral 

metabolism (compared to the awake-rested state) are apparent in the thalamus, cerebellum 

and prefrontal, posterior parietal, and temporal cortices [190, 191]. The reduced metabolic 

rates within these regions have been correlated with decreased cognitive performance [192, 

193], highlighting their influence on optimal cognitive functioning [190, 194]. Based on these 
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collective findings, some studies suggest sleep benefits derived from models related to neural 

mechanisms, rather than peripheral tissues [195]. The detrimental effect of sleep loss on most 

aspects of cognitive function (slower and less accurate cognitive performance) remains 

unequivocal, with only minor conflicting findings present for the extent of the effects of mild 

sleep restriction [196]. These findings would predictably suggest negative consequences for 

athletes requiring high neurocognitive reliance (i.e. tactical requirements in elite football).  

 

Although football-specific evidence is lacking, reductions in alertness, reaction time, memory 

and decision making accompanied by heightened levels of sleepiness, depression, confusion 

and poorer overall mood states could negatively affect numerous dimensions of football 

performance. For instance, with slower reaction time following minor disruptions to both 

sleep quality [197] and duration [198], it would seem pertinent for players with a high 

reliance on this cognitive component to ensure optimum sleep conditions prior to competing. 

This may be particularly challenging for the top football teams in Europe who play more than 

70 home and away matches per season, where sleep conditions will change on an almost 

daily basis. These recommendations might be extrapolated to other aspects of cognitive 

function, since football also involves critical decision making [199, 200], which is also 

susceptible following SR [182]. Similar to the effect of sleep loss on physiological responses 

to exercise, more research is required to assess the impact of sleep loss on cognitive 

responses to exercise in elite players. This could be undertaken through observational studies 

where researchers know sleep reduction may occur naturally (i.e. late-night matches); 

although once more there are numerous methodological and practicality issues within this 

process. 

 

2.3.5 Future research for athletic performance outcomes with relevance to football 

Currently, there is insufficient evidence to clarify the importance of sleep for football players 

and the effects of sleep loss on exercise or football performance, alongside physiological and 

cognitive responses to exercise. Indeed, more research is required to confirm what 

dimensions of exercise performance are affected by sleep loss, especially those with a focus 

on repeated bouts of intermittent exercise and sport-specific performance. Admittedly, very 

little of the current literature has been conducted in football, or specifically with footballers, 

making the extrapolation of assumptions regarding sleep and performance to football 

difficult. Moreover, the majority of studies that assess the effect of sleep loss on athletic 

performance are those involving a scenario that is very rare in the real world.  
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Despite limited ecological sleep data for football players, it would seem more pertinent for 

research to investigate the effect of sleep restriction (minor sleep deprivation) on parameters 

related to athletic performance. Admittedly, this is extremely difficult to implement in an 

elite environment due to the possible outcome of negative performance outcomes. For 

instance, it would be impossible to ask a coach to deprive his players of sleep prior to a 

match. Instead, this could be done through field-based observational studies where 

researchers know sleep reduction may occur naturally (i.e. late-night matches). This would 

improve our understanding of players’ typical sleep behavior, how this behavior shifts when 

faced with compromising situations and potentially how these shifts impact football specific-

performance. Interestingly, there is little literature confirming the importance of sleep to 

physiological and psychological recovery. In particular, evidence of the role and importance 

of sleep within the professional football environment during various scenarios is lacking. 

Thus, although sport science personnel and researchers should be aware of the complex 

effects of sleep loss on athletic performance, such knowledge needs to be supplemented with 

sufficient understanding of sleep’s role in recovery, and possible sleep hygiene strategies to 

alleviate these issues. Indeed, whilst it is important to acknowledge pre-match sleep can 

important for the subsequent performance, the contextual circumstances that often dictate 

post-match sleep can be vastly affected (i.e. travel, playing at night, home or away) and thus 

recovery may compromised. Accordingly, future examination of the evidence of sleep and 

the potential role it may play in recovery for footballers is warranted.  

 

2.4 Sleep and recovery for elite footballers  

Associated publication: 

Fullagar, H.H.K., Duffield, R, Skorski, S, Coutts, A, Julian, R, Meyer, T. (2015). Sleep and 

recovery in team sport: current sleep-related issues facing professional team-sport athletes. 

International Journal of Sports Physiology and Performance. 10(8):950-7. DOI: 

10.1123/ijspp.2014-0565 (Appendices 6.2). 

 

It is clear that elite footballers endure numerous physiological, psychological  and 

neuromuscular stressors during training and competition [19]. Consequently, there is a vital 

requirement for players to balance these stressors with adequate recovery to maximise 

performance and ensure effective adaptation, whilst also minimising the risk of injury [22]. A 

crucial part of this balance is the management of a footballer’s normal sleep-wake cycle 



36 
 

during competition and training [26]. However, as mentioned previously, disruptions to a 

footballer’s natural environment can force a de-synchronisation between their endogenous 

circadian rhythms and this sleep-wake cycle, resulting in a circadian shift in the normal sleep-

wake cycle [29]. Following periods of altered sleep-wake cycle functioning there is also 

potential for recovery to be compromised [26, 201]. For footballers these scenarios could 

include periods of short- or long-haul travel [202], congested competition schedule [203], and 

training or playing at night [154]. Indeed, sleep loss in athletic populations is predominantly 

situational [139], with many football teams currently facing the challenge of coping with 

these specific, but commonly recurring disruptions and stressors. For example, the majority 

of European football tournaments are commonly played at night. Elite sporting environments 

also usually involve the interaction of more than one disruptive event. Top level European 

football teams (i.e. Champions League) can play away matches on a Wednesday night before 

playing once more during daytime hours the following Saturday - leaving less than 72 h for 

recovery and later post-match bed times [81]. Of further concern, team sport athletes report 

high incidences of daytime sleepiness, possibly due to a lack of awareness of sleep hygiene 

strategies [139]. At least anecdotally it appears there are numerous situations where 

footballers could endure poor sleep following training or match play, though research 

evidence of each/any situation appears limited. 

 

2.4.1 Theoretical components behind sleep and recovery 

There are three key factors which determine the recuperative (regenerative) outcome of sleep; 

the duration (total sleep time), quality (proportion of time asleep) and phase (circadian 

timing) of sleep [89]. A ‘healthy’ volume of night sleep has been suggested to be 7-9 h [204]. 

In addition to duration, sleep quality is also critical for optimal health and restorative 

functioning [204]. Although a clear definition is not readily available, sleep quality can best 

be outlined as the personal satisfaction of the sleep experience [204]. Further, the timing of 

sleep will also influence the effectiveness of the sleep bout. The timing of an individual’s 

preferred bedtime in turn affects their circadian rhythms (i.e. body temperature, hormone 

regulation), which can impact both sleep duration and quality [89]. From an athletic 

perspective, disturbances to one or all of these collective aspects of sleep are suggested to 

affect the post-exercise recovery process [89]. 

 

As mentioned earlier, a typical night of sleep is comprised of approximately 90-min cycles 

divided into periods of REM and NREM sleep. Whilst REM sleep has a role in periodic brain 
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activation, localized recuperative processes and emotional regulation, the role for NREM 

sleep is proposed to assist with energy conservation and nervous system recuperation [205]. 

For instance, motor skill improvements are significantly associated with stage 2 NREM sleep 

(Figure 2.1; Table 2.1), and the power and density of locally expressed sleep spindles [206].  

Taken collectively, there is considerable evidence supporting the recuperative nature of sleep 

in restoring molecular homeostasis, cellular maintenance and synaptic plasticity [89, 105, 

205]. From an athletic perspective, this implicates that disturbances to either the timing of 

sleep phases, or the quality and duration of sleep within these phases, can result in the 

hindrance of psychological and physical recovery following an exercise bout [89]. This 

would seem especially pertinent for football players whom are typically exposed to prolonged 

bouts of intermittent-sprint activity during both high-intensity training and competition. 

Logically, exposure to such activity will increase the need for recovery and subsequently 

increase the overall requirement for sleep [141]. 

 

2.4.2 The effect of sleep loss on recovery of football performance 

Although studies in elite football are lacking, there are recent studies which show that sleep 

loss following team-sport competition affects the time course of recovery for both 

performance and psychological measures. For instance, as alluded to previously Skein and 

colleagues [201] investigated the effect of sleep deprivation (0 h sleep) compared with 

normal sleep (~8 h) on the physiological and perceptual recovery of eleven rugby-league 

footballers following competitive matches in a randomised cross-over design. Overall, sleep 

deprivation negatively affected recovery with significant impairments observed in mean and 

peak countermovement jump height and cognitive reaction time. Although sleep deprivation 

was excessive, this study highlights the increased physiological load during wakefulness 

following sleep loss in team sports, and in turn, suppression of cognitive function and lower 

body power. Similarly, Fowler et al. [146] reported significant reductions in sleep duration 

and quality, along with an impaired stress-recovery balance, on the night of a match 

compared to the night prior for away matches in elite Australian footballers. In particular, 

there is little longitudinal sleep data (either subjective or objective) available in the scientific 

literature. This is surprising given this would appear the first step in understanding the 

relationship between sleep and recovery within a football context. 

 

There is further evidence of this relationship in individual athletes. For instance, significant 

reductions in sleep quantity and efficiency were associated with increased fatigue and 
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impaired exercise capacity in a group of ten functionally-overreached elite synchronized 

swimmers [207]. Furthermore, McMurray and Brown [208] investigated the cardiovascular 

and metabolic responses of five participants during submaximal exercise following 24 h of 

sleep deprivation. They reported increased minute ventilation and oxygen uptake during the 

recovery period, suggesting negative effects of sleep loss on physiological recovery [208].  

Since disturbed sleeping patterns can also harm muscular physiology though the impairment 

of protein synthesis, Datillo and colleagues [209] have hypothesised sleep is necessary for 

muscular recovery. The process of muscular recovery is dependent on the regulation of 

anabolic (testosterone, growth hormone, Insulin-like growth factor 1 (IGF-1)) and catabolic 

(myostatin, glucorticoids) hormones [209]. Unfortunately, the regulation of these hormones is 

susceptible to sleep restriction and deprivation [210]. These hormonal fluctuations can lead to 

an increased stimulation of protein degradation, causing muscle atrophy, worsening satellite 

cell proliferation and ultimately hindering the muscle’s capacity to recover [209]. However, it 

should be noted that these mechanisms are theoretical only.  

 

2.4.3 Sleep loss and association to illness and injury 

Previous work indicates there is an influential link between variables of athletic training and 

immune health [211]. When these variables are not balanced with adequate recovery, exercise 

performance can be negated, or conversely, excessive training or performing can lead to 

illness or injury occurrence [211]. Indeed, overtraining is associated with increased incidence 

of infection arising from both the physiological stress induced by excessive training and the 

psychological stress associated with a stress-recovery imbalance [171]. One of the 

considerations Walsh et al. [211] mentions as critical to this balance is adequate sleep, which 

is theoretically at risk during intensive training weeks or in-competition [171]. Moreover, 

athletes who train or compete at high-intensities for prolonged periods can be exposed to 

extraneous pathogens and other stressors to the immune system, such as severe mental stress 

[212]. For instance, Anglem et al. [213] investigated symptoms of illness and injury in 

adventure athletes during a two week international race. Such a race typically involves high-

intensity-prolonged exercise along with severe sleep deprivation (mean 1.2 h ± 0.3 h per 

day). These investigators found symptoms of upper respiratory illness (linked to immune 

dysfunction in athletes) were most common (suffered in 57% of athletes) upon finishing the 

race whilst musculoskeletal injury was also prevalent (79%). These findings suggest that 

illness, injury, exercise performance and sleep disturbances are closely interrelated, but the 

authors importantly highlight the complexity of this relationship [213].  
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Recently, Hausswirth and colleagues [170] found a higher prevalence of upper respiratory 

tract infections in functionally over-reached male tri-athletes compared to a normal training 

group. These authors also reported progressively worsening sleep duration and efficiency, 

suggesting minor sleep disturbances during the overloading phase. Additionally, illness 

prevalence and sleep disturbances were at their highest during the final week of overloading 

implying an associated relationship; however, whether the impaired sleep and illness 

occurrence are consequences or symptoms of over-reaching remains unknown [170]. The 

extrapolation of these results to football is tenuous for various reasons, including the 

characteristics of sports demands, scheduling, training, sample sizes and the intra-individual 

requirement for sleep. Like much of the literature throughout this dissertation, such direct 

exploration in football is somewhat limited. Nonetheless, sleep restriction appears to be 

associated with increases in pro-inflammatory cytokine secretion [214], unfavourable activity 

and weight status profile [215] and injury occurrence [216] which are of relevance to 

footballers; although sleep deprivation does not seem to alter immune indices at rest [217]. 

 

2.4.4 Situations specific to football affecting sleep and recovery 

2.4.4.1 Sleep loss following playing or training at night 

As often determined by television scheduling, football associations now schedule the 

completion of matches at night. Indeed, the pure timing of matches (i.e. some matches in the 

Spanish La Liga commence at 22:00) will force players into later bedtimes. Furthermore, 

since physical activity promotes arousal, it has long been assumed exercising during the 

evening hours produces a greater number of sleep disturbances than exercising during 

daylight [210].  For example, footballers whom compete at night will be required to perform 

at times when arousal tends to decrease [218] (i.e. the typical kick off time for Champions 

league in Germany is 20:45, finishing ~22:45), subsequently leading to possibilities for sleep 

disturbances [219]. A typical strategy to alleviate this is for players to consume caffeine, 

which has well established effects of improving endurance performance [220, 221]. However, 

caffeine has the potential to disrupt sleep post-match as it has been shown to reduce 

subsequent sleep duration when taken up to 6 h prior to bedtime [222] - a finding which 

many practitioners support anecdotally. However, it should be acknowledged that there is 

also evidence of no detrimental effect of caffeine on both subsequent sleep variables (i.e. 

duration, efficiency) and recovery of physical performance (five sets of 6x20 m sprints with 

25 or 60 s of recovery) [223].  
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An additional reason for possible sleep loss following night matches is the interaction 

between external light and sleep. This is based on the role of the central body clock 

(oscillator) which is affected by the light-dark cycle, located within the suprachiasmatic 

nucleus of the hypothalamus [104]. Melatonin, a molecule which is suppressed by light and 

secreted during darkness, is proposed to be one affecter of the transmission of time 

information to this central body clock and many different peripheral oscillators throughout 

the human body [224]. Floodlights used in modern stadia during night matches may therefore 

suppress melatonin and possibly influence sleep. For instance, bright light can increase 

alertness and decrease sleepiness [225]. Of further concern is that following matches players 

homeostatic drive for sleep would typically be high due to the extended periods of 

wakefulness, thus exposure to further light sources such as smart phones or lights on a 

various modes of travel can also affect sleep [219]. These extraneous sources of light likely 

prolong the need for wakefulness and delay the circadian drive for sleep [219]. Indeed, it has 

been widely reported that technology use and exposure to light prior to bedtime can prolong 

sleep onset latency, reduce sleep duration and be detrimental to overall sleep quality [226-

228]. Footballers also have extensive post-game commitments such as press conferences, 

recovery practises and social functions, which could lead to even later bedtimes and disrupt 

sleep duration and quality [31, 81]. As alluded to previously, Juliff et al. [139] found 52.3% 

of a sample of 283 elite individual (n=73) and team-sport (n=210) athletes reported sleep 

disturbances following a night training session/match. Moreover, 59.1% of team-sport 

athletes reported that that did not use a strategy to overcome these sleep disturbances [139]. 

Notwithstanding these findings, the anecdotal evidence of athletes reporting sleep 

disturbances following night competition outweighs that documented in the literature; thus, 

further research in elite football populations is required to confirm this. 

 

Given the lack of data within a specific football context, it becomes advisable to review the 

evidence of disrupted sleep following night exercise in other populations. Recent data shows 

that performing maximal aerobic exercise in the evening results in elevated sleep onset 

latency, awakenings, and REM sleep latency - suggesting poorer overall sleep quality in judo 

competitors [154]. Furthermore, sleep onset latency was significantly longer (+ 14 min), 

sleep duration significantly shorter (-14.6 min) and sleep efficiency significantly poorer (-

3.1%) following 40 min of high-intensity treadmill running (80% of HR reserve) performed 

at 21:20 compared with a non-exercise condition in twelve active young men [229]. Whilst 

several physiological variables are elevated prior to sleep onset following late-night vigorous 
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exercise (suggesting possible effects on cardiac autonomic control and metabolic function 

[230]), delayed sleep onset can also be caused by mental stimulation or cognitive fatigue 

[105]. Moreover, given pain is a significant predictor of a poor night’s sleep [231], it is likely 

prolonged late-night, high-intensity exercise (equivalent to match situations) will incur sleep 

disturbances throughout the night as a result of pain and soreness. This is of particular 

relevance for heavy contact sports such as American football, ice hockey, and rugby union; 

though, this is not specific to night matches as players also incur these stressors during day 

matches. Furthermore, it should be noted that there is opposing evidence on the effect of 

competing at night on sleep. For instance, Roach et al. [232] reported no effect of two night 

(19:00-21:00) matches on sleep in elite junior football players. Similarly, Robey et al. [145] 

found no effect of early evening high-intensity training (16:30-18:30) on the subsequent sleep 

quality, duration, onset latency, sleep efficiency and bedtime in elite youth football players. 

Thus, it appears that that sleep following the performance of exercise at night is dependent on 

many factors such as the timing of the exercise, physical activity of the population sample, 

ambient temperature and various physiological (e.g. core temperature) and psychological 

stressors [219]. 

 

In light of this, it should be recognised that the mechanisms behind the effect of exercise (and 

timing) on sleep are complex due to the main confounding variable (amongst others) of the 

stress induced by the exercise itself. From an applied perspective, future research must first 

focus on providing objective evidence (e.g. acute and chronic measurements of actigraphy) 

on whether disturbances following match play at night occur. Researchers might also focus 

on the effects of disrupted sleep following match play in footballers and attempt to delineate 

the mechanisms responsible. At present, practitioners should also be aware of the intra-

individual variability in sleep requirement and chronotype (those who arise early in the 

morning vs. those who prefer later bedtimes). Accommodating these differences within an 

elite football environment is difficult as it may require more individualised approaches. 

Indeed, this would be even more pertinent for team scheduling training the day after a game. 

For instance, training in the absence of sufficient sleep following late-night matches may 

potentiate the negative outcomes. This may create recovery concerns given players will sleep 

differently after these matches, whilst also possibly placing those whom are training at an 

unnecessary injury risk.  

 

 



42 
 

2.4.4.2 Sleep responses to short and long-haul travel 

Cumulative sleep loss occurs as a consequence of travel during busy scheduling periods, 

which can lead to accumulative fatigue over a season [101]. Travel fatigue is dependent on 

the distance and frequency of travel, and the length of the season. It should be noted that 

travel-induced fatigue is separate to jet-lag, with the main difference being jet-lag comprises 

an effect of time-zone change (Figure 2.2; [101]). Sleep disturbances during or following 

travel can result in reductions in mood, acute fatigue and difficulty in initiating sleep at the 

arrival destination [101]. For footballers the method, mode, distance and timing of travel vary 

greatly and are largely dependent on scheduling, team budget and the coach’s preference. 

Many teams, particularly in America and Australia, endure one-way short haul domestic or 

international travel up to 6 h prior to or following competition [233]; although this is less 

likely in European competition. In addition to sleep disturbances, travelling can result in 

detrimental health, impaired mood, dehydration and loss of motivation all of which can affect 

recovery [101]. Of further concern, it has been shown that baseball teams whose circadian 

rhythms are more synchronised to optimal performance times are more likely to be 

successful, indicating either a negative effect of travel and/or desynchronised body-clock 

functioning [234]. However, it should be noted that these data do not actually outline any 

physical or perceptual response, and admittedly baseball scheduling is vastly different to 

football. 

 

Empirical data describing the effect of short-haul air travel on sleep, performance and the 

ensuing recovery in these situations is largely unknown. For instance, the sleep quantity and 

quality of players following away competition performance remains unclear, with short-haul 

air travel (1-3 h) affecting perceived sleep quality [233], whereas some football players report 

earlier mean bed times after short-haul air travel (~5 h) and an away match [146]. 

Competition performance, along with reduced physical demands, appears to be greater at 

home compared to away (in American football [235], baseball [234], rugby league [202] and 

football [146]) suggesting either a negative effect of travel or a circadian advantage [236]. 

However, extrapolating these effects to determinations of football match performance is 

difficult due to other external factors and the inter-match variability in opposition and match 

intensity. Whilst there have been few empirical studies, the available data suggests that short-

haul travel has minimal effect on physiological and perceptual recovery (e.g. no significant 

effect on YYIRL1 test performance). Even though short-haul air travel appears to have 

negligible effects on post-match physiological recovery, the effect on perceptual markers of  
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Figure 2.2: Jet lag and travel fatigue symptoms and management schema (reproduced from 

Samuels, 2012; [101]).  
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fatigue and sleep patterns following match play is equivocal. If these parameters decline, they 

can negatively influence training intensity or volume during ensuing sessions due to 

decreased motivation. Given the myriad of conflicting demands whilst experiencing travel 

and sleep loss (e.g. treatment, timing of training, recovery practices), it can be difficult for 

coaches to manage the most appropriate schedule for their team the day after a match. Indeed, 

more research is required to clarify the acute and chronic effects of cumulative domestic 

travel (e.g. over a season) on sleep and psychological and physiological recovery parameters 

of elite footballers. 

 

There are numerous studies which report detrimental effects of long-haul air travel (> 5 h) 

across multiple time zones on performance [237] and physiological [238] and perceptual 

responses [239]. The direction of travel also plays an important role, with eastward travel 

reportedly more detrimental to sleep, performance and recovery outcomes [236]. The 

evidence supporting this proposition is surprisingly quite limited. The only study to the 

author’s knowledge that has investigated the effects of eastward and westward long-haul air 

travel on physical performance relevant to team-sports is the work of Duffield and colleagues 

[240]. This study collected a range of data (CMJ, 20-m sprint and agility test, YYIR1) from 

19 trained males for four days, one week prior to and immediately following (post  four days) 

21 h air travel west across eight time-zones from Australia to Qatar. After data collection in 

Qatar, a six day wash-out and 21 h return travel east, data was then subsequently collected at 

the same times of day for a further four days.  The authors found that distance covered in the 

YYIR1 was significantly reduced at day one post travel in the PM (P = 0.01; d = 2.57), and 

large effect sizes were present at days two, three and four post-travel in the PM (d > 1.00) 

following eastward compared to westward travel. However, westward air travel showed a 

greater detrimental impact on lower-body power for 10 and 20-m sprint times. Whilst the 

direction of travel reveals contrasting results dependant on the type of performance parameter 

measured, the same authors have recently shown that the aforementioned data revealed 

significant reductions up to four days post long-haul transmeridian air travel [241].  

 

Studies involving northbound and southward travel for athletes are also limited, presumably 

as there are minimal time-zone changes and thus less resultant effects on the aforementioned 

variables. The cost and intrusive nature of studies could also be reasons. Fowler et al. [242] 

examined the effects of 10-h northbound air travel (7800 km) across 1 time zone on sleep 

quantity and subjective jet lag and wellness ratings in 16 male professional football players 
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during a pre-season tour. Sleep duration was significantly reduced the night prior to travel 

(due mainly to the timing of the flight) and the night of the match. In addition, subjective jet-

lag remained for up to 5 days post-travel; although player wellness only reduced significantly 

on the day following the match. Therefore, it appears that 10 h of long haul air travel during 

the day with minimal time zone change has negligible effects on sleep and football player 

preparedness (from a wellness perspective); however the effects on the recovery of exercise 

performance remain unclear. Indeed, further research which investigates the effects of 

various durations and direction of long-haul travel on recovery in football players is required.  

 

2.4.4.3 Congested fixture scheduling 

Excessive exercise loads can disturb the stress-recovery balance and result in performance 

decrements and injury occurrence [22]. For example, during periods of heavy match 

congestion in football, there is an increased injury risk for players when they play two 

matches per week rather than one [243]. In this regard, some major European football teams 

may compete in up to four competitions at once – which likely impacts on players’ sleep 

behaviour. During these periods of high physical workloads, there is a potential for a 

reduction in sleep duration and quality. For example, it has been shown that as the effects of 

increased baseball match exposure accumulate towards the end of the season strike zone 

judgement is impaired, suggesting a fatigue-induced decline in performance; with sleep 

believed to be one of the main symptoms responsible [244]. Sleep has also been suggested to 

be sensitive to exercise overload, with high training volumes associated with greater sleep 

disruptions [245]. Although no published data is yet apparent in team-sport cases, Netzer et 

al. [246] found significant increases in the REM sleep onset latency and decreases in REM 

sleep of well-trained cyclists following training and a competitive 120-150 km race, 

compared to no training or competition. Following this, it is logical that when footballers 

compete in a greater number of matches within a short period, exercise-induced muscle 

damage will accumulate (dependant also on exercise intensity), characterised by decreased 

neuromuscular function, increased perceptual fatigue and increases in perceived soreness 

which can disrupt sleep [31]. Moreover, if there are several events in short succession, the 

continual anticipation of competition can also negate sleep [139]. However, at present, there 

is little research that describes or quantifies the effect of these changes on the subsequent 

recovery, particularly in team-sports undertaking congested fixture scheduling. Future 

investigations into the time course of recovery following sleep loss would be particularly 

pertinent to team sports such as baseball and cricket, since these athletes can play on 
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consecutive days and could be at a high risk of cognitive impairments (e.g. slowed reaction 

time). 

 

2.4.4.4 Risks to training adaptation  

Since sleep loss impedes muscle protein accumulation, the ability of skeletal muscle to adapt 

and repair can be hindered – which likely limits training adaptations [26, 89, 209]. This may 

be concerning during the football pre-season where training loads are higher, particularly  

given greater sleep disturbances are present during higher training volumes in elite swimmers 

[245]. Moreover, sleep efficiency has been shown to be significantly greater in during 

competition compared to intensive training in a group of state-level netballers [247]. 

Preliminary evidence also suggests that high-intensity interval training (i.e. field-based 

running sessions) negate sleep indices more so than strength training in well-trained athletes 

[248]. Since sleep loss can also affect vigour, mood and perceptual awareness [29], if training 

sessions are scheduled for early times this could cause reductions in motivation and 

consequently reduce optimal training performance and subsequent adaptations [249]. 

Furthermore, if the stress-recovery balance of footballers is disrupted by either an increase in 

training load/stress or inadequate recovery, it may lead to an overreached, or even overtrained 

state [22]. However, since professional football involves few prolonged periods of high 

intensity training due to the pure nature of modern day fixtures, it would appear elite 

footballers would rarely experience an overtrained state. Interestingly, disturbed sleep is 

believed to be one of many symptoms of either overreaching or the overtraining syndrome 

[22]. In a recent study by Hausswirth et al. [170], it was found that objective measures of 

sleep duration, efficiency and immobile time were all negatively altered in a group of 

functionally overreached tri-athletes. There was also a higher prevalence of upper respiratory 

tract infections within this group, implying an association between the two; however whether 

impaired sleep and illness occurrence are consequences, or simply symptoms or coincidental 

associations, of overreaching remains unknown [170]. Regardless, it is acknowledged that 

overtraining in elite football is extremely unlikely due to scheduling and coaching 

philosophies currently present without discounting the importance of optimising performance 

and match readiness.  

 

Since sleep loss can hinder the learning of new skills, affect emotional regulation and disrupt 

cognitive function [89], it is likely that sleep is also important for optimising cognitive 

training adaptations. For instance, sleep is critical for memory retention, neural plasticity, and 
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has been shown to improve visual discrimination and motor adaptation [105]. Therefore, it is 

likely that disturbing sleep during intense training or skill acquisition periods (e.g. pre-

season) will encumber adaption in skill-based tasks with high neurocognitive reliance. 

However, objective evidence to support this suggestion is not currently present. Therefore, 

future research (with well controlled randomised-control trials) into the effects of sleep 

disruption on acute or chronic cognitive-based training adaptations in football is required. 

 

2.4.5 Sleep strategies for footballers 

2.4.5.1 Napping  

In an attempt to recover from sleep debt, a commonly utilised sleep strategy amongst 

footballers is the restorative nap. Naps have been shown to improve alertness, sleepiness, 

short-term memory and accuracy during reaction time tests [29]. Furthermore, Waterhouse et 

al. [29] found improvements in mean sprint performance following a 30 min post-lunch nap 

after 4-5 h of sleep restriction. On the basis of this, it has been proposed footballers take a 

post-lunch nap to ameliorate the performance deficits caused by ultradian biological rhythms 

that occur within the circadian cycle [250]. It appears napping behaviours have many benefits 

and should be undertaken where necessary in elite football environments. An example would 

be for players to have a nap after lunch if they are playing a match at night. However, it is 

critical that if naps are implemented within an elite football environment they balance the 

need to enhance performance whilst not disturbing subsequent sleep patterns, as this could 

hinder the recovery process following training or matches. For instance, Petit et al. [251] 

reported longer sleep onset latencies following a post-lunch nap during the subsequent night 

compared to a no-nap control condition in sixteen healthy young male athletes. It should be 

noted that these subjects were habitual ‘non-nappers’. Indeed, the high inter-individual 

requirement variability in napping frequency and duration was highlight recently by Lastella 

and colleagues whom demonstrated a group of team-sport athletes mean (± standard 

deviation) nap duration was 59 ± 62 min [252]. Whilst napping appears advantageous for 

performance (e.g. napping prior to competition), more research is required to evaluate its 

possible effectiveness in recovery and effects on ensuing nights’ sleep. 

 

2.4.5.2 Sleep extension  

Extending sleep during normal sleep times is another strategy to alleviate the decrements in 

physiological and cognitive performance caused by sleep loss. Mah et al. [147] found faster 

sprint and reaction times and improved shooting accuracy, energy and mood following 
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approximately three weeks of sleep extension (mean sleep duration + 110 min) in eleven 

basketball players, indicating its use as a viable option for enhancing performance. Moreover, 

extending sleep improves psychological wellbeing thus optimising athletes’ mental 

preparedness for competition. However, obtaining extra sleep can be difficult, because 

increased sleep onset latency and mood effects can be nullified due to earlier bedtimes. Thus, 

if a player is not sleep deprived it is possible that extending sleep will reap no benefit. The 

timing of this sleep intervention could also influence the effects of sleep extension depending 

on the sleep chronotype of the player (i.e. preference for early morning or late-nights). 

Additionally, more research assessing whether sleep extension during periods of high-

training load is a useful tool to ensure appropriate recovery is required. Such research would 

be pertinent in assisting players achieve higher sustained intensities in subsequent exercise 

bouts (i.e. during pre-season). 

 

2.4.5.3 Sleep hygiene protocols  

Identifying and modifying the factors that contribute to improve sleep quality (improving 

sleep hygiene) in footballers can also assist in ameliorating the detrimental effect of sleep loss 

and potentially enhance recovery. Sleep hygiene protocols are defined as a set of behavioural 

strategies designed to promote and improve healthy sleep [253]. They are centralised around 

the following principles: exercise prior to sleep, stress management, noise reduction, sleep 

timing, and avoidance of caffeine and alcohol. Of the few studies that have studied the effect 

of these strategies in non-clinical populations, the efficacy of sleep hygiene protocols remains 

unclear [254]. This inconsistency is most likely due to a combination of differing sleep 

hygiene recommendations across studies, combined with the variance between individuals in 

their response to these interventions. For instance, whilst sleep hygiene protocols have been 

shown to improve sleep quality and onset latency in university students and reduced sleep 

irregularity in adolescents, although the effect of numerous components of sleep hygiene in 

normal sleepers is mixed [253]. From a football perspective, little is known about the 

interaction between these sleep hygiene strategies and the recovery of exercise and 

psychological parameters. Preliminary evidence indicates adhering to some of the previous 

sleep hygiene recommendations improves sleep quantity, resulting in a reduction in perceived 

soreness and fatigue in elite tennis players [255]. Furthermore, regulating sleep-wake times 

helps synchronise the circadian timing system, improving sleep quality and quantity [256]; 

although evidence in non-clinical populations remains unclear. As pre-competition worry and 

anxiety are evident in athletes [137, 257], it may be of benefit to utilise self-confidence tools 
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(i.e. meditation) to manage anxiety and stress, as these correlate with improved sleep. 

Identifying each individuals best sleep habits (e.g. bed comfort) are also pertinent, as 

unfamiliar environments may reduce sleep quality [256].  

 

Such recommendations are similar to those designed for footballers who endure constant 

travel [101]. Fowler et al. [242] examined the effects of sleep hygiene and artificial bright 

light interventions on physical performance following simulated international travel in a 

randomized crossover design. Here 13 physically active males completed 24 h of simulated 

international travel with and without the interventions. Although total sleep duration during 

and following travel was greater following the sleep hygiene intervention (17.0 h) compared 

to the control condition (15.7 h), this difference was not significant (P = 0.06). Furthermore, 

there were no significant differences between conditions for the recovery of exercise 

performance. Such future research designs are required for further sleep and recovery 

compromising situations for footballers. For instance, the effect of a sleep hygiene strategy 

on the sleep and recovery profile for players following a late-night match is unknown.  

 

It is well known sleep onset is prolonged by noise, light and extreme temperatures, with 

athletes reporting noise and light as the two most important factors to their sleep quality 

[137]. Since the use of technology just prior to sleeping promotes afferent signals from the 

retina to the pineal gland, inhibiting the secretion of melatonin and delaying sleep onset, the 

avoidance of bedtime technology (and thus reducing arousal and physiological excitement) 

has been recommended to improve sleep onset [256]. As part of a healthy sleep protocol, 

several nutritional recommendations have also been proposed to assist with sleep onset. For 

instance, a recent review by Halson proposed diets high in carbohydrates and protein may 

result in shorter sleep latencies and improved sleep quality, respectively [27]. Whilst there is 

a clear need for nutrition during the post-exercise recovery period, the interaction between 

foods consumed post-exercise and the ensuing sleep and recovery timeline is unclear. Indeed, 

the effects of nutrition are intricately complex and beyond the scope of this dissertation (see 

Halson [27] for further detail). 

 

2.5 Future research for athletic recovery outcomes with relevance to football 

Currently, there is insufficient evidence to conclusively describe the role of sleep for post-

exercise recovery and resultant performance outcomes for football players. As such, the first 

step in understanding this contribution is for the utilisation of observational field studies 
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through the use of subjective sleep diaries and/or actimetry in various ecologically valid 

situations. Once this specific context is known, it is important to understand the interaction 

sleep has with variables within the elite football environment during situations where sleep is 

an issue. This requires both randomised-cross over trials which investigate the measurement 

of sleep and the post-exercise recovery timeline (both physiological and psychological), and 

also case studies in elite football teams. Future work within this field could also focus on 

understanding the mechanisms involved and providing appropriate interventions to improve 

sleep and the ensuing recovery process. In addition to the obvious need for sleep research 

within professional football, future research may address the effect of combinative strategies 

to speed up recovery. Although many football players use more than one recovery method in 

order to receive additional benefit it is unclear if these multiple interventions might lead to 

interactions between the methods. For instance, Robey et al. [228] reported that CWI post-

training does not affect subsequent sleep duration, onset or efficiency. However, the 

mechanisms between the interaction of sleep and other recovery protocols are difficult to 

determine, due to an abundance of confounding factors (e.g. protocol type, timing, facilities). 

Further research and practical investigation within professional environments which address 

whether it is more advantageous to use a recovery protocol which enhances sleep (or indeed 

the use of sleep as a recovery protocol itself) and/or whether a combination of these protocols 

enhances the recovery process is warranted.  

 

2.6 Aims of the dissertation 

Given the insufficient evidence to conclusively describe both observations of sleep for 

professional footballers and the role of sleep for post-exercise performance and recovery, this 

dissertation sought to address the following primary research concepts: i) what are the 

characteristics of sleep behaviour for elite footballers and are their instances which exist 

where sleep is disrupted? ii) If instances do indeed exist where sleep in hindered, is it 

possible to alleviate these issues through intervention-based strategies?  

 

Therefore the aims of the thesis was to first monitor the sleeping patterns of elite football 

players to assess whether differences in sleep indices occurred in association with an altered 

perceptual recovery status. Additionally, any potential factors within the professional sporting 

environment (e.g. stress, physical or psychological load) which contributed to these poor 

sleeping patterns were identified (Study One). Based on such results, the sleep, travel and 

recovery responses of a separate group of elite footballers during and following actual long-
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haul international air travel was examined, with a further description of these responses over 

an ensuing competitive tour (including two matches; Study Two). Finally the aim of Study 

Three was to investigate the effect of an acute sleep hygiene strategy on physical, 

physiological and psychological recovery of highly trained amateur football players 

following a late-night match. 
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3. STUDY OVERVIEW 

3.1 STUDY ONE: Impaired sleep and recovery following night matches in elite 

footballers. 

 

Fullagar, H.H.K., Skorski, S, Duffield, R, Julian, R, Bartlett, J, Meyer, T. (2016). Impaired 

sleep and recovery following night matches in elite football players. Journal of Sports 

Sciences: Science and Medicine in Football. 34(14):1333-9. DOI: 

10.1080/02640414.2015.1135249 (Appendices 6.3).  

 

Introduction: Despite the perceived importance of sleep for elite footballers, descriptions of 

the duration and quality of sleep, especially following match play, are limited. Moreover, 

recovery responses following sleep loss within match contexts remain unclear. Accordingly, 

the present study examined the subjective sleep and recovery responses of elite footballers 

across training days (TD) and both Day and Night matches (DM and NM).  

 

Methods: Sixteen top division European players from three clubs completed a subjective 

online questionnaire twice a day for 21 days during the season. Subjective recall of sleep 

variables (duration, time of wake and sleep, wake episode duration), a range of perceptual 

variables related to recovery, mood and performance and internal training loads and non-

exercise stressors were collected. 

Results: Players reported significantly reduced subjective recall of sleep durations following 

NM compared to TD and DM (both P < 0.001; DM: d = 3.71; NM: d = 4.31). In addition, 

sleep restfulness (SRF) and perceived recovery (PR) were significantly poorer following NM 

than both TD (SRF: P < 0.001, d = 3.56; PR: P < 0.001, d = 3.09) and DM (SRF: P = 0.002, d 

= 3.16 PR: P = 0.002, d = 1.78), whilst PR was significantly poorer following a DM than TD 

(P = 0.04, d = 1.31). 

Discussion/conclusion: The main finding of this study was the significant reduction in sleep 

duration and later bedtime following NM compared to both TD and DM. Following NM’s, 

there was also a significant reduction in perceived recovery compared to both DM and TD. 

Players subjectively reported several individual reasons for poor sleep such as children, 

nervousness, pain and adrenaline following a match. Overall, our results suggest that elite 

football players lose sleep and report reduced perceptual recovery following night match 

play; however players appear to report adequate sleep durations (i.e. 7-10 h) and qualities 
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following training days and day matches. More research is required to objectively quantify 

and confirm that TD results in ‘normal’ sleep durations, similarly that this sleep volume is 

severely hampered following NM or other sleep-compromising situations not identified here 

(i.e. travel). In addition, the effect of reduced sleep duration and quality on the recovery of 

exercise performance following NM in elite players is warranted. 
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3.2 STUDY TWO: Sleep, travel and recovery responses of national footballers during 

and following long-haul international air travel. 

 

Fullagar, H.H.K, Duffield, R, Skorski, S, White, D, Bloomfield, J, Kolling, S, Meyer, T. 

(2016). International Journal of Sports Physiology and Performance. 11(1):86-95. DOI: 

10.1123/ijspp.2015-0012 (Appendices 6.4). 

 

Introduction: When long-haul international air travel is endured across multiple time-zones, 

numerous physiological variables are disrupted including the sleep-wake cycle, body 

temperature and hormonal circadian rhythms. Sleep is perhaps the more critical given sleep 

loss can affect athletic performance and has been shown to reduce physiological and 

cognitive recovery in other football codes. However, to date the interaction between these 

aforementioned situational disturbances and objective measurements of sleep in team sports 

is relatively unknown. Therefore, the present study examined the sleep, travel and recovery 

responses of elite footballers during and following long-haul international air travel, with a 

further description of these responses over the ensuing two-match competitive tour.  

  

Methods: In an observational design, 15 elite male football players undertook 18 h of 

predominately westward international air travel from the United Kingdom to South America 

(-4 h time-zone shift) for a 10-day tour. During this tour, two matches were played, including 

against Uruguay (day 5; 20:00 local time) and Chile (day 10; 20:40 local time). Objective 

daily sleep parameters (Readiband actigraphy), external (global positioning systems) and 

internal (heart rate, rating of perceived exertion) training loads, subjective player match 

performance (Likert scale), technical match data (Prozone) and perceptual jet-lag on days 2, 

4, 6, 10 (Liverpool John Moore’s Jetlag Questionnaire) and recovery (REST-Q) measures 

were collected.  

 

Results: Significant differences were evident between outbound travel and recovery night 1 

(night of arrival; P<0.001) for sleep duration. Sleep efficiency was also significantly reduced 

during outbound travel compared to recovery nights 1 (P = 0.001) and 2 (P = 0.004). 

Furthermore, both match nights (5 and 10), showed significantly less sleep than non-match 

nights 2-4 and 7-9 (all P < 0.001). No significant differences were evident between baseline 

and any time point for all perceptual measures of jet-lag and recovery (P > 0.05); although 

large effects (d = 1.47) were evident for jet-lag on day 2 (two days after arrival).  
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Conclusions: Sleep duration is truncated during long-haul international travel with a 4 h 

time-zone delay, and even more so following night matches in elite footballers. However this 

lost sleep appeared to have a limited effect on perceptual recovery, which may be explained 

by both the direction of travel (westbound) and time zone small change (-4 h). Further the 

significant increase in sleep duration on the night of arrival following the long-haul flight 

may also alleviate any ensuing feeling or assist recovery post-travel. The confirmation of the 

results found in Study One of reduced sleep durations following night matches in elite 

footballers is concerning, if not at least from a health perspective. Further research 

investigating whether it is possible to: i) improve sleep parameters following night matches 

and/or travel ii) if so, does such an improvement result in an improvement of the recovery 

timeline, is required.   
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3.3 STUDY THREE: The effect of an acute sleep hygiene strategy following a late-night 

soccer match on recovery of players. 

 

Fullagar, H.H.K, Skorski, S, Duffield, R, Meyer, T. (2016). The effect of an acute sleep 

hygiene strategy following a late-night soccer match on player recovery. Chronobiology 

International. 33(5):490-505. DOI: 10.3109/07420528.2016.1149190. (Appendices 6.5). 

 

Introduction: Elite footballers experience reductions in sleep quantity following late-night 

matches, which are far less than those recommended for healthy adults. Furthermore, these 

players are at risk of reduced recovery following these periods of sleep disruption. However, 

it remains unknown whether improving sleep quality or quantity in such scenarios is i) 

possible and ii) whether such enhancements can improve post-match recovery. Therefore, the 

aim of this study was to investigate the effect of an acute sleep hygiene strategy (SHS) on 

sleep, physical and perceptual recovery of players following a late-night football match. 

 

Methods: In a randomised cross-over design, two highly-trained amateur teams (20 players) 

played two late-night (20:45) friendly matches against each other seven days apart. Players 

completed either a SHS after the match or undertook a structured normal post-game routine 

(NSHS). The SHS group bedtime was at 23:45 (lights off at 0:00) and included ensuring 

players were in bed rooms as soon as possible with lights dimmed, and provided (optionally) 

with ear plugs and eye-masks in cool temperature rooms (~17°C). Further, no technological 

or light stimulation was allowed ~15-30 min prior to bedtime. In contrast, players in NSHS 

were permitted to undertake normal (supervised) activities and remained awake until they 

were allowed to go to bed at 02:00. Over the ensuing 48 h, objective sleep parameters (sleep 

duration, onset latency, efficiency, wake episodes), countermovement jump (CMJ; height, 

force production), YoYo Intermittent Recovery test (YYIR2; distance, maximum heart rate, 

lactate), venous blood (creatine kinase, urea and c-reactive protein) and perceived recovery 

and stress markers were collected. 

 

Results: Sleep duration was significantly greater in SHS compared to NSHS on match night 

(P = 0.002, d = 1.50), with NSHS significantly less than baseline (P < 0.001, d = 1.95). 

Significantly more wake episodes occurred on match night for SHS (P = 0.04, d = 1.01), 

without significant differences between- or within-conditions for sleep onset latency (P = 

0.12), efficiency (P = 0.39) or wake episode duration (P = 0.07). No significant differences 
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were observed between conditions for any physical performance or venous blood marker (all 

P > 0.05); although maximum heart rate during the YYIR2 was significantly higher in NSHS 

than SHS at 36 h post-match (P = 0.01; d = 0.81). There were no significant differences 

between conditions for perceptual ‘overall recovery’ (P = 0.47) or ‘overall stress’ (P = 0.17). 

 

Discussion/conclusion: In summary, an acute SHS increased sleep duration compared to a 

NSHS following a late-night football match; although there were significantly more wake 

episodes in the SHS and players reported similar perceived sleep quality between conditions. 

Thus, whilst sleep duration can be extended in a SHS following a late-night match it should 

be acknowledged that players may face difficulties initiating sleep when enforced with earlier 

bed times post-match. These difficulties could have arisen from enforcing an earlier than 

preferred bedtime, which may have led to a delayed sleep onset given it would’ve clashed 

with players’ current preparedness for sleep, and consequentially a low sleep propensity. The 

SHS did not improve measures of psychological stress and recovery, or the recovery of 

exercise performance. Furthermore, there were no significant differences between conditions 

for blood-borne markers of muscle damage and inflammation or physiological responses to 

training (HIMS). This is in line with our previous knowledge of sleep deprivation studies 

where nights of complete sleep loss (e.g. 0 h), rather than partial sleep deprivation (e.g. 3-5 h) 

and a night of normal sleep (~8 h), are more likely to affect measures of post-exercise 

recovery. More research is required to assess whether a larger sleep differential (e.g. longer 

duration and higher quality sleep in the SHS condition) is required to affect the physical and 

physiological markers measured in this study. In addition, the effect of SHS on recovery in 

real-world elite environments requires further investigation, especially over the course of a 

season. For instance, there would be an increased likelihood for potential benefits if sleep 

behaviour was modified for more than an acute period. Taken collectively, the present 

findings suggest football players might consider SHS strategies where possible following a 

late-night match to promote restorative sleep; however there appears to be no additional 

benefit for the recovery of acute performance or perceptual recovery outcomes. 
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4. SUMMARY OF FINDINGS 

Sleep is a vital component of human physiological and cognitive function [89], both of which 

are integral to peak sports performance [1]. This is especially relevant given sleeps’ anecdotal 

importance within high performance sporting environments to recovery and offers scientific 

merit given the limited amount of current sleep-related research in elite football. Therefore, 

this thesis aimed to explore the influence of sleep on recovery within a high-performance 

football context. Consequently, several key contextual environments were identified that 

present potential sleep-related issues for professional players. These situational contexts that 

result in disrupted sleep may compromise recovery at various times throughout a typical 

season. The studies contained within this thesis showed that football players will encounter 

specific and re-occurring stressors throughout a season (i.e. late-night matches) which can 

disrupt sleep and hinder perceptual recovery. More specifically, professional players lose 

sleep following night matches and during extensive international air travel. That said, outside 

these specific contexts, players’ sleep patterns appear to be within normal ranges for healthy 

adults. This thesis also sought to determine whether specific sleep-oriented intervention 

strategies could alleviate the identified sleep issues and inform improved player recovery 

practices. It was found that an acute sleep hygiene strategy was able to somewhat counter the 

reduction in sleep volume following a late-night match, despite no improvement in 

performance recovery. The present collection of studies offers insight into considerations 

necessary for understanding and interpreting these sleep-related issues in a football-specific 

environment. Indeed, whilst this thesis strives to further scientific knowledge, there are also 

critical practical outcomes that may benefit professional players and practitioners.  This 

ensuing section will seek to integrate the findings to address the primary research concepts; i) 

what are the characteristics of sleep behaviour for elite footballers, and what are the instances 

where sleep is disrupted? ii) If instances do indeed exist where sleep in hindered, is it 

possible to alleviate these issues through sleep-oriented intervention strategies?  

 

4.1 Normative sleep in elite footballers 

The first two studies (both of which were in elite footballers) showed that sleep duration for 

players was primarily within normative healthy adult ranges of 7-10 h [143]. However, of 

pertinence, there were distinct nights where players, both individually and as a collective, 

slept below this range (i.e. night matches in both Studies One and Two). It could thus be 

suggested that professional football commitments generally do not create a significant burden 
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on the acquisition of adequate sleep (i.e. predominance of day matches and training days). 

This observation is likely justified by the view that sleep in athletic populations is highly 

dependent on the commitments and schedules of the respective sport; in that the schedule 

demanded of professional footballers may not impose significant barriers to sleep in normal 

circumstances [139]. For instance, football players will commonly train in the late morning, 

allowing time to sleep past normal waking hours for the typical working adult and thus 

increase sleep duration. As a contrasting example, swimmers are regularly required to 

undertake very early wake ups to attend early morning training sessions and thus sleep 

durations are often truncated [249, 258]. Moreover, football players are rarely required at the 

club from the early afternoon onwards, imposing little restriction on the time they have to go 

to sleep. In addition, when players are away on camp for national duty they are often under 

the guidance of coaches and managers, where curfews may exist or at the very least some 

form of ‘scheduled’ time to be in rooms. Taken collectively, this would suggest that players 

are either well educated on the benefits of sleep, and thus obtain sufficient amounts of sleep, 

or they merely represent a sub-group of the normal adult population who sleep within well-

established ranges [143].  

 

On face value this lack of an overt issue regarding sleep duration in ‘normal’ circumstances 

may seem surprising, especially given the numerous reports of elite athletes having 

insufficient sleep durations, particularly shorter than 7 h [144, 249, 258]. For instance, it has 

been shown that some Olympic athletes suffer from poorer sleep durations and qualities than 

healthy controls [144], although this finding is biased towards swimming populations who 

are well known early-risers for training. Indeed, professional football training will often start 

later (i.e. 09:00-11:00) than many individual sports (i.e. swimming) which report reductions 

in sleep parameters due to these early training times (06:00 start) [249, 258]. Indeed, the 

footballers in Studies One and Two reported a predominance of ‘average-good’ perceptual 

sleep quality (sleep restfulness) and sleep volumes within normal ranges of 7-10 h [143]. This 

reinforces the role sports-specific scheduling plays in affecting the sleep wake cycle of 

athletes. For footballers, it appears the major issue is when they play late-night matches, 

which cause an enforced disruption to the time they normally go to sleep (to be examined 

more closely in section 4.2) and significantly poorer sleep qualities and sleep durations, 

rather than training or day matches.  
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From the current research it seems sufficient duration of sleep was present in most players in 

“normal” circumstances. A conclusion that could be drawn from this is that monitoring sleep 

in elite footballers during the season is not necessary. However, it is important to recognise 

here that it is likely inevitable some players in professional football will suffer from poor 

sleep duration and quality during normal situations, such as match days or following training. 

Indeed, there was a player in Study One who continually reported problems sleeping 

following training and match days due to newborn children, whilst another reported high 

‘unrestfullness’ due to regular waking to urinate (Appendices 6.3). These are some examples 

that support the notion of sleep being a highly variable and individualised trait, and thus 

considerations of the individual sleeping behaviour between players is required [259]. Thus, 

it would be advisable to monitor players’ daily sleep patterns (either through sleep diaries or 

actigraphy) across a period of 1-4 weeks to give a fair indication of normative sleep 

behaviour. Such a practice would also presumably identify the differences in the intra-

individual requirement for sleep between players. For instance, such differences were 

identified in both Study One and Two. Players reported vastly different sleep durations, 

qualities, onset latencies and perceptions of recovery (Appendices 6.3 and 6.4). In addition, 

whilst there were results of differences between players for perceptual ratings of recovery, in 

many instances these ratings would remain stable within each player. Thus, it would seem 

that individuals’ interpretation of the numerous perceptual scales present throughout this 

research differs.  

 

This is an important point for monitoring both sleep and recovery measures in the field, with 

a need to understand normal individualised sleep behaviour. Previous data indicate that both 

lifestyle choices and inter-individual differences in the requirement for sleep can dictate its 

volume. In addition, choosing how long to sleep for is likely affected by the ability of an 

individual’s willingness to function under different levels of sleep debt [260]. For instance, 

there are reports of inter-individual differences in physiological and cognitive responses to 

sleep loss [261]. As an example in Study One, Player D’s mean sleep duration was regularly 

less than Player B’s. However, it is unknown what is ‘optimum’ sleep duration for Player B, 

which might be 6 h compared to 8 h of Player D. Comparatively Player A may perceive a 

score of 2 to be their optimum recovery state compared to Player B’s 5. This would suggest 

that in applied practice, reliable individual baseline (normative) values be established for 

different stages of the season and are regularly compared to their own fluctuations in 

recovery state to give a true representation of when current (rolling) values fall outside the 
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norm (i.e. smallest worthwhile change, effect size calculations) [262]. Therefore, whilst 

acknowledging the important findings on the collective front of this research, it also 

highlights the importance of interpreting data on the individual level [259].   

 

In summary, football commitments appear to not create a significant burden on the attainment 

of sufficient sleep volume or quality, with footballers’ sleeping habits within normative 

healthy adult ranges [143] following training days and day matches. However, it should be 

noted there are documented individual cases within this research where normal sleep is 

interrupted during these times. In addition, there are various ‘worst case scenarios’ 

throughout a professional footballer’s typical schedule where sleep can be significantly 

disrupted, including sleep following late-night matches and during long-haul international air 

travel. Therefore, it is important to understand the potential causes of this sleep loss in these 

situations and the possible subsequent effect on the recovery time course.  

 

4.2 Sleep loss in footballers – Potential causes and impact on recovery of sleep-

compromising situations for players 

Late-night matches 

From the results presented within this thesis, following night matches elite players struggle to 

fall asleep within hours normally related to high sleep propensity. Our understanding of 

previous research indicates that an individual’s propensity to sleep is primarily the result of 

two processes: i) the homeostatic drive to sleep, reflecting the pressure for sleep that occurs 

following prolonged wakefulness and instigates the initial process of sleep and ii) circadian 

rhythms generated by an endogenous pacemaker regarding the flux in light [263, 264]. In 

normal circumstances (i.e. for a diurnally active human), the drive (need) to sleep is highest 

during the hours of 0:00 to 07:00 [263, 265]. In contrast, the period encompassing the early 

evening (i.e. 17:00-20:00) is where the drive for sleep is generally at its lowest [265]. There 

could be numerous mechanisms at play which may potentiate the desynchronisation between 

the normal sleep cycle and the endogenously derived circadian cycle. It is possible that 

performing vigorous exercise at what is a ‘normal’ bedtime is associated with this bad sleep 

(i.e. prolonged sleep onset and reduced sleep time [229]), an opinion widely  held by 

members of the scientific community [219]. This premise is partially based on the exercise-

induced rise in core temperature, which could potentially disrupt the thermo-physiological 

cascade leading to sleep initiation [266]. Other explanations include the higher HR at bedtime 

(delaying return of parasympathetic activity, causing excitement and prolonging sleep onset 
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[229]) and pain caused by perceptions of match loads [231]. Indeed, players in Study One 

reported ‘pain’ as one distinct difference for ‘sleep unrestfulness’ between night matches and 

day matches. It should be acknowledged that we were unable to derive specific physiological 

mechanisms from this dissertation; thus the majority of these proposed mechanisms on why 

performing vigorous exercise near bedtime may hinder sleep remain speculative. 

Nevertheless, the current findings are practically relevant, highlighting various factors which 

may impede sleep and induce sleep loss.  

 

In contrast, the majority of current evidence in footballers suggests that performing high 

intensity exercise at night does not impact on subsequent sleep. For instance, Roach et al. 

[232] reported no effect of two night (19:00-21:00) matches on sleep in elite junior football 

players. Similarly, Robey et al. [145] found no effect of early evening high-intensity training 

(16:30-18:30) on the subsequent sleep quality, duration, onset latency, sleep efficiency and 

bedtime in elite youth football players. Therefore, alternate factors might exist that disrupt the 

subsequent sleep of players in Studies One and Two. The most obvious issue here is that 

when a player is attempting to sleep, the activity of football at night itself and post-match 

activities delay the time at which a player goes to bed. These later bedtimes will invariably 

result in lower sleep durations – especially if wake times are predetermined due to other 

constraints (e.g. travel, family commitments). Another possible difference between day and 

night matches, other than the pure timing of match activity, is the exposure to floodlights in 

modern stadia. Exposure to such bright light can suppress melatonin and increase alertness, 

possibly disrupting sleep [228]. Indeed, players reported ‘adrenaline after a game’ as a reason 

for higher ‘sleep restfullness’ following night matches in Study One, although this was likely 

in response to the match itself. Nonetheless, it is clear that players will remain exposed to 

light (i.e. during the match, press conferences following the match, in bus to hotel) at both a 

time where they would not normally be exposed to such stressors, and the homeostatic drive 

for sleep would be high [219]. Thus, the optimal conditions to induce sleep are prevented in 

these circumstances.  

 

In addition to this extended light exposure from primary sources, players will commonly 

engage the use of social media and technological devices following matches (i.e. secondary 

light sources), which have been shown to be associated with reduced sleep volumes and 

difficulty falling asleep [227]. In contrast, Romyn et al. [247] reported no significant 

association between the amount of electronic device use and subsequent sleep parameters 
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during a training and competition week in eight state level netballers; although a strong, 

negative trend between sleep efficiency and device use was present. Similarly, there was not 

a significant difference between sleep onset latency in players in Study Three, where players 

were restricted from TV or phone use 30 minutes prior to bedtime (P = 0.12; SHS: 21.1 ± 

16.9; NSHS: 8.8 ± 7.1). Thus, from the limited evidence it may appear that more chronic 

examination of the effect of secondary light sources on sleep parameters in athletes is 

warranted. This will help to confirm the widely held assumption that technological devices 

result in reduced sleep volumes and difficulties in falling asleep. A further important 

consideration regarding technology use is that it realigns attention and focus, whilst providing 

a delay in sleep-conducive behaviour. Unfortunately, it is exceedingly unlikely that use of 

technological devices will cease or even reduce. However, it is possible that athletes may 

limit use of technological devices at an acceptable time (e.g. 30-60 min) prior to a pre-

emptive sleep time. From a practical perspective, other factors may also have to be taken into 

account such as personal preferences. For instance, a player may wish to utilise technology to 

keep in contact with their family, allowing improved comfort and wellbeing, which could 

actually assist sleep onset. Discouraging a player whom wishes to do this could cause more 

harm than good, regardless of the scientific and theoretical principles behind restricting 

technology access.  

 

There may also be other factors that affect sleep following night match play such as caffeine. 

The positive effects of caffeine on performance are well established [220, 221], although the 

effect of this supplement on habitual drinkers is debated, and was not measured in the present 

thesis. The effect of caffeine on subsequent sleep is also equivocal [26]; however it is clear 

that caffeine administration close to bedtime disrupts sleep [254]. Nonetheless, the premise of 

such debate is almost inconsequential from a football perspective, since players will almost 

certainly continue to take moderate to large quantities of caffeine prior to the match, 

regardless of effects on subsequent sleep. Invariably, a higher priority will and should be 

placed on the performance during the match rather than on the ensuing recovery. Similarly, 

napping (undertaken usually in the mid-afternoon) is commonly used for performance 

enhancements prior to a night match to improve alertness and physical performance [29]. 

Whilst this may disturb subsequent night sleep and influence recovery [219], players and 

coaches will always prioritise the match performance above this. Taken collectively, it would 

thus seem more pertinent to address the activities following the match in which to address 



64 
 

sleep issues within a professional football environment. This is of course assuming the 

consumption of caffeine and completion of napping activity is within adequate levels of use.   

 

With regards to activities conducted post-match, perhaps one of the most overlooked issues 

with sleep in elite athletes is the consumption of alcohol. For instance, two-thirds of Italian 

Serie A players whom were surveyed over a five year period reported themselves to be 

regular drinkers of alcohol [267]. Furthermore, it was found that customary behaviour 

following a rugby union match resulted in large amounts of alcohol consumption (~ 20 

standard drinks) and sleep loss (~ 4 h) compared to a recommended behaviour group [268]. 

Although not recorded in this research, given the high prevalence in professional players, it is 

possible that at least some players in Studies One and Two (where alcohol was not controlled 

– unlike Study Three where it was) drank alcohol after a night match. Therefore, rather than 

focus on activities conducted prior to the match (e.g. caffeine consumption, napping) and 

those outside control of practitioners (e.g. high intensity match running, lux of floodlights), it 

would appear time would be better spent on addressing behavioural activity following 

matches to improve sleep. This may help to avoid the negative effects of alcohol on sleep and 

the recovery time course [269], and optimise the potential for environments conducive to 

sleep. It would seem pertinent to educate players on these detrimental effects (i.e. the increase 

in night time arousal) throughout the season as well as organise structured activities post-

match. This could include the team eating together in the 1-2 h following the match in an 

environment which would encourage conditions conducive for sleep (e.g. dimmed lights). 

Whilst the scientific evidence for the detrimental effect of alcohol is strong, there are several 

cultural (e.g. bonding) and individual (e.g. addiction, psychological issues) factors which also 

need to be considered when approaching this issue.   

 

In addition to sleep loss following the night matches, there were also significant reductions in 

perceptual recovery following night matches compared to training days and day matches in 

Study One. As no differences were evident for subjective exercise loads between day matches 

and night matches, it might be speculated this subsequent altered recovery state could be 

attributed to the reduction in sleep quantity. Indeed, sleep deprivation following exercise can 

lead to reductions in the recovery of psychological or perceptual performance [201]. For 

instance, Fowler and colleagues [146] reported significant reductions in sleep duration and 

quality in six professional footballers, along with an impaired stress–recovery balance, on the 

night of a match compared to the night prior for away matches. The present result of a 
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reduction in perceptual recovery may represent concerns for the practitioner, especially since 

the competitive match load may suggest the homeostatic need for recovery sleep would be 

higher compared to rest days [247], and this appears to not have been provided here. 

Although speculative, this could have important repercussions for players during subsequent 

training and competition where this reduction in wellbeing could unnecessarily add to an 

already suppressed psychological state. For instance, Gallo et al. [270] investigated the 

impact of pre-training perpetual wellness (sleep quality, fatigue, stress, mood and muscle 

soreness) on s-RPE-training load and external load (GPS and accelerometer measures) in 

Australian Footballers. The authors reported that a wellness Z-score of −1 was related to a 

−4.9 ± 3.1 and −8.6 ± 3.9% reduction in PlayerLoad and PlayerLoadslow, respectively. More 

research which focuses on the interaction between sleep loss and a suppressed psychological 

state is required, especially in elite footballers, and whether any subsequent associations 

affect the acute recovery–stress balance and ensuing performance. 

 

Travel 

The reduced sleep duration and qualities present during long-haul air travel (LHIT) with a 4-h 

time zone change in Study Two also resulted in changes in perceptual responses, with large 

effects of jet-lag two days after arrival, yet minimal influence thereafter. In addition, although 

there were significant reductions in sleep duration and efficiency during outbound travel, the 

nights following arrival resulted in strong rebound effects. Sleep duration is reported to be 

reduced during simulated LHIT [271] and after actual transmeridian travel [272]. Although 

we were unable to provide direct comparisons of sleep parameters to baseline in the current 

study, the means of 5.5 and 5.7 h during outbound and return travel, respectively, are both 

far below the recommended 7 to 9 h for healthy adults [143] and the mean 8.5 h players 

subjectively reported before travel. Moreover, mean sleep efficiency during outbound travel 

was approximately 20% worse than average values for young adults who sleep for 8 h a night 

(~90% with PSG; [273]), indicating poor sleep quality. Previous research suggests that this 

poor duration and quality of sleep during travel could be due to hydration or cabin air 

pressure [236]. In addition, the non-supine position experienced in economy class may have 

hindered melatonin secretion, thus perhaps preventing the inducement of sleep [274]. In the 

current study, noise within the cabin, comfort, and the extensive travel schedule and timing of 

meals may also have played a role. Taken collectively, our results confirm the assumption 
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that long-haul international air travel results in lower sleep durations and poorer sleep 

qualities than healthy recommendations.    

 

Notwithstanding, there was a significant increase in players’ sleep durations on the first night 

of arrival in Study Two. This acute increase in sleep duration on night 1, followed by some 

stability on nights 2 to 4, suggests alterations to the sleep–wake cycle due to travel. The 4-

hour time-zone shift is likely to have had only minor effects compared with more extensive 

time-zone shifts (.i.e. 8–10 h) [236]. For example, since it is generally accepted that it takes 

one day per hour of time zone shifted to adjust to the new arrival time zone, it would be 

expected that players would adjust within the first 4 d of arrival. In addition, it is suggested 

that body clocks are more adept at extending the day, and thus westbound flights such as the 

one experienced in this study are more likely to elicit reduced severity of jet-lag symptoms 

(such as reduced sleep) than eastward travel [236]. Alternatively, the significantly greater 

sleep duration observed on the night after travel may be explained by an increased 

homeostatic pressure (drive) for sleep caused by the poor sleep incurred during outbound 

travel. However, it should be acknowledged that no marker of circadian rhythm was 

measured and thus we assume phase delay processes occurred.  

 

Although perceptual jet-lag was present during the early stages of the trip, all other 

parameters relating to the Liverpool John Moores Jetlag Questionnaire, perceived recovery, 

and sleep restfulness were relatively unchanged. These results may be explained by a 

westbound flight and a relatively small change in time zones, in addition to the substantial 

increase in sleep after the long-haul flight [236]. The finding of no effect on perceptual 

recovery could also possibly be explained by the elite playing experience of the current 

players, who are accustomed to constant travel and competition. Alternatively, athletes may 

have intentionally not reported concerns through fears of not being chosen to play [81]. The 

lack of an effect in our study may also have been due to the lack of regular recovery data 

collection (i.e. daily). It is also important to note, there were no objective measurements of 

recovery (i.e. exercise performance). Nonetheless, these results were somewhat surprising 

given that reductions in subjective sleep quality and perceptual responses have been 

previously reported in athletes immediately after LHIT [275]. The presence of perceived jet-

lag on day 2 was anticipated, with the players adjusting to the new light–dark cycle after 

travel. However, the dissipation of this effect by day 4 suggests that the timing of arrival 5 

days before the first match was sufficient to alleviate symptoms of jet-lag fatigue. This 
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sufficient readjustment may have been important given the effect that circadian readjustment 

can have on athletic performance [276].  

 

In summary, there are various potential causes for the reduced sleep volume observed 

following night matches; including, the delay of bedtime caused by scheduling, high-intensity 

exercise performed close to times of high sleep propensity, caffeine and napping prior to 

match play, primary or secondary light sources and the consumption of alcohol post-match. 

These reductions in sleep volume following night matches result in reductions to the 

perceptual recovery state, supporting the premise that sleep deprivation following exercise 

can lead to reductions in the recovery of psychological or perceptual performance. However, 

there are also acute cases where the perceptual recovery state can be maintained following 

sleep reductions (e.g. the two night matches of the 10 d international tour present in Study 

Two). In addition, LHIT results in poor sleep volumes potentially caused by a variety of 

factors including hydration or cabin air pressure, a hindrance of melatonin secretion, noise 

within the cabin, comfort, the extensive travel schedule and the timing of meals. Taken 

collectively, there appear certain scenarios where several behavioural factors can affect sleep 

duration and quality and in turn, some aspects of the perceived state of recovery, although 

there remains a lack of objective performance markers. Therefore, interventions that target 

these specific contexts where reductions in sleep and recovery may be apparent should be 

further investigated.  

 

4.3 Interventions focussed on improving sleep and recovery for footballers 

Whilst the potential for poor sleep in elite footballers is not disputed, the efficacy of sleep 

hygiene strategies (SHS) to improve sleep and consequently improve physical and 

physiological recovery remains unknown. The acute sleep hygiene strategy in Study Three 

showed increased sleep duration compared to a control condition, despite significantly more 

wake episodes. Regardless of the 2 h longer sleep duration, players subjectively perceived 

no difference in sleep quality between conditions. Furthermore, no significant improvements 

in perceived stress and recovery, exercise performance, or blood-borne markers of damage 

and inflammation were present. From the preliminary evidence it would suggest that 

implementing sleep hygiene strategies can improve sleep duration following night matches, 

but are currently ineffective in restoring physical performance or physiological and 

perceptual markers of recovery.  
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The effect of SHS on sleep quality and quantity has previously been studied in non-athletic 

populations, with SHS shown to improve sleep quality and onset latency in university 

students [253]. Comparatively, the effect of SHS in normal sleepers is equivocal [253]. 

Interestingly, there is limited data from athletic populations, with little known about the effect 

of SHS on sleep quantity or quality, let alone ensuing recovery kinetics [27]. Recently, 

Duffield et al. [255] investigated the effect of a SHS (21:00 bed time; low-light (8 ± 5 lux), 

cool (19 ± 2oC) environment, no technology 30 min prior to bedtime) on sleep 

duration/quality and recovery of elite tennis players following simulated match play. SHS 

was shown to improve sleep quantity (increased time in bed and min asleep; [255]), which is 

comparable to the present study. The imposed SHS significantly improved sleep duration, 

likely due to the enforced earlier bedtime as part of the SHS; which was also a primary aim of 

the present SHS strategy in this thesis. Consequently, players were in bed as soon as 

realistically possible to maximise exposure to sleeping environments and then assistance to 

sleep was provided within this environment. Although speculative, it is also possible the 

removal of technology prior to bedtime aided the subsequent improvement in sleep duration, 

especially given the enforced earlier bed time. For example, bright light emitted from 

portable technological devices may suppress melatonin and disrupt ensuing subsequent 

sleeping quantity and quality; although, admittedly this remains in debate [277] and remains 

unsubstantiated from the present studies. In addition, the behavioural changes caused by the 

use of technology need to be considered, such as attentional resources devoted to the 

technology rather than on sleep, and thus delays sleep engagement.  Regardless of the 

mechanisms responsible, given elite soccer players report large reductions in sleep quantity 

following night matches (Studies One and Two), this improvement in sleep duration in Study 

Three is both a novel and practical outcome for football players. 

 

Despite the increased sleep duration with SHS, significantly greater wake episodes and a  

trend towards increased wake episode duration (38.9 ± 27.5 v 20.0 ± 18.1 for SHS and 

NSHS) and sleep onset latency (21.1 ± 16.9 min v 8.8 ± 7.1 min for SHS and NSHS) existed. 

The inverse responses of these sleep variables are likely due to the context of the players 

attempting sleep following the late-night match. Specifically, the homeostatic drive for sleep 

in the NSHS condition, given the prolonged duration of wakefulness, likely resulted in faster 

sleep onset times and reduced awakening [205]. Conversely, in the SHS condition players 

were likely to still be highly aroused when attempting to fall asleep following the night 

match, resulting in longer sleep onset latency [205]. That is, enforcing bedtime so soon 
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following the match may have led to a delayed sleep onset, as this went against players’ 

preparedness for sleep, resulting in a low sleep propensity. In one sense, this likely further 

justifies the need to use behavioural interventions to aid sleep at a time where players may 

still be reluctant to attempt sleep, thereby providing conditions which are more conducive to 

assisting the drive for sleep. That said, it should be noted that other reasons for the inverse 

response of sleep variables could also include the unfamiliar sleeping environment of the 

training centre or the evening exposure to light [278], even though these factors were 

standardised in a cross-over design model. Thus, whilst sleep duration can be extended in a 

SHS following a late-night match, it should be acknowledged that players may face 

difficulties initiating sleep when enforced bed times are relatively soon after match finish.   

 

The results of post-match physical recovery markers reported in Study Three concur with 

previous sleep and recovery-based research [279]. The lack of clear differences in conditions 

are not unexpected considering a meta-analysis revealed that psychological mood and fatigue 

states are more affected by sleep disruption than either cognitive or motor performance [69, 

210]. It may be speculated that a larger sleep difference between conditions (both duration 

and quality) is required to further retard the recovery of physical or physiological markers of 

recovery. As evidence, it seems sleep deprivation studies whereby nights with complete sleep 

loss (e.g. 0 h), as opposed to partial sleep deprivation (e.g. 4-6 h), are more likely to result in 

negative physical and physiological outcomes of recovery [201, 261, 280].  For example, 

Skein et al. [201] showed that complete deprivation negatively affected recovery after a 

rugby league match, specifically impairing counter movement jump distance and measures of 

cognitive function. Comparatively, Mougin et al. [167] found no effects of a partially 

disrupted night’s sleep (3 h of sleep loss in the middle of the night) on the maximal sustained 

exercise intensity during incremental cycle ergometry (20 min at 75 % VO2max followed by 

10 W increase every 30 s).  With this evidence in mind, it may appear that improving sleep 

by a further ~2-3 h would be required to improve the physical recovery time course, or be 

more effective when the extent of sleep loss is greater. For instance, sleep extension (110.9 ± 

79.7 min) has been shown to improve athletic performance; including sprint speed, basketball 

shooting accuracy and reaction time [147]. Extending sleep beyond 2 h, especially in a one-

off instance, is difficult, and thus may be more effective when the level of sleep loss is 

greater. Indeed, the large standard deviation for sleep duration in the aforementioned study 

indicates that individuals can respond very differently to sleep interventions. At this stage this 

thesis confirms that it is possible to improve sleep duration through sleep interventions (to a 
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certain degree), though our knowledge of the efficacy these interventions have on athletic 

performance recovery remain limited, especially over more chronic periods of time (i.e. 

consecutive nights of grater sleep volume and quality). .  

 

Similar to the lack of an improvement in recovery of physical performance, there were no 

significant improvements in measures of psychological stress and perceived recovery in the 

sleep hygiene condition in Study Three. These findings differ with previous results from the 

aforementioned work by Duffield et al. [255] with large effect sizes evident for perceived 

soreness and feelings of fatigue the following morning after the sleep hygiene intervention in 

their study. Indeed, the results from Study Three are surprising given almost all forms of 

extensive sleep deprivation result in increased negative psychological mood states (e.g. 

fatigue, loss of vigour, sleepiness, and confusion [210]). It has been shown that sleep 

disturbances lead to feelings of waking unrefreshed and greater perceptual fatigue [281]. It 

would appear a greater sleep differential between conditions is required to improve 

perceptual recovery and stress. It should be further noted that the effect of the sleep hygiene 

condition was also only acutely assessed in Study Three (i.e. after one late-night soccer 

match). Elite soccer players who regularly play late-night matches may consequently enjoy 

greater benefit from sleep hygiene strategies if such strategies were applied regularly 

throughout the season, i.e. after each night soccer match.  

 

The varying components of sleep hygiene strategies  

Delineating the mechanisms behind the efficacy of sleep hygiene interventions is difficult due 

to an abundance of confounding factors. These include exercise type/duration/intensity, stress 

management, noise, sleep timing, and avoidance of caffeine, nicotine, alcohol and daytime 

napping [256]. The contribution of each of these factors to an enhanced recovery status is 

likely primarily dependant on the influence of each factor on the various parameters of sleep. 

Sleep hygiene interventions can be used for players following match play, or simply as 

general guidelines to improve normative sleep. Since normative sleep across the playing 

groups studied within this thesis was within normal adult ranges, it seems more appropriate to 

address the mechanisms at play for SHS following night matches and travel. Indeed, the 

evidence of some forms of SHS on sleep parameters shows little benefit for sleepers whom 

report no sleep complaints [254]; although further research is required to examine the validity 

of recommendations in non-clinical populations. Thus, the following sections will address the 
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various SHS within the context where the majority of sleep loss occurred in this dissertation 

i.e. late-night matches and travel. 

 

A commonly used sleep hygiene recommendation is the encouragement of a regular 

sleep/wake time. This is primarily based on the intention to maximise the synchrony between 

homeostatic sleep drive and circadian rhythms [254]. Whilst players appear to have ample 

opportunity to employ this during the week, the high prevalence of night matches throughout 

the season will likely present challenges to implementing this type of regular scheduling 

following match play [219]. Indeed, whilst some individual players in Study One reported 

high variability, the majority reported steady and adequate sleep durations during the normal 

training week, before a clear reduction following night match play. Desynchronising this 

regularity typically results in daytime sleepiness [282] and worse self-reported sleep quality 

[283]. It is possible that implementing a regular sleep schedule following night match play 

may alleviate the ramifications of any (regular) acute reduction in sleep duration and quality. 

For instance, limited evidence suggests that employing better general lifestyle routines results 

in better sleep [284]. However, this may prove difficult as teams do not commonly have a set 

schedule of when they play night matches. For instance, English Premier League teams 

competing in domestic competition and the UEFA Champions League can play night matches 

on Monday, Tuesday, Wednesday or Friday night. Furthermore, they may also have to endure 

unpredictable travel schedules which could disrupt the effective implementation of sleep 

timing. More research which evaluates the ability of individuals to identify personal sources 

of stress and effective strategies to address these issues is required within elite footballers 

[254].   

 

Strategies to improve sleep following match play may also need to consider different 

psychological responses arising from the match itself. Players may endure a raft of emotions 

following a match, such as anxiety about performance, sadness following a loss, elation or 

relief after a win or non-players may be angry about not playing if they were a non-starter. 

Indeed, it has been shown that the results of activities can generate positive emotions for 

winning and negative emotions when losing, with these emotions heightened when games are 

competitive [285]. Furthermore, Vandekerckhove and colleagues [286] reported associations 

between decreased sleep efficiency, total sleep time, percentage of rapid eye movement 

(REM) sleep, and an increased wake after sleep onset latency, total time awake, latency to 

slow wave sleep, number of awakenings and number of awakenings from REM sleep from 
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polysomnography and negative stressful pre-sleep events, albeit not in football. Although 

speculative, players whom are susceptible to negative emotions (e.g. from losing) may sleep 

poorer following matches compared to those who are not. In addition, players whom are more 

concerned about how they thought they played may remain anxious in the hours approaching 

to bedtime, possibly delaying sleep onset latency. The chronic (e.g. continual) effect of sleep 

deprivation following night matches may also be of concern, since deprivation of sleep could 

make players more sensitive to emotional and stressful stimuli and events in particular [287]; 

although additional research is required to confirm this.  

 

Indeed, managing stress prior to sleep onset has recently received increased attention 

amongst researchers and practitioners in which to improve sleep hygiene [278]. Stress 

responses can be of a physiological (i.e. increased heart rate and blood pressure) or 

psychological (i.e. anxiety, nervousness) nature. Several studies have reported associations 

between psychological stressors and sleep [254]. For instance, Hall et al. [288] reported 

increased sympathetic arousal, less restorative sleep (measured by PSG) and more 

wakefulness through the night following pre-sleep exposure to acute anticipatory stress. 

Therefore, strategies encouraging relaxation and the limitation of arousal are thought to 

promote effective sleep hygiene [278]. Players in Study Three did not perform relaxation 

techniques but refrained from technology prior to bedtime, whilst also dimming lights in 

preparation for bed. Although the results of this thesis are limited due to sample size, not 

unexpectedly players didn’t report psychological stressors following simulated night matches 

(Studies One and Two). Interestingly, players did report such stressors during normal 

circumstances in Study One (i.e. after typical training days), including nervousness, personal 

relationship problems and confrontation with coaches. Thus, it would appear that addressing 

stress management as part of a healthy SHS in real-world settings is more pertinent for 

generalised sleep education during normal circumstances, rather than following night 

matches. However, given the individualised nature of these responses, targeted approaches to 

manage stress may be part of an effective SHS. Indeed, the sleep issues reported within this 

thesis are varied and are likely dependant on the individuals’ sensitivity to stress. This 

concurs with previous research reporting that those who perceive themselves sensitive to 

stress perceive higher arousal states and have greater sleep stage transitions [289]. At this 

stage it is recommended stress relaxation techniques are implemented which are most 

appropriate to the needs of the individual in question.  
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An additional recommendation for SHS is the management of noise. The impact of noise 

during sleep results in an increase in arousal, increased Stage 1 and 2 NREM sleep and 

suppressed SWS and REM sleep [254]. With noise being a clear disturbance to sleep 

responses, research indicates that the relationship between noise and sleep is moderated by 

characteristics of the noise itself [254]. This can include the type of noise, continuity, 

relevance and individual habituation to noise. Although no measurements of decibels were 

recorded in the present study, personal opinion of the research group was that there was very 

little noise in Study Three, with rooms very isolated, far away from any roads or communal 

areas – though snoring of players within rooms was not documented. Players were provided 

with ear plugs, though they predominantly chose not to use the ear plugs, which have been 

shown to improve sleep in intensive care patients [290]. It is possible that players thought by 

using the ear plugs their sleep may be hindered due to comfort factors that were more 

concerning than the potential for noise itself. Indeed, research regarding individual preference 

and efficacy of various sound-attenuating strategies remains unclear [278]. Implementing 

strategies that minimise surrounding sounds such as traffic, music and water pipes would 

appear to be the most impactful to improving sleep [254]. For football teams following match 

play this might include staying in hotel rooms away from the main road, sleeping in single 

rooms or using headphones during air travel to minimise noise.  

 

4.4 Limitations of the dissertation and recommendations for future research 

Despite the novel findings reported in this thesis, certain limitations need to be acknowledged 

when interpreting these findings. The primary limitation of this research was that PSG, the 

‘gold standard’ of sleep quantity and quality monitoring, [26, 27] was not used. Without the 

use of this technique in this thesis, it is recognised as a limitation when interpreting sleep 

outcomes, or more specific sleep architecture.  For primarily logistical reasons the use of PSG 

was not possible and subjective sleep diaries and actigraphy measures were used instead.  

Regardless, both actigraphy and subjective reports have been shown to not significantly differ 

to PSG data for total sleep time and sleep efficiency [124]. Given the location and methods of 

data collection (outside the laboratory), mechanistic inferences were difficult to delineate and 

thus remain unanswered. This is also true for the lack of physiological measures utilised in 

the first two studies. Rather the strength of the majority of this thesis was that the first two 

studies were conducted in real-world elite sporting environments, giving the results high 

ecological validity.  Indeed, since the topic of this research is specific to elite football, it is 

argued at least some research must be undertaken in a field setting to mimic the conditions in 
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which the research is put into practice. Furthermore, the sample size across studies was small, 

making it difficult to draw firm conclusions from this research. This may be especially true 

for recovery, which is a well-recognised multi-dimensional concept [291]. An additional 

limitation of the thesis was that each study was relatively acute. Thus, the influence of the 

majority of these highlighted issues remains unknown from a chronic standpoint. This is also 

true for interventions, for instance the effect of sleep hygiene on sleep and recovery over the 

course of a season remains unclear. 

 

Whilst the research presented within this thesis offers novel insight into the context of sleep 

in elite football, there remain areas which require much additional research. Although our 

results suggest players lose sleep following night matches, research incorporating objective 

measurements of sleep during these periods in addition to more longitudinal data sets (e.g. 

over the length of a season) is required to confirm our findings. Indeed, the effect of these 

extraneous stressors on sleep in the chronic sense remains unknown. Furthermore, it is 

pertinent to evaluate the effect these chronic changes, if present, have on physical markers of 

recovery. In addition, our knowledge regarding the effect of a suppressed psychological state 

on the overall recovery profile through subsequent training sessions is limited, especially 

with regards to sleep loss. More research which focuses on the interaction between sleep loss 

and psychological fatigue is required, especially in elite footballers, alongside whether any 

subsequent associations exist between the acute recovery-stress balance and ensuing 

performance. The research presented in this dissertation confirmed that sleep is disrupted 

during long-haul westward air travel; however, the effect of this disruption on measures of 

physical performance and recovery remain unclear. Future research which quantifies, and 

where possible separates, the effects of circadian shifts, direction of air travel and length of 

travel on sleep and the recovery timeline of elite team-sport athletes (e.g. footballers) is 

warranted. In contrast, it may be prudent to evaluate the chronic effect of short haul travel on 

sleep, performance and recovery throughout a season in future research considering the 

majority of European teams will only endure flights of less than 2 h, but on a regular basis. 

However, with the majority of field based research in professional sporting environments, 

delineating the mechanisms behind these potential effects is exceedingly difficult.  

 

It may be speculated that a larger sleep difference between conditions in Study Three (from 

both a duration and quality perspective) is required to affect the majority of physical or 

physiological measures of recovery. Thus, a priority in future work must seek to address the 
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various factors within sleep hygiene recommendations. For example, more research which 

evaluates the ability of individuals to identify personal sources of stress and effective 

strategies to address these issues is required, especially within elite footballers. Moreover, 

setting regular sleep timing schedules following periods of sleep loss (i.e. late night matches, 

during travel) and monitoring these responses over the course of a season would appear 

beneficial to evaluate the chronic effect of the implementation of SHS. Since residual fatigue 

is suggested to be more apparent as a season progresses, it may be predicted that SHS are 

more effective over a longer timeline akin to the findings of Mah et al. [147] mentioned 

previously, where more chronic versions of SHS resulted in performance benefits. Perhaps 

most pertinently for elite players, the effect of SHS on recovery in real-world professional 

environments requires further investigation. Indeed, whilst Study Three revealed important 

findings, there are several additional considerations for SHS which are only present in high 

performance environments (e.g. press conferences, extensive recovery protocols, private air 

travel).  

 

4.5 Practical considerations regarding sleep loss and recovery in elite football 

environments  

Sleep loss incurred following night match play may have important repercussions for next 

day training. In Study One there were significant reductions in perceptual recovery following 

night matches. Although speculative, this reduction in wellbeing could unnecessarily add to 

an already suppressed psychological state during next day training. It is important to consider 

these risks if training the day following a match that has incurred increased sleep loss. That 

said, it is noted that the majority of professional European teams do not train the next day 

(personal communication). For night matches a number of post-match activities need to be 

taken into account including press conferences, recovery strategies, timing of meals, potential 

travel, social plans and choice of hotel. If scheduling training or recovery sessions it would 

appear efficacious to schedule these for later in the day, thus allowing players a time frame to 

increase bed time in an attempt to gain adequate amounts of sleep.  

 

Such a premise may also be important following travel. In Study Two, players’ lost 

significant volumes and quality of sleep during long haul travel. Training the next day may be 

a risk given the sleep loss incurred along with the cramped, hypoxic conditions on the 

aircraft. Nonetheless, elite teams seem to prefer to train immediately following travel, with 

both the national team present in Study Two and an elite football team in France training the 
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day following long-haul international travel [292]. Given the nature of modern football with 

congested fixtures (limited time between matches) it is understandable that managers want to 

train their players, at least tactically, at every opportunity. However, in both cases the 

external training loads performed were low in distance and intensity. Indeed, balancing 

adequate training load with recovery and managing injury risk following constant extraneous 

influences such as travel and late-night matches is a constant challenge in modern football.  

Nonetheless, such instances are dependent on each situation and the individual in question.  

 

Managing sleep behaviour during and following periods which may potentiate sleep loss is 

also dependent on the environment. For instance, whilst this section has discussed various 

mechanisms behind sleep hygiene protocols, there remains little knowledge of the efficacy 

and difficulty to implement of these interventions in comprising situations (e.g. travel). For 

air travel, several factors need to be considered such as time of departure/arrival, airline, seat 

and leg room, light, barometric pressure, timing of meals and noise. Implementing sleep 

hygiene strategies in these environments is obviously challenging. In Study Three the 

environment was representative of a hotel where players would reside following the match. 

However, the implementation of this type of sleep hygiene strategy, where players were in 

bed as short as ~ 1 h after the match concluded, is most likely not logistically possible in a 

professional environment. For instance, many teams will immediately travel back to their 

home following night matches (via air or road), presenting challenges for implementing an 

effective sleep hygiene strategy. Whilst no studies have yet attempted this challenge in the 

field, Fowler et al. [293] assessed sleep, physical performance, subjective jet-lag symptoms 

and mood state outcomes in the morning and evening on the day prior to and for two days 

post-travel (24 h of simulated international travel) with and without a sleep hygiene 

intervention. The authors reported a significant reduction in sleep duration during travel in 

both trials, with sleep duration in the sleep hygiene intervention (17.0 h) greater (although not 

significant: P = 0.06) compared to control (15.7 h). Whilst there was no effect on 

performance outcomes, there were significantly greater vigor the morning of day 2 in the 

sleep hygiene intervention and subjective jet-lag symptoms and mood states were 

significantly worse on day 2 in the control condition only. This limited evidence, along with 

the results within this thesis, shows at least the difficulty for acute sleep hygiene interventions 

to be efficacious in restoring physical performance. Moreover, it is likely that implementing 

such strategies during actual travel would face logistical challenges: provision of equipment, 

timing, the length of travel, player compliance and type of air travel imposed (e.g. economy 
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versus business class). This may mitigate any potential benefit on the restoration of physical 

performance following training or match play. Nonetheless, with careful consideration and 

planning of the above factors, the implementation of sleep hygiene strategies during travel is 

recommended to at least improve sleep volume and perceptual recovery outcomes.  

 

The following recommendations (Figure 4.1) are based on the results and discussion 

presented within this thesis. However, the author recognises that there is a lack of research 

examining the interactions between sleep and recovery in elite football players. Nonetheless, 

there seems much potential benefit, with limited associated risk, in following these schematic 

recommendations. Of note, it is perhaps most important to tailor interventions to individual 

players where possible. From a sleep perspective, this could include collecting, analysing and 

presenting a host of extraneous factors/influences that are of relevance to the respective 

athletes. Furthermore, the impact of scheduling and different behavioural patterns (i.e. caused 

by technology use) on sleep requires further investigation.   

 

4.6 Conclusion 

The outcomes arising from this thesis showed that professional football players lose sleep 

following night matches and during long-haul international air travel; although outside these 

extraneous influences players’ sleep patterns appear to be within normal ranges for healthy 

adults. Specifically, it was determined that football players will encounter specific and re-

occurring stressors throughout a season (e.g. late-night matches) which can disrupt sleep and 

hinder perceptual recovery. Nonetheless, it was also found that in acute cases (long-haul 

international air travel and a 10 d international tour) this lost sleep appeared to have a limited 

effect on perceptual recovery, which may be explained by both the direction of travel 

(westbound) and small change in time zones (-4 h). Finally, it was found that an acute sleep 

hygiene strategy was able to alleviate the reduction in sleep volume; although this increased 

sleep duration was accompanied by significantly more wake episodes in the acute sleep 

hygiene strategy and players reported similar sleep qualities between conditions and without 

subsequent improvement in physical performance. Thus, whilst sleep duration can be 

extended in an acute sleep hygiene strategy following a late-night match it should be 

acknowledged that players may face difficulties initiating sleep when enforced with earlier 

bed times post-match. Furthermore, there were no significant differences between conditions 

for blood-borne markers of muscle damage and inflammation or physiological responses to
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Figure 4.1: Flow chart schematic for monitoring sleep and managing recovery in football. 
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training. Taken collectively, the present findings suggest football players might consider 

sleep hygiene strategy strategies where possible following a late-night match to promote 

restorative sleep; however, there appears to be no additional benefit for the recovery of acute 

performance or perceptual recovery outcomes. Since sleep is a vital component of human 

physiological and cognitive function [89], two well established elements of sporting 

performance [1], it is believed this research offers novel findings into the current sleep issues 

professional players face, and methods which could potentially alleviate these issues. As 

such, this information is especially pertinent given sleeps’ anecdotal criticality within 

sporting environments and offers scientific merit given the limited amount of current sleep-

related research in elite football. Finally, this research could potentially be of importance to 

coaches and practitioners to factor in considerations to promote optimal sleeping patterns 

when designing training and recovery programs.  
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Abstract Although its true function remains unclear,

sleep is considered critical to human physiological and

cognitive function. Equally, since sleep loss is a common

occurrence prior to competition in athletes, this could

significantly impact upon their athletic performance. Much

of the previous research has reported that exercise perfor-

mance is negatively affected following sleep loss; however,

conflicting findings mean that the extent, influence, and

mechanisms of sleep loss affecting exercise performance

remain uncertain. For instance, research indicates some

maximal physical efforts and gross motor performances

can be maintained. In comparison, the few published

studies investigating the effect of sleep loss on perfor-

mance in athletes report a reduction in sport-specific per-

formance. The effects of sleep loss on physiological

responses to exercise also remain equivocal; however, it

appears a reduction in sleep quality and quantity could

result in an autonomic nervous system imbalance, simu-

lating symptoms of the overtraining syndrome. Addition-

ally, increases in pro-inflammatory cytokines following

sleep loss could promote immune system dysfunction. Of

further concern, numerous studies investigating the effects

of sleep loss on cognitive function report slower and less

accurate cognitive performance. Based on this context, this

review aims to evaluate the importance and prevalence of

sleep in athletes and summarises the effects of sleep loss

(restriction and deprivation) on exercise performance, and

physiological and cognitive responses to exercise. Given

the equivocal understanding of sleep and athletic perfor-

mance outcomes, further research and consideration is

required to obtain a greater knowledge of the interaction

between sleep and performance.

Key Points

Although sleep is considered critical to optimal

performance, many athletes appear to lose sleep prior

to competition for various reasons, including noise,

light, anxiety, and nervousness.

Whilst there appears sufficient evidence to imply

complete sleep deprivation can have significant

negative effects on athletic performance, the effects

of sleep restriction (partial disturbance of the sleep–

wake cycle) are more conflicting; a concerning issue

given that athletes are more likely to experience this

mode of sleep loss.

The detrimental effect of sleep loss on most aspects

of cognitive function remains unequivocal, with only

minor conflicting findings present for the extent of

the effects of mild sleep restriction, findings that

would predictably suggest negative consequences for

athletes requiring high neurocognitive reliance.
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1 Introduction

Reoccurring at habitual intervals throughout a 24-h period

in humans, sleep is a homeostatically controlled behavioral

state of reduced movement and sensory responsiveness [1,

2]. The process of sleep is widely regarded as critical to

both cognitive and physiological function [2–7]. In spite of

this perceived importance, the consensus regarding the

rationale as to why humans sleep remains equivocal, if not

robustly debated [2, 8]. Recent studies have shown sleep to

regulate key molecular mechanisms (i.e. transcriptional

regulatory proteins [1, 9, 10]), and have demonstrated that

sleep has an integral role in metabolic homeostasis [11].

Whilst the duration and quality of sleep is manipulated by

numerous environmental factors, among them light [12],

jetlag [13], and nutrition [14], it has also been shown to be

influenced by genetic traits [15, 16]. Notwithstanding the

complexity surrounding the need, rationale, and outcome

of sleep, it seemingly must serve an important purpose for

humans because it has survived so many years of evolution

[15].

The ability of humans to cope with physiological and

psychological stressors is critical to athletic performance

outcomes [17], and is affected by numerous factors,

including experience, fitness, motivation, and the natural

fluctuation of physiological and behavioral processes

across a 24-h period (i.e. sleep–wake cycle, body temper-

ature, hormone regulation [18]). These circadian rhythms

are primarily controlled by the suprachiasmatic nucleus

(SN) within the hypothalamus [2]. However, the SN is

unable to always maintain control over these patterns, as

humans are highly sensitive to alterations to their natural

environment [2, 19], most notably through the light–dark

cycle [20]. When athletes encounter disruptions to their

environments (e.g. through travel or training/playing at

night), endogenous circadian rhythms and normal sleep–

wake cycles can become desynchronised [2, 21]. Such

perturbations in sleeping patterns can cause an increase in

homeostatic pressure and affect emotional regulation, core

temperature, and circulating levels of melatonin, causing a

delay in sleep onset [22]. Following these periods, there is

potential for sleep loss and neurocognitive and physiolog-

ical performance to be compromised [7, 14, 23, 24]. Thus,

since sleep disruption prior to important events is com-

monly found in elite athletes [25–27], there are numerous

instances where the subsequent performance could be

compromised [25, 28, 29].

However, due to the complexity of sleep function, the

limited availability of athletes to participate in sleep stud-

ies, and the variability in the individual requirement for

sleep [21, 30], the effects of sleep loss on athletic perfor-

mance are poorly understood. Furthermore, the increase in

recent literature since past reviews [21, 31, 32] highlights a

need to re-evaluate the effects of sleep loss on athletic

performance, particularly allowing for a greater focus on

sport-specific outcomes. Accordingly, the overall purpose

of this review is to examine the effects of sleep loss on

exercise performance, and physiological and cognitive

responses to exercise. As a result, we review the current

literature on the theoretical components of sleep and

importance for athletes, the quality and quantity of ‘nor-

mal’ sleep compared with that of athletes, and the effects of

sleep loss on exercise performance and physiological and

cognitive responses (including mood) to exercise. In order

to accomplish this critical review, a computerized literature

search (Fig. 1) was performed over 7 months (August

2013–March 2014) on PubMed and Web of Science for

articles within the period January 1960–March 2014.

Keywords used in different combinations were ‘sleep’,

‘deprivation’, ‘loss’, ‘restriction’, ‘team’, ‘exercise’, ‘cog-

nition’, ‘physiological’, ‘sport’, ‘athlete’, ‘player’, and

‘performance’. In addition, articles were sourced manually

from the reference lists of original manuscripts, and pre-

vious critical, systematic, and meta-analytical reviews. The

previous work within this field, and the multi-dimensional

components of sleep and their role in athletic performance,

are duly recognised. Notwithstanding these critical com-

ponents, their roles are too extensive to be discussed here.

The reader is advised to consult previous work regarding

the effects of nutrition [14], jetlag [13, 33, 34], and Ram-

adan [35] on sleep for further detail.

2 The Theoretical Components of Sleep and their

Importance for Athletes

A recent review by Frank and Benington [8] identified

several theories of the function of sleep, including (1) the

restorative effects on the immune and the endocrine sys-

tems, (2) a neurometabolic theory suggesting that sleep

assists in the recovery of the nervous and metabolic cost

imposed by the waking state, and (3) cognitive develop-

ment, supposing that sleep has a vital role in learning,

memory, and synaptic plasticity. An interaction between

these theories is likely to contribute to the construct of

several stages during sleep [8]. These respective stages not

only differ in depth, but also in the frequency and intensity

of dreaming, eye movements, muscle tone, regional brain

activation, and communication between memory systems

[36]. A typical night’s sleep is composed of approximately

90-min cycles divided into periods of rapid-eye-movement

sleep (REM; associated with dreams), and non-REM sleep

(NREM) [37]. NREM sleep is further divided into four

different stages (Fig. 2). All stages are classified according
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to parameters such as electrical brain activity, blood pres-

sure, and eye movement [38, 39].

Specifically, the role for NREM sleep is proposed to

assist with energy conservation and nervous system recu-

peration. For example, it has been shown that growth

hormone (GH; fundamental to tissue regeneration and

growth) is released [40] and oxygen consumption is low-

ered [41] during phases of NREM sleep. Moreover, NREM

sleep seems to be a stimulus for anabolic hormones that

increase the synthesis of protein and mobilize free fatty

acids to provide energy, thereby preventing amino acid

catabolism [42]. Such processes would seem particularly

pertinent for athletic populations requiring accelerated

rates of healing to repair peripheral muscular damage [43].

Comparatively, theories of REM sleep have suggested a

role for this state in periodic brain activation, localized

recuperative processes, and emotional regulation [44].

Especially in the early stages of mammalian life, REM

sleep is assumed to be critical in establishing brain con-

nections [44], since neuronal activity in REM sleep is

similar to that of waking [45]. Hence, sleep can be defined

as an actively regulated process rather than a passive result

of diminished waking, and can be seen as a reorganization

of neuronal activity [45].

The importance of sleep in athletes has also been

discussed in regards to memory consolidation, especially

Potential abstracts identified, screened and 
extracted from PubMed and Web of Science

(n=2,093)

Duplicated studies excluded (n=735)

Studies examining various combinations of the
key words in humans or animals (n=1,358)

Studies examining sleep or performance or 
physiology or cognition with relevance to the 

context of the review (n= 745)

Studies with no relevance to the desired context 
excluded (n=613)

Studies examining sleep or performance or 
physiology or cognition in animals excluded 

(n=57)

Studies examining sleep or performance or 
physiology or cognition in animals retained if 

they contributed to the context or theories 
regarding sleep (n=6)

Studies examining, discussing or debating the 
role of sleep or performance or physiology or 
cognition in unhealthy populations retained if 
they were deemed critical to the discussion of 

factors influencing sleep (n=7)

Studies examining or reviewing sleep or 
performance or physiology or cognition in 

healthy participants (n= 694)

Studies examining sleep or performance or 
physiology or cognition in unhealthy/sedentary

populations or studies that were deemed not 
appropriate for the context of the review 

excluded (n=496)

Studies examining sleep or performance or 
physiology or cognition in athletes, or the 

interaction between these variables in healthy 
populations, or those deemed critical to the 

desired context of sleep loss and athletes were 
finally included (n=205)

Fig. 1 Flow diagram and

results of the literature search to

address the aim of the article to

evaluate the importance and

prevalence of sleep in athletes

and review the effects of sleep

loss on exercise performance,

and physiological and cognitive

responses to exercise
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to motor learning. REM, NREM stage 2, and slow-wave

sleep (SWS) have all been implicated in sleep-dependent

memory procession [36]. For example, several studies

showed improvements in motor task tests after a night of

sleep, whereas this was not the case in subjects having

an equivalent period of being awake [36, 46–48]. Since

sleep loss reduces the overnight improvement in motor

learning, it seems that motor task learning may correlate

with the amount of specific sleep stages/events, rather

than just one specific aspect of sleep [36]. With the

ongoing motor learning and cognitive adaptation required

for elite athletes to perform [49], combined with the

numerous neurocognitive components of many sports

[50], it seems that ascertaining an optimal brain state for

a range of distinct memory consolidation processes are

pertinent for athletes prior to and following competition

[49].

3 What is the Quantity and Quality of ‘Normal’ Sleep

and how do Athletes Compare?

3.1 What is ‘Normal’ Sleep?

Subjective average total sleep duration has fallen in healthy

adults since the mid-twentieth century from approximately

8–9 h per night in 1959 to 7–8 h in 1980 [51]. In a

nationwide survey of the USA in 2013, data indicate adults

slept for an average of 6 h:51 min on ‘workdays’ and

7 h:37 min on ‘non-workdays’ [52]. A mean 7 h:17 min

total sleep time was required for respondents to ‘operate at

their best the next day’ [52], which corresponds with the

7–9 h recommended by the National Sleep Foundation for

healthy sleep [51–53]. Despite such recommendations,

almost one-quarter of adults who have similar sleep dura-

tions to these recommendations reported ‘fairly–very bad’

Fig. 2 The behavioral states of humans and phase changes through-

out the sleep wake cycle, including states of waking, non-rapid-eye-

movement sleep and rapid-eye-movement sleep. The first row depicts

a visual representation of movements throughout the sleep night. The

second row illustrates REM sleep and the four stages of NREM sleep.

The third row includes sample polysomnography tracings (each

*20 s) of an electromyogram, an electroencephalogram, and an

electrooculogram to help determine the presence or absence of each

stage. Rows four, five, and six portray a range of subjective and

objective state variables. Although unable to replicate the sensitivity

of these measurement techniques, other sleep indices (i.e. duration,

latency) can also be measured by subjective sleep diaries and or/

wristwatch actigraphy. Reproduced from Hobson [45], with permis-

sion. EEG electroencephalogram, EMG electromyogram, EOG elec-

trooculogram, NREM non-rapid-eye-movement, REM rapid-eye-

movement
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subjective sleep quality [52]. Others have reported that

university/college students demonstrate even poorer pat-

terns of sleep than other healthy adults. Many studies

indicate that this cohort suffers from chronic sleep prob-

lems and disruptions [54–56], with some adolescent ath-

letes sleeping 2 h less than recommended daily sleep

volumes [57]. These discrepancies are attributed to the

rising melatonin levels of the adolescent cohort [58] and

the rapid advances of 21st century technology, prolonging

human exposure to light [59–61]. Overall, sleep architec-

ture, quality and quantity varies drastically across indi-

viduals and occupations [62], mainly due to a vast array of

physiological and cultural differences [63, 64]. Such vari-

ety makes the interpretation of generic sleep recommen-

dations (7–9 h, abide by sleep hygiene protocols to

optimize sleep quality [51, 52, 65]) difficult, especially for

athletes [30].

3.2 Sleep in Athletes

Since both athletes and coaches rate sleep as critical to

optimal performance [14, 25], it is peculiar that relatively

few studies have investigated the sleep quality and quantity

of the athletic cohort. Early research suggests that athletes

possess similar or even superior sleep quality and quantity

than nonathletic subjects [66, 67], with aerobically fit

subjects tending to experience more SWS sleep and longer

sleep duration than non-fit controls [68]. However, these

findings may have been due to the enduring habitual,

genetic, and behavioral patterns of sleep, rather than the

greater endurance status per se [15, 69]. Regardless, the

longer sleep duration found in certain aerobically fit indi-

viduals has been attributed to the restorative and energy

conservation theories for sleep (e.g. athletes require greater

recovery [69, 70]). Accordingly, some authors suggest

athletes should sleep for between 9 and 10 h [71], whilst

7–9 h is recommended as enough for healthy adults [51,

52]. Recent evidence suggests that athletes sleep far less

than either of these recommendations [72]. For example, a

survey of 890 elite South African athletes showed that

three-quarters of athletes reported an average sleep dura-

tion of between 6 and 8 h per night [73], while on week-

ends, 11 % reported sleeping less than 6 h. Moreover,

41 % stated they had problems falling asleep, with these

discrepancies attributed to interference by noise and light

[25, 74]. Additionally, pre-competition anxiety can also

play a role in worsening sleep patterns [26, 75, 76]. For

instance, sleep quality [76], efficiency [77], and duration

[78, 79] have all been found to dramatically decrease just

prior to competition. Juliff et al. [27] found that, within a

sample of 283 elite Australian athletes, 64 % reported poor

sleep prior to an important competition. The primary rea-

sons for these poor sleep patterns could be due to

nervousness, deteriorations in mood and/or confidence

[80], and elevations in physical and mental stress [77].

Recently, Leeder et al. [81] found that Olympic athletes

slept for a lower mean total duration (6 h:55 min vs.

7 h:11 min using actigraphy) and had poorer sleep quality

than non-athletic controls. Given the short sampling period

(4 days), it is difficult to generalize the findings from this

study to all athletes; however, there is supportive evidence

of training disrupting sleep quality and duration in other

athletes. For instance, Taylor et al. [80] reported training

volume to alter movements during sleep (greater move-

ments were found; defined as occupying C4 s of any 20 s

epoch within the polysomnographic recording [80]). The

effect of training volume on sleep patterns is supported by

others [82, 83], with early-morning training severely

restricting sleep duration compared with normal (5.4 to

7–8 h) in a group of world-class swimmers [72]. In addi-

tion to exercise volume, intensity may also negatively

affect sleep, with a recent study reporting increases in sleep

onset and physiological excitement following high-inten-

sity exercise conducted prior to bed time (40 min treadmill

running at 80 % heart rate reserve commencing at 21 h:20)

compared with a non-exercise control condition in active

young men [84]. Other possible disruptions of athletes’

sleep include altitude, which appears to disrupt REM sleep

and impair breathing [85]. Disrupted sleep is also prevalent

in numerous extreme adventure and boat sports [86–88].

Despite these findings, further evidence of the sleeping

patterns of elite athletes during various scenarios is very

rare within the current literature. In summary, the sleep

patterns of athletes remain unclear, mainly due to a vast

array of physiological differences [63, 64], training [80,

89], and competition [26, 27] stressors. More research is

required to assess the sleeping patterns of elite athletes

across various scenarios that could potentially influence

subsequent performance.

4 Effects of Sleep Loss on Exercise Performance

and Physiological and Cognitive Responses

Sleep restriction (SR) occurs when humans fall asleep later

or wake earlier than normal; that is, their normal sleep–

wake cycle is partially disturbed [90]. In contrast, sleep

deprivation (SD) generally refers to extreme cases of sleep

loss, whereby humans do not sleep at all for a prolonged

period (i.e. whole nights) [90]. The following sections of

this article review the effects of sleep loss (restriction and

deprivation) on exercise performance (Table 1) and phys-

iological (Table 2) and cognitive (Table 3) responses to

exercise. However, due to an abundance of conflicting

results, some of the effects of sleep loss on these indices

remain uncertain. These varied results are mainly attributed
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to differences in exercise protocols, participants’ fitness,

and the experimental environment. For instance, variations

in thermoregulatory responses, habituation to sleep loss

and the time of day at which activities are performed have

a complex interaction with exercise performance [65, 91,

92], and thus may potentially mask the effects of sleep loss

[93]. Furthermore, being unable to blind subjects can

potentially result in nocebo effects [94].

4.1 Sleep Loss and Exercise Performance

4.1.1 Sleep Restriction and Exercise Performance

Early work from Mougin et al. [95] found no effects of a

partially disrupted night’s sleep (3 h of sleep loss in the

middle of the night) on the maximal sustained exercise

intensity during incremental cycle ergometry (20 min at

75 % maximum oxygen uptake [VO2max] followed by

10 W increase every 30 s). The same authors [96] also

found no change in mean or peak power or peak velocity

during a Wingate cycling test after similar SR compared

with normal baseline values in highly trained participants.

With regard to more prolonged running exercise modes,

Reilly and Deykin [97] reported no decrements in endur-

ance running performance (time to exhaustion) following

partial sleep loss (3 h of sleep per night for 3 nights).

Furthermore, the total distance covered in a YoYo inter-

mittent-recovery test level one was not different following

SR [98]. In contrast to this maintenance of exercise per-

formance, maximal work rate has been found to decrease

(*15 W decrease following SR) during incremental

cycling to exhaustion (30 min at 75 % VO2max followed by

10 W increase every min [99]). Similarly, mean and peak

power during Wingate anaerobic cycle tests have been

shown to decrease in students [100], footballers [101], and

judo competitors [92] following 4 h of SR for 1 night.

Theories on the reasons for this restricted exercise toler-

ance following SR are attributed to either the impairment

of aerobic pathways [102] or perceptual changes (i.e.

increased perceived exertion), as physiological responses

often remain largely unaltered [94, 103]. Indeed, increases

in perceived effort accompanied by a reduction in power

output would support neuromuscular causes of fatigue

[104], possibly indicating an association between a

reduction in central drive and the neural theory of sleep

[36, 103, 105]. However, studies investigating perceived

effort following SR report mixed results [98, 106, 107], so

such theories remain unclear. These conflicting results are

attributed to a large body of evidence reporting a vast array

of effects on emotional regulation (i.e. mood) following SR

[106, 108–111]. Indeed, variations in perceived effort are

likely a result of these emotional modifications [112].

Given the widespread use of rating of perceived exertion inT
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monitoring the training load of elite athletes [113, 114],

further research is required to investigate the interaction

between these responses to standardized training or match

stimuli following sleep loss.

Similar to maximal aerobic demands, a variety of con-

clusions have been reported for the effects of SR on

muscular strength and power. Studies have shown back and

grip strength are maintained following SR [93]. In contrast,

others have demonstrated 3 h of nocturnal SR to negatively

affect both maximal and submaximal weightlifting tasks,

with greater effects on the submaximal tasks [106]. Given

the high motivational component of weightlifting, this

decline in work rate was attributed to the coinciding

decline in mood state. However, whilst these perturbations

in submaximal work outputs may be due to fluctuations in

mood state, or even neurological alterations [104], the

central and local muscular fatigue mechanisms behind

such outcomes remain unknown [106]. Collectively, these

observations indicate that whilst athletes may be able to

perform singular, maximal efforts following SR, it is

unclear whether they are able to cope with repeated bouts

of physical activity such as those required during intensive

training or matches [21].

An example of the susceptibility of sport-specific per-

formance following SR in athletes is the reduction in sport-

specific skill execution in dart players [115], tennis players

[116], and handball goalkeepers [117]. In contrast, swim-

ming performance (lap times) did not differ between SR

(2.5 h of sleep per night for 4 nights) and normal sleep for

eight trained swimmers [111]. These differing findings

could be attributed to the additional cognitive dimension of

the aforementioned fine motor skills. For instance, since

loss of sleep can result in reductions in decision making

abilities and accuracy (see Sect. 4.3), SR would presum-

ably be more likely to affect the performance of sports

incorporating a high cognitive reliance (i.e. fine motor

movements in the serve accuracy of a tennis player [116])

rather than one involving gross-motor execution (i.e. the

stroke rate of a swimmer [111]). Furthermore, since pro-

fessional sport comprises many environmental components

that can influence sleep [14], it has been argued that ath-

letes may be more susceptible to performance decrements

following SR than normal healthy participants [81],

although this is debated [69, 81, 118, 119].

Overall, the effects of SR on exercise performance are

mixed. SR does not appear to affect singular bouts of

aerobic performance (neither endurance running nor

cycling modes for 20–30 min) or maximal measures of

strength, although admittedly conflicting results still exist.

A possible reason for this discrepancy is that many studies

reporting no effect of SR on endurance exercise have

sample sizes less than ten participants (e.g. Reilly and

Deykin [97], Mougin et al. [99]; Table 1), making itT
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Table 3 Studies examining the effects of sleep loss (restriction and deprivation) on cognitive performance and mood state

References Subjects and

fitness status if

provided

Sleep intervention Exercise condition if

applicable

Performance

measure

Resultsa,b

Cognitive performance

Angus et al. [191] 12 fit young

subjects

60 h of SD NA Auditory vigilance ;

Logical reasoning ;

Visual search ;

Mental addition ;

Coding ;

RT :

Axelsson et al.

[109]

9 healthy

participants

4 h obtained per night for 5

nights

NA RT :

Bonnet [172] 11 healthy

adults

Continuous disruption for 2

nights, *1 h lost per

night (SR)

NA RT :

Drummond et al.

[185]

44 healthy

participants

3.5–4 h obtained per night

for 4 nights (SR)

NA Visual working

memory

performance

NS

Filtering efficiency

performance

NS

Drummond et al.

[185]

44 healthy

participants

Whole night of SD NA Visual working

memory

performance

NS

Filtering efficiency

performance

;

Grundgeiger et al.

[175]

60 first-year

university

students

25 h of SD NA Two prospective

memory tasks

(more demanding

and less

demanding

combinations of

German ‘living’

and ‘non-living’

words)

; in both

Harrison and

Horne [193]

10 trained

participants

36 h of SD NA Critical reasoning NS

Game involving

decision making

and innovative

thinking

;

Hurdiel et al. [86] 12 professional

competitive

sailors

22 ± 30 min, 92 ± 34 min

and 172 ± 122 min

during the race

150, 300 and 350

nautical mile races

5 min serial reaction

time test

:

Jarraya et al. [117] 12 handball

goalkeepers

4–5 h obtained for 2 nights

(1 with SR at the start of

the night, 1 with SR at the

end of the night)

NA RT :

Stroop test

(selective

attention and

reading ability)

;

Barrage test (visual-

spatial ability and

recognition)

;

Khazaie et al.

[183]

26 medical

residents

\6 h obtained per night for

5 nights (SR)

NA Wisconsin card

sorting test

NS

Time perception

task

NS

Iowa gambling test NS
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Table 3 continued

References Subjects and

fitness status if

provided

Sleep intervention Exercise condition if

applicable

Performance

measure

Resultsa,b

Lucas et al. [199] 9 adventure

racers

100 h of SD 96–125 h of adventure

racing

Altered stroop test

(simple and

complex response/

decision making)

NS

Olsen et al. [200] 71 army and

navy cadets

2.5 h obtained per night for

5 nights (SR)

Combat simulation

drills

Defining issues test

(moral reasoning)

;

Rosa et al. [197] 12 healthy

participants

40–64 h of SD NA Williams word

memory test

;

Scott et al. [192] 6 students 30 h of SD Rest and cycle

ergometry at 50 %

VO2max for 20 min

every 2 h for 30 h of

SD

Tracking task NS

Number

cancellation task

NS

2 choice reaction

time and simple

reaction time

: at rest

Symons et al. [130] 11 volunteers 60 h of SD 20 min at 75 %

VO2max on cycle erg;

Wingate anaerobic

test; Intermittent

cycle test; Treadmill

running at 70–80 %

VO2max; Muscular

isometric strength

tests

RT NS

Taheri et al. [196] 18 student

athletes

Whole night of SD Wingate anaerobic test Choice reaction

time

:

Vgontzas et al.

[143]

25 normally

active

participants

6 h per night (2 h less than

normal) for 8 nights (SR)

NA Psychomotor

vigilance test

;

Williamson et al.

[194]

39 volunteers

from transport

industry and

the army

17–19 h of SD NA RT

Mackworth clock

(passive vigilance

test)

Tracking (hand–eye

coordination)

Dual task (divided

attention)

Symbol digit test

(coding)

Spatial memory

search

Memory and search

test

Speed and accuracy

for all tasks were

generally poorer

with results at the

end of the SD period

equivalent to blood

alcohol

concentrations of

0.01–0.05

Wimmer et al.

[198]

12

undergraduate

students

Whole night of SD NA Torrence test of

creative thinking

;

Trail marking test

(attention)

;

Letter recognition

task (attention)

;

Working memory

performance

;
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Table 3 continued

References Subjects and

fitness status if

provided

Sleep intervention Exercise condition if

applicable

Performance

measure

Resultsa,b

Mood state

Angus et al. [191] 12 fit young

subjects

60 h of SD NA Subjective fatigue

checklist

:

Stanford Sleepiness

Scale

:

Mood state ;

Auditory vigilance ;

Logical reasoning ;

Visual search ;

Mental addition ;

Coding ;

RT :

Axelsson et al.

[109]

9 healthy

participants

4 h obtained per night for 5

nights (SR)

NA RT :

Karolinksa

Sleepiness Scale

:

Bonnet [172] 11 healthy

adults

Continuous disruption for 2

nights, *1 h lost per

night (SR)

NA Clyde Mood Scale ;

Stanford Sleepiness

Scale

NS

Edwards and

Waterhouse

[115]

60 differently

experienced

dart players

3–4 h obtained for 1 night

(SR)

Dart throwing Subjective alertness ;

Subjective fatigue :

Koboyashi et al.

[110]

13 healthy

university

students

5 h obtained per night for 7

nights (SR)

NA Subjective

sleepiness

:

Meney et al. [30] 14 healthy

participants

Whole night of SD 5 min of self-paced

cycling;

POMS

Fatigue :

Confusion :

Vigour ;

Olsen et al. [200] 71 army and

navy cadets

2.5 h obtained per night for

5 nights (SR)

Combat simulation

drills

Stanford Sleepiness

Scale

:

Defining issues test

(moral reasoning)

;

Reilly and Piercy

[106]

8 healthy

participants

3 h obtained per night for 3

nights (SR)

Weight lifting tasks POMS

Fatigue :

Confusion :

Vigour ;

Depression NS

Anger NS

Tension NS

Sleepiness :

Perceived effort :
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difficult to extrapolate the results of these studies due to the

underpowered nature of the study. In contrast, sports-spe-

cific skill execution, submaximal strength, and muscular

and anaerobic power seem to decline following SR. Given

these findings, whilst it seems that SR impedes some

aspects of athletic performance; it is still not clear whether

sleep is critical to performance for all athletes who expe-

rience small one-off SR periods.

4.1.2 Sleep Deprivation and Exercise Performance

Similar to SR, the effects of total SD on exercise perfor-

mance are varied [120]. Mean time to exhaustion for

prolonged treadmill walking (80 % of VO2max) is reduced

by *11 % following 36 h of SD [94]. These results are

supported by other studies highlighting reduced time to

exhaustion (mean *20 % [121]) during incremental

exercise protocols following SD [122]. In addition, mean

distance covered has been found to decline (6,224 to

6,037 m) following SD during 30 min of self-paced

treadmill running [123]. It appears time to exhaustion

decreases because of either perceptual changes or reduc-

tions in arousal and impaired muscle fiber coordination

(e.g. decreases in vertical jump performance and knee

extension torque [124]) following prolonged SD, although

the mechanisms behind this are unclear [94]. Indeed, it is

Table 3 continued

References Subjects and

fitness status if

provided

Sleep intervention Exercise condition if

applicable

Performance

measure

Resultsa,b

Scott et al. [192] 6 students 30 h of SD Rest and cycle

ergometry at 50 %

VO2max for 20 min

every 2 h for 30 h of

SD

POMS

Fatigue :c

Confusion NS

Vigour ;

Depression :

Tension NS

Anger NS

Tracking task NS

Number

cancellation task

;

2 choice reaction

time and simple

reaction time

: at restc

Sinnerton and

Reilly [111]

8 swimmers 2.5 h obtained per night for

4 nights (SR)

Muscular strength

measures;

Swimming

performance test

POMS

Fatigue :

Confusion :

Vigour ;

Depression :

Anger :

Tension :

Skein et al. [126] 10 team-sport

athletes

30 h of SD 30 min graded

exercise run, 50 min

intermittent sprint

exercise (15 m

maximal sprint per

min and self-paced

after)

POMS

Liveliness ;

Alertness NS

Energetic NS

Fatigue NS

Vgontzas et al.

[143]

25 normally

active

participants

6 h per night for 8 nights NA Multiple sleep

latency test

:

NA not applicable, NS not significant, POMS Profile of Mood States, RT simple reaction time, SD sleep deprivation, SR sleep restriction, VO2max

maximal oxygen uptake, ; and : indicate decrease and increase, respectively
a All changes signified by : and ; were statistically significant (p \ 0.05)
b Note that, for RT, : represents a slowing down of reaction time
c Results here are derived from interaction effects. Please refer to the original article for main condition effects and further detail on the role of

cognition during exercise following sleep deprivation
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proposed that increased muscular and central fatigue is

unlikely to explain decreases in prolonged exercise per-

formance following SD [112]; however, this warrants fur-

ther investigation.

Despite the popularity of sports that require high inter-

mittent-sprint performance (i.e. team sports [125]), there is a

relatively poor understanding of the effect of SD on these

activities. Skein et al. [126] recently reported slower mean

sprint times and reduced muscle glycogen concentration,

voluntary force, and activation during maximal isometric

knee extensions, along with an increased perceptual effort

following 30 h of SD in ten team-sport athletes [126]. Sim-

ilarly, several other studies have shown the detrimental

effects of SD on muscular strength [30, 124, 127], power

[128], and speed [129]. In contrast, Symons et al. [130]

reported no effect of 60 h of SD on a range of maximal upper

and lower body isometric and isokinetic strength tests.

Indeed, several studies have shown that grip strength per-

formance is maintained regardless of the amount of sleep

loss [131, 132], and shuttle run scores remain unaffected

[133]. Indeed, submaximal strength tasks may be more

susceptible to SD than maximal tasks due to the sustained

effort required to complete the task, whereby perception of

effort could increase exponentially with time to task com-

pletion [123]. In addition, differences in reported muscle

contractility (i.e. voluntary activation) between studies could

be explained by the sensitivity and accuracy of electromy-

ography measurements. Older studies (i.e. Symons et al.

[130]; [Table 1]) may have been limited in comparison with

the equipment used in recent research [126, 134].

In summary, although the effect of SD on exercise

performance remains somewhat unclear, there appears

sufficient evidence to imply that SD can have a significant

effect on aspects of athletic performance. This seems par-

ticularly pertinent for time to exhaustion in running

activities lasting longer than 30 min. Nonetheless, whilst

these studies reveal important physiological mechanisms,

conceptually it is debatable whether the findings are

applicable to elite athletic populations given it would be

rare for an athlete to endure a night(s) of complete SD.

4.2 Sleep Loss and Physiological Responses

to Exercise

4.2.1 Sleep Restriction and Physiological Responses

to Exercise

Examples of the susceptibility of physiological responses

to exercise following SR are the increase in heart rate,

minute ventilation, and plasma lactate concentration during

submaximal and maximal exercise after a partially dis-

rupted night’s sleep (3 h of sleep loss in the middle of the

night) [95]. These responses are attributed to the increased

metabolic demand [135], perceived effort [94], and cate-

cholamine concentrations following SR [136]. This could

be interpreted as SR acting as an additional stress to the

stress imposed by exercise itself [137]. In contrast, Martin

et al. [138] showed that 2 nights of fragmented sleep (eight

‘wake up’ calls ranging 30–75 min) had no significant

effect on heart rate, oxygen consumption, minute ventila-

tion, and core body temperature during 30 min of heavy

treadmill walking. Similarly, these findings support other

results, suggesting no alterations to physiological responses

following SR, i.e. lung function and power unaffected by

minor sleep loss [97, 111]. Whilst the error sensitivity

across metabolic collection systems could perhaps explain

some differences across studies [139–142], these differ-

ences are perhaps more attributable to the exercise mode

and protocol administered (running [98] vs. cycling [95];

free-paced exercise [111] vs. time to exhaustion [102]).

Although various hormonal concentrations (e.g. plasma

cortisol) will typically increase during exercise-induced

stress, the interaction between these responses and sleep

loss is inconclusive [31]. For instance, there have been

reports by some [99, 143], but not all [138, 144, 145]

studies that cortisol concentration might be lowered fol-

lowing sleep loss. These varied results are likely attributed

to the fact that cortisol secretion is dependent on the tim-

ing, intensity, and duration of the stimulus [146] and is

highly driven by circadian rhythms [147]. As an example

of the sensitivity of hormonal and additionally immune

responses to SR and exercise stimuli, GH, prolactin and

interleukin (IL)-6 have been shown to increase following

SR and four 250-m treadmill runs at 80 % maximum speed

[101]. This is supported by findings of next-day increases

in IL-6 (threefold) and tumor necrosis factor (TNF)-a
(twofold) following SR [148], although others have

reported these variables to remain unchanged at rest [149].

Since increases in these pro-inflammatory cytokines (e.g.

IL-6; mean 4.11 ± standard deviation 0.99 rising to

5.44 ± 1.1 pg�ml-1 [144] and TNF-a [143] following SR

and exercise) might be associated with unfavorable meta-

bolic profiles [143] and inflammatory disease risk [147,

150], there is concern about obtaining sufficient quality and

duration of sleep in all individuals from an overall health

perspective [14, 143].

4.2.2 Sleep Deprivation and Physiological Responses

to Exercise

Energy substrate balance appears vulnerable to sleep loss,

with 30 h of SD shown to blunt the full restoration of

muscle glycogen stores in team-sport athletes [126].

Without adequate intake, this could hinder the ability of

athletes to compete for sustained periods, as muscle gly-

cogen shortage is known to reduce muscle function and
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total work capacity [3, 151]. Indeed, energy imbalances are

associated with SD, potentially leading to decreased aero-

bic and anaerobic power production [21, 152]. Prolonged

periods of SD (36 h) are further associated with increased

sympathetic and decreased parasympathetic cardiovascular

modulation, and spontaneous baroreflex sensitivity during

sitting and vigilance testing in healthy adults [153]. Since

disruptions to the sympathetic–parasympathetic balance

are associated with overtraining [154], it is possible these

disturbances to the autonomic nervous system following

SD could support the development of an over-reaching or

over-training status [3, 155]. Indeed, of importance to

athletes, maintaining this autonomic balance is critical for

producing optimal performance [156]. Notwithstanding

this, most [94, 103, 122], but not all [122] studies have

reported that SD does not alter cardiorespiratory variables

during incremental exercise (e.g. VO2max, minute ventila-

tion). Further to these results, there were no significant

effects on cardiorespiratory or thermoregulatory function

despite a reduction in distance covered during 30 min of

self-paced treadmill running following SD [123]. Taken

with other results [94, 123, 157, 158], these findings sug-

gest that SD has minimal effect on cardiorespiratory

function during intermittent submaximal exercise, despite

observations of a reduction in performance. Oliver et al.

[123] hypothesize this could be due to the influence of the

perception of effort during the end stages of prolonged

high-intensity exercise. Extreme periods of sleep loss (i.e.

100 h without sleep) are more likely to negatively affect

cardiorespiratory variables than acute SD (24–36 h) [159].

Similar to the effects of SR, the effects of SD on hor-

monal and endocrine responses to exercise are unclear. It

has been shown that SD (50 h) does not affect blood

parameters such as blood lactate, epinephrine, norepi-

nephrine, and dopamine during treadmill walking to

exhaustion [121], nor in cases where subjects exercised

(28 % VO2 max for 1 h every 3 h for 64 h of SD) during

the SD period (i.e. blood lactate concentration [12.1 vs.

11.8 mmol�l-1] [160]). However, such responses are

heavily influenced by circadian fluctuations [40], making

the effect of SD on these parameters difficult to determine.

Interestingly, these two studies [121, 160] and others [138]

that reported no differences in hormonal and endocrine

responses to exercise following SD used constant exercise

protocols, whereas two studies that reported significant

changes following SR [95, 99] utilized incremental tests to

exhaustion. Thus, the variable load at the end of exercise

appears to increase the final stress-related response. The

response of blood-cortisol concentrations to SD are similar

to those with SR, with inconsistent findings presented [138,

149, 161]. Theoretically, if increased cortisol concentra-

tions do occur [161], this could lead to increased muscle

catabolism and a reduction in protein synthesis [3]. As

such, this would lend support to the restorative theory that

sleep is required for muscular recovery [162]; however,

such hypotheses require further research for clarification.

For instance, whilst SD can initially blunt the secretion of

GH [163], possibly hindering growth [42] and recovery

[162], this deficiency is compensated for by increasing GH

secretion during waking hours [164].

4.3 Sleep Loss, Cognitive Performance, and Mood

Responses

Numerous studies report that when sleep is reduced to less

than 7 h in healthy adults, cognitive performance is poorer in

tests for alertness, reaction time, memory, and decision

making [23, 109, 165–170]. Heightened levels of sleepiness,

depression, confusion, and poorer overall mood states have

also been reported [171–174]. Decrements in cognitive

performance have previously been attributed to disruptions

to pre-frontal cortex functioning, as cognitive deficiencies

that occur outside this area of the brain malfunction in

qualitatively different ways [169]. Recently, a more uni-

versal effect of sleep disruption on cognition has been pro-

posed [175], due to the sensitivity of cognitive performance

to both arousal (not limited to pre-frontal activity) and

attention in a sleep-disrupted state [166]. The neuroana-

tomical mechanisms behind this state are intricately complex

[176]. For instance, when the quality and quantity of human

sleep is reduced, it appears the largest decreases in cerebral

metabolism (compared with the awake-rested state) are

apparent in the thalamus, cerebellum, and prefrontal, pos-

terior parietal, and temporal cortices [176, 177]. The reduced

metabolic rates within these regions have been correlated

with decreased cognitive performance [178, 179], high-

lighting their influence on optimum cognitive functioning

[176, 180]. Based on these collective findings, some support

suggested sleep benefits from models related to neural

mechanisms, rather than peripheral tissues [103].

4.3.1 Cognitive Performance and Mood Responses

Following Sleep Restriction

As an example of the sensitivity of cognitive function to

sleep disruption, simple reaction time (RT) has been shown

to increase in individuals following 1 h of SR for 2 nights

[108] and 4 h of SR for 5 nights [109]. In addition, Jarraya

et al. [117] found increases in RT and decreases in selective

and constant attention in 12 handball goalkeepers following

4–5 h of SR at both the beginning and the end of the night

[117]. With RT slower following even minor disruptions to

both sleep quality [108] and duration [117], it would seem

pertinent for athletes with a high reliance on this cognitive

component to ensure optimum sleep conditions prior to

competing (e.g. baseball, cricket). This may be particularly
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challenging for baseball teams who play more than 80 away

matches per season, where sleep conditions will change on

an almost daily basis. These recommendations might be

extrapolated to a host of individual and team-sport athletes,

as many sports also involve critical decision making [181,

182], which is also susceptible following SR [169].

Although the majority of literature supports the impairment

of decision making following sleep loss [169], others have

reported no effects [183]. Khazaie et al. [183] reported no

change in abstract reasoning, time reproduction skills, or

decision-making ability in 26 sleep-restricted (\6 h sleep

for 5 nights) medical residents. Whilst this was most likely

due to a lack of an effect of partial SR on pre-frontal cog-

nition or the interaction between the type of SR and type of

cognitive task, it does show that optimum sleep may not

always be critical for maintenance of decision-making

performance over an acute period.

The understanding of the effect of SR on memory and

recall is also equivocal, with some authors reporting

decrements in short-term memory following SR [184],

whilst others report no change [185]. For instance, Drum-

mond et al. [185] found no changes in visual working

memory or filtering efficiency following 3.5–4 h of sleep.

Whilst SR is unlikely to affect elite players’ memory of

how a (motor) skill is executed, it could potentially affect

the recall and understanding of tactical awareness or

positioning. From this perspective, it seems that sufficient

sleep should be obtained following training sessions, as the

perceptual and motor learning processes continue into and

throughout subsequent sleep [186]. Another example of the

detrimental effects of SR on cognitive performance is the

plethora of evidence that reports poorer mood states after

SR, with decreases in vigor along with increases in

depression, sleepiness, and confusion [106, 109, 115, 172,

187]. These negative mood states have been linked to over-

reaching and over-training [188–190]. Indeed, this increase

in psychological fatigue following SR would appear to

create a neurocognitive state not conducive for either

engaging in physical activity requiring a high motivational

component or employing optimal decision making; how-

ever, such concepts still require further substantiation.

4.3.2 Cognitive Performance and Mood Responses

Following Sleep Deprivation

The effects of SD on cognitive performance are quite clear,

with many studies showing that greater total sleep loss

results in poorer overall mood states, with increased fati-

gue, sleepiness, and confusion, decreased vigor [30, 138,

191] and liveliness [126], and heightened depression [192].

In addition, decreases in logical reasoning, coding, decision

making, and filtering efficiency have also been reported

[185, 191, 193]. The speed and accuracy at which these

tasks are performed are also negatively affected by SD

[194, 195]. Moreover, previous studies show that partici-

pants perform poorer in tests for auditory vigilance [192],

simple and complex RT [191, 192, 196], and memory [175,

194, 197, 198] following complete sleep loss. Limited data

are available for cognitive functioning during sporting

events, although during extreme sports (i.e. long-haul yacht

racing), it appears cognitive impairments present following

extensive SD [86]. These findings potentially have severe

repercussions for athletic performance (Table 4). None-

theless, conflicting results do exist, with no significant

differences in simple and complex responses to an altered

Stroop test for decision making during 96–125 h of

Table 4 Effects of sleep loss on cognitive functioning and possible extrapolations to sport performance (column 1 adapted from Durmer and

Dinges [23], with permission)

Effects of sleep loss on cognitive performance Possible effects on professional athletes

Time pressure increases error rate More errors in time-affected sports (e.g. shotclock in basketball)

Response time slows Decreased reaction time could be especially pertinent for sprinters, baseballers, cricketers,

goalkeepers, and tennis and handball players

Both short-term recall and working memory

performances decline

Effects the messages coaches can deliver to athletes, this will have a flow-on effect on

tactical awareness (may be pertinent for teams with set plays e.g. American football, ice

hockey, rugby league, basketball, and soccer)

Reduced learning (acquisition) of cognitive tasks Blunt cognitive-induced training adaptations during periods of high-intensity learning

(e.g. players could struggle whilst learning new tactics and formations during the pre-

season in sports such as soccer and Australian rules football)

Response perseveration on ineffective solutions is

more likely

If an athlete continually tries to perform a task in the wrong manner from a reduced

proprioceptive state, this could lead to an increase in injury [3]

Tasks may be begun well, but performance

deteriorates as task duration increases

Fatigue can lead to an increase in decision-making errors. Could affect all sports played

over prolonged periods (e.g. decathlon, American football, baseball, Australian rules

football)

Increased compensatory effort is required to remain

behaviorally effective

This would suggest a decrease in time to fatigue, affecting numerous sports that

experience intermittent and repeated exercise bouts
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adventure racing (*100 h of SD [199]). These differences

are most likely attributable to the intra-individual vari-

ability in personality and mood state and sleep require-

ment, in addition to sample size and task familiarity [200].

For instance, Edinger et al. [201] found vastly different

responses for sleepiness and mood when investigating the

daytime functioning of two players during a 146-h mara-

thon tennis match. Indeed, humans are sometimes unaware

of their increasing cognitive deficits and declining neuro-

behavioral function following SD [65]. In summary, SD

results in relatively unequivocal decrements in most

aspects of cognitive function and mood responses.

5 Future Research

Currently, there is insufficient evidence to clarify the

importance of sleep for athletes and the effects of sleep loss

on exercise performance, alongside physiological and

cognitive responses to exercise. Indeed, more research is

required to confirm what dimensions of exercise perfor-

mance are affected by sleep loss, especially those with a

focus on repeated bouts of intermittent exercise and sport-

specific performance. Admittedly, very little of the current

literature has been conducted in team-sport athletes, mak-

ing the extrapolation of assumptions regarding sleep and

performance to team sports difficult. Furthermore, there is

little to no statistical analysis in the majority of previous

studies with regard to magnitudes of effect, which may

cloud some statistical inferences as to the effect on per-

formance with respect to practical relevance [202]. More-

over, the majority of studies that assess the effect of sleep

loss on athletic performance are those involving SD, a

scenario that is very rare in the real world. For athletes, it

would seem more pertinent in future research to investigate

the effect of SR on parameters related to athletic perfor-

mance. Future research may also focus on the interaction

between sleep and acute and chronic training adaptations.

Further research is also required to confirm whether

reduced sleep in elite athletic populations is associated with

illness and injury occurrence, and whether such distur-

bances can partly explain the over-training state. Pre-

liminary evidence indicates that athletes who are at least

functionally over-reached present with sleep disturbances

and illness prevalence during high-volume training [203].

From a purely scientific perspective, it is pertinent certain

factors are considered in future endeavors when defining

the effect of sleep on athletic performance within an

experimental protocol [21, 204], including isolating

homeostatic and circadian components, utilizing an exter-

nally valid competitive event and minimizing the many

confounding variables that affect sports performance [205].

6 Practical Recommendations

The following recommendations (Table 5) are based on the

literature within this review. However, the authors recog-

nize that given the equivocal findings for most summaries,

future research is required to confirm these recommenda-

tions. Most importantly, it is recommended to understand

the intra-individual differences with regards to sleeping

patterns. Practitioners should strive to identify where sleep

problems exist, and if necessary employ ethical interven-

tions. If problems persist, these should be dealt with by

medical professionals [7]. Whilst there are numerous

examples of the interaction between sleep and performance

that may aid practitioners, there is little literature

Table 5 Practical recommendations for sporting practitioners

Identify whether sleep problems exist within your athletic population—collect and compare with longitudinal data across a variety of

situations and competitions. Where possible, collect performance and/or match data to detect possible associations. There may be instances

where there are no sleep issues apparent

If issues are present, identify poor practice; how, when, and why do these issues occur. If problems persist, treat in conjunction with a trained

medical professional from the team to improve the quantity and quality of sleep (follow sleep hygiene practice, i.e. no technology 30 min

before bedtime, no TV or use of laptops in bed; dark, cool, and quiet rooms)

Understand that the effect of a poor night’s sleep (acute sleep restriction) before a match or training may not necessarily affect athletic

(exercise) performance. Theoretical principles and limited evidence would suggest it is more likely to affect illness and injury occurrence

Avoid early morning training sessions following sleep disruption where possible, as these can be more detrimental to muscle strength and

power performance than late bedtimes

Be aware that poor sleep prior to training could influence motivation and may hinder both cognitive- and physiological-induced training

adaptations

Where possible, align training sessions to game times to adjust circadian rhythms. However, such practices have logistical issues and should

not be at the risk of the quality of training

Practitioners, where possible, should supplement this understanding of sleep loss and performance with an increased knowledge of the

relationship between sleep and recovery. Despite a widely held assumption that sleep is crucial for recovery, the interaction between sleep

and recovery remains poorly understood. Limited evidence indicates sleep has a role to play in athletic recovery; however, the mechanisms

behind this remain uncertain, so this assumption should be treated with caution

Sleep Loss and Athletic Performance 181

123

Author's personal copy



confirming the importance of sleep to physiological and

psychological recovery. In particular, evidence of the role

and importance sleep plays within the professional sporting

environment during various scenarios is lacking. Thus,

although sport science personnel and researchers should be

aware of the complex effects of sleep loss on athletic

performance, such knowledge needs to be supplemented

with sufficient understanding of sleep’s role in recovery,

and possible sleep hygiene strategies to alleviate these

issues. Accordingly, future examination of the evidence of

sleep and the potential role it may play in recovery for

athletes is warranted.

7 Conclusion

Although sleep is generally considered critical for human

and athletic performance, there are mixed results regarding

objective performance decrements in the current scientific

literature. Individual athletes appear to lose sleep just prior

to competing or if forced to train at early times; however,

evidence for such instances in team sports is lacking.

Exercise performance seems to be negatively affected

during periods of SD (specifically endurance and repeated

exercise bouts), although conflicting results exist for the

effect of acute SR, as performance during maximal one-off

efforts (in particular for maximal strength) is generally

maintained. Possible reasons for these differences could be

due to contrasting research designs and statistical power.

The effects of sleep loss on physiological responses to

exercise could potentially hinder muscular recovery and

lead to a reduction in immune defense, although this still

remains speculative. The majority of studies focusing on

sleep loss and cognitive performance and mood responses

have found detriments to most aspects of cognitive func-

tion (i.e. RT) and mood stability, results that potentially

could hinder the neurocognitive components of many

sports. Despite common assumptions around the impor-

tance of sleep, the lack of scientific evidence (especially in

elite athletes) suggests future research into the examination

of sleep and athletic performance is warranted.
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Sleep and Recovery in Team Sport: Current Sleep-Related Issues 
Facing Professional Team-Sport Athletes

Hugh H.K. Fullagar, Rob Duffield, Sabrina Skorski, Aaron J. Coutts, Ross Julian, and Tim Meyer 

While the effects of sleep loss on performance have previously been reviewed, the effects of disturbed sleep on recovery after 
exercise are less reported. Specifically, the interaction between sleep and physiological and psychological recovery in team-sport 
athletes is not well understood. Accordingly, the aim of the current review was to examine the current evidence on the potential 
role sleep may play in postexercise recovery, with a tailored focus on professional team-sport athletes. Recent studies show that 
team-sport athletes are at high risk of poor sleep during and after competition. Although limited published data are available, these 
athletes also appear particularly susceptible to reductions in both sleep quality and sleep duration after night competition and 
periods of heavy training. However, studies examining the relationship between sleep and recovery in such situations are lacking. 
Indeed, further observational sleep studies in team-sport athletes are required to confirm these concerns. Naps, sleep extension, 
and sleep-hygiene practices appear advantageous to performance; however, future proof-of-concept studies are now required to 
determine the efficacy of these interventions on postexercise recovery. Moreover, more research is required to understand how 
sleep interacts with numerous recovery responses in team-sport environments. This is pertinent given the regularity with which 
these teams encounter challenging scenarios during the course of a season. Therefore, this review examines the factors that com-
promise sleep during a season and after competition and discusses strategies that may help improve sleep in team-sport athletes.
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High-performance team-sport athletes endure numerous physi-
ological, psychological, and neuromuscular stressors during train-
ing and competition.1 It is logical that these athletes balance these 
stressors with appropriate recovery to maximize performance and 
adaptation, while also minimizing injury risk.2 A crucial part of this 
stress-recovery balance is the management of an athlete’s sleep, 
especially during intense training and competition.3 However, while 
the interest afforded to the relationship between sleep and athletic 
performance is well documented,4 the evidence underpinning the 
role of sleep in recovery is less understood. This is surprising from 
both a scientific and an applied perspective, given that athletes often 
rate sleep as their most important recovery strategy.5

There are 3 key factors that determine the recuperative outcome 
of sleep: the duration (total sleep time), quality, and phase (circadian 
timing) of sleep.6 A “healthy” night of sleep has been suggested 
to be 7 to 9 hours.7 In addition to duration, sleep quality is also 
critical for optimal health and restorative functioning.7 Although 
a clear definition is not readily available, sleep quality can best be 
described as the personal satisfaction with the sleep experience.7 
Furthermore, the timing of sleep will also influence the effectiveness 
of the sleep bout. The timing of an individual’s preferred bedtime 
in turn affects his or her circadian rhythms (ie, body temperature, 
hormone regulation), which can affect both sleep duration and 
sleep quality.6 From an athletic perspective, disturbances to 1 or 

all of these collective aspects of sleep are suggested to affect the 
postexercise recovery process.6 For instance, it has been shown that 
a reduction in the quantity and quality of sleep hinders the capacity 
of rugby league footballers to recover for the demands of ensuing 
training and competitive bouts.8 Thus, it may be paramount for 
team-sport athletes to be aware of situations where disturbed sleep 
duration, quality, or phase may affect ensuing recovery.

A reduction in sleep duration and/or quality in individual 
athletes before9–11 and during competition12 has been recently 
documented. While there is less information available on team-sport 
athletes, Lastella et al13 reported a mean sleep duration of 7.0 h/night 
in 58 elite Australian team-sport athletes during a typical training 
phase, ~1 hour less than the recommended 8 h/night. Further to 
these findings, sleep disruption or deprivation can occur for team-
sport athletes, particularly during short- or long-haul travel,14–16 
congested competition schedules,1 and training or playing at night,17 
presenting the potential for compromised recovery.3,8 Indeed, sleep 
loss in team-sport athletes is often affected by these situational fac-
tors,18 with many professional teams currently facing the challenge 
of coping with these specific but recurring stressors. For example, 
Major League Baseball players play every 2 days combined with 
repeated travel across the United States, which provides conditions 
that are not conducive to optimal sleep.19 Similarly, the majority of 
European soccer tournaments are commonly played at night, result-
ing in late-night finishes and players subjectively reporting sleep 
loss.20 These observations of altered sleep in team-sport athletes are 
also supported by objective evidence of postcompetitive sleep dis-
turbance in elite rugby union players17 and professional Australian 
soccer players.16 Furthermore, a recent report that 52.3% of elite 
(individual and team-sport) athletes experience sleep disturbances 
after late matches or training sessions.18 Collectively, these data 
suggest that although “normal” sleep patterns may be sufficient, 
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under specific, recurring circumstances there are cases for reduced 
sleep duration and quality in team-sport athletes.

At present, the importance of sleep as a recovery method in 
team-sport athletes (ie, return to baseline of psychophysiological 
and performance parameters after exercise and disrupted sleep) is 
unclear. In particular, there is little analysis of the role sleep plays 
in the postexercise recovery process during various situations where 
sleep is compromised. While the literature examining the interaction 
between sleep and recovery in athletes is increasing (Figure 1), there 
have been no critical reviews of these factors in the context of train-
ing and competition demands of team-sport athletes. Accordingly, 
the aim of the current study was to examine the evidence of the 
potential role sleep may play in postexercise recovery, with a spe-
cific focus on professional team-sport athletes. As such, an analysis 
of situations that may continually compromise sleep throughout a 
season and/or one-off postcompetition sleep disturbance is provided. 
Strategies to alleviate such issues facing team-sport athletes are also 
addressed. For this review, it is important to discern the difference 
between recovery and performance. From an athletic perspective, 
performance in absolute terms refers to the context and magnitude 
to which athletes complete certain tasks in their sporting domain.21 
These can include but are not limited to competition performance 
(eg, goals scored by a footballer), predictors of performance (eg, 
sprinting speed), and surrogate measures of performance (eg, 
countermovement-jump score). The effects of sleep loss on per-
formance trials involve baseline performance measures followed 
by a sleep-loss intervention/sleep-control condition and then final 
performance measures the next morning. Comparatively, recovery 
refers to the degree at which parameters return to baseline after a 
distinct exercise bout and disrupted sleep (eg, return of creatine 
kinase to baseline values after a rugby match or the return of YoYo 

test performance to baseline values after a training session).6,8 Thus, 
the main discernible difference between performance and recovery 
is that recovery experiments follow a distinct time-course analysis 
from a prior stressor (ie, match play). This makes them suitable for 
the assessment of the health, well-being, and readiness to perform 
of team-sport athletes.

Sleep and Recovery for Team-Sport 
Athletes

A typical night of sleep is composed of approximately 90-minute 
cycles divided into periods of rapid-eye-movement (REM) and 
non-REM (NREM) sleep. While REM sleep has a role in periodic 
brain activation, localized recuperative processes, and emotional 
regulation, the role for NREM sleep is proposed to assist with energy 
conservation and nervous system recuperation.22 Taken collectively, 
there is considerable evidence supporting the recuperative nature of 
sleep in restoring molecular homeostasis, cellular maintenance, and 
synaptic plasticity.6,22,23 From an athletic perspective, this implies 
that disturbances to either the timing of sleep phases or the quality 
and duration of sleep within these phases can result in the hindrance 
of psychological and physical recovery after an exercise bout.6 This 
would seem especially pertinent for field-based team-sport athletes 
who are typically exposed to prolonged bouts of intermittent-sprint 
activity during both high-intensity training and competition. Logi-
cally, exposure to such activity will increase the need for recovery 
and subsequently increase the overall requirement for sleep.13

From this perspective, it seems rational to first investigate the 
sleep–wake behavior of team-sport athletes during and after training 
and competition periods. Mah et al24 reported mean sleep durations 

Figure 1 — The increase in the number of sleep, athlete, and recovery publications over the past 8 years. The solid fill lines illustrate the amount of 
literature that appears in a Pub Med database search using the terms sleep, recovery, and athlete in all fields for each calendar year.
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of 6.7 ± 1.0 hours in college basketballers during a competitive 
season. Similarly, Lastella et al13 found that a sample of 58 elite 
Australian team-sport athletes slept for a mean duration of 7.0 ± 
1.2 hours during a regular training phase. With regard to sleep fol-
lowing competition, Eagles et al17 found a significant reduction in 
sleep duration on game nights compared with nongame nights.17 
Juliff et al18 reported that more than half of a sample of 283 elite 
individual and team-sport athletes (of which 210 were from team 
sports) endured sleep disturbances after a late training session or 
match.18 In support of this, sleep duration and quality were signifi-
cantly reduced on the night of away matches compared with the 
night prior in elite Australian soccer players.16 While caution needs 
to be taken in comparing these studies (ie, due to differences in 
sleep-assessment methodologies), it seems reasonable to assume 
that sleep in team-sport athletes depends on many factors. These 
could include the type of sport, training demands, age, time of 
season, and team culture.13 Overall, high-performance team-sport 
athletes are considered susceptible to sleep loss during training 
periods and after match play (especially after night matches). While 
such insight is important, further descriptive research of sleep with 
high-performance team-sport athletes is required to confirm this, 
most importantly for the nights after competition.

Recent studies have also shown that sleep restriction after 
team-sport competition affects the time course of recovery for both 
performance and psychophysiological measures. For instance, Skein 
et al8 investigated the effect of sleep deprivation (0 h sleep) com-
pared with normal sleep (~8 h) on the physiological and perceptual 
recovery of 11 rugby league footballers after competitive matches in 
a randomized crossover design. Overall, sleep deprivation negatively 
affected recovery, with significant impairments observed in mean 
and peak countermovement-jump height and cognitive reaction time. 
Although sleep deprivation was excessive, this study highlights the 
increased physiological load during wakefulness after sleep loss 
in team sports and, in turn, suppression of cognitive function and 
lower-body power. Similarly, Fowler et al16 reported significant 
reductions in sleep duration and quality, along with an impaired 
stress-recovery balance, on the night of a match compared with the 
night prior for away matches. While additional literature is lacking 

in team-sport athletes, there is further evidence of this relationship 
in individual athletes. For instance, significant reductions in sleep 
quantity and efficiency were associated with increased fatigue and 
impaired exercise capacity in a group of 10 functionally overreached 
elite synchronized swimmers.25 Furthermore, McMurray and 
Brown26 investigated the cardiovascular and metabolic responses of 
5 participants during submaximal exercise after 24 hours of sleep 
deprivation. They reported increased minute ventilation and oxygen 
uptake during the recovery period, suggesting negative effects of 
sleep loss on physiological recovery.26 Nonetheless, the evidence 
as to how sleep interacts with multifactorial recovery responses in 
high-performance team-sport environments is currently lacking. 
In particular, there are few data on longitudinal objective sleep 
available in the scientific literature. This is surprising given that 
this would appear the first step in understanding the relationship 
between sleep and recovery.

Finally, since a variety of other recovery strategies are used 
in sport, some studies have also examined the interaction between 
sleep and these protocols. For instance, Robey et al27 reported that 
cold-water immersion posttraining does not affect subsequent sleep 
duration, onset, or efficiency. However, the mechanisms between 
the interaction of sleep and other recovery protocols are difficult to 
determine, due to an abundance of confounding factors (eg, protocol 
type, timing, facilities). Further research and practical investiga-
tion in professional environments that address whether it is more 
advantageous to use a recovery protocol that enhances sleep and/
or whether a combination of these protocols enhances the recovery 
process are warranted. This is especially pertinent given the wide 
prevalence of these methods in team sports.

Sleep-Related Issues Facing Team-Sport 
Athletes

As summarized in Figure 2, the following section outlines particu-
lar situations where sleep is at risk of compromise in team-sport 
athletes. While acknowledging the previous work done in this area 
but also recognizing the absence of published data over prolonged 

Figure 2 — A schematic representation of the commonly encountered situations in team sports that may compromise sleep patterns and potentially 
recovery. Theoretical effects of these situations are also described; however, it should be noted that more research is required to confirm the majority 
of these effects.
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periods, this section gives particular relevance to situations during 
a season and/or one-off postcompetition sleep disturbance.

Team-Sport Matches Played at Night

As often determined by television scheduling, numerous team 
sports schedule their matches at night. Indeed, the pure timing of 
matches (ie, some matches in the Spanish La Liga commence at 
10:00 PM) will force players into later bedtimes.1 Furthermore, 
since physical activity promotes arousal, it has long been assumed 
that exercising during the evening hours produces a greater number 
of sleep disturbances than exercising during daylight.20 Team-sport 
athletes also have extensive postgame commitments such as press 
conferences, recovery practices, and social functions, which could 
lead to later bedtimes and disrupt sleep duration and quality.1 As 
alluded to previously, Juliff et al18 found that 52.3% of a sample 
of 283 elite individual (n = 73) and team-sport (n = 210) athletes 
reported sleep disturbances after a night training session or match. 
Moreover, 59.1% of team-sport athletes reported that they did not 
use a strategy to overcome these sleep disturbances.18 Furthermore, 
a recent review on regenerative interventions used in professional 
soccer explained that many medical doctors report that players lose 
sleep after night matches, including findings on elite Bundesliga 
soccer players subjectively reporting reduced sleep duration and 
quality.20 Notwithstanding these findings, the anecdotal evidence 
of athletes reporting sleep disturbances after night competition 
outweighs that documented in the literature; thus, further research 
in elite athletic populations is required to confirm this.

Recent data show that performing maximal aerobic exercise in 
the evening results in elevated sleep-onset latency, awakenings, and 
REM-sleep latency—suggesting poorer overall sleep quality in judo 
competitors.28 While several physiological variables are elevated 
before sleep onset after late-night vigorous exercise (suggesting 
possible effects on cardiac autonomic control and metabolic func-
tion29), delayed sleep onset can also be caused by mental stimulation 
or cognitive fatigue.23 Moreover, given that pain is a significant 
predictor of a poor night’s sleep,30 it is likely that prolonged late-
night, high-intensity exercise (equivalent to match situations) will 
incur sleep disturbances throughout the night as a result of pain and 
soreness. This is of particular relevance for heavy-contact sports 
such as American football, ice hockey, and rugby union. It should 
be noted that there is opposing evidence on the effect of competing 
at night on sleep. For instance, Roach et al31 reported no effect of 
2 night (7:00 to 9:00 PM) matches on sleep in elite junior soccer 
players. Similarly, Robey et al32 found no effect of early-evening 
high-intensity training on the subsequent sleep quality or duration 
in elite youth soccer players.

In light of this, it should be recognized that the mechanisms 
behind the effects of exercise (and its timing) on sleep are complex 
due to the main confounding variable (among others) of the stress 
induced by the exercise itself. From an applied perspective, future 
research must first focus on providing objective evidence (eg, acute 
and chronic measurements of ActiGraphy) on whether disturbances 
after match play at night occur. Researchers might also focus on the 
effects of disrupted sleep after match play in team-sport athletes 
and attempt to delineate the mechanisms responsible. At present, 
practitioners should also be aware of the intraindividual variability 
in sleep requirement and chronotype (those who rise early in the 
morning vs those who prefer later bedtimes). Accommodating these 
differences within a team environment is difficult as it may require 
more individualized approaches. Indeed, this would be even more 
pertinent for teams scheduling training the day after a game. For 

instance, training in the absence of sufficient sleep after late-night 
matches may potentiate negative outcomes. This may create recov-
ery concerns given that players will sleep differently after these 
matches, while also possibly placing those who are training at an 
unnecessary risk of injury.33

Sleep and Travel Fatigue

Cumulative sleep loss occurs as a consequence of travel during busy 
periods, which tends to lead to cumulative fatigue over a season.34 
Travel fatigue is dependent on the distance and frequency of travel 
and the length of the season. It should be noted that travel-induced 
fatigue is separate from jet-lag fatigue, with the main difference 
being that jet-lag comprises an effect of time-zone change.34 The 
influences of jet-lag arising from long-haul international travel in 
elite athletes have been discussed previously34,35 and thus will not be 
further addressed here. Sleep disturbances during or after travel can 
result in reductions in mood, acute fatigue, and difficulty in initiat-
ing sleep at the arrival destination.34 For team sports, the method, 
mode, distance, and timing of travel vary greatly and are largely 
dependent on scheduling, team budget, and the coach’s preference.36 
Many teams, particularly in America and Australia, endure 1-way 
short-haul domestic or international travel up to 6 hours before or 
after competition.19,37,38 In addition to sleep disturbances, traveling 
can result in detrimental health, impaired mood, dehydration, and 
loss of motivation, all of which can affect recovery.34 Of further 
concern, it has been shown that baseball teams whose circadian 
rhythms are more synchronized to optimal performance times are 
more likely to be successful, indicating either a negative effect of 
travel and/or desynchronized body-clock functioning.19 However, it 
should be noted that these data do not actually outline any physical 
or perceptual response to the travel, limiting their implication in 
athlete recovery.

Empirical data describing the effect of short-haul air travel on 
sleep, performance, and the ensuing recovery in these situations 
are largely lacking. For instance, the sleep quantity and quality of 
players after away-competition performance remain unclear, with 
short-haul air travel (1–3 h) affecting perceived sleep quality,37 
whereas some soccer players report earlier mean bedtimes after 
short-haul air travel (~5 h) and an away match.16 Competition 
performance, along with reduced physical demands, appears to 
be greater at home than away (in American football,38 baseball,19 
rugby league,14 and soccer16), suggesting either a negative effect 
of travel or a circadian advantage.35 However, extrapolating these 
effects to determinations of match performance is difficult due to 
other external factors, the intermatch variability in opposition, and 
match intensity. While there have been few empirical studies, the 
available data suggest that short-haul travel has minimal effect on 
physiological and perceptual recovery (eg, no significant effect on 
YoYo Intermittent Recovery level 1 test performance), with more 
regular or longer periods of travel (eg, 24-h international transfers) 
more likely to result in negative responses.15 While short-haul air 
travel appears to have negligible effects on postmatch physiological 
recovery, the effect on perceptual markers of fatigue and sleep pat-
terns after competition performance is equivocal. If these parameters 
decline, they can negatively influence training intensity or volume 
during ensuing sessions due to decreased motivation.39 Given the 
myriad of conflicting demands while experiencing travel and sleep 
loss (eg, treatment, timing of training, recovery practices), it can be 
difficult for coaches to manage the most appropriate schedule for 
their team the day after a match. Indeed, more research is required 
to clarify the acute and chronic effects of cumulative travel (eg, over 
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a season) on sleep and psychological and physiological recovery 
parameters of professional team-sport athletes.

Sleep and Congested Competition Schedules

Excessive exercise loads can disturb the stress-recovery balance 
and result in performance decrements and injury occurrence.2 For 
example, during periods of heavy match congestion in soccer, there 
is an increased injury risk for players when they play 2 matches 
per week rather than 1.40 In this regard, some major European foot-
ball teams may compete in up to 4 competitions at once—which 
likely affects players’ sleep behavior. Congested schedules are 
also present throughout American sports such as baseball, hockey, 
and basketball. During these periods of high physical workloads, 
there is a potential for a reduction in sleep duration and quality. 
For example, it has been shown that as the effects of increased 
baseball match exposure accumulate toward the end of the season, 
strike-zone judgment is impaired, which suggests a fatigue-induced 
decline in performance, with sleep believed to be one of the main 
factors responsible.41

Sleep has also been suggested to be sensitive to exercise 
overload—with high training volumes associated with greater 
sleep disruptions.42 Although no published data are yet available 
in team-sport cases, Netzer et al43 found significant increases in 
the REM-sleep-onset latency and decreases in REM sleep of well-
trained cyclists after training and a competitive 120- to 150-km 
race, compared with no training or competition. Following this, it is 
logical that when team-sport athletes compete in a greater number 
of matches within a short period, exercise-induced muscle damage 
will accumulate (dependent also on exercise intensity), characterized 
by decreased neuromuscular function, increased perceptual fatigue, 
and increases in perceived soreness that can disrupt sleep.1 More-
over, if there are several events in short succession, the continual 
anticipation of competition can also negate sleep.18 However, at 
present, there is little research that describes or quantifies the effect 
of these changes on subsequent recovery, particularly in team sports 
undertaking congested fixture scheduling. Future investigations into 
the time course of recovery after sleep loss would be particularly 
pertinent to team sports such as baseball and cricket, since these 
athletes can play on consecutive days and could be at a high risk 
of cognitive impairments (eg, slowed reaction time).

Sleep and Disturbances to Training Adaptation

Since sleep loss impedes muscle protein accumulation, the ability of 
skeletal muscle to adapt and repair can be hindered—which likely 
limits training adaptations.3,6,44 This may be concerning during 
the preseason for team-sport athletes given that sleep disturbances 
are present during higher training volumes.42 Since sleep loss can 
also affect vigor, mood, and perceptual awareness,39 early training 
sessions could cause reductions in motivation and consequently 
reduce optimal training performance and subsequent adaptations.45 
Furthermore, if the stress-recovery balance of team-sport athletes is 
disrupted by either an increase in training load/stress or inadequate 
recovery, it may lead to an overreached, or even overtrained state.2 
Notably, disturbed sleep is believed to be one of many symptoms of 
either overreaching or the overtraining syndrome.2 In a recent study, 
Hausswirth et al46 found that objective measures of sleep duration 
and efficiency and immobile time were all negatively altered in 
a group of functionally overreached triathletes. There was also a 
higher prevalence of upper respiratory tract infections in this group, 
implying an association between the 2; however, whether impaired 

sleep and illness occurrence are consequences, or simply symptoms 
or coincidental associations, of overreaching remains unknown.46 
In light of this, practitioners are encouraged to monitor the sleep-
ing patterns of their athletes in high periods of stress either through 
subjective sleep diaries or wristwatch actigraphy.5

Since sleep loss can hinder the learning of new skills, affect 
emotional regulation, and disrupt cognitive function,6 it is likely that 
sleep is also important for optimizing cognitive training adaptations 
in team-sport athletes. For instance, sleep is critical for memory 
retention and neural plasticity and has been shown to improve visual 
discrimination and motor adaptation.23 Therefore, it is likely that 
disturbing sleep during intense training or skill-acquisition periods 
(eg, preseason) will encumber adaption in skill-based tasks with high 
neurocognitive reliance.4 However, objective evidence to support 
this suggestion is not currently available. Therefore, future research 
(with well-controlled randomized control trials) into the effects 
of sleep disruption on acute or chronic cognitive-based training 
adaptations in athletic populations is required.

Sleep Strategies for Team-Sport Athletes
Napping

In an attempt to recover from sleep debt, a commonly used sleep 
strategy among team-sport athletes is the restorative nap. Naps have 
been shown to improve alertness, sleepiness, short-term memory, 
and accuracy during reaction-time tests.47 Furthermore, Waterhouse 
et al47 found improvements in mean sprint performance after a 
30-minute postlunch nap after 4 to 5 hours of sleep restriction. On 
the basis of this, it has been proposed that athletes take a postlunch 
nap to ameliorate the performance deficits caused by ultradian 
biological rhythms that occur within the circadian cycle.39,47 As 
such, it appears that napping behaviors have many benefits and 
should be undertaken where necessary in team-sport environments. 
An example would be for soccer players to have a nap after lunch 
if they are playing a match at night. However, it is critical that if 
naps are implemented in a team-sport environment they balance 
the need to enhance performance while not disturbing subsequent 
sleep patterns, as this could hinder the recovery process after train-
ing or competition. Indeed, while napping appears advantageous 
for performance (eg, napping before competition), more research is 
required to evaluate its possible effectiveness in recovery.

Sleep Extension

Extending sleep during normal sleep times is another strategy to 
alleviate the decrements in physiological and cognitive performance 
caused by sleep loss. Mah et al24 found faster sprint and reaction 
times and improved shooting accuracy, energy, and mood after 
approximately 3 weeks of sleep extension (mean + 110 min) in 11 
basketball players, indicating its use as a viable option for enhanc-
ing team-sport performance. Moreover, extending sleep improves 
psychological well-being, thus optimizing athletes’ mental pre-
paredness for competition.24 However, obtaining extra sleep can be 
difficult, because increased sleep-onset latency and mood effects can 
be nullified due to earlier bedtimes. Thus, if an athlete is not sleep 
deprived it is possible that extending sleep will yield no benefit. The 
timing of this sleep intervention could also influence the effects of 
sleep extension, depending on the sleep chronotype of the athlete. 
In addition, more research assessing whether sleep extension during 
periods of high training load is a useful tool to ensure appropriate 
recovery is required. Such research would be pertinent in assisting 
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players achieve higher sustained intensities in subsequent exercise 
bouts (ie, during preseason).

Sleep-Hygiene Protocols

Identifying and modifying the factors that contribute to improve 
sleep quality (improving sleep hygiene) in team-sport athletes can 
also assist in ameliorating the detrimental effect of sleep loss and 
potentially enhance recovery. Sleep-hygiene strategies have been 
shown to improve sleep quality and onset latency in university stu-
dents and to reduce sleep irregularity in adolescents, although the 
effect of numerous components of sleep hygiene in normal sleepers 
is mixed.48 From an athletic perspective, little is known about the 
interaction between these sleep-hygiene strategies and the recovery 
of exercise and psychological parameters. Preliminary evidence 
indicates that adhering to some of the previous sleep-hygiene rec-
ommendations improves sleep quantity, resulting in a reduction in 
perceived soreness and fatigue in elite tennis players.49 Furthermore, 
regulating sleep–wake times helps synchronize the circadian timing 
system, improving sleep quality and quantity.50 As precompetition 
worry and anxiety are evident in athletes,10,18 it may be of benefit 
to use self-confidence tools (ie, meditation) to manage anxiety and 
stress, as these correlate with improved sleep.50 Identifying each 
individual’s best sleep habits (eg, bed comfort) is also pertinent, as 
unfamiliar environments may reduce sleep quality.50 Such recom-
mendations are similar to those designed for team-sport athletes 
who endure constant travel.34 It is well known that sleep onset is 
prolonged by noise, light, and extreme temperatures, with athletes 
reporting noise and light as the 2 most important factors in their sleep 
quality.10 Since the use of technology just before sleeping promotes 
afferent signals from the retina to the pineal gland, inhibiting the 
secretion of melatonin and delaying sleep onset, the avoidance of 
bedtime technology (and thus reducing arousal and physiological 
excitement) has been recommended to improve sleep onset.50 As 
part of a healthy sleep protocol, several nutritional recommendations 
have also been proposed to assist with sleep onset. For instance, a 
recent review by Halson5 proposed that diets high in carbohydrates 

and protein may result in shorter sleep latencies and improved sleep 
quality, respectively.5 While there is a clear need for nutrition during 
the postexercise recovery period, the interaction between foods 
consumed postexercise and the ensuing sleep and recovery timeline 
is unclear. Indeed, the effects of nutrition are intricately complex 
and beyond the scope of this review (see Halson5 for further detail).

Future Research

Currently, there is insufficient evidence to conclusively describe the 
role of sleep for postexercise recovery and resultant performance 
outcomes. As such, the first step in understanding this contribution 
is to undertake long-term observational field studies through the 
use of subjective sleep diaries and/or actimetry in various situa-
tions. This will help identify areas where sleep may be an issue 
in team-sport athletes. Once this specific context is known, it is 
important to understand the interaction sleep has with variables in 
the high-performance athletic environment during situations where 
sleep is an issue. This requires both randomized crossover trials that 
investigate the measurement of sleep and the postexercise recovery 
timeline (both physiological and psychological) and also case stud-
ies in high-performance team-sport athletes. Future work in this 
field could also focus on understanding the mechanisms involved 
and providing appropriate interventions to improve sleep and the 
ensuing recovery process.

Practical Recommendations  
for Team-Sport Athletes

The recommendations in Table 1 are based on the literature in 
this review. However, we recognize that there is a lack of research 
examining the interactions between sleep and recovery in athletes. 
Nonetheless, there seems little risk but much (potential) benefit in 
following these recommendations. It is perhaps most important to 
tailor interventions toward individual athletes.

Table 1 Practical Sleep Recommendations for Players, Coaches, and Practitioners

Issue Response

Determine whether there are sleep 
problems during normal scenarios in 
your athletic population.

One can do this by using subjective sleep diaries or wristwatch actimetry. Treat it in conjunction with a 
trained medical professional. Accommodating morning and evening types in team sports would appear par-
ticularly difficult, thus warranting clear communication between players, medical staff, and coaches.

Late-night matches and congested 
schedules.

Conduct correct sleep-hygiene practice after competition. This includes no technology 30 min before bed-
time, no TV or use of laptops in bed, and dark, cool (but not cold), quiet rooms (blinds closed). Set a regu-
lar sleep schedule where possible and introduce relaxation and meditation techniques if necessary. These 
will presumably affect each athlete differently due to the intraindividual variability in sleep requirement. 
For further detail the reader is directed to Halson5 and Malone.50

Short-haul domestic or international 
travel.

When traveling, ensure adequate hydration and time meals appropriately (usually in synchronization with 
the arrival time zone), move around the transportation vessel where/when possible, and synchronize light 
exposure to the arrival time zone. For detailed recommendations see Samuels.34

It is important that teams be aware 
of the possible altered physiological 
load in next-day training sessions 
after sleep loss.

Given the association between sleep loss and injury,33 individualized training after periods of sleep loss 
would seem appropriate. In general, advise and remind athletes to achieve consistent and adequate sleep 
(7–10 h/night), especially after a match.

Daytime sleepiness. Napping appears beneficial for both repaying sleep debt and benefiting acute performance outcomes. How-
ever, be conscious of the effect of naps as they may also compromise recovery by interfering with subse-
quent sleep patterns.
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Conclusion

While sleep is commonly reported by athletes, coaches, and 
scientists to be critical for recovery from intense exercise and/or 
competition, the current understanding of the effect of sleep on 
the recovery profile, especially in athletic populations, remains 
unclear. There is evidence to suggest that elite athletes lose sleep 
before and during competition periods. Furthermore, although 
limited published data are available, team-sport athletes appear to 
be susceptible to reductions in sleep quality and duration during 
and after competition (especially at night) and during periods of 
congested fixture scheduling and longer forms of travel. Given the 
regularity with which numerous professional teams might encounter 
these situations throughout a season, they may encumber the play-
ers’ sleep and recovery. The efficacy of interventions to improve 
sleep, such as sleep-hygiene protocols and sleep extension, appears 
advantageous—but requires further investigation in situations 
relevant to professional team sports. These interventions may be 
suited to specific situations when the risk of compromised sleep is 
higher (ie, playing at home or away, at night, and/or inclusive of 
travel). This is especially pertinent with regard to the recovery of 
exercise parameters. Indeed, since research in this area is lacking, 
further research into the role of sleep and recovery in team sports 
is warranted.

Acknowledgments

Hugh Fullagar is supported by a Science and Health in Soccer scholarship 
funded by the DAAD (German Academic Exchange Service).

References

 1. Nédélec M, McCall A, Carling C, et al. Recovery in soccer: part 
II—recovery strategies. Sports Med. 2013;43(1):9–22. PubMed 
doi:10.1007/s40279-012-0002-0

 2. Kellmann M. Preventing overtraining in athletes in high-intensity 
sports and stress/recovery monitoring. Scand J Med Sci Sports. 
2010;20:95–102. PubMed doi:10.1111/j.1600-0838.2010.01192.x

 3. Halson SL. Nutrition, sleep and recovery. Eur J Sport Sci. 
2008;8(2):119–126. doi:10.1080/17461390801954794

 4. Fullagar HHK, Skorski S, Duffield R, et al. Sleep and athletic per-
formance: the effects of sleep loss on exercise performance, and 
physiological and cognitive responses to exercise. Sports Med. 
2015;45(2):161–186. PubMed

 5. Halson SL. Sleep in elite athletes and nutritional interventions to 
enhance sleep. Sports Med. 2014;44(Suppl 1):S13–S23. PubMed 
doi:10.1007/s40279-014-0147-0

 6. Samuels C. Sleep, recovery, and performance: the new frontier in high-
performance athletics. Neurol Clin. 2008;26(1):169–180. PubMed 
doi:10.1016/j.ncl.2007.11.012

 7. Krystal AD, Edinger JD. Measuring sleep quality. Sleep 
Med .  2008;9(Suppl 1):S10–S17.  PubMed doi:10.1016/
S1389-9457(08)70011-X

 8. Skein M, Duffield R, Minett G, et al. The effect of overnight sleep 
deprivation after competitive rugby league matches on postmatch 
physiological and perceptual recovery. Int J Sports Physiol Perform. 
2013;8:556–564. PubMed

 9. Erlacher D, Ehrlenspiel F, Adegbesan OA, et al. Sleep habits in 
German athletes before important competitions or games. J Sports 
Sci. 2011;29(8):859–866. PubMed doi:10.1080/02640414.2011.565
782

 10. Venter RE. Perceptions of team athletes on the importance of recovery 
modalities. Eur J Sport Sci. 2014;14:S69–S76. PubMed doi:10.1080/
17461391.2011.643924

 11. Lastella M, Lovell GP, Sargent C. Athletes’ precompetitive sleep 
behaviour and its relationship with subsequent precompetitive mood 
and performance. Eur J Sport Sci. 2014;14(Suppl 1):S123–S130. 
PubMed

 12. Lastella M, Roach G, Halson SL, et al. Sleep/wake behaviour of 
endurance cyclists before and during competition. J Sports Sci. 
2015;33(3):293–299. PubMed

 13. Lastella M, Roach G, Halson SL, et al. Sleep/wake behaviours 
of elite athletes from individual and team sports. Eur J Sport Sci. 
2015;15(2):94–100. PubMed

 14. McGuckin TA, Sinclair WH, Sealey RM, et al. The effects of air travel 
on performance measures of elite Australian rugby league players. Eur 
J Sport Sci. 2014;14:S116–S122. PubMed doi:10.1080/17461391.20
11.654270

 15. Fowler P, Duffield R, Vaile J. Effects of simulated domestic and 
international air travel on sleep, performance, and recovery for team 
sports. Scand J Med Sci Sports. 2015;25(3):441–451. PubMed

 16. Fowler P, Duffield R, Vaile J. Effects of domestic air travel on technical 
and tactical performance and recovery in soccer. Int J Sports Physiol 
Perform. 2014;9(3):378–386. PubMed doi:10.1123/IJSPP.2013-0484

 17. Eagles A, Mclellan C, Hing W, et al. Changes in sleep quantity and 
efficiency in professional rugby union players during home based 
training and match-play [Published online ahead of print November 
4, 2014]. J Sports Med Phys Fitness. PubMed

 18. Juliff LE, Halson SL, Peiffer JJ. Understanding sleep disturbance 
in athletes prior to important competitions. J Sci Med Sport. 
2015;18(1):13–18. PubMed

 19. Winter WC, Hammond WR, Green NH, et al. Measuring circadian 
advantage in Major League Baseball: a 10-year retrospective study. 
Int J Sports Physiol Perform. 2009;4(3):394–401. PubMed

 20. Meyer T, Wegmann M, Poppendieck W, et al. Regenerative interven-
tions in professional football. Sports Orthop Traumatol. 2014;30:112–
118.

 21. Brukner P, Khan K. Clinical Sports Medicine. Sydney, Australia: 
McGraw Hill; 2006.

 22. Vyazovskiy VV, Delogu A. NREM and REM sleep: complementary 
roles in recovery after wakefulness. Neuroscientist. 2014 4;20(3):203–
219. PubMed doi:10.1177/1073858413518152

 23. Stickgold R. Sleep-dependent memory consolidation. Nature. 
2005;437:1272–1278. PubMed doi:10.1038/nature04286

 24. Mah CD, Mah KE, Kezirian EJ, et al. The effects of sleep extension 
on the athletic performance of collegiate basketball players. Sleep. 
2011;34(7):943–950. PubMed

 25. Schaal K, Le Meur Y, Louis J, et al. Whole-body cryostimulation 
limits overreaching in elite synchronized swimmers. Med Sci Sports 
Exerc. 2015;47(7):1416–1425. PubMed

 26. McMurray RG, Brown CF. The effect of sleep loss on high intensity 
exercise and recovery. Aviat Space Environ Med. 1984;55(11):1031–
1035. PubMed

 27. Robey E, Dawson B, Halson S, et al. Effect of evening postex-
ercise cold water immersion on subsequent sleep. Med Sci 
Sports Exerc. 2013;45(7):1394–1402. PubMed doi:10.1249/
MSS.0b013e318287f321

 28. Souissi N, Chtourou H, Aloui A, et al. Effects of time-of-day and-
partial sleep deprivation on short term maximal performances of judo 
competitors. J Strength Cond Res. 2013;27(9):2473–2480. PubMed 
doi:10.1519/JSC.0b013e31827f4792

 29. Myllymäki T, Kyröläinen H, Savolainen K, et al. Effects of vigorous 
late-night exercise on sleep quality and cardiac autonomic activity. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23315753&dopt=Abstract
http://dx.doi.org/10.1007/s40279-012-0002-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20840567&dopt=Abstract
http://dx.doi.org/10.1111/j.1600-0838.2010.01192.x
http://dx.doi.org/10.1080/17461390801954794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25315456&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24791913&dopt=Abstract
http://dx.doi.org/10.1007/s40279-014-0147-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18295089&dopt=Abstract
http://dx.doi.org/10.1016/j.ncl.2007.11.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18929313&dopt=Abstract
http://dx.doi.org/10.1016/S1389-9457(08)70011-X
http://dx.doi.org/10.1016/S1389-9457(08)70011-X
http://journals.humankinetics.com/ijspp-back-issues/ijspp-volume-8-issue-5-september/the-effect-of-overnight-sleep-deprivation-after-competitive-rugby-league-matches-on-postmatch-physiological-and-perceptual-recovery
http://journals.humankinetics.com/ijspp-back-issues/ijspp-volume-8-issue-5-september/the-effect-of-overnight-sleep-deprivation-after-competitive-rugby-league-matches-on-postmatch-physiological-and-perceptual-recovery
http://journals.humankinetics.com/ijspp-back-issues/ijspp-volume-8-issue-5-september/the-effect-of-overnight-sleep-deprivation-after-competitive-rugby-league-matches-on-postmatch-physiological-and-perceptual-recovery
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23412713&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21506041&dopt=Abstract
http://dx.doi.org/10.1080/02640414.2011.565782
http://dx.doi.org/10.1080/02640414.2011.565782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24444246&dopt=Abstract
http://dx.doi.org/10.1080/17461391.2011.643924
http://dx.doi.org/10.1080/17461391.2011.643924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24444196&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24444196&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25105558&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24993935&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24444195&dopt=Abstract
http://dx.doi.org/10.1080/17461391.2011.654270
http://dx.doi.org/10.1080/17461391.2011.654270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24750359&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24755963&dopt=Abstract
http://dx.doi.org/10.1123/IJSPP.2013-0484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25369280&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24629327&dopt=Abstract
http://journals.humankinetics.com/ijspp-back-issues/IJSPPVolume4Issue3September/MeasuringCircadianAdvantageinMajorLeagueBaseballA10YearRetrospectiveStudy
http://journals.humankinetics.com/ijspp-back-issues/IJSPPVolume4Issue3September/MeasuringCircadianAdvantageinMajorLeagueBaseballA10YearRetrospectiveStudy
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19953826&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24598308&dopt=Abstract
http://dx.doi.org/10.1177/1073858413518152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16251952&dopt=Abstract
http://dx.doi.org/10.1038/nature04286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21731144&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25314578&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6508684&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23377833&dopt=Abstract
http://dx.doi.org/10.1249/MSS.0b013e318287f321
http://dx.doi.org/10.1249/MSS.0b013e318287f321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23974210&dopt=Abstract
http://dx.doi.org/10.1519/JSC.0b013e31827f4792


IJSPP Vol. 10, No. 8, 2015

Sleep and Recovery in Team Sport  957

J Sleep Res. 2011;20(1 Pt 2):146–153. PubMed doi:10.1111/j.1365-
2869.2010.00874.x

 30. Raymond I, Nielsen TA, Lavigne G. Quality of sleep and its daily 
relationship to pain intensity in hospitalized adult burn patients. Pain. 
2001;92:381–388. PubMed doi:10.1016/S0304-3959(01)00282-2

 31. Roach GD, Schmidt WF, Aughey RJ, et al. The sleep of elite athletes 
at sea level and high altitude: a comparison of sea-level natives and 
high-altitude natives (ISA3600). Br J Sports Med. 2013;47:i114–i120. 
PubMed doi:10.1136/bjsports-2013-092843

 32. Robey E, Dawson B, Halson S, et al. Sleep quantity and quality in elite 
youth soccer players: a pilot study. Eur J Sport Sci. 2014;14(5):410–
417. PubMed

 33. Luke A, Lazaro RM, Bergeron MF, et al. Sports-related injuries in 
youth athletes: is overscheduling a risk factor? Clin J Sport Med. 
2011;21(4):307–314. doi:10.1097/JSM.0b013e3182218f71

 34. Samuels CH. Jet lag and travel fatigue: a comprehensive management 
plan for sport medicine physicians and high-performance support 
teams. Clin J Sport Med. 2012;22:268–273. PubMed doi:10.1097/
JSM.0b013e31824d2eeb

 35. Reilly T. How can travelling athletes deal with jet-lag? Kinesiology. 
2009;41:128–135.

 36. Bishop D. The effects of travel on team performance in the Australian 
national netball competition. J Sci Med Sport. 2004;7(1):118–122. 
PubMed doi:10.1016/S1440-2440(04)80050-1

 37. Richmond LK, Dawson B, Stewart G, et al. The effect of interstate 
travel on the sleep patterns and performance of elite Australian 
Rules footballers. J Sci Med Sport. 2007;10(4):252–258. PubMed 
doi:10.1016/j.jsams.2007.03.002

 38. Smith RS, Guilleminault C, Efron B. Circadian rhythms and 
enhanced athletic performance in the National Football League. Sleep. 
1997;20(5):362–365. PubMed

 39. Reilly T, Edwards B. Altered sleep–wake cycles and physical perfor-
mance in athletes. Physiol Behav. 2007;90(2-3):274–284. PubMed 
doi:10.1016/j.physbeh.2006.09.017

 40. Dupont G, Nedelec M, McCall A, et al. Effect of 2 soccer matches in 
a week on physical performance and injury rate. Am J Sports Med. 
2010;38(9):1752–1758. PubMed doi:10.1177/0363546510361236

 41. Kutscher S, Song Y, Wang L, et al. Validation of a statistical model 
predicting possible fatigue effect in Major League Baseball. Sleep. 
2013;36:A408.

 42. Taylor SR, Rogers GG, Driver HS. Effects of training volume on 
sleep, psychological, and selected physiological profiles of elite female 
swimmers. Med Sci Sports Exerc. 1997;29(5):688–693. PubMed 
doi:10.1097/00005768-199705000-00016

 43. Netzer NC, Kristo D, Steinle H, et al. REM sleep and catecholamine 
excretion: a study in elite athletes. Eur J Appl Physiol. 2001;84:521–
526. PubMed doi:10.1007/s004210100383

 44. Dattilo M, Antunes HKM, Medeiros A, et al. Sleep and muscle 
recovery: endocrinological and molecular basis for a new and prom-
ising hypothesis. Med Hypotheses. 2011;77(2):220–222. PubMed 
doi:10.1016/j.mehy.2011.04.017

 45. Sargent C, Halson S, Roach GD. Sleep or swim?: early-morning train-
ing severely restricts the amount of sleep obtained by elite swimmers. 
Eur J Sport Sci. 2014;14:S310–S315. PubMed doi:10.1080/1746139
1.2012.696711

 46. Hausswirth C, Louis J, Aubry A, et al. Evidence of disturbed sleep 
and increased illness in overreached endurance athletes. Med 
Sci Sports Exerc. 2014;46(5):1036–1045. PubMed doi:10.1249/
MSS.0000000000000177

 47. Waterhouse J, Atkinson G, Edwards B, et al. The role of a short 
post-lunch nap in improving cognitive, motor, and sprint perfor-
mance in participants with partial sleep deprivation. J Sports Sci. 
2007;25(14):1557–1566. PubMed doi:10.1080/02640410701244983

 48. Stepanski EJ, Wyatt J. Use of sleep hygiene in the treatment of 
insomnia. Sleep Med Rev. 2003;7(3):215–225. PubMed doi:10.1053/
smrv.2001.0246

 49. Duffield R, Murphy A, Kellett A, et al. Recovery from repeated on-
court tennis sessions: combining cold-water immersion, compression, 
and sleep interventions. Int J Sports Physiol Perform. 2014;9(2):273–
282. http://dx.doi.org/10.1123/IJSPP.2012-0359

 50. Malone SK. Early to bed, early to rise?: an exploration of adolescent 
sleep hygiene practices. J Sch Nurs. 2011;27(5):348–354. PubMed 
doi:10.1177/1059840511410434

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20673290&dopt=Abstract
http://dx.doi.org/10.1111/j.1365-2869.2010.00874.x
http://dx.doi.org/10.1111/j.1365-2869.2010.00874.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11376911&dopt=Abstract
http://dx.doi.org/10.1016/S0304-3959(01)00282-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24282197&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24282197&dopt=Abstract
http://dx.doi.org/10.1136/bjsports-2013-092843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24093813&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22450594&dopt=Abstract
http://dx.doi.org/10.1097/JSM.0b013e31824d2eeb
http://dx.doi.org/10.1097/JSM.0b013e31824d2eeb
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15139171&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15139171&dopt=Abstract
http://dx.doi.org/10.1016/S1440-2440(04)80050-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17524795&dopt=Abstract
http://dx.doi.org/10.1016/j.jsams.2007.03.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9381059&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17067642&dopt=Abstract
http://dx.doi.org/10.1016/j.physbeh.2006.09.017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20400751&dopt=Abstract
http://dx.doi.org/10.1177/0363546510361236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9140908&dopt=Abstract
http://dx.doi.org/10.1097/00005768-199705000-00016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11482546&dopt=Abstract
http://dx.doi.org/10.1007/s004210100383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21550729&dopt=Abstract
http://dx.doi.org/10.1016/j.mehy.2011.04.017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24444223&dopt=Abstract
http://dx.doi.org/10.1080/17461391.2012.696711
http://dx.doi.org/10.1080/17461391.2012.696711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24091995&dopt=Abstract
http://dx.doi.org/10.1249/MSS.0000000000000177
http://dx.doi.org/10.1249/MSS.0000000000000177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17852691&dopt=Abstract
http://dx.doi.org/10.1080/02640410701244983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12927121&dopt=Abstract
http://dx.doi.org/10.1053/smrv.2001.0246
http://dx.doi.org/10.1053/smrv.2001.0246
http://dx.doi.org/10.1123/IJSPP.2012-0359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21606219&dopt=Abstract
http://dx.doi.org/10.1177/1059840511410434


Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=rjsp20

Download by: [Mr Ross Julian] Date: 18 January 2016, At: 11:06

Journal of Sports Sciences

ISSN: 0264-0414 (Print) 1466-447X (Online) Journal homepage: http://www.tandfonline.com/loi/rjsp20

Impaired sleep and recovery after night matches
in elite football players

Hugh H. K. Fullagar, Sabrina Skorski, Rob Duffield, Ross Julian, Jon Bartlett &
Tim Meyer

To cite this article: Hugh H. K. Fullagar, Sabrina Skorski, Rob Duffield, Ross Julian, Jon Bartlett
& Tim Meyer (2016): Impaired sleep and recovery after night matches in elite football players,
Journal of Sports Sciences, DOI: 10.1080/02640414.2015.1135249

To link to this article:  http://dx.doi.org/10.1080/02640414.2015.1135249

View supplementary material 

Published online: 11 Jan 2016.

Submit your article to this journal 

Article views: 93

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=rjsp20
http://www.tandfonline.com/loi/rjsp20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02640414.2015.1135249
http://dx.doi.org/10.1080/02640414.2015.1135249
http://www.tandfonline.com/doi/suppl/10.1080/02640414.2015.1135249
http://www.tandfonline.com/doi/suppl/10.1080/02640414.2015.1135249
http://www.tandfonline.com/action/authorSubmission?journalCode=rjsp20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=rjsp20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/02640414.2015.1135249
http://www.tandfonline.com/doi/mlt/10.1080/02640414.2015.1135249
http://crossmark.crossref.org/dialog/?doi=10.1080/02640414.2015.1135249&domain=pdf&date_stamp=2016-01-11
http://crossmark.crossref.org/dialog/?doi=10.1080/02640414.2015.1135249&domain=pdf&date_stamp=2016-01-11


Impaired sleep and recovery after night matches in elite football players
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ABSTRACT
Despite the perceived importance of sleep for elite footballers, descriptions of the duration and quality
of sleep, especially following match play, are limited. Moreover, recovery responses following sleep loss
remain unclear. Accordingly, the present study examined the subjective sleep and recovery responses
of elite footballers across training days (TD) and both day and night matches (DM and NM). Sixteen top
division European players from three clubs completed a subjective online questionnaire twice a day for
21 days during the season. Subjective recall of sleep variables (duration, onset latency, time of wake/
sleep, wake episode duration), a range of perceptual variables related to recovery, mood, performance
and internal training loads and non-exercise stressors were collected. Players reported significantly
reduced sleep durations for NM compared to DM (−157 min) and TD (−181 min). In addition, sleep
restfulness (SR; arbitrary scale 1 = very restful, 5 = not at all restful) and perceived recovery (PR; acute
recovery and stress scale 0 = not recovered at all, 6 = fully recovered) were significantly poorer
following NM than both TD (SR: +2.0, PR: −2.6), and DM (SR: +1.5; PR: −1.5). These results suggest
that reduced sleep quantity and quality and reduced PR are mainly evident following NM in elite
players.
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Introduction

Self-reported sleep loss is suggested as a common occurrence
prior to competition in elite athlete populations (Erlacher,
Ehrlenspiel, Adegbesan, & Galal El-Din, 2011; Juliff, Halson, &
Peiffer, 2015), which can result in a reduction in ensuing
athletic performance outcomes (Edwards & Waterhouse,
2009; Jarraya, Jarraya, Chtourou, & Souissi, 2013; Reyner &
Horne, 2013). However, despite these suggestions, there is
limited evidence to highlight that team-sport athletes, parti-
cularly elite footballers, experience sleep issues as part of their
normative behaviour (Erlacher et al., 2011; Juliff et al., 2015). In
addition, sleep behaviour following competitive match play
remains unclear (Fowler, Duffield, & Vaile, 2014). This is con-
cerning, given the proposed relationship between sleep loss
and reduced recovery in team-sport athletes (Fullagar et al.,
2015; Skein, Duffield, Minett, Snape, & Murphy, 2013).
Furthermore, it is not known whether footballers’ sleep quality
and quantity differs following training days (TD) and match
play. Therefore, further research investigating the behavioural
sleeping patterns of elite footballers is warranted.

Sleep issues experienced by team-sport athletes are postu-
lated to be predominately situational and sport-dependant,
though explicit evidence is minimal (Juliff et al., 2015). For
instance, on the night of an Australian football match sleep
duration was significantly decreased to a similar degree whether
home or away by 68 and 64min, respectively (Fowler et al., 2014).
Of the various team sports, association football is one which

comprises numerous situations whichmay disrupt players’ sleep-
ing patterns; including periods of travel, congested fixture sche-
duling and training or playing at night (Fullagar et al., 2015).
However, data to support these perceptions, especially with
regards to training and playing at night, are unclear. For instance,
whilst football players’ sleep volume is reportedly reduced fol-
lowing a night match (NM) (Meyer, Wegmann, Poppendieck, &
Fullagar, 2014; Nédélec et al., 2012), some have reported no
effect of NM (Roach et al., 2013) or early evening high-intensity
training (Robey et al., 2013) on sleep duration and quality in elite
junior players. Therefore, more research is required to confirm
whether football players’ sleep is hindered following NM.
Perhaps more importantly, whilst studies have investigated
player sleeping patterns in comprising situations that is travel
and NM (Fullagar et al., 2015), there is no study at present which
hasmonitored elite footballers formore than an acute period (i.e.,
1 week) during the regular season to give an accurate indication
of a professional player’s normal sleeping behaviour.

The lack of data surrounding sleep following match play is
concerning, since these periods of sleep loss could potentially
compromise the recovery process (Skein et al., 2013). Fowler
et al., (2014) reported significant reductions in sleep duration
and quality, along with an impaired stress–recovery balance,
on the night of a match compared to the night prior for away
matches in elite Australian footballers. Nonetheless, the evi-
dence as to what are normal sleep and recovery responses
within elite football is currently lacking. Accordingly, the
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purpose of the present study was to monitor the sleeping
patterns of elite football players and to assess whether differ-
ences in sleep indices occurred in association with an altered
perceptual recovery status. If sleep issues were present, we
aimed to identify any potential factors within the professional
sporting environment (e.g., stress, physical or psychological
load) which contributed to these poor sleeping patterns,
with a specific focus on the presentation of individual results.

Methods

Participants

Sixteen elite male football players participated in the present
investigation (mean standard deviation (SD) age 25.9 ± 7.5
years, body mass 74.8 ± 8.9 kg, height 179.5 ± 12.1 cm). The
players were representatives of three UEFA© clubs within the
top division in either Germany (Bundesliga) or the Netherlands
(Eredivisie). Players were given information regarding the
synopsis of the study and the associated risks, and if they
wished to participate they provided written informed consent.
The study was conducted in accordance with the Declaration
of Helsinki and was approved by the institutional Human
Research Ethics Committee (Saarland University).

Study design

The present study was a descriptive, observational design. All
players were familiarised with the study procedures prior to
the collection of data, which was obtained over a 21-day
period during either the second half of the 2013/2014 or the
first half of the 2014/2015 season. Measures were obtained
twice per day, whereby participants were asked to complete a
sleep and sporting activity questionnaire (SosciSurveyTM) in
the morning after awakening, and at night prior to sleeping.
This questionnaire was completed online, on the player’s per-
sonal laptop or smart phone, and accessed through individual
case-protected web URL links, ensuring complete confidenti-
ality. Training schedules were set at the discretion of the team
coaches and conditioning staff. Matches were scheduled by
the respective external football organisations. Within this 21-
day period, players did not complete the questionnaire on
“rest” days (e.g., days which they were away from the football
club). Each player had approximately one designated rest day
per week. Thus, players completed the questionnaire for
18 days/nights. At the end of the collection period, data sets
which had an overall completion rate of 90% or greater were
retained for analyses. These data sets were also required to
include at least three matches for each player during this
period (two day matches (DM), one NM) where the player
played at least 60 min of match play. Within these included
data sets, days were categorised into “training days” (day in
which the player attended and participated in structured
training), “day matches” (matches which concluded before 6
pm) and “night matches” (matches which kicked off after 6
pm; see Sections 2 and 2.4) for final analyses. If a participant
experienced a prolonged injury or illness during the data
collection period (>1 weeks), he was also excluded from ana-
lyses. Furthermore, players who were recovering from an

injury incurred immediately prior to data collection were also
excluded. From the 25 players originally recruited for the
study, 16 were retained for final analyses. In total, 235 TD, 32
DM and 16 NM responses were analysed.

Study procedures

A subjective sleep questionnaire was used to assess players’
sleep habits, perceptual fatigue and stress prior to and follow-
ing training and matches. This questionnaire was previously
created as part of the RegmanTM recovery project, in which the
authors’ institute is a co-partner. Although measures of sleep
were subjective in nature, the sleep indices within the ques-
tionnaire have previously been validated against objective
measures of actigraphy, with time in bed (ICC = 0.93–0.95)
and total sleep time (ICC = 0.90–0.92) revealing strong agree-
ment (Kölling, Endler, Ferrauti, Meyer, & Kellmann, 2015). This
questionnaire (provided as Supplemental data) also included
an evaluation of the numerous variables within a professional
football team environment (i.e., non-exercise stressors such as
press conferences) which could potentially affect recovery
following training or match play (Nédélec et al., 2013). The
morning section was used to ascertain information about the
previous night’s sleep including questions relating to “rest-
fulness” (sleep quality: 1 = very restful, 5 = not at all restful),
“reasons for un-restfulness”, details about sleep disturbances
(if they were present), the duration of total sleep time and a
short scale of general perceptual recovery (0 = not recovered
at all, 6 = fully recovered; Kölling et al., 2014). Total sleep time
was calculated as:

[(Δ of sleep duration between bedtime and awakening time) – dura-
tion of sleep onset latency − total wake episode duration].

For example [(23:15 − 07:15) − 15 min − 15 min] = 7 h 30 min of
sleep.

Comparatively, the evening section asked closed-response
questions such as how “relaxed” and “exhausted” the players
felt, how they rated their “overall performance” for the day,
whether they slept during the day (naps; this was calculated
outside total sleep time at night), and then required them to
provide open-response details of any “additional stress or non-
exercise loads” they experienced that day. In addition, if parti-
cipants played in a match, they provided details regarding
kick-off time, personal playing time, sessional rating of per-
ceived exertion (s-RPE = min played × RPE (Borg, 1998; Foster
et al., 2001), match location (home or away), result (win, lose,
draw), sleeping location (home, hotel, other) and travel dura-
tion from stadium to place of sleep (all closed response ques-
tions). When players trained, but didn’t play, they provided
s-RPE.

Statistical analyses

Data are presented as means ± SD for bedtime, awakening
time, sleep duration, sleep onset latency, wake episodes, wake
episode duration, sleep restfulness (SR) and recovery.
Means ± SD were also used to describe the internal load
from both training and matches (min of activity × RPE) and
the average non-exercise induced stress (scale 0–100). The
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percentage (%) of each answer for the closed response ques-
tions relating to “tenseness”, “exhaustion”, “general overall
performance” was calculated. For comparative statistics,
three different conditions were assessed: TD, DM (matches
which concluded before 6 pm) and NM (matches which kicked
off after 6 pm). Repeated measures analysis of variance were
calculated between conditions (TD vs. DM, DM vs. NM, NM vs.
TD) for bedtime, awakening time, sleep duration, sleep onset
latency, wake episodes, wake episode duration, SR and recov-
ery. When a significant main effect was found, a post hoc
Bonferroni adjustment was used to assess pairwise compari-
sons of the estimated marginal means. Independent t-tests
were utilised to analyse sleep duration differences between
home and away locations for DM and NM (all home vs. all
away matches). Additional descriptive data that listed reasons
for un-restfulness were used for the presentation of individual
case reports. All statistical analyses were calculated using SPSS
(v27, SPSS Inc., Chicago, IL, USA) with significance set at
P < 0.05. Furthermore, standardised effect size (Cohen’s d;
ES) analyses were used to interpret the magnitude of the
mean differences between conditions for all sleep and recov-
ery parameters with d < 0.20 (trivial), d = 0.20 (small), d = 0.50
(medium) and d ≥ 0.80 (large) (Cohen, 1988).

Results

Sleep variables

All sleep variables are presented in Table 1, with mean and
individual data for sleep duration for TD, DM and DM in
Figure 1. Bedtime was significantly later for NM compared to
both DM (+189 min; P < 0.001, d = 2.61) and TD (+248 min;
P < 0.001, d = 3.70) and for DM compared to TD (+59 min;
P = 0.007, d = 1.95), whilst awakening time was significantly
earlier for TD compared to both DM (−45 min; P < 0.001,
d = 2.01) and NM (−70 min; P < 0.001, d = 2.45). Sleep onset
latency was significantly greater for NM compared to TD
(+10 min; P = 0.03, d = 1.60) but not different between DM
and NM (d = 0.64) or TD and DM, despite a large ES being

present (P = 0.42, d = 0.96). Sleep duration for NM was signifi-
cantly less than DM (−157 min; P < 0.001, d = 3.71) and TD
(−181 min; P < 0.001, d = 4.31), although there were no differ-
ences between DM and TD (P = 0.33, d = 0.60). No significant
differences were evident between any condition for wake epi-
sodes (P > 0.05). SR was significantly poorer following NM than
both TD (P < 0.001, d = 3.56) and DM (P = 0.007, d = 3.16).

Subjective responses to exercise (training and matches)

All subjective wellness responses for TD, DM and NM are
presented in Table 2. Perceptual recovery the following morn-
ing for NM was significantly less than both TD (P < 0.001,
d = 3.09) and DM (P = 0.007, d = 1.78), whilst a large effect
was present for TD compared to DM (d = 1.31). Subjective
exercise load was significantly greater for both DM and NM
than TD (both P < 0.001; DM: d = 4.04; NM: d = 4.79), although
there were no significant differences between DM and NM
(P = 0.42, d = 0.74). Comparatively, players ranked perceptual
performance similar across conditions (Table 2). There were no
significant differences between sleep durations for matches
played at home or away (home: 290 ± 73 min, away:
316 ± 185 min, P = 0.95: two further players were excluded
because they did not play both home and away). Players did
not provide sufficient amount of details regarding sleeping
location (home, hotel, other) and travel duration from stadium
to place of sleep (these questions were optional); thus, these
analyses were abandoned.

Individual case reports

As a practical example of the individualised nature of sleep
responses, individual nightly sleep responses for four separate
players (A–D), including duration and occurrences and reasons
for “average-poor restfulness”, are presented in Figure 2. For

Table 1. Subjective sleep responses following a normal training day (TD), day
match (DM) and night match (NM) in elite soccer players collected over a 21-day
period during the regular season.

n = 16 TD DM NM

Bedtime 23:19 ± 0:49 00:18 ± 1:24# 03:27 ± 1:56*
Awakening time 08:24 ± 1:07 09:09 ± 1:10# 09:34 ± 0:47***
Sleep onset latency 16 ± 7 22 ± 13 26 ± 15***
Sleep duration (h) 8:44 ± 0:40 8:20 ± 0:41 5:43 ± 1:36*
Wake episodes (n) 2.0 ± 1.2 2.8 ± 1.1 0
Total wake episode duration
(min)

22.0 ± 39.1 11.4 ± 4.4 N/A

Sleep restfulness (1 = very
restful, 5 = not at all restful)

1.8 ± 0.7 2.3 ± 0.8 3.8 ± 1.1*

Number of players whom napped
(at least once)

10** 1 3

Average duration of naps (min) 57 ± 36 30 ± – 77 ± 29

* Significant difference between NM and both DM and TD conditions (P < 0.05).
** Significant difference between TD and both DM and NM conditions
(P < 0.05).

*** Significant difference between TD and NM condition (P < 0.05).
# Significant difference between TD and DM condition (P < 0.05).
NB: Napping data for TD was recorded during the day but following training,
whereas napping data for DM and NM was recorded on the same day but
prior to match play.

Figure 1. Mean (shaded bars) and individual cases (n = 16) of sleep duration for
a training day (TD), day match (DM) and a night match (NM).*Significant
difference between NM and both TD and DM (P < 0.05).
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Table 2. Subjective wellness responses for a normal training day (TD), day match (DM) and night match (NM) in elite soccer players collected over a 21-day period
during the regular season. Means ± SD.

n = 16 TD DM NM

Tenseness (%)
Tense 1 6 6
Pretty tense 8 16 38
Rather tense 7 31 6
Rather relaxed 22 16 6
Pretty relaxed 29 19 25
Relaxed 34 13 19

Performance (%)
Good 27 22 25
Pretty good 34 38 44
Rather good 27 16 25
Rather bad 10 19 6
Rather bad 1 6 0
Bad 0 0 0

Exhaustion (%)
No, not at all 38 19 25
A little 38 41 44
Quite 16 28 13
Yes, very 8 9 19
Recovery (0 = not recovered at all, 6 = fully
recovered)

4.5 ± 0.7 3.4 ± 1.3 1.9 ± 1.1*

Non-exercise induced stress (n reported at
least once; 0–100)

5; 47 ± 30 – –

Training load (AU) 292 ± 195** 659 ± 195 698 ± 254
Listed reasons for sleep un-restfulness Unfamiliar sleeping environment, nervousness,

urination, children, wind, confrontation with
coach, troubles with personal relationship

Children, urination,
strenuous game

Adrenaline after the game, pain,
strenuous game

* Significant difference between NM and both DM and TD conditions (P < 0.05).
** Significant difference between TD and both DM and NM conditions (P < 0.05).
Abbreviations: AU: arbitrary units (Training Load (TL) = session rating of perceived exertion (s-RPE) × duration in min).

Figure 2. Examples of individual sleep duration responses (min) per night for four separate players (A–D) for the duration of the study. Abbreviations: training day in
black bars; day match in light grey bars; night match in white bars.
* Indicates average-poor sleep restfulness with the reason provided being “newborn children”.
# Indicates average-poor sleep restfulness with the reason provided being “urination”.
ɑ Indicates average-poor sleep restfulness with the reason provided being “nervousness”.
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instance, mean sleep duration for Player A was 476 ± 75 min
(range 260–510 min) for TD, with the player reporting “aver-
age-poor restfulness” on 10 occasions all of which the reason
was given due to “newborn children”.

Discussion

The present investigation aimed to monitor the sleeping pat-
terns of elite football players and to assess when reductions in
sleep indices occurred; in addition to the perceptual recovery
status. The main finding of this study was the significant
reduction in sleep duration and later bedtime following NM
compared to both TD and DM. Following these NM, there was
also a significant reduction in perceived recovery (PR) com-
pared to both DM and TD. Players subjectively reported sev-
eral reasons for poor sleep such as children, nervousness, pain
and adrenaline following a match. Overall, our results suggest
that elite football players lose sleep and report reduced per-
ceptual recovery following NM play; however, players appear
to report adequate sleep durations (i.e., 7–10 h; National-
Sleep-Foundation, 2013) and qualities following TD and DM.

Bedtime and total sleep duration were extended and
reduced, respectively, following NM, supporting the idea that
sleep indices are likely dependent on the situational demands
and scheduling of the particular sport (Juliff et al., 2015;
Sargent, Lastella, Halson, & Roach, 2014). These present obser-
vations of reduced sleep quantity in elite footballers are sup-
ported by objective evidence that elite rugby union players
sleep less on game compared to non-game nights (Eagles,
Mclellan, Hing, Carloss, & Lovell, 2014). Furthermore, profes-
sional Australian soccer players can lose 2–4 h of sleep follow-
ing matches compared to non-match nights (Fowler et al.,
2014), and a recent study states that 52.3% of elite (individual
and team-sport) athletes subjectively report sleep distur-
bances following a late match or training session (Juliff et al.,
2015). Comparatively, sleep duration on TD and following DM
was within the presumed normal healthy range of 7–10 h in
our study (National-Sleep-Foundation, 2013). Furthermore,
match loads (calculated from s-RPE) were similar between
DM and NM, and there were no significant differences
between home and away matches. Thus, these data would
suggest that there are particular nuances about a NM (com-
pared to a DM) which cause this reduction in sleep duration
outside reasons arising from the match/exercise itself. The
most predictable reason for this would be the pure extension
of a later bedtime caused by the timing of the match. The later
bedtime, coupled with the environmental circumstance of a
NM driving wakefulness over sleep at a time when the drive
for sleep is normally stronger, likely explains the reduced sleep
durations. Additionally, the evening exposure to light
(depending on seasonal period) could also prolong sleep
onset and reduce total sleep time (Malone, 2011). Another
factor which is harder to control and report, but may play
just as an important role, could be socialising (Fullagar et al.,
2015). Collectively, these data suggest that although “normal”
player sleep patterns may be sufficient, under specific circum-
stances (i.e., NM) there are cases for reduced sleep durations in
professional footballers.

Following a similar trend to sleep duration, there were also
significant reductions in perceptual recovery following NM
compared to TD and DM. Since no difference was evident
for subjective exercise loads between DM and NM, it might
be speculated this subsequent altered recovery state could be
attributed to the reduction in sleep quantity. Indeed, sleep
deprivation following exercise can lead to reductions in the
recovery of psychological or perceptual performance (Fullagar
et al., 2015; Skein et al., 2013). For instance, Fowler and col-
leagues (2014) reported significant reductions in sleep dura-
tion and quality in six professional footballers, along with an
impaired stress–recovery balance, on the night of a match
compared to the night prior for away matches. The present
result of a reduction in perceptual recovery may represent
concerns for the practitioner, especially since the competitive
match load may suggest the homeostatic need for recovery
sleep would be higher compared to rest days (Romyn, Robey,
Dimmock, Halson, & Peeling, 2015); and this appears to not
have been provided here. Although speculative, this could
have important repercussions for players during subsequent
training and competition where this reduction in wellbeing
could unnecessarily add to an already suppressed overall psy-
chological state. More research which focuses on the interac-
tion between sleep loss and a suppressed psychological state
is required, especially in elite footballers, and whether any
subsequent associations affect the acute recovery–stress bal-
ance and ensuing performance.

Sleep is certainly an individual response, and grouping
players may not capture the nuances of such individuality.
Consequently, we depict this in Figure 2, where four players’
mean-sleep duration ranged from 460 to 581 min, with some
players sleeping 2 h more than others on any given TD.
Similarly, players’ reasons for “average – unrestfulness” varied
with contrasting answers such as “newborn children” (Player
A) and “urination” (Player B). Clearly in this context, these two
players will need contrasting approaches in order to address
these issues. We believe this is a good example of how very
simple data could potentially inform and change practice.
Further analysis and presentation of individual cases within
original scientific publications in the football science field is a
proposal that is supported by coaches and practitioners.
Indeed, quantifying, predicting and the overall understanding
of the inter-individual differences in the “magnitude of
responses” to matches or training (“the individual response”)
is gaining considerable applied and scientific interest
(Hecksteden et al., 2015). All players reported reductions in
sleep duration following NM. Thus, an improvement in sleep
indices through such measures as sleep hygiene protocols
following NM may seem advisable for these players. Indeed,
sleep hygiene protocols have been shown to improve sleep
duration and perceived soreness in elite tennis players
(Duffield, Murphy, Kellett, & Reid, 2014); however, evidence
of their efficacy in football is lacking. Another possible man-
agement strategy would be to implement napping strategies
to supplement sleep, repay sleep debt and possibly improve
the subsequent performance (Waterhouse, Atkinson, Edwards,
& Reilly, 2007).

Although the primary aim of the present investigation was
to monitor the subjective sleeping patterns of elite football
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players, an additional focus was to identify factors within their
environment which could possibly contribute to poor sleeping
quality. Juliff et al. (2015) reported from a sample of 283
individual and team-sport athletes the main reasons respon-
sible for poor sleep were “thoughts about the competition”
and “nervousness”. The players in our study also reported
“nervousness” as one of the most common problems for
average-poor SR during TD, along with “unfamiliar sleeping
environment” and “urination”. For DM and NM, “strenuous
game”, “pain” and “adrenaline after a game” were consistently
present. Whilst the existing data set does not have the
strength to determine whether a relationship (either correla-
tion or causative) exists between these reasons for un-rest-
fulness and various sleep indices, the description of these
issues may provide important insight for practitioners or coa-
ches. For instance, in Figure 2 it can be observed that Player A
had higher mean sleep durations for TD (~8 h); however, there
were some nights where he lost almost 4 h (lowest 4.3 h). This
high variation was attributed to Player A’s newborn children,
with the player listing this 10 times throughout the duration of
the study. This provides a good practical example of additional
issues which may not come under the realm of the “normally”
considered reasons for disturbances to sleep quality and
duration.

One of the limitations of the present study was the use of a
subjective measure (online survey) of sleep. Such a measure
makes it difficult to estimate sleep quantity and quality com-
pared to objective measurements, including actigraphy and
the “gold standard” polysomnography (PSG). Indeed, the pre-
vious work has shown subjective measurements can be impre-
cise (Kawada, 2008) and can be influenced by mood, memory
bias and personality characteristics (Jackowska, Dockray,
Hendrickx, & Steptoe, 2011). However, it has been shown
that respondents are capable of estimating total sleep dura-
tion with significant accuracy (Armitage, Trivedi, Hoffmann, &
Rush, 1997). Furthermore, subjective measurements of sleep
are preferred within these elite football environments as they
are less invasive or burdening than actigraphy or PSG. The
present study entailed a fairly short sampling period (21 days),
though still longer than other reported actigraphy data.
However, we acknowledge that this makes it difficult to extra-
polate our results, especially across different time points
throughout a season. Furthermore, the sample size used in
this study was low, limiting the significance of the results;
however, this is not uncommon in studies with professional
players. Indeed, it should be acknowledged that all players
were first division elite players, making these results very
practically applicable to elite football. Finally, players were
comprised from different teams and countries where situa-
tions relating to team environment (e.g., travel, style and
intensity of training) can differ.

Conclusion

The primary findings of this study were the significant reduc-
tion in sleep duration and later bedtime following NM com-
pared to both TD and DM. Following NM, there was also a

significant reduction in PR compared to both DM and TD.
Players subjectively reported several reasons for poor sleep
such as children, nervousness, and pain and adrenaline follow-
ing a match. More research is required to objectively quantify
and confirm that TD results in “normal” sleep durations, simi-
larly that this sleep volume is severely hampered following
NM. In addition, the effect of reduced sleep duration and
quality on the recovery of exercise performance following
NM in elite players is warranted. The present findings suggest
that elite players lose significant amounts of sleep volume and
quality following NM; however, these variables appear within
healthy ranges for TD and DM.

Perspective

Our results suggest that elite soccer players have normal sleep
durations during TD and match days; however, they lose sleep
and report reduced perceptual recovery following NM play.
Thus, suitable intervention strategies (e.g., sleep hygiene, nap-
ping the following day) following these NM should be inves-
tigated forthwith to alleviate these issues. Practitioners should
also be aware of the possible altered physiological load in
subsequent training sessions following sleep loss. This is
obviously dependant on numerous factors including schedul-
ing, travel and team/coach preference. Furthermore, it is
important to understand the intra-individual variability in
sleep requirement and duration. Given some players will
respond differently to sleep compromising situations, such as
a NM, considering the monitoring of sleep for periods during
the season and interpreting worthwhile changes in data on
the individual level would appear the most beneficial practice
for elite players.
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Sleep, Travel, and Recovery Responses of National Footballers 
During and After Long-Haul International Air Travel

Hugh H.K. Fullagar, Rob Duffield, Sabrina Skorski,  
David White, Jonathan Bloomfield, Sarah Kölling, and Tim Meyer

Purpose: The current study examined the sleep, travel, and recovery responses of elite footballers during and after long-haul 
international air travel, with a further description of these responses over the ensuing competitive tour (including 2 matches). 
Methods: In an observational design, 15 elite male football players undertook 18 h of predominantly westward international air 
travel from the United Kingdom to South America (–4-h time-zone shift) for a 10-d tour. Objective sleep parameters, external 
and internal training loads, subjective player match performance, technical match data, and perceptual jet-lag and recovery 
measures were collected. Results: Significant differences were evident between outbound travel and recovery night 1 (night 
of arrival; P < .001) for sleep duration. Sleep efficiency was also significantly reduced during outbound travel compared with 
recovery nights 1 (P = .001) and 2 (P = .004). Furthermore, both match nights (5 and 10), showed significantly less sleep than 
nonmatch nights 2 to 4 and 7 to 9 (all P < .001). No significant differences were evident between baseline and any time point 
for all perceptual measures of jet-lag and recovery (P > .05), although large effects were evident for jet-lag on d 2 (2 d after 
arrival). Conclusions: Sleep duration is truncated during long-haul international travel with a 4-h time-zone delay and after 
night matches in elite footballers. However, this lost sleep appeared to have a limited effect on perceptual recovery, which may 
be explained by a westbound flight and a relatively small change in time zones, in addition to the significant increase in sleep 
duration on the night of arrival after the long-haul flight.
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Sleep has been recognized by players, coaches, and practitio-
ners as critical to both optimal physiological and optimal psycho-
logical recovery.1,2 Unfortunately, professional footballers currently 
face numerous situations throughout a season where disrupted 
sleeping patterns can exist.2 Such scenarios could include compro-
mised recovery during and after short- and long-haul domestic or 
international travel, late-night matches, and congested competition 
scheduling.2,3 Of these, long-haul international air travel (LHIT) 
is a necessity for some national and club football teams that are 
required to play away matches in different continents due to inter-
national competitions. When LHIT is endured across multiple time 
zones, numerous physiological variables are disrupted, including 
the sleep–wake cycle,4 body temperature, and hormonal circadian 
rhythms.5 Sleep is perhaps the more critical, given that sleep loss 
can affect athletic performance6 and has been shown to reduce 
physiological and cognitive recovery in rugby league footballers.7 
In addition, traveling across time zones can cause disruption to 
circadian rhythms and give rise to jet-lag, further disrupting sleep 
and increasing residual fatigue—particularly in eastward com-

pared with westward directions.4 However, to date, the interaction 
between the aforementioned situational disturbances and objective 
measurements of sleep in team sports is relatively unknown. Given 
the upcoming 2016 Olympic Games in Brazil, further knowledge 
of the objective sleep and perceptual responses to LHIT in elite 
team-sport athletes would be welcomed to assist in the planning of 
travel and training schedules.

Previous research has described the sleeping patterns of elite 
junior football players after LHIT.8–10 For instance, Lastella et al10 
reported reductions in sleep duration (6.6 ± 1.3 h/night compared 
with baseline 7.5 ± 1.3 h) and quality immediately after travel from 
Sydney, Australia, to Denver, CO, USA, with an 8-hour eastward 
time-zone change. However, Lastella et al10 focused on the effects 
of altitude at the destination on ensuing sleep. In addition, insights 
provided by Roach et al8 and Sargent et al9 on the influence of inter-
national travel on sleep are further compounded by the lack of sleep 
measurement during the flight, most likely due to understandable 
logistical issues.8,9 Thus, further research is required to confirm the 
assumption that LHIT disrupts sleep, let alone aspects of team-sport 
performance. To date there has been only 1 study that attempted 
to investigate the effects of LHIT on sleep with relation to the 
physical and psychological demands of team sports. Fowler et al11 
reported that 24-hour simulated LHIT significantly reduced sleep 
quality and quantity in trained participants.11 However, that study 
only focused on the acute, 24-hour posttravel recovery timeline.11 
Thus, recovery responses after this initial 24-hour arrival period 
remain unclear, which is of particular relevance as matches are 
routinely conducted after this initial 24-hour arrival period. Since 
sleep reportedly assists in memory consolidation, motor learning, 
cognitive growth, and physical regeneration,12 poor sleep during or 

http://dx.doi.org/10.1123/ijspp.2015-0012
mailto:hugh.fullagar@uni-saarland.de


IJSPP Vol. 11, No. 1, 2016

Travel, Sleep, and Recovery in Football  87

after LHIT may limit athletes’ postexercise recovery timeline, which 
could also be especially pertinent to subsequent training sessions 
performed close to arrival. Therefore, further research is required 
to assess the sleep and recovery responses to LHIT in field-based 
team-sport settings.

Moreover, while there is evidence supporting the loss of sleep 
before competition in athletes,13 research evaluating sleep after 
matches is lacking.14 Considering that playing at night could pro-
mote arousal and prolong wakefulness,2 it might potentially cause 
sleep disturbances. In addition, the physical demands of the actual 
game could inflict pain and increase perceived soreness and, thus, 
combined with sleep disruption, may hinder physiological and/or 
psychological recovery.7,12 Thus, there could be potential for players 
to sleep differently from those who do not play. Accordingly, the 
purpose of this study was to examine the sleep, travel, and recov-
ery responses of elite footballers during and after international air 
travel, with a further description of these responses in an ensuing 
competitive tour. Within this overall purpose, 2 secondary aims 
were investigated: first, a comparison of sleep responses on out-
bound travel and recovery nights (nights after arrival), and second, 
given that this tour included 2 respective night matches, we aimed 
to provide a comparison of sleep responses between players and 
nonplayers for both match nights and nonmatch nights.

Methods
Subjects

Fifteen elite male football players voluntarily agreed to participate 
in the investigation (mean ± SD age 25.5 ± 4.9 y, body mass 74.3 
± 7.3 kg, and height 180.0 ± 10.0 cm). The players were national 
representatives for their country with 5.1 ± 4.8 years and 19.4 ± 
24.7 matches of playing experience. All players provided written 
informed consent before data collection. Participants were excluded 
if they experienced a prolonged injury or illness during the data-
collection period. One participant was excluded in accordance with 

these criteria. In addition, from an original pool of 21 players, all of 
whom took part in the study, a further 5 were excluded due to lack 
of complete data sets. Thus, data of 15 participants were included 
for final analysis. This study was approved by the local human 
research ethics committee and conducted in accordance with the 
Declaration of Helsinki.

Design

This study had a descriptive-observational design. Data were 
obtained from all players over a 10-day period during a pre-FIFA 
World Cup friendlies 2014 trip to South America, which included 
a trip from Europe to South America and a similar return trip 
(Figure 1). All players were familiarized with the experimental 
procedures before the commencement of the investigation. Data 
were collected from the players before the tour (baseline), during 
each flight (outbound and return travel), and during the 10-day 
tour (days 1–10). During this tour, 2 matches were played against 
Uruguay (day 5; 20:00 local time) and Chile (day 10; 20:40 local 
time). The outbound flight from London, UK (GMT + 1 h), to 
Montevideo, Uruguay (GMT – 3 h, an overall time-zone shift of 
4 h), consisted of late-afternoon departure from London to Paris, 
France (eastbound travel; 1 h, 341 km); a 3-hour stopover in Paris; 
and then an evening departure from Paris to Montevideo for a final 
arrival at 10:00 AM (westbound travel; 14 h, 10,931 km). The 
return trip was from Santiago, Chile, to London, UK, consisting of 
a late-afternoon departure from Santiago to Paris (15 h, 11,627 km 
traveled), a 2-hour stopover in Paris, then a midday departure from 
Paris to London. The afternoon trip from Montevideo to Santiago on 
day 6 required a 2-hour journey with no time-zone change. Modes of 
travel were in premium economy class, meaning that players were 
restricted from lying in a pure supine position for all flights. During 
both flights players were left to their own travel routines and were 
not monitored. No sleep or travel recommendations were given to 
the players. Training schedules were continuously monitored and 
conducted at the discretion of coaches (days 1–4 and 8).

Figure 1 — Schematic representation of the study design. *When perceptual measures (Liverpool John Moores Jetlag Questionnaire, Recovery-Stress 
Questionnaire-19 for Sport and sleep restfulness) were collected before training. During training, external (global positioning systems) and internal load 
(ratings of perceived exertion, heart rate) were monitored. 
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Methodology

Sleep Measures. Sleep duration (total amount of sleep obtained; 
min), sleep-onset latency (time at which bed was entered to when 
the individual first fell asleep; min), sleep efficiency (sleep time 
expressed as % of time in bed), wake episodes, and wake-episode 
duration (min) were collected using wristwatch ActiGraphy 
(Readiband, Fatigue Science, Vancouver, Canada). Data were 
analyzed using the manufacturer’s software (Fatigue Avoidance 
Scheduling Tool software). The use of these actimetry measures 
is based on a previously validated fatigue model,15 and they have 
also been validated in flight crew and attendants during both work 
and rest patterns, making them suitable for sleep measurements on 
commercial aircraft.16 In addition, within-industry tests found that 
Readibands showed good agreement (93%) with polysomnographic 
measurements.15 These ActiGraphs were used during outbound and 
return travel and every night on the tour (worn continuously except 
during training and matches).

As with previous research,17 logistical reasons prevented the 
allocation of wrist ActiGraphs until just before outbound travel. 
Accordingly, mean baseline sleep data were subjectively recorded 
over a 3-day period before the outbound flight via the completion of 
an online sleep and sporting-activity questionnaire (SosciSurvey©). 
The questionnaire was completed in the morning after awakening 
and at night before sleeping. However, recent research suggests 
that the majority of sleep parameters related to duration, latency, 
and efficiency in this questionnaire correlate poorly with objective 
methods of ActiGraphy (ICC = .22–.7018). Consequently, sleep 
parameters during the tour were excluded from comparative analy-
ses to baseline given such different methods of collection. Thus, 
baseline measures of sleep are presented herein purely to provide 
some descriptive context of pretour sleeping patterns.

Perceptual Measures. The Liverpool John Moores Jet-lag 
Questionnaire (LJMJQ)19 was completed both before boarding on 
the day of outbound travel (baseline) and before training (same 
time each day) on days 2, 4, 6, and 10. The questionnaire assessed 
participants’ subjective ratings of jet-lag on a visual analog 
scale (VAS) of 0 (no jet-lag) to 10 (very bad jet-lag) and sleep 
(latency, onset time, quality, wake time, inertia), function (fatigue, 
concentration, motivation, irritability), diet, and bowel-movement 
ratings on a VAS of –5 to +5, with 0 representing habitual ratings 
before travel. At the same time points, subjective mental, emotional, 
and physical well-being (total stress-recovery score) were assessed 
using the Recovery-Stress Questionnaire for Athletes (RESTQ-
Sport),20 and a Likert scale (1 = very restful to 5 = not at all restful) 
was used to assess sleep restfulness.

Training Load and Match Performance. For each training 
session, mean total distance (m), high-intensity-running (>19.9 
km/h) distance, mean speed (m/min), mean heart rate (beats/min), 
and time spent above 85% of maximal heart rate (min) were recorded 
using 10-Hz global positioning satellite (GPS) devices (STATSports 
Viper, STATSports Technologies, Dundalk, Ireland) and Polar 
heart-rate monitors. In addition, rating of perceived exertion (RPE) 
was collected approximately 30 minutes after each training session 
using Borg’s CR-10 scale to calculate training load (session RPE × 
min).21 In addition, subjective match performance for each player 
was assessed from the same member of the coaching staff for both 
matches using a scale ranging from 0 = very poor to 10 = excellent. 
Technical match data (possession percentage, passes attempted, 
passes completed, pass-completion rates, and attacks in the final 

third) were collected and analyzed using Prozone software for both 
matches (VideoPro, Amisco Sports Analysis Services).

Statistical Analysis

Data are presented as mean ± SD. Recovery nights (those after 
outbound travel) were classified as nights 1 to 4. Nonmatch nights 
were classified as nights 2 to 4 and 7 to 9; matches were played on 
nights 5 and 10. A 1-way repeated-measures ANOVA was used to 
compare differences between time points of the away trip, includ-
ing and after international travel (outbound travel, nights 1–10, 
return travel) for all sleep parameters. A 1-way repeated-measures 
ANOVA was also used to compare differences in perceptual recov-
ery and jet-lag parameters between baseline measures (pretravel) 
and time points of the away trip, including both directions of travel. 
Where significant effects were observed, a Scheffé post hoc test 
was performed. P < .05 was accepted as significance for statistical 
comparisons. Furthermore, standardized effect-size (Cohen d; ES) 
analyses were used to interpret the magnitude of the mean differ-
ences between preoutbound and postoutbound and return travel for 
sleep, jet-lag, and recovery parameters with d < 0.20 (trivial), d = 
0.20 (small), d = 0.50 (medium), d = 0.80 (large).22 Note that only 
large ESs are reported for sleep parameters. ES analyses were also 
used to assess prematch and postmatch differences for objective 
sleep indices for both players (played more than 60 min in each 
game) and nonplayers.

Results

Sleep Measures

A summary of variables related to sleep quantity and quality is 
presented in Table 1. In addition, individual subject cases for sleep 
duration are illustrated in Figure 2.

The Effect of Travel on Sleep Parameters. Significant differences 
were evident between outbound travel and night 1 (P < .001, d = 
1.86) for sleep duration, with large ESs evident on nights 2 to 4 (d = 
1.20–1.41). Significant differences were evident for sleep efficiency 
between outbound travel and recovery nights 1 (P = 0.001, d = 1.05) 
and 2 (P = 0.004, d = 1.00). There were no significant differences 
between outbound travel and recovery nights (1–4; all P > .05) for 
either sleep-onset latency or wake episodes, nor were any large 
ESs present. Large ESs were present between outbound travel and 
recovery nights 2 (d = 0.90) and 3 (d = 0.80) for wake-episode 
duration. Significant differences were also evident between the 
return flight and the preceding nights 7 (P < .001, d = 1.54), 8 (P 
= .002, d = 1.35), and 9 (P = .01, d = 1.30) for sleep duration. In 
addition, significant differences were present between return travel 
and nights 7 (P = 0.03, d = 0.92) for sleep efficiency, with large ESs 
also present on night 9 (d = 0.86).

The Effect of Match Play on Sleep Parameters. Match 1 (night 5) 
showed significantly less sleep than nonmatch nights 2 to 4 (all P < 
.001, d = 1.79–2.00) and 7 to 9 (all P < .001, d = 1.95–2.18). Match 
2 (night 10) also showed significantly less sleep than nonmatch 
nights 2 to 4 (all P < .001, d = 1.46–1.60) and 7 to 9 (all P < .001, 
d = 1.56–1.72). No significant differences were evident for sleep-
onset latency (P = .75), although large ESs were present between 
match 2 and nonmatch night 8 (d = 1.20). Match 1 showed large 
ESs with nonmatch nights 7 (d = 0.93) and 9 (d = 0.85) for sleep 
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efficiency, although no significant differences or large ESs were 
present between match 2 and nonmatch nights 2 to 4 or 7 to 9. A 
significant difference was present for wake episodes between both 
match nights (5 and 10) and nonmatch night 3 (P = .02, d = 1.78, 
and P = .007, d = 2.08, respectively). Large ESs were also present 
between match 1 and nonmatch nights 2 to 4 (d = 1.17–1.78) and 
nonmatch night 8 (d = 0.86). No significant differences were evident 
for wake-episode duration for all comparisons, although large ESs 
were also evident between match 2 and nonmatch nights 3 and 4 
(d = 0.80 and d = 1.02, respectively).

Participants mainly napped on 3 specific days: day of arrival 
(day 1; n of nappers = 6, mean start time 14:27 ± 1:29, mean end 
time 15:32 ± 1:19, mean duration 65 ± 15 min), day of match 1 
(day 5; n = 7, 14:54 ± 1:28, 16:34 ± 1:06, 100 ± 35 min), and day 
of match 2 (day 10; n = 11, 14:53 ± 0:14, 16:30 ± 0:32, 91 ± 38 
min). Outside of these days no more than 2 participants each day 
napped during the daylight hours.

Players Versus Nonplayers. As presented in Table 2, small ES 
were found for the within-player change in sleep duration when 
comparing players with nonplayers for match 1 (d = 0.25). This 
was determined as the relative change after a match compared 
with the individual mean of the previous 3 nights. For the second 
match, nonplayers presented overall poorer absolute means and 
within-player changes, including sleep duration and efficiency 
(Table 2). For the first match, 5 starters played the full game and a 
further 4 played at least 80 minutes (overall starting mean 87 min). 
In the second match, 5 starters played the full game, with a further 
3 playing at least 80 minutes (mean 85 min).

Perceptual Measures

There were no significant differences between baseline and any day 
of the tour for any perceptual measure (P > .05; Figure 3). However, 

large ESs were evident for jet-lag on day 2 (d = 1.47; 2 d after 
outbound travel) and moderate (d = 0.76) on day 6. Moderate ESs 
were present for sleep restfulness on day 6 after match 1 (d = 0.52).

Training Load and Match Performance

The physical-performance data for the 5 training sessions are pre-
sented in Table 3. The results of both matches were similar (0–1 in 
match 1 and 0–2 in match 2), along with coaches’ ratings of player 
performance (match 1 = 7.5 ± 1.0, match 2 = 7.4 ± 0.9). Match 
technical data included 46% and 32% possessions, 451 and 175 
passes attempted, 368 and 122 passes completed (pass-completion 
rates of 82% and 70%), and 44 and 21 attacks in the final third of 
the pitch, per game, in matches 1 and 2, respectively.

Discussion
This study describes the sleep, travel, and recovery responses of 
professional footballers during and after LHIT from the United 
Kingdom to South America, including a comparison of sleep 
responses during travel and nights following arrival and a com-
parison of sleep responses between players and nonplayers for 
both match nights and nonmatch nights. The main finding was the 
truncated sleep durations during outbound and return travel. That 
said, a “rebound” effect (significant increase in sleep duration) was 
evident on the first night of arrival. Furthermore, both match nights 
(5 and 10) showed significantly less sleep than nonmatch nights 2 
to 4 and 7 to 9. Note that there were no significant differences in 
perceptual recovery between baseline and any day of the tour, nor 
were players any worse in sleep than nonplayers. Thus, it would 
appear that further analysis of the relationship between the nuances 
of sleep loss and recovery in elite football players is required to 
confirm that sleep loss impedes athletic recovery.

Figure 2 — All 15 subjects’ sleep duration for baseline, outbound travel (O-travel), each night on the trip (nights 1–10), and return travel (R-travel). 
The thick black boxes signify nights of long-haul travel (both directions) and night matches (nights 5 and 10).
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Table 2 Objective Sleep Patterns in Playing (n = 7) Versus Nonplaying (n = 8) Footballers After the Matches, Mean 
± SD, Effect Sizes in Parentheses (d) for Raw Values 

Sleep parameter Group
3N before  
match 1 Match 1 Δ Δ d

3N before  
match 2 Match 2 Δ Δ d

Sleep duration  
(min) 0.25 –0.27

P 496 ± 51 265 ± 107 
(d = 4.02)

–231.1 ± 129.4 501 ± 49 264 ± 175  
(d = 4.12)

–237.3 ± 187.9

NP 461 ± 47 271 ± 97 
(d = 3.72)

–190.4 ± 82.6 481 ± 41 217 ± 142 
(d = 5.02)

–264.6 ± 137.2

Sleep-onset  
latency (min) –0.35 0.06

P 21.6 ± 9.7 18.3 ± 23.7 
(d = –0.31)

–3.3 ± 26.8 25.6 ± 11.1 17.2 ± 14.4 
(d = –0.76)

–8.3 ± 19.0

NP 18.7 ± 8.0 26.8 ± 32.7 
(d = 0.91)

7.2 ± 34.7 24.3 ± 10.3 17.2 ± 14.1 
(d = –0.80)

–7.1 ± 17.8

Sleep  
efficiency (%) –0.28 –2.11

P 82.9 ± 8.2 79.9 ± 12.0 
(d = 0.33)

–3.1 ± 8.7 86.8 ± 4.5 82.9 ± 9.7 
(d = 0.42)

–3.9 ± 8.7

NP 81.7 ± 7.3 72.4 ± 12.0 
(d = 1.09)

–9.4 ± 9.7 85.0 ± 5.5 64.3 ± 36.8 
(d = 2.52)

–20.7 ± 37.6

Wake  
episodes (n) –0.29 –0.36

P 6.0 ± 2.4 1.3 ± 1.1 
(d = –1.73)

–4.7 ± 2.3 4.1 ± 1.0 1.7 ± 1.6 
(d = –0.87)

–2.4 ± 2.1

NP 6.3 ± 2.7 3.4 ± 2.7 
(d = –0.97)

–2.9 ± 4.0 4.7 ± 2.3 2.3 ± 2.3 
(d = –0.80)

–2.4 ± 3.7

Wake-episode  
duration (min) –0.16 0.01

P 10.1 ± 4.1 9.8 ± 9.2 
(d = –0.08)

–0.4 ± 10.5 9.8 ± 5.2 6.6 ± 5.8 
(d = –0.70)

–3.2 ± 6.3

NP 10.1 ± 3.8 13.2 ± 7.5 
(d = 0.73)

3.1 ± 7.2 8.8 ± 3.5 5.8 ± 3.9 
(d = –0.70)

–2.9 ± 4.0

Abbreviations: P, Players; NP, Nonplayers; Δ, change; 3N, 3-night mean before match; WE, wake episodes.

Note: Within-group effect sizes (d) compare the mean of the previous 3 nights with match nights. In addition, effect sizes were used to compare between-groups Δ of P vs 
NP. d < 0.20 trivial, d = 0.2 (small), d = 0.5 (medium), d = 0.8 (large).

Sleep duration is reported to be reduced during simulated 
LHIT11 and after actual transmeridian travel.10 Although we were 
unable to provide direct comparisons of sleep parameters to baseline 
in the current study, the means of 5.5 and 5.7 hours during outbound 
and return travel, respectively, are both far below the recommended 
7 to 9 hours for healthy adults23 and the mean 8.5 hours players 
subjectively reported before travel. Moreover, mean sleep efficiency 
during outbound travel was approximately 20% worse than average 
values for young adults who sleep for 8 hours a night (~90% with 
polsomnography),24 indicating poor sleep quality. Previous research 
suggests that this poor duration and quality of sleep during travel 
could be due to hydration or cabin air pressure.4 In addition, the 
nonsupine position experienced in economy class may have hindered 
melatonin secretion, thus perhaps preventing the inducement of 
sleep.25 In the current study, noise within the cabin, comfort, and 
the extensive travel schedule and timing of meals may also have 

played a role. Notwithstanding, there was a significant increase 
in players’ sleep durations on the first night of arrival. This acute 
increase in sleep duration on night 1, followed by some stability on 
nights 2 to 4, suggests alterations to the sleep–wake cycle due to 
travel. The 4-hour time-zone shift is likely to have had only minor 
effects compared with more extensive time-zone shifts (ie, 8–10 
h).4 In addition, it is suggested that body clocks are more adept 
at extending the day, and thus westbound flights such as the one 
experienced in this study are more likely to elicit reduced severity 
of jet-lag symptoms (such as reduced sleep) than eastward travel.4 
Alternatively, the significantly greater sleep duration observed on 
the night after travel may be explained by an increased homeostatic 
pressure (drive) for sleep caused by the poor sleep incurred during 
outbound travel.26

Although perceptual jet-lag was present during the early stages 
of the trip, all other parameters relating to the LJMJQ, perceived 
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Figure 3 — Results from the Liverpool John Moores questionnaire for (A) jet-lag, (B) sleep, (C) function, (D) diet, (E) bowel movement, (F) Recovery-
Stress Questionnaire for Athletes-Sport total stress-recovery score, and (G) a Likert scale (1–5) for sleep restfulness, mean ± SD. °Small effect size (d = 
0.20–0.49) compared with baseline. ̂ Moderate effect size (d = 0.50–0.79). #Large effect size (d > 0.80). Abbreviations: B, baseline; D2, day 2, and so forth.

recovery, and sleep restfulness were relatively unchanged. These 
results may be explained by a westbound flight and a relatively 
small change in time zones, in addition to the substantial increase 
in sleep after the long-haul flight.4 The finding of no effect on 
perceptual recovery could also possibly be explained by the elite 
playing experience of the current players, who are accustomed to 
constant travel and competition. Alternatively, athletes may have 
intentionally not reported concerns through fears of not being chosen 
to play.27 Nonetheless, these results were somewhat surprising given 

that reductions in subjective sleep quality and perceptual responses 
have been previously reported in athletes immediately after LHIT.5 
The presence of perceived jet-lag on day 2 was anticipated, with 
the players adjusting to the new light–dark cycle after travel. How-
ever, the dissipation of this effect by day 4 suggests that the timing 
of arrival 5 days before the first match was sufficient to alleviate 
symptoms of jet-lag fatigue. This sufficient readjustment may have 
been important given the effect that circadian readjustment can have 
on athletic performance.17
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In addition, sleep duration was significantly less on both match 
nights than nonmatch nights 2 to 4 and 7 to 9. These reductions 
were likely due to excess arousal, postmatch commitments (ie, press 
conferences), and socializing.2 These observations of altered sleep 
in our investigation are supported by evidence of postcompetitive 
sleep disturbance in professional Australian soccer players14 and 
elite individual and team-sport athletes.13 It should be acknowledged 
that in our study the nights of matches were not controlled, so a 
range of social-related factors were not controlled that may have 
contributed to the poor sleep. Notwithstanding, a rebound effect was 
again evident in the majority of nights after match 1 (7–9), during 
which sleep duration was significantly greater. Thus, from a volume 
perspective, there appeared to be no ongoing concerns for the players 
in terms of sleep quantity for match preparation (for either match 
1 or match 2). However, sleep efficiency, and thus perhaps quality, 
saw limited improvement. Of further concern, a significant reduction 
in sleep duration occurred after match 2 and during return travel 
compared with the preceding nights 7 to 9. Given the congested 
scheduling of club fixtures after international matches,3 this return 
journey represents perhaps the most demanding context for sleep 
loss in elite football players.

We note that sleep parameters did not differ extensively between 
players and nonplayers after either match. This is perhaps indicative 
that it is not so much the act of playing that retards sleep duration 
and impairs quality, as has been previously hypothesized based on 
increased arousal at onset of sleep.28 Indeed, the effect of exercising 
at night versus not is currently unclear. Some report no significant 
sleep changes after evening exercise,29 while others have shown 
that judo competitors performing maximal aerobic exercise in the 
evening experienced elevated sleep-onset latency and awakenings.30 
Since nonplayers reported poorer aspects of sleep for the second 
match, it is likely that poor sleep induced from later bedtimes 
(due to the timing of the match and postmatch functions) can be 
further attenuated from other sources (eg, socializing, psychologi-
cal reasons).

Limitations
Given the ecological nature of data collection, certain limitations 
should be acknowledged. Unfortunately, due to players being 
located in different countries it was not logistically possible to obtain 
objective sleep and/or performance data before departure. Hence, 
a subjective online survey of sleep was used to collect baseline 
measures of sleep. This method makes it difficult to estimate sleep 
quantity and quality due to mood, memory bias, and personality 

characteristics.31 Although it has also been shown that respondents 
are capable of accurately estimating total sleep duration,32 the overall 
poor agreement between objective and subjective measures18 forced 
an exclusion of sleep parameters from baseline comparisons. Thus, 
this weakens inferences about the explicit effect of travel. In addi-
tion, the lack of a sleep diary filled out during the trip (especially 
during both directions of air travel, where subjects were sitting down 
for extended periods) limits the comprehensiveness, and perhaps 
accuracy, of sleep measurements. The lack of standardization of 
numerous variables, perhaps most notably the lack of control for 
activities conducted postmatch (ie, socializing), weakens the internal 
validity of the effect of various influences on sleep. However, since 
those factors are usually not controlled for in real matches, external 
validity of our results is high. The low frequency of jet-lag data col-
lection could also possibly have hindered perceptions of jet-lag.33 In 
addition, having stand-alone questions related to perceived soreness 
or muscle pain, outside that of the Recovery-Stress Questionnaire 
for Athletes-Sport, may have allowed for a greater derivation of 
factors associated with poor sleep after a match. Finally, no physi-
ological measures of circadian rhythms could be collected to confirm 
whether circadian rhythms were disrupted. Indeed, it is difficult 
to differentiate between the effects from a time-zone shift and the 
effects of long-haul traveling in their own right.

Practical Applications

• Sleep duration is poor during LHIT and after match play in elite 
footballers. Practitioners should be aware that this may have 
repercussions for subsequent training sessions if performed 
closely after arrival or after matches.

• Despite this hindrance to sleep, international travel of more than 
12 hours (mostly westbound) together with a time-zone shift 
of 4 hours appears to have a limited effect on the perceptual 
recovery of elite footballers.

Conclusion
LHIT results in worse sleep durations in elite footballers than the 
recommended values for healthy adults. However, this poor sleep 
appeared to have a limited effect on perceptual recovery, leaving 
the relationship between sleep loss and recovery ambiguous. These 
results suggest that although sleep is initially poor during long-
haul travel with a 4-hour time-zone delay, a strong rebound effect 
(significantly increased sleep duration) occurs on arrival for the 

Table 3 Training Load from Global Positioning Satellite (GPS), Heart Rate (HR), and Rating of Perceived Exertion 
(RPE) of Professional Footballers During the Trip, Mean ± SD

Physical-performance data Day 1 Day 2 Day 3 Day 4 Day 8 Overall mean

Total distance run (m) 4354 ± 498 6438 ± 353 4472 ± 195 4147 ± 406 6233 ± 354 5129 ± 1110

Mean speed (m/min) 68 ± 4 73 ± 4 71 ± 3 67 ± 6 68 ± 4 69 ± 2

High-intensity-running distance (m) 72.0 ± 44.1 92.9 ± 57.6 45.9 ± 29.3 162.7 ± 81.1 136.0 ± 57.3 101.9 ± 47.4

Mean HR (beats/min) 147 ± 12 149 ± 14 148 ± 14 135 ± 14 139 ± 11 144 ± 6

Time above 85% of HRmax (min) 13.4 ± 11.7 22.2 ± 20.1 24.9 ± 11.2 12.0 ± 8.5 21.3 ± 13.1 18.8 ± 5.7

Training load (AU) 289 ± 82 487 ± 72 363 ± 69 318 ± 84 503 ± 74 392 ± 76

Abbreviations: HR, heart rate; AU, arbitrary units (session rating of perceived exertion × duration in min).
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following nights. Furthermore, sleep duration was significantly less 
on both match nights than nonmatch nights in elite footballers. We 
note that there were no longitudinal perceptual recovery concerns 
for either playing or nonplaying representatives outside those of 
early effects on jet-lag and moderate effects on sleep restfulness 
after match 1. However, the hindrance to sleep during travel and 
after match play would suggest that future analysis of interventions 
that could potentially improve sleep parameters in these scenarios 
(eg, the use of sleep-hygiene protocols) is required, if not least 
from a health perspective. In addition, further research into the 
relationship between sleep loss and recovery (ie, physiological) of 
footballers is required to confirm the popular belief that sleep loss 
impedes athletic recovery.
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The effect of an acute sleep hygiene strategy following a late-night soccer
match on recovery of players
Hugh Fullagara,b, Sabrina Skorskia, Rob Duffieldb, and Tim Meyera

aInstitute of Sports and Preventive Medicine, Saarland University, Saarland University Campus, Saarbrucken, Germany; bSport & Exercise
Discipline Group, University of Technology Sydney, Lindfield, Australia

ABSTRACT
Elite soccer players are at risk of reduced recovery following periods of sleep disruption,
particularly following late-night matches. It remains unknown whether improving sleep
quality or quantity in such scenarios can improve post-match recovery. Therefore, the aim
of this study was to investigate the effect of an acute sleep hygiene strategy (SHS) on
physical and perceptual recovery of players following a late-night soccer match. In a
randomised cross-over design, two highly-trained amateur teams (20 players) played two
late-night (20:45) friendly matches against each other seven days apart. Players completed
an SHS after the match or proceeded with their normal post-game routine (NSHS). Over the
ensuing 48 h, objective sleep parameters (sleep duration, onset latency, efficiency, wake
episodes), countermovement jump (CMJ; height, force production), YoYo Intermittent
Recovery test (YYIR2; distance, maximum heart rate, lactate), venous blood (creatine kinase,
urea and c-reactive protein) and perceived recovery and stress markers were collected. Sleep
duration was significantly greater in SHS compared to NSHS on match night (P = 0.002, d =
1.50), with NSHS significantly less than baseline (P < 0.001, d = 1.95). Significant greater
wake episodes occurred on match night for SHS (P = 0.04, d = 1.01), without significant
differences between- or within-conditions for sleep onset latency (P = 0.12), efficiency (P =
0.39) or wake episode duration (P = 0.07). No significant differences were observed between
conditions for any physical performance or venous blood marker (all P > 0.05); although
maximum heart rate during the YYIR2 was significantly higher in NSHS than SHS at 36 h
post-match (P = 0.01; d = 0.81). There were no significant differences between conditions for
perceptual “overall recovery” (P = 0.47) or “overall stress” (P = 0.17). Overall, an acute SHS
improved sleep quantity following a late-night soccer match; albeit without any improve-
ment in physical performance, perceptual recovery or blood-borne markers of muscle
damage and inflammation.
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Introduction

In professional soccer, it is important to achieve an
adequate balance between the stress of training/
games and recovery to ensure optimal physical
preparation, particularly during the competitive
season (Meyer et al., 2014; Nédélec et al., 2013).
Though matches are expected to cause increased
strain on players, factors that prolong or result in
inadequate post-match recovery can potentially
induce greater symptoms of fatigue and reduced
performance (Nédélec et al., 2013). Sleep is often
postulated as an essential component of recovery
(Halson, 2008; Samuels, 2008), and given the reg-
ularity of late-night matches, is particularly applic-
able to elite soccer players (Fullagar, 2015; Meyer

et al., 2014; Nédélec et al., 2013). However, despite
the widely held assumption that sleep aids the
recovery process, to date there is limited evidence
to support the notion that the improvement of
sleep indices (e.g. sleep duration and/or quality)
can aid the recovery of physical or perceptual
function in athletes, let alone soccer players. This
is most likely due to the complexity of sleep func-
tion, contrasting sporting environments and the
variability in the individual requirements for
sleep (Fullagar, Skorski et al., 2015). Accordingly,
the interaction between the improvement of sleep
quality/quantity and recovery in soccer, especially
following late-night matches, is an issue that
remains to be fully addressed.

CONTACT Hugh Fullagar hugh.fullagar@uni-saarland.de Institute of Sport and Preventive Medicine, Saarland University, GEB. B82, 66123
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Although limited evidence supports elite soccer
players as healthy sleepers in “normal” situations,
i.e. rest days and training (Fullagar, 2015; Meyer
et al., 2014), there are instances whereby sleep may
be disrupted. For example, regular early training
session start times (06:00) can lead to desynchro-
nisation during off days in athletes, i.e. in swim-
mers (Sargent et al., 2014), although such evidence
in association in soccer players is lacking. It is
generally accepted that elite players are sensitive
to disruptions to their natural sleep environment
(Drust et al., 2005; Fullagar, Duffield et al., 2015;
Nédélec et al., 2013). For example, late-night
matches are often scheduled during periods of
congested fixtures (i.e. multiple games in seven
days, such as UEFA Champions League and
national team matches). These later kick-off
times (20:45) invariably result in late-night finishes
to matches and in turn, players reporting a loss of
sleep compared to normal (Meyer et al., 2014).
This reduction in sleep quantity and quality, par-
ticularly when training or travel demands are fixed
the next day, is proposed to result in inadequate
physical and perceptual recovery (Nédélec et al.,
2013; Skein et al., 2013).

The effects of sleep disturbance encountered
after night soccer matches may be long-lasting
and thus altering the sleep in the ensuing days
after the match. Despite the lack of explicit evi-
dence in footballers, it is known that reductions in
non-rapid eye movement (NREM) sleep can dis-
rupt energy conservation and nervous system
recuperation (Stickgold, 2005). Furthermore,
reductions in rapid eye movement (REM) sleep
can affect periodic brain activation, localised
recuperative processes and emotional regulation
(Stickgold, 2005; Vyazovskiy & Delogu, 2014).
However, it remains unknown whether an
improvement in sleep duration or quality can
improve the rate of perceived or physical recovery
following compromised sleep (i.e. late-night
matches). Even then, recovery may incorporate
numerous dimensions, including physical perfor-
mance (e.g. countermovement jump), physiologi-
cal (e.g. blood-borne damage markers) and
perceptual (wellness/mood) (Rattray et al., 2015).
Thus, with players at risk of hindered recovery
following sleep disrupted periods, further research
is required to examine the relationship between

sleep as a post-match intervention and the recov-
ery of physical performance, physiological state
and perceptual wellness (Rattray et al., 2015).

To help counter situations of compromised
sleep, the use of sleep hygiene strategies (SHSs)
has recently been proposed for athletes (Fullagar,
Duffield et al., 2015; Fullagar, Skorski et al., 2015;
Halson, 2014). SHSs were first introduced by med-
ical physicians in an attempt to provide recom-
mendations for patients with sleep disorders, i.e.
insomnia (Hauri, 1977). In general, these strategies
are aimed at avoiding behaviour that might com-
promise normal sleep or at supporting/initiating
the behaviour that promotes good sleep (Nédélec
et al., 2013). For example, various techniques
including turning off all technological devices at
least 30 min before bedtime, abstinence from
watching TV/using laptops while in bed, creating
cool, dark quiet rooms and wearing eye masks
have been proposed (Malone, 2011). SHSs have
been shown to improve sleep quality and onset
latency in university students and reduced sleep
irregularity in adolescents (Stepanski & Wyatt,
2003). Furthermore, SHSs often represent ongoing
habits that promote improved sleep behaviours.
However, from a football perspective, little is
known about either the chronic or acute effects
of SHS and post-exercise recovery as related to
performance.

Given the absence of evidence, it could be
hypothesised that increasing sleep duration/quality
may alleviate the decrements in physiological and
cognitive performance caused by sleep loss. For
instance, sleep extension has been shown to
improve vigour, mood and athletic performance;
including sprint speed, basketball shooting accu-
racy and reaction time (Mah et al., 2011). Further
preliminary evidence indicates adhering to some
of the previous SHS recommendations improves
sleep quantity, resulting in a reduction in per-
ceived soreness and fatigue in tennis players
(Duffield et al., 2014). However, given the regular-
ity of late-night matches and the proposed benefits
of sleep, the effects of SHS on performance recov-
ery following late-night soccer matches remain
unknown. Accordingly, the aim of this study was
to investigate the effect of an acute SHS on physi-
cal, physiological and psychological recovery of
soccer players following a late-night match.

2 H. FULLAGAR ET AL.
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Materials and methods

Subjects

Twenty highly-trained amateur soccer players
volunteered to participate in the study, provid-
ing written and verbal informed consent follow-
ing full disclosure of all procedures.
Additionally, participants underwent a medical
check-up consisting of medical history, physical
examination, 12-lead resting electrocardiogram
and blood pressure measurement. Participants
were also screened with a medical questionnaire
(local institute Erholungs-Beanspruchungs-
Fragebogen), and if necessary, excluded if they
had past sleep related disorders, or were cur-
rently on medications possibly affecting sleep.
All players were deemed eligible following this
process and thus partook in the investigation.
This study abided with the Declaration of
Helsinki and was approved by the local Human
Research Ethics Committee.

Experimental design

In a randomised cross-over design, two semi-pro-
fessional teams (5th and 6th division of the
German Football Federation) played two (friendly)
matches against each other during the mid-season
preparation period of the German 2014/15 soccer
year. Matches were separated by seven days and
played on the same ground at the same late-night
kick-off time of 20:45 (to simulate kick-off time in
the UEFA Champions League or national team
home games). Both matches were officiated by a
German Football Federation accredited referee and
followed official FIFA™ rules and regulations. The
same players played during both games, with all
players playing at least 70 min in each match
(excluding goalkeepers). Following each match,
players completed two days of structured testing
and training. Specifically, testing times and proce-
dures were standardised by the researchers each
morning, while each training session was set at the
discretion of the coaches but replicated for volume
and intensity on both weeks. Consuming alcohol/
caffeine was prevented over the duration of the
testing periods. To retain inclusion for data analy-
sis, all data points were required from for all
measurement variables (unless otherwise stated).

In a randomised order (both within- and
between-teams), players then either completed an
SHS after the match or proceeded with their nor-
mal post-game routine without any assistance or
recommendations for sleep (NSHS). The SHS
group proceeded to their bedrooms at 23:45 in
preparation for sleep. The SHSs included ensuring
players were in bed rooms as soon as possible with
lights dimmed, and provided (optionally) with ear
plugs and eye-masks in cool temperature rooms
(~17°C). Furthermore, no technological or light
stimulation was allowed ~15–30 min prior to bed-
time. To ensure this mobile phones and TV
remotes were collected for the night. Finally, lights
were turned off at 00:00 which was deemed the
earliest manageable bedtime given the end of the
match. In contrast, players in the control condi-
tion (NSHS) were permitted to undertake normal
activities (but onsite under the supervision of the
research team within the common room at the
training centre) following each match. These
players remained awake until they were allowed
to go to bed at 02:00 am. The time was chosen
both because of previous anecdotal reports and
researcher experience of players’ usual bedtime at
this time following night matches (Meyer et al.,
2014; Fullagar, 2015). The NSHS group was
allowed to use their mobile phones/TV as they
saw fit. All protocols were adhered to and the
research team monitored all rooms until bedtime
(including personally turning off the lights at bed-
time). All players from both conditions were
woken by the research team at 07:30 the next
morning in preparation for breakfast and
measurements.

Experimental procedures

All players were familiarised with procedures and
measures in the two weeks prior to commence-
ment. Players resided at the onsite Olympic
Training Centre for the night of and the night
following each match. During both the control
and intervention phase, players slept in the same
bedding conditions in single beds, double rooms
and paired with the same player over both condi-
tions, while they provided their own pillows from
home for comfort. The match itself was played at a
local stadium of a semi-professional team on an
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artificial turf surface, 5 min drive from the training
centre. Environmental conditions were similar
during both matches (range 2°C–6°C, floodlights
emitting light in accordance with official German
FA sub-elite division requirements, i.e. at least 200
lux) and 74%–82% relative humidity)). Players
finished playing both games at ~22:30, com-
menced a standardised light active recovery and
stretching session while listening to their respec-
tive coaches (22:30–22:40), and showered at
approximately 22:40–23:00, before returning
directly to the training centre and commencing
dinner at ~23:10. On the day of and for the two
days following the match, players were provided
meals. Meals were offered in a buffet form and
although not identical, consisted of similar nutri-
tional content of a serving of meat (chicken),
vegetables (potatoes and mixed green salad) and
pasta/rice. Moreover, players took photographs on
mobile phones of their meals each week to attempt
to match portioning over both conditions. Players’
personal liquid intake immediately post-match was
not controlled; although the consumption of pro-
tein or recovery shakes, caffeine or alcohol was
prevented and intake was similarly asked to be
replicated over the span of the study.

Measurements

Sleep measures
Each of the three days prior to each game (mean
baseline), the night of (match night) and the night
following (match night + 1), objective (SenseWear
actigraphy; BodyMedia, Pittsburgh, Pennsylvania)
and subjective sleep data (subjective sleep diary)
were collected. All data points were required for
data to be retained (six players excluded for either
lack of baseline measure or equipment failure; 14
players included for final analyses). Objective data
were downloaded via relevant software and gener-
ated using manufacturers’ algorithms (SenseWear
7.0 Professional, BodyMedia, Pittsburgh,
Pennsylvania). Objective measures included sleep
duration, time in bed, sleep onset latency, sleep
efficiency, wake episodes (including wake episode
duration). It is recognised that polysomnography
(PSG) is the most accurate method to quantify
sleep; however, given the field-based nature of
this study, actigraphy was used in this

investigation. Subjective measures included per-
ceived sleep restfulness (very restful, pretty restful,
average, hardly restful and not at all restful) and
general recovery state upon waking (Likert scale 0
(not at all recovered) to 6 (absolutely recovered))
(Kölling et al., 2014). Players refrained from nap-
ping on the day following the match but were
allowed to engage in napping activity on the sec-
ond day following the match. In addition, sleep
chronotype was evaluated using the Morningness-
Eveningness Questionnaire (MEQ) (Horne &
Ostberg, 1976) to determine if sleep chronotype
influenced sleep variables. This questionnaire uses
19 questions regarding to sleep behaviour, with a
cumulative score used to categorise individuals as
“morning” types (scores 59–86), “evening” types
(14–41) and neither types (“intermediate”; 42–58)
(Horne & Ostberg, 1976; Lastella et al., 2011).

Match and training measures
External (global positioning systems, GPS) and
internal (heart rate, HR) load markers, along
with rating of perceived exertion (RPE; CR-10
scale) (Borg, 1998) to calculate training load (ses-
sion-RPE × min) (Foster et al., 2001), were col-
lected following each match. In addition, load
responses to one standardised training session
the day following the match (16:00: ~19 h post-
match; Match+ 1 PM) and two sessions two days
after the match (10:30; ~37.5 h post-match; Match
+2 AM and 16:00: ~43 h post-match; Match+2
PM) were collected. While each training session
was composed separately by the respective team
coaches, they were replicated for drill type and
duration and basic skill composition across both
weeks. Players also completed a short “recovery
run” on the morning after the match (~13 h
post-match); however, load responses to this run
were not collected. Rather than scheduled for
research per se, these sessions were requested by
the teams to form part of their mid-season pre-
paration phase. GPS variables included total dis-
tance (m), mean speed (m/min), peak speed (m/s),
high-intensity running distance (distance (m) cov-
ered above each player’s previously determined
speed at individual anaerobic threshold
(Stegmann et al., 1981)), mean HR (bpm) and
number of very high intensity bouts (defined as
the number of bouts performed above 19.8 km/h

4 H. FULLAGAR ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
O

re
go

n]
, [

H
ug

h 
Fu

lla
ga

r]
 a

t 1
2:

58
 3

1 
M

ar
ch

 2
01

6 



for more than 1 s (Carling et al., 2008)). During
both training and match play, players wore loca-
lised 2-Hz GPS systems (Adidas miCoach elite©,
Adidas©, Nurumberg, Germany) on the back
between scapulae within a customised undergar-
ment (Adidas Climalite©). Adidas miCoach accel-
erometers have been previously validated for
distance covered, although given the recent devel-
opments in the miCoach product further research
into the validation of the GPS system is required
(Porta et al., 2012). In addition, HR monitors were
positioned within the customised undergarment
allowing for the collection of average and peak
HR data. Data were retained from players who
completed at least five of the six available sessions
(13 players retained for analyses). All data were
extracted using the miCoach© software, processed
in MatLab™ (where raw data were derived from the
miCoach© system and analysed for each individual
player by a trained analyst) and stored in
Microsoft Excel 2007™.

Recovery measures

Recovery of exercise performance. Counter move-
ment jumps (CMJs) were performed three days
prior to the first match week

(baseline) and 12 h and 36 h post-match to deter-
mine jump height (cm) and force production (N).
CMJs were performed using a calibrated force plat-
form (Quattro Jump, Type 9290AD, Kistler
Instrument AG, Winterthur, Switzerland; sampling
rate 500 Hz) and analysed using professional motion
analysis software (Contemplas Bewegungs analyse,
Contemplas Gmbh, Kempten, Germany). Jump
height was determined as the height of centre of
mass displacement, calculated from the recorded
force and body mass. The CMJ began from an
upright position, making a downward movement
to a knee angle of approximately 90° and simulta-
neously beginning to push-off, while hands were
placed upon hips. Thirty seconds of rest was allowed
between 5 trials of each test, the maximum being
used in subsequent analyses. A standardised 10-min
warm-up preceded the jumps.

The YoYo Intermittent recovery test level two
(YYIR2; Bangsbo et al., 2008) was performed
indoors on a hard wooden floor (basketball
court). The test was performed immediately after

the CMJ and consisted of repeated 2 × 20-m runs
at a progressively increased speed controlled by
audio beeps from a laptop and speakers (Bangsbo
et al., 2008). When a player had failed twice to
reach the finish line in time, the distance covered
was recorded as the test result. In addition, max-
imum HR (Polar RS 400, Polar Electro, Kempele,
Finland) and RPE (Borg, 1998) were also recorded.
Capillary whole blood samples from the ear were
also collected prior to the test, immediately after
finishing the test and 1, 3 and 5 min post to
determine maximum lactate concentration to
ensure comparable exhaustion in both conditions
(18 players included for final analyses).

Physiological recovery responses to training. In
addition to baseline measures (3 d prior to first
match week, NB: performed only once), prior to
both afternoon training sessions (18 and 42 h post-
match, respectively) all subjects completed a submax-
imal interval-based running test (Heart Rate Interval
Monitoring System (HIMS) (Lamberts & Lambert,
2009). These tests were performed under similar
environmental conditions on the artificial turf where
training and match play took place. The full protocol
for the HIMS is available elsewhere (Lamberts &
Lambert, 2009); however, it comprises 4 × 2-min
stages (S1, S2, S3 and S4) repeated 2 × 20-m runs
with increasing speeds from 8.4, 9.6, 10.8, and 12.0
km/h, respectively, as controlled by audio signals.
After each 2-min stage, players rest and stand upright
for 1 min. After the final stage (S4), there is a 2-min
recovery period. Mean HR (derived from the HR
monitors within the Adidas© vests and miCoach©

system) for each exercise stage and each recovery
period was calculated from the last final 15 s of each
period to produce a final value of absolute decrease in
HR during recovery (HRR) and recovery HR
expressed as a percentage of the mean HR during
the last minute of the stage (HRr%) for each stage
(Lamberts & Lambert, 2009).

Blood-borne markers of muscle damage and
inflammation. Venous blood samples were obtained
at 2 h prior to eachmatch (venous blood baseline) and
10, 20, 34 and 44 h post-match from the antecubital
vein by standard protocol, following 5 min of seated
rest. Serum tubes were centrifuged at 4000 revolutions
per minute for 5 min, aliquoted, then measured for
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c-reactive protein (CRP), creatine kinase (CK) and
urea (U) using a Unicel DxC600 synchronised clinical
system (Beckmann Coulter GmbH, Krefeld,
Germany). Remaining serum samples were then
stored frozen at −20°C until analysis. Blood count
was determined automatically by an ACT 5 Diff AL
(Beckmann Coulter GmbH, Krefeld, Germany).
Given the high physical demands and noted skeletal
muscle damage following matches, these parameters
were chosen as representative markers of recovery
due to their known response to exercise-induced
stress and their prevalent use in the fatigue and recov-
ery literature (Nédélec et al., 2013). For all blood
recovery parameters, all data points were required
for data to be retained (20 players included for final
analyses).

Psychological recovery. Players completed a percep-
tual fatigue and recovery questionnaire (Short version
of the Acute Recovery and Stress Questionnaire,
SRSS; Kölling et al., 2014) at baseline (2 h prior to
each match), the morning after the match (12 h post)
and after each training session (24 h post, 36 h post
and 48 h post). The SRSS consists of eight adjectives
describing physical, emotional, mental, and overall
aspects of recovery and stress (recovery: “Physical
Performance Capability”, “Mental Performance
Capability”, “Emotional Balance”, “Overall
Recovery” and stress: “Muscular Stress”, “Lack of
Activation,” “Emotional Imbalance”, and “Overall
Stress” (Kölling et al., 2014). These items were
assessed with a 7-point Likert-type scale ranging
from 0 (not at all) to 6 (absolutely) and are designed
to be analysed and interpreted separately. Items “over-
all recovery” and “overall stress” are reported herein.
In addition, morning subjective measures (diary com-
pleted upon waking) including perceived sleep rest-
fulness and general recovery state, as mentioned
previously, were collected (14 players included for
final analyses).

Statistical analysis

Data are presented asmeans±SD. A two-way repeated
measures ANOVA (time × condition) was used to
compare differences between all time-points for both
conditions (SHS and NSHS) for sleep parameters and
all recovery markers (physical, physiological
responses to training, blood-borne and

psychological). A two-way repeated measures
ANOVA was also used to compare differences
between time points for both conditions (SHS and
NSHS) for all physical and perceptual training vari-
ables. Where significant effects were observed, a
Scheffé post-hoc test was performed. Independent
t-tests were used to (i) determine differences between
matches for all physical and perceptual match vari-
ables and (ii) determine differences between sleep
chronotypes for all measures of sleep variables.
Dependant t-tests were used to determine whether
an order effect was observed from the first to the
secondweekend. P < 0.05 for the α-error was accepted
as significance for all statistical comparisons. All sta-
tistical procedures were performed using the statistical
package Statistica© Version 7 (StatSoft Inc©, Tulsa,
OK). Furthermore, standardised effect size (Cohen’s
d; ES) analyses were used to interpret the magnitude
of the mean differences between conditions for all
sleep and recovery parameters with d < 0.20 (trivial),
d = 0.20–0.49 (small), d = 0.50–0.79 (medium) and d
≥ 0.80 (large) (Cohen, 1988). Due to the multitude of
analyses, only large ES are reported herein.

Results

Sleep measures

All sleep variables for both conditions are presented
in Table 1. Individual cases for sleep duration are
additionally illustrated in Figure 1. No significant
differences were evident between any baseline mea-
sures prior to both conditions (all P > 0.05). Sleep
duration was significantly reduced on match night
from baseline in the NSHS condition (P < 0.001, d =
1.95) but not in the SHS condition (d = 0.73). On
match night, sleep duration was significantly greater
in SHS compared to NSHS (P = 0.002, d = 1.50),
while there were also significant within-condition
differences apparent for NSHS between match
night and match night +1 (P < 0.001, d = 2.22).
Large ES were also present in the SHS condition
where sleep duration improved on match night + 1
compared to match night (d = 0.82). A significant
difference was evident between conditions for wake
episodes on match night, with more wake episodes
present for SHS (P = 0.04, d = 1.01). There were no
significant differences between- or within-condi-
tions for sleep onset latency (P = 0.12), sleep
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efficiency (P = 0.39) or wake episode duration (P =
0.07), although large ES were evident between con-
ditions for wake episode duration (longer in the SHS
condition; d = 0.90). Mean MEQ score was 49 ± 6
(range: 36–58). Four participants were classified as
“evening types” (14–41) and the remaining 16 as
“neither” types (42–58); thus, the analysis of the
difference between “evening” and “morning” chron-
otypes was abandoned. There was a significant order
effect present on the second weekend compared to
the first for both sleep onset latency and sleep effi-
ciency (improvement; P < 0.05); however, no other
order effects were present for any other match, train-
ing or recovery measure.

Match and training measures

There were no significant differences between
matches for either condition for any match-based
physical or perceptual variable, or any physical per-
formance or perceptual response data from training
sessions performed following the match between
either condition (all P > 0.05; Table 2).

Recovery measures

Recovery of exercise performance
Mean and individual recovery responses of the
primary exercise performance parameters for
both conditions at 12 h post following the late-

night match are presented in Figure 2. There
were no significant differences between condi-
tions for CMJ height (P = 0.53) or force produc-
tion (P = 0.49) at either 12 post or 36 h post,
although CMJ height was significantly less at 12
h post in the NSHS condition compared to base-
line (P = 0.04; d = 0.81). Within conditions,
CMJ height was significantly greater 12 h post
than 36 h post for SHS (P = 0.03; d = 0.22).
There were no significant differences between
conditions for YYIR2 distance (P = 0.50), RPE
(P = 0.70) or maximal lactate (P = 0.75) for 12 h
post or 36 h post, although there were signifi-
cant reductions in YYIR2 distance in the NSHS
condition (P = 0.04; d = 0.51) at 12 h post and
in the SHS condition 12 h post (P = 0.01; d =
0.71) and 36 h post (P = 0.01; d = 0.69) com-
pared to baseline. No significant between-condi-
tion differences were evident for max HR during
the YYIR2 at 12 h post (P = 0.71); however, max
HR was significantly higher in NSHS than SHS
at 36 h post (P = 0.01; d = 0.69).

Physiological recovery responses to training
(HIMS). Physiological HR responses to the
HIMS are presented in Table 3. There were no
significant differences in HRR recovery or HRr
% between conditions at any stage for either
training session performed at 18 and 42 h
post-match, respectively (all P > 0.05).

Figure 1. Individual cases (n = 14) of sleep duration for either a non-sleep hygiene strategy (A) or a sleep hygiene strategy (B)
following a late-night soccer match. B: baseline; MN: match night; MN + 1: match night plus 1. *Significant difference between
conditions (P < 0.05). #Significant difference within conditions (P < 0.05). Shaded bars represent condition. Horizontal black
connected lines represent individual sleep responses.
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Blood-based variables. No significant differences
were evident between conditions for any blood
parameter at any time point (P > 0.05; Table 3).
The only large ES present between conditions was
for CK at baseline (d = 1.29).

Psychological recovery. Mean “overall recovery”
and “overall stress” SRSS scores are presented
in Figure 3. Following the late-night match
“overall recovery” showed no significant differ-
ences between SHS and NSHS (P = 0.53), nor
were there any significant differences between
conditions for “overall stress” (P = 0.94). There
were no significant differences between condi-
tions (all P > 0.05) for recovery state upon
waking in the morning following the match
(SHS: 2.7 ± 0.9; NSHS: 2.8 ± 0.7) or for the
percentage of answers for restfulness (sleep
quality) for SHS (very restful: 0%, pretty restful:
24%, average 57%, hardly restful: 14% and not
all restful: 5%) compared to NSHS (very restful:

0%, pretty restful: 19%, average 52%, hardly
restful: 17% and not all restful: 12%).

Discussion

The present study investigated the effect of an
acute SHS on the recovery of players following a
late-night soccer match. The SHS increased sleep
duration compared to NSHS, despite significantly
more wake episodes and large ES to suggest longer
wake episode durations. Regardless, players sub-
jectively reported no difference in sleep quality
between conditions. Overall, no significant
improvements in perceived stress and recovery,
the recovery of exercise performance, or blood-
borne markers of damage and inflammation were
present. SHS appeared to have no effect on overall
training loads, with players covering similar dis-
tances and intensities during the standardised
training sessions following both conditions on
the two days following the match. The present

Figure 2. Mean and individual recovery of exercise performance parameters in response to a either a non-sleep hygiene strategy
(NSHS) or a sleep hygiene strategy (SHS) 12 h post following a late-night soccer match. A: Counter movement jump (CMJ; cm) height,
B: Countermovement jump force production (N); C: YoYo Intermittent recovery level two performance (YYIR2; distance in m), D: YoYo
Intermittent recovery level two (YYIR2; max heart rate, beats per minute). Shaded bars represent condition. Horizontal connected
lines represent individual recovery responses.
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findings suggest soccer players may consider acute
SHSs where possible following a late-night match
to ensure sufficient volume of sleep; however,
there appears to be no additional benefit for the
recovery of performance.

The effect of SHS on sleep quality and quantity
has previously been studied in certain populations,
with SHS shown to improve sleep quality and
onset latency in university students (Stepanski &
Wyatt, 2003). Comparatively, the effect of SHS in
normal sleepers is equivocal (Stepanski & Wyatt,
2003). Interestingly, there are limited data from
athletes, with little known about the interaction
between SHS and sleep, let alone ensuing
improved recovery (Halson, 2014). Recently,
Duffield et al. (2014) investigated the effect of an
SHS (21:00 bed time; low-light (8 ± 5 lux), cool
(19°C ± 2°C) environment, no technology 30 min

prior to bedtime) on sleep duration/quality and
recovery of elite tennis players following simulated
match play. SHS was shown to improve sleep
quantity (increased time in bed and min asleep;
Duffield et al., 2014), which is comparable to the
present study, with SHS significantly improving
sleep duration. Such findings are likely given the
enforced earlier bedtime as part of the SHS and
were a primary aim of the SHS. Consequently,
players were in bed as soon as possible to max-
imise exposure to sleeping environments and then
assisted them within this environment. Although
speculative, it is also possible the removal of tech-
nology prior to bedtime aided the subsequent
improvement in sleep duration, especially given
the enforced earlier bed time. For example, bright
light emitted from portable technological devices
may suppress melatonin and disrupt ensuing

Figure 3. Subjective recovery and stress questionnaire responses (“Overall recovery and stress”; 0 (not at all) to 6 (absolutely) (Kölling
et al. 2014)) at baseline (prior to the match), the morning after the match (12 h post-match) and after each training session (24, 36
and 48 h post).
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subsequent sleeping quantity and quality, although
this is debated (Lewczuk et al., 2014) – and is
currently unsubstantiated here. Regardless of the
mechanisms responsible, given that elite soccer
players report large reductions in sleep quantity
following night matches (Meyer et al., 2014), this
improvement in sleep duration in our study is
both a novel and practical outcome for soccer
players.

Despite the increased sleep duration with SHS,
significantly greater wake episodes and a trend
towards increased wake episode duration (38.9 ±
27.5 v 20.0 ± 18.1 for SHS and NSHS) and sleep
onset latency (21.1 ± 16.9 v 8.8 ± 7.1 min for SHS
and NSHS) existed. The inverse responses of these
sleep variables are likely due to the context of the
players attempting sleep. Specifically, the homeo-
static drive for sleep in the NSHS condition, given
the prolonged duration of wakefulness, likely
resulted in faster sleep onset times and reduced
awakening (Vyazovskiy & Delogu, 2014).
Conversely, in the SHS condition, players were
likely to still be highly aroused when attempting
to fall asleep following the night match, thus
resulting in longer sleep onset latency
(Vyazovskiy & Delogu, 2014). That is, enforcing
an earlier bedtime may have led to a delayed sleep
onset as this went against players’ current prepa-
redness for sleep, and consequentially a low sleep
propensity. In one sense, this likely further justifies
the need to use behavioural interventions to aid
sleep at a time where players may still be reluctant
to attempt sleep, thereby by providing conditions
which are conducive to assisting the drive for sleep
to override the drive for wakefulness. That said, it
should be noted that other reasons for the inverse
response of sleep variables could also include the
unfamiliar sleeping environment of the training
centre or the evening exposure to light (Malone,
2011), even though these factors were standar-
dised. Thus, while sleep duration can be extended
in an SHS following a late-night match it should
be acknowledged that players may face difficulties
initiating sleep when enforced with earlier bed
times post-match.

The acute SHS showed limited to no effect on
markers of physical recovery. These results concur
with previous research which has investigated the
effect of sleep on recovery-post exercise (Duffield

et al., 2014), and are not unexpected considering a
meta-analysis revealed that psychological mood
and fatigue states are more affected by sleep depri-
vation than both cognitive and motor performance
(Pilcher & Huffcutt, 1996; Rattray et al., 2015). It
should be noted that some physiological effects
were present, with maximum HR significantly
higher during the YYIR2 in the NSHS condition
36 h post-match. This could suggest that SHS may
reduce the sympathetic capacity during intermit-
tent-sprint performance, although a lack of an
effect 12 h post likely limits such an assumption.
Similarly, while the reduction in CMJ height from
12 post to 36 h post in SHS could lead to the
postulation of SHS enhancing training output
(and thus leading to increased fatigue and a reduc-
tion in lower body power), the lack of any differ-
ences between conditions for any training variable
likely negates such theories. Taken collectively,
outside these findings the majority of effects on
the recovery of exercise performance and physio-
logical recovery were non-existent. Further expla-
nation could include the restricted napping in the
24 h post-match and could hinder improvements
in the 24–48 h post-match recovery via prevention
of the “repayment” of any sleep debt due to the
late-night finish. Indeed, the timing, duration and
performance benefits of napping have been well
documented (Waterhouse et al., 2007). However, it
should be noted that naps were avoided in the day
following the match in our study to ensure that
any effects on recovery were a result of the SHS
rather than naps. Besides, the lack of naps would
not explain the lack of an effect on performance in
the morning following the match.

The SHS also showed no effect on blood-borne
markers of recovery and inflammation. Although
the physical demands of the match and subsequent
training sessions led to an increase in inflamma-
tory markers in this study (e.g. CK), the observed
increase sleep duration was not sufficient to alter
these responses. This is in line with our previous
knowledge of sleep deprivation studies where
nights of complete sleep loss (e.g. 0 h), rather
than partial sleep deprivation (e.g. 3–5 h) and a
night of normal sleep (~8 h), are more likely to
affect measures of post-exercise recovery (Skein
et al., 2013). Therefore, it may be speculated that
a larger sleep difference between conditions during

CHRONOBIOLOGY INTERNATIONAL 13

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
O

re
go

n]
, [

H
ug

h 
Fu

lla
ga

r]
 a

t 1
2:

58
 3

1 
M

ar
ch

 2
01

6 



the night (from both a duration and quality per-
spective) is required to affect the majority of phy-
sical and physiological measures of recovery.

Similar to the lack of an improvement in per-
formance recovery, there were no significant
improvements in measures of psychological stress
and recovery in the sleep hygiene condition. These
findings differ with previous results from the
aforementioned work by Duffield et al. (2014)
with large effect sizes evident for perceived sore-
ness and feelings of fatigue the following morning
after the sleep hygiene intervention in their study.
Indeed, our results are surprising given almost all
forms of extensive sleep deprivation result in
increased negative psychological mood states (e.g.
fatigue, loss of vigour, sleepiness and confusion;
Pilcher & Huffcutt, 1996). It has been shown that
sleep disturbances lead to feelings of waking unre-
freshed and greater perceptual fatigue (Koutedakis
et al., 1990). It would appear that a greater sleep
differential between conditions is required to
improve perceptual recovery and stress. It should
be further noted that the effect of the SHS was also
only acutely assessed in the present study (i.e. after
one late-night soccer match). Elite soccer players
who regularly play late-night matches may conse-
quently enjoy greater benefit from the SHS if such
strategies were applied regularly throughout the
season, i.e. after each night soccer match.

Given that this was a field-based study, there are
certain limitations that need to be acknowledged.

First, it is assumed that late-night matches cause
reductions in recovery, though the evidence to
highlight this point seems lacking in the research
literature. From an equipment perspective, the
“gold standard” of sleep quantity and quality mon-
itoring is recognised as via PSG (Halson, 2008,
2014). Without the use of this technique in this
investigation, we recognise the limitations of inter-
preting sleep data from actigraphy; however, for
primarily logistical reasons the use of PSG was not
possible. Moreover, both actigraphy and subjective
reports have been shown to not significantly differ
to PSG data for total sleep time and sleep effi-
ciency (Kushida et al., 2001). Second, the two
matches played were “friendly” fixtures. This lim-
its the applicability of our results to actual
matches, where numerous other extraneous dis-
ruptions to sleep can exist, including post-match

interviews, press conferences, anxiety and social/
club demands (Fullagar, Duffield et al., 2015).
However, by excluding such factors and attempt-
ing to control others (i.e. timing of the match, time
of sleep, time of wake, sleeping conditions) our
results possess some internal validity for a field-
based study. Floodlights in our study were likely
less than the lux emitted at professional stadiums
(i.e. up to 2000 lux), possibly limiting the inference
to professional players. Although post-match
nutrition was comprised of similar nutritional
content, nutrition was not individually monitored
(e.g. weighing of meals and detailed ingredients).
Given that some nutritional compounds are
known to affect sleep responses (i.e. protein and
sleep onset) and that sleep deprivation can induce
a preference for high-caloric foods, it is noted as a
limitation that we did not quantify the change in
nutritional behaviour in the current study (Halson,
2014). Nonetheless, every attempt in a field setting
was made to match meals over both weeks, similar
type of meals were served and photos of portions
were recorded to attempt to match nutritional
intake over both conditions. It could be argued
that the primary component of our intervention
was the pure extension of sleeping hours.
However, from our perspective the enforced bed-
time is part of an “acute sleep hygiene strategy”,
but in recognising this, we are attempting to make
it easier with other factors, i.e. no technology.
Finally, due to the nature of the strategy imposed,
blinding for the SHS intervention was not possible.

In summary, an acute SHS increased sleep dura-
tion compared to an NSHS following a late-night
soccer match, although there were significantly
more wake episodes in the SHS and players reported
similar sleep qualities between conditions. The SHS
did not improve measures of psychological stress
and recovery, or the recovery of exercise perfor-
mance. Furthermore, there were no significant dif-
ferences between conditions for blood-borne
markers of muscle damage and inflammation or
physiological responses to training (HIMS). More
research is required to assess whether a larger sleep
differential (e.g. longer duration and higher quality
sleep in the SHS condition) is required to affect the
physical and physiological markers measured in this
study. In addition, the effect of SHS on recovery in
real-world elite environments requires further
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investigation, especially over the course of a season.
For instance, there would be an increased likelihood
for potential benefits if sleep behaviour was mod-
ified for more than an acute period. Taken collec-
tively, the present findings suggest soccer players
might consider SHSs where possible following a
late-night match to promote restorative sleep; how-
ever, there appears to be no additional benefit for
the recovery of acute performance or perceptual
recovery outcomes.
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