
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-91-20

FEAT-REP:

Representing Features in CAD/CAM

Christoph Klauck,
Ansgar Bernardi,

Ralf Legleitner

June 1991

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautern, FRG
Tel.: (+49 631) 205-3211/13
Fax: (+49 631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrücken 11, FRG
Tel.: (+49 681) 302-5252
Fax: (+49 681) 302-5341

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196650376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) with sites in Kaiserslautern und Saarbrücken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG,
IBM, Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Nixdorf,
Philips and Siemens. Research projects conducted at the DFKI are funded by the German
Ministry for Research and Technology, by the shareholder companies, or by other industrial
contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There
exist many contacts to domestic and foreign research institutions, both in academy and
industry. The DFKI hosts technology transfer workshops for shareholders and other
interested groups in order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI
researchers from Germany and from all over the world. The goal is to have a staff of about 100
researchers at the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

FEAT-REP
Representing Features in CAD/CAM

Christoph Klauck, Ansgar Bernardi, Ralf Legleitner

DFKI-RR-91-20

A short version of this paper will be published in the Proceedings of the 4th International
Symposium on Artificial Intelligence: Applications in Informatics

 Deutsches Forschungszentrum für Künstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal
Republic of Germany; an acknowledgement of the authors and individual contributors to the work; all
applicable portions of this copyright notice. Copying, reproducing, or republishing for any other purpose
shall require a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

1

FEAT-REP:
Representing Features in CAD/CAM

Dipl.-Inform. Christoph Klauck,

Dipl.-Ing. Ralf Legleitner

Dipl.-Inform. Ansgar Bernardi ,

ARC-TEC Project

German Research Center for Artificial Intelligence

DFKI GmbH, Postfach 2080, D-6750 Kaiserslautern, Germany

Telefon: +49631/205-3477, 205-4068

Fax: +496ni-kl.de

bernardi@dfki.uni-kl.de

legleit@dfki.uni-kl.de

1. Abstract

When CAD/CAM experts view a workpiece, they perceive it in terms of their own

expertise. These terms, called features, which are build upon a syntax (geometry) and

a semantics (e.g. skeletal plans in manufacturing or functional relations in design),

provide an abstraction mechanism to facilitate the creation, manufacturing and

analysis of workpieces. Our goal is to enable experts to represent their own feature-

language via a feature-grammar in the computer to build feature-based systems e.g.

CAPP systems. The application of formal language terminology to the feature

definitions facilitates the use of well-known formal language methods like parsing in

conjunction with our flexible knowledge representation formalism FEAT-REP.

Keywords: feature, feature recognition, feature-language, feature-grammar,

Attributed Node-Label-Controlled Graph Grammars

2

2. Table of Contents

1. Abstract ... 1

2. Table of Contents ... 2

3. Introduction ... 3

4. What are Features ? .. 5

4.1. Review of Relevant Work .. 5

4.2. Feature Definition... 9

5. Syntax and Semantics of Feature-Languages 11

5.1. The Syntax... 11

5.2. The Semantics .. 12

6. The Feature Representation Language 14

6.1. Attributed Node-Label-Controlled Graph

 Grammars (ANLCGG's) .. 14

6.2. The Syntax of FEAT-REP 18

7. Feature Recognition.. 25

8. Conclusion... 27

9. References ... 28

10. Appendix... 32

3

Universal Language for

AI Applications

Universal

Language
A

b

s

t

r

a

c

t

i

o

n

C

o

m

p

l

e

x

i

t

y

Application Specific

Language

STEP

TEC-REP

FEAT-REP

CLDATA

LANCO

SKEP-REP

fig. 1 The basic method of PIM

3. Introduction

An important step towards truely Computer Integrated Manufacturing (CIM) is

the Computer Aided Process Planning (CAPP). A CAPP system shall use the

information provided by CAD (Computer Aided Design) to generate the process plan

for the manufacturing of the workpiece in question by means of CAM (Computer

Aided Manufacturing).

The solid modellers currently used in CAD describe a workpiece only in terms of

lower-level entities like faces, edges, vertices (topology), surfaces, lines and points

(geometry), or volumetric primitives like cylinders or cones (cf. [8]). While these

lower-level entities represent the complete quantitative information about a

workpiece, efficient planning strategies rely on higher-level (qualitative) information

supporting abstract reasoning to accomplish their goals. In our approach these

higher-level entities are the so-called features which must be extracted from the data

of the CAD models [20, 15]. In the discussion about the role of solid modelling as the

interface between design and manufacturing by us or e.g. Mike J. Pratt in [40] these

higher-level informations build the bridge between the workpiece created by the

designer and the process plan. Employing features, an experts knowledge in this

domain can be suitable formalized and used in planning systems (cf. [11]).

The proposed system PIM (Planning In Manufacturing) in [11] recognizes

features in a given representation of a workpiece, finds skeletal plans associated to

these features, and refines these plans to the CLDATA code (Cutter Location DATA)

4

necessary for manufacturing. This sequence of abstractions/refinements is illustrated

in figure 1 and follows the expertise model of human experts (cf. [47]). To bridge the

gap between the geometric description e.g. represented in STEP (STandard for the

Exchange of Product model data) and the manufacturing instructions e.g. represented

in CLDATA code, the sequence of representations on different abstraction levels

reduces this problem (and the complexity of the problem) to the problem of finding

an associated skeletal plan to a given workpiece described in terms of features. So

representing and recognizing features is a necessary step to bridge the gap between

CAD and CAM. It is important to note that in general different domains like design,

turning or milling leads to different features and that a standardization of all features

is just unreasonable.

In this paper we show that it is possible to describe features by means of formal

languages via attributed node-label-contolled graph grammars. The area of formal

languages is a well established field of research and provides a powerful set of

methods like parsing and knowledge about problems, their complexity and how they

could be solved efficiently. The use of formal languages for feature descriptions

facilitates the application of these results to the area of feature recognition and CAPP.

5

4. What are Features ?

In the current literature there is no consensus on a precise definition of the term

feature. Most researchers working in this area agree that a feature is an abstraction of

lower-level design and manufacturing information which depends on the context of

the machine shop [20]. Features that are required for design may differ considerably

from those required for manufacturing or assembly, even though they maybe based

on the same lower-level entities. Cunsulting several experts of manufacturing and

design showed that these differences are reasonable.

In the first section of this chapter a short review of relevant work in literature will

be done. In the second section the term feature will be defined by us under

consideration of the definitions in the first section.

4.1. Review of Relevant Work

John R. Dixon and John J. Cunningham have defined a feature as "any geometric

form or entity that is used in reasoning in one or more design or manufacturing

activities (i.e. fit, function, manufacturability evaluation, analysis interfacing, tool and

die design, inspectability, serviceability, etc.)." [18]. Features there originate (in

bottom-up fashion) in the reasoning process used in various design and

manufacturing activities. If a geometric form is used for reasoning, then that form is a

feature which needs to be represented separatly. The authors of the paper stated out,

that different manufacturing processes will require different features for their various

activities, that is, every process-activity combination has its own set of features. In

general these features have attributes according to their type. In order to compile the

features needed, the authors have examined several activities in connection with

several manufacturing processes. The heuristics for each process-activity pair

generate a corresponding set of features. To illustrate, two examples out of their

paper will be presented in which the derivation of certain features is shown from a bit

of heuristic manufacturing knowledge. Within the body of knowledge governing the

manufacture of aluminum extrusions, the authors find the heuristics:

a) Long thin walls should have ribs.

From this heuristic two features are identified: walls and ribs . The qualifier for the

feature wall is its length-to-thickness ratio. The feature rib has no qualifier in this

heuristic.

6

b) The apex of [triangular] slots should be well rounded and the rounding radius

should be at least twice the stock thickness.

Stock thickness refers to the nominal wall thickness of the sheet, so the wall is the

feature, and thickness is an attribute. Slot is a feature (in this case it is specifically a

triangular slot) and the apex radius is its attribute, which is qualified relative to the

stock thickness.

So as conclusion features are higher order abstract geometric forms or entities that

are used in reasoning about the topology and geometry of designed artifacts during

various design and manufacturing activities and the features and their qualitative and

quantitative qualifiers originate in the heuristics that surround these activities.

Intersecting Lines

Thin Wall between 2 Hollows

Lines and Arcs

Walls

Knife Edges Intersecting Walls

Non-Uniform Wall Thickness

Thick-Thin Junctions

Hollows

fig. ?2 A sample feature hierarchy

Another definition was given by David C. Gossard and J. K. Hirschtick: "A

feature of a geometric model in a given context is a descriptor of that model whose

presence and/or size is relevant within the given context." [27]. The authors subdivide

features into lower-level features and high-level features. The high-level features are

defined in terms of intermediate features of lower-level. These intermediate features

are defined in terms of other intermediate features lower than themselves, and so on.

Geometric entities, such as points, lines, arcs, splines, surfaces, and primitive

solids be considered low-level features, the lowest-level, or ground state, features for

a geometric feature extraction problem. An example of a hierarchy of features is

shown in figure ?2.

7

In [27] they stated out, that the high-level features which are to be recognized

depends on the function, or context, of each particular feature extraction system: No

universal set of features exists which will provide a satisfactory description of a part

for all applications. As conclusion features are defined in a hierarchy of features

where the lowest-level of this hierarchy is build via geometric entities, the so-called

lower-level features.

Tien-Chien Chang has defined a feature in his book [15] as "a subset of geometry

on an engineering part which has a special design or manufacturing characteristic.".

A feature has its specific geometry and must be associated with some feature attri-

butes. The attributes can be dimensions, dimensional tolerance, manufacturing notes,

etc. Depending on the application, different information maybe included. In any

case, a feature is a geometrically independent entity. It contains some meanings useful

to the application it is designed for. Based on the geometry, Tien-Chien Chang

classify features into the following:

• Face feature – features defined by two or three dimensional faces. (e.g. gear,

fillet, hexagon)

• Volumetric features – features defined by three dimensional, enclosed volumes.

(e.g. hole, boss, simple slot, T slot, V slot, pocket, groove, cutout)

Based on the applications:

• Design features – features meaningful to design. (e.g. hole, chamfer, groove,

countersink, screw thread)

• Manufacturing features – features meaningful to manufacturing. (e.g. hole,

groove, hole tip, fillet, chamfer, countersink)

He stated out, that the term feature does not have a definition which is agreed

upon by everyone because it is definitely application specific. So design features and

manufacturing features do overlap; many features are identical and some are

different, and some use the same name but carry different meaning.

A similar (informal) definition was given by J. J. Shah and M. T. Rogers ([42]);

they define a feature as "recurring patterns of information related to a part's

description." and distinguishe features via there type in:

8

• Form features. These are groups of geometric entities that define attributes of a

part´s nominal size and shape. Here also they distinguish between primary

features and subfeatures; primary features can be thought of as part´s major

shape, while subfeatures are alterations made to the major shapes.

• Precision features . These are acceptable deviations from the nominal geometry.

Included in this set are dimensional tolerances and surface finish.

• Material features . These specify material types, grades, properties, heat

treatment, surface treatments, etc.

Feature_lD		

Feature _ Name

Feature_Type

Compatible_Parnt

Compatible_Sub	

User_Def_Param	

	

Expressions	

	

	

	

	

	

Derived _Param

FPV_Subtree	

	

	

	

	

	

FPV_parameters	

	

	

	

	

Blank

Blank

Inherit_ Rules

Cognition_Rules

Interpret_Rules

21210

con i cal _ hole _ r

sub

cylinder

groove_1

entity_num diameter depth

 angle	 e	 theta

(abcos*)

	 # (absin *)

	 # (a2/)

	 # (ab2/tan2*/)

	 # (ab2/tan2*/c +)

	 # (ab – 2/)

CYL(a1, a2, a3, f1, f2, 0, 0, 0, 0)

	 if (a1 = 1) (0, 0, 0, 0, 0, 0)

	 if (a1 = 2) (0, 0, f3, 180, 0, 0)[U]

	 CON(a1, f4, 0, f5, f2, a3, 0, 0, 0)

	 if (a1 = 1) (0, 0, 0, 0, 0, 0)

	 if (a1 = 2) (0, 0, f3, 180, 0, 0)(—)

(e1 ((s1, a5), (s1, a6)))

	 # (e2 ((s1, a5), (s1, a6)))

	 # (p1, a2)

	 # (e3 (s1, a2))

	 # (e4 ((s1, a2), (s1, a6)))

((p1, a2) > e5 ((s1, a2), (s1, a4), (s1, a3))

 # ((s1, a2) < (p1, a1))

 # ((s1, a5) < e6 ((p1, a1), (s1, a2)))

 # ((s1, a6) < 180)

 # ((s1, a6) > 0)

fig. ?3 Feature property list of the feature conical hole

An object-oriented programming approach to representing feature descriptions

leads in [42] to property lists stored in a database. Addition of a new generic feature

means adding a new feature property list to the database: no code alterations are

needed. These lists are organized in a frame system where property inheritance is

possible between related frames. Figure ?3 is a property list for a conical hole with the

property values specified. These properties provide the generic feature definitions,

9

including means of identification, parameter definitions, the inheritance of properties

and parameters, and constraints on how a feature maybe used.

Other similar definitions of features can be found in [36, 22, 14, 19, 28] and [34].

The common ground of these feature definitions is first, that they are allways

based on the geometry of workpieces. Second the features get their effectiveness out

of the informations associated with them. Information-less form features are

sometimes defined but they become only important when informations are associated

with them. Third the definitions of features and their associated informations are

depentend of their application. Finally a universal set of feature definitions is not

reasonable.

The differences of these feature definitions are the attributes which the features

may have and the hierarchies where they are embedded. Some definitions have no

attributes and some have no hierarchies. Also the classifications of the features are

different. Finally their origin and the listet definitions of the features are also different

in the listet literature.

4.2. Feature Definition

In our paper the term feature is defined as a description element based on

geometrical and technological data of a product which an expert in a domain

associates with certain informations. They are firstly distinguished by their kind as

• functional features, e.g. seat of the rolling bearing or O-ring groove,

• qualitative features, e.g. bars or solid workpiece,

• geometrical (form-) features, e.g. shoulder , groove or drilled hole,

• atomic features, e.g. toroidal shell, ring , shape tolerance or surface finish.

and they are secondly distinguished by their application as

• design features, e.g. crank or coupler ,

• manufacturing features:

- turning features, e.g. shoulder or neck ,

- milling features, e.g. step or pocket ,

- drilling features e.g. stepped-hole or lowering,

- ...

• ...

10

Our definition follows the one of Tien-Chien Chang [14] and is distinguished by

the emphasis on an expert in a domain. In particular every feature will be defined by

a respective expert because his area, like machines, tools or the characteristics of

them, and his ideas, creativity and experience, like special tricks, are included in this

definition. In this sense the features can been seen as a language of an expert in a

domain. It is important to note that this language represents the know-how of the

expert respectively the machine shop and that this language is an individual ("expert

in a domain" dependent) one. It is also important to note that such a language has a

syntax and a semantics. What we interpret as syntax and semantics of these feature-

languages will be explained in the next section. So it is incumbent upon the XPS-

shells or -tools only to define a representation language for features respectively the

feature-language and not the features itself; they must be defined individually for

every XPS in its individual area.

In comparison with the feature definitions in the previous section the differences

to our feature definition are the calssification of the features which results out of the

distinction in syntax and semantics of features, and the origin of the features, in our

case always experts. The common ground of our definition and the definition listet in

the previous section is first that geometry serves as a basis for the feature definitions

and second that the features get their effectiveness out of the informations associated

with them. Finally the definitions of features (and their associated informations) are

depentend of their application and in our case more restricted to the dependency of

an expert.

11

5. Syntax and Semantics of Feature-Languages

In the previous chapter we defined the term feature. There also is mentioned

briefly an analogue between the feature descriptions and (formal) languages which

results in the term feature-language. In this chapter the syntax and semantics of

feature-languages will be described in general. In figure 6 the conclusion of this

analogue is shown. Before we will discuss the syntax it should be pointed out that the

expert chooses/creates a syntax of the features which is dependent of the informations

associated with the features.

5.1. The Syntax

The first important issue about the features is that the expert bases his definitions

on the boundary surfaces and the technological informations of the workpiece, like

tolerances or surface finish, which are assigned to one or more surfaces. Our

representation formalism TEC-REP ([12]) supplies these entities which are used as

atomic features. TEC-REP also supplies a topology graph to represent the

neighbourhoodness of surfaces. Some examples of these description entities are

presented in figure 2.

To define the geometrical features the expert uses the atomic features and the

geometrical features itself. One simple example of features described by an expert is

shown in figure 3 and figure 9. An example of corresponding attributed syntax rules

is given in figure 4.

x

z
O1 O2

r

Cylinder Jacket

CJ(reference_point1: <vector>,

 reference_point2: <vector>,

 radius: <num>,

 direction_of_material: [+,-])

Shape Tolerance DIN 7184

ST(surface_number: <num>,

 tolerance_type: [SN, EN, RN, C, LD, PD],

 tolerance_size: <num>)

x

z

O
Nr

Circular surface

C(reference_point: <vector>,

 direction_vector: <vector>,

 radius: <num>,

 direction_of_material: [+,-])

Surface Finish

SF(surface_number: <num>,

surface_finish: [Rt, Rz, Rp, Ra,...],

value: <num>)

fig. 2 some entities of TEC-REP

12

long turning surface cylinder jacket

right shoulder long turning surface, flank

insertion left shoulder, right shoulderringflank

left shoulder flank, long turning surface

groove left shoulder, right shoulder

fig. 3 simple syntax for features

long turning surface cylinder jacket

lts.radius = cj.radius

long turning surface, insertion, long turning surfacelong turning surface

lts0.radius = lts1.radius

lts1.radius = lts2.radius

fig. 4 attributed syntax rules

It is important to note that this kind of rules is only sufficient when features of

rotational symmetric parts are described; in general graph-based rules are needed (cf.

[16]) because the features will be defined in general by the topological graph of their

parts. An example can be seen in figure 5.

The descriptions of functional features are based upon the descriptions of

geometrical features and differ in the connection to other products. The functionality

is defined via the description of the functional relation between the functional feature

and one or more other products. The syntax rules of these features differ in the

additional attributes which describe the functional relation and the technological

restrictions. The descriptions of qualitative features are also based upon geometrical

features and represent a more abstract description of a workpiece. Their syntax rules

differ in the additional attributes which describe the technological and geometrical

restrictions. As conclusion we can state out that the geometrical description in

addition with attributes about the context, functionality and technology forms the

syntax of a feature.

rectangle

groove border

#9

cylinder jacket section

groove border

#7

ground of a groove

#10

cylinder jacket section

groove border

#6

rectangle

groove border

#8

8

67

109

fig. 5 topology graph of a key groove

13

Geometry -

Topology -

Technology
Syntax

Language

Letters

Pieces of text

Sentence

Word

Syntactical Categories

Workpiece

World of Products

Points -

Lines

Product

Surface

Features

Semantics Process Planing

Skeletal Plans for

Product

Skeletal Plans for

Workpiece

Skeletal Plans for

Surface

Skeletal Plans for

Features

Semantics of the

Word

Semantics of the

Sentence

Semantics of the

Pieces of text

Semantics of the

Syntactical Categories

fig. 6 The Language Analogue with Manufacturing Features

5.2. The Semantics

Now we can describe the semantics of a feature-language. The main thing of the

features is, that the expert associates certain informations with the features. In this

view the syntax of the features can be seen as a vessel to carry the informations, the

semantics of the features. What kind of informations associates the expert with his

features ? This depends on the domain where he works. A designer for example

associates first the functionality and the costs with his features. So when he says "seat

of the rolling bearing" he first describes the syntax of the feature, e.g. geometry and

technology, and secondly he describes the semantics of the feature, e.g. that this part

will be used as a seat. Our research concentrates on the semantics of the

manufacturing features. Figure 6 illustrates the analogue between the manufacturing

features and a formal language with semantics For a similar natural language

analogue cf. [36], p. 63. More informations about the semantics in design can be

found in e.g. [37 & 41].

The manufacturer associates skeletal plans and also costs with his features. We

define a skeletal plan as an abstract (part of a) working plan. A machine-ready

working plan describes the complete process necessary for the production of a given

workpiece in sufficiently detail to be carried out by a machine. A skeletal plan on the

other hand describes parts of the whole for producing (a part of) the workpiece on

14

different levels of abstraction. This definition is similar to the one in [24]. The

analogue of formal languages with the descriptions of manufacturing features results

in our CAPP-system PIM (figure 1).

15

6. The Feature Representation Language

In this section the representation language FEAT-REP (FEATure-

REPresentation) will be presented which allows to represent the feature-language of

different experts for use in e.g. feature-based CAPP systems like PIM. Figures 3, 4

and 9 illustrate some requests to FEAT-REP via some characteristics of feature

descriptions:

• The first is feature interaction . Two or more different features with equal rights,

which can be used together to describe a feature, like left and right shoulder, may

share some mutual (identical) features, like long turning surface.

• The second is that the same geometrical structures may have different names, e.g.

groove and insertion. This results from the semantics; the expert divides the

semantics of the same geometrical structure into different semantical groups via

different feature-names.

• A third characteristic of feature descriptions not yet illustrated is their

contextsensitivity, e.g. a long turning surface is called a groove ground dependent

of the features around it.

• The forth characteristic of feature descriptions is the fragmentary description :

features could be described via not directly adjoint surfaces respectively features.

This maybe the result e.g. of special tools which manufacture not directly adjoint

surfaces.

• Finally a characteristic of the feature descriptions is the abstract description level.

To describe a feature an expert uses only less geometrical and technological

informations; he uses a qualitative description. Quantitative informations are used

only when they are needed.

FEAT-REP allows to represent all these characteristics adequate.

6.1. Attributed Node-Label-Controlled Graph Grammars

(ANLCGG's)

Before the syntax of FEAT-REP will be shown in the next section we briefly

define as theoretical background of our FEAT-REP an attributed node-label-

controlled graph grammar (ANLCGG). Introduction and survey can be found in

more detail e.g. in [17, 39, 26].

In our paper the term (feature-)graph means an attributed finite undirected node

labeled topology graph, in the sequel shortly called graph. Such a graph g is formaly

given as a 4-tupel FG := (V, E, S, f), with:

16

V:= a finite (nonempty) set of attributed nodes ,

E := {(x, y)| x, y ™ V, x is directly topological connected to y} ∑ V ≈ V, a finite set

of edges,S := {names of TEC-REP}˙{names of FEAT-REP}, a finite (nonempty) alphabet

of node labels or node sorts andf : V µ S := a labeling function respectively a sort function.

For v ™ V, f(v) is the sort of v. v together with f(v) forms an entity of TEC-REP

or FEAT-REP. The class of all graphs with the alphabet of node sorts of S is denoted

by GS. For a graph g = (V, E, S, f) the unlabeled graph g' := (V, E), which results

from g by eleminating the node labels, is called the underlying graph of g and

denoted by g' := unl(g).

An attributed node-label-controlled (feature-)graph grammar (ANLCGG) is a 4-

tuple FGG := (T, N, P, S), with:

T:= {entities of TEC-REP}, a finite (nonempty) set of terminals,

N:= {entities of FEAT-REP}, a finite (nonempty) set of non-terminals,

P:= a finite set of productions and

S ™ N is a node, called the start node .

We assume T œ N = Ø and T ˙ N = V. Note that a featuregraph over T describes

a workpiece. A production p ™ P is a 4-tuple p := (l, r, e, c) where l is a (nonempty)

graph over T ˙ N, called the left hand side and r is a (nonempty) graph over T ˙ N,

called the right hand side . p ™ P is called contextfree if l ™ N, else p is called

contextsensitive. Note that every production p ™ P defines an entity of FEAT-REP,

say a feature. e is an embedding specification which determines how the left hand

side graph will be joined to the intermediate graph. c is a finite set of constraints over

l and r, the so-called local dependency relations.

A production p = (l, r, e, c) ™ P is applied to a featuregraph g by

• searching for a subgraph r' of g with

- unl(r') = unl(r),

- for every isomorphic nodes v' of r' and v of r f(v') = f(v) and

- the set of constraints c is solvable,

• removing r' (and all adjacent edges) from g (leaving the intermediate graph g \ r'),

• adding l', an isomorphic copy of l disjoint from g, and finally

17

Cylinder Jacket

re
fe

re
nc

e_
po

in
t1

reference_point2

ra
di

us
direction_of_m

aterial

8 + (7, 3, 1)(0, 0, 6)

fig. 7 an attributed node in an ANLCGG

• adding the embedding edges between l' and g \ r' specified by e, resulting in a new

graph g'.

g directly concretely derives g' by replacing graph r' with l' using p, denoted by g˜p g'. Note that the application of a production p to a featuregraph g result in a

"shrinking" of g to g': The graph r' describing the feature L' (L' a node of l') is

shrinked to the node L'. Every adjacent edge to r' is then adjacent to L'. One key

feature of ANLCGG's is that both, the rewriting of a subgraph and the embedding of

a newly introduced subgraph are controlled by node sorts.

The TEC-REP entitiy Cylinder Jacket (CJ) serves as an example of an attributed

node in figure 7. The attributes and their values are attached via a DAG (Directed

Acyclic Graph) to the node labeled Cylinder Jacket .

In figure 8 examples of ALNCGG rules including relations between the attributes

are shown . Figure 8a illustrate a rule where only informations are given to the

recognized feature; in figure 8b also constraints are illustrated. The equations of the

rules are solved e.g. via unification: the attached DAG's are compared according to

the type of the equation (e.g. = or >) Note that variables are only bound when

equations (=) are used. So attributes can be used to:

• Information Transport: via unification of atributes of the mother node

informations of the daughter nodes

• Information generation: ...

It should be pointed out that features with considerations of dimensions,

directions, relative positioning of geometric primitives or any other geometrical or

technolical constraints could be defined and recognized via the described ANLCGG's.

18

cylinder jacket section

groove border ˜ RectAngle

cylinder jacket section groove border.geometry = RectAngle.geometry

fig. 8a an ANLCGG rule

insertionlong turning surface ˜ long turning surface long turning surface

long turning surface0.radius = long turning surface1.radius

 long turning surface2.radius = long turning surface1.radius

fig. 8b an ANLCGG rule with constraints

insertion

step

left shoulder

shaft

#8
#10

#12
#18

#20
#9

ring

#14
ring

#16

cylinder

jacket

#13

cylinder

jacket

#15

cylinder

jacket

#17

#19
#21

#11

right shoulder

insertion

right shoulder

step step

flank
ground of

a groove
long turning

surface
flank long turning

surface

fig. 9 Description of a shaft in terms of an experts features

19

6.2. The Syntax of FEAT-REP

Now the syntax of FEAT-REP is shown. In this (formal) language a knowledge

engineer can represent the experts knowledge about the structure hierachies and

manufacturing qualities of workpieces. The characteristics of the features (feature

interaction, different names, contextsensitivity, fragmentary description and abstract

description) could be represented adequately.

What can be used as the quantitative level of FEAT-REP ? The Boundary

Representation (B-Rep) serves as a basis for the most feature representations in the

feature-based systems, i. e. the boundary surfaces of a workpiece are the atomic

geometrical entities which are used to describe features. There are also efforts in

research to use Constructive Solid Geometry (CSG) as the atomic geometrical entities

(cf. [25] or [48]). In this paper TEC-REP serves as basis of FEAT-REP which is

based on the B-Rep. Examples of the TEC-REP entities are shown in figure 2. FEAT-

REP itself is a frame like language which is illustrated below.

Feature →

Qualitative_Feature | Functional_Feature | Geometrical_Feature

Qualitative_Feature →
Featurename: featurename
Featuretype: featuretype
{Specialize_Feature: featurename}
{Subsumes_Features: (list_of_featurenames)}
{is_part_of: (list_of_featurenames)}
{has_parts: (list_of_featurenames)}
{Feature_Rule: (set_of_feature_graph_grammar_rules)}
{Rule_Attributes: (list_of_rule_attributes)}
{Embedding_Specifications: (list_of_embedding_specifications)}
{Described_Feature: featurename}
Description: (list_of_qualitative_constraints)
{Feature_Context: (list_of_context_constraints)}

Functional_Feature →
Featurename: featurename
Featuretype: featuretype
{Specialize_Feature: featurename}
{Subsumes_Features: (list_of_featurenames)}
{is_part_of: (list_of_featurenames)}
{has_parts: (list_of_featurenames)}
{Feature_Rule: (set_of_feature_graph_grammar_rules)}
{Rule_Attributes: (list_of_rule_attributes)}
{Embedding_Specifications: (list_of_embedding_specifications)}
{Described_Feature: featurename}
Description: (list_of_functional_constraints)
{Feature_Context: (list_of_context_constraints)}

20

Geometrical_Feature →
Featurename: featurename
Featuretype: featuretype
{Specialize_Feature: featurename}
{Subsumes_Features: (list_of_featurenames)}
{is_part_of: (list_of_featurenames)}
has_parts: (list_of_featurenames)
Feature_Rule: (set_of_feature_graph_grammar_rules)
Rule_Attributes: (list_of_rule_attributes)
{Embedding_Specifications: (list_of_embedding_specifications)}
{Feature_Context: (list_of_context_constraints)}

Featurename and Featuretype together identify the feature. The featurenames are

given by the expert; the featuretypes are the differentations in the definition of the

term feature, like geometrical drilling feature or functional design feature. Via

Specialize_Feature and Subsumes_Features a hierachical structure over the features is

constructed. This structure is generated and managed by a KL-ONE like conceptual

language formalism called TAXON [7]. Is_part_of and Has_parts makes the part-of

relation explicit. It is a redundant information like Subsumes_Features, too, and helps

to make it easier to read the feature descriptions. Feature_rule is a set of alternative

graph grammar rules which describes the featuregraph. Via this rule the parts of a

feature are set into a (topological) relation. The attributes of a rule are divided via

Rule_Attributes and Feature_Context into the attributes which depend only on the

data of the featureparts itself and the attributes which depend on the data of the

feature context. The context also includes informations about machines ore tools.

When Embedding_Specifications is not specified, the default specification is used:

Every adjacent edge to the right hand side of the rule is adjacent to the left hand side

of the rule. Described_Feature is the link to the geometrical features but the

underlaying geometry can also be described explicitly. Description is the list of the

functional or qualitative constraints which describe the feature.

context_constraint →
predicate

functional_constraint →
predicate

qualitative_constraint →

predicate

rule_attribute→

geometrical_equation |
technological_equation |
tolerance_equation

21

The constraints and attributes (relations between attributes) are just described via

predicates, where the attributes are restricted to a given set of equations. They could

both be handled by the constraint system CONTAX or/and FIDO [1]. Note that va-

riables will only be bound when equations (predicates) of type "=" are used;

predicates and equations of other type over unbound variables will always be failure.

equation_name →

< | > | ≥ | ≤ | =

geometrical_equation→

(equation_name geometrical_attribute geometrical_attribute)|
(equation_name geometrical_attribute value) |

predicate→

(predicate_name list_of_terms)

predicate_name→

< | > | ≥ | ≤ | = | useable | solid | <system or user defined predicate names> ...

technological_equation→

(equation_name technological_attribute technological_attribute) |
(equation_name technological_attribute value) |

tolerance_equation→

(equation_name tolerance_attribute tolerance_attribute) |
(equation_name tolerance_attribute value)

With these predicates relations between the attributes and relations between an

attribute and a constant could be described. They can be used with different

functions:

• First they can be used as comparison of values (of daughter nodes), e.g. the

comparison of dimensions;

• Second they can be used to inherit informations from the daughter nodes to the

mother node; e.g. the boundary points of the daughter nodes;

• Third they can be used to fill in new informations to the attributes of the mother

node by means of functions, e.g. to compute the maxium length;

• Finally they can be used to compare constants with values of daughter nodes, e.g.

the surface finish of a daughter node with a given restriction to the mother node.

So in conclusion the predicates can be used to compare attributes with attributes

or constants and they could be used to pass or generate informations.

22

geometrical_attribute→

({(reference_point1 range_of_values)}
{(reference_point2 range_of_values)}
{(radius1 range_of_values)}
{(radius2 range_of_values)}
...
{(<Attributes of TEC-REP> range_of_values)}
{(direction_of_material range_of_values)})

technological_attribute →

({(surface_finish range_of_values)}
{(hardness range_of_values)}
...
{(<Attributes of TEC-REP> range_of_values)}
{(value range_of_values)})

tolerance_attribute →

({(nominal_size range_of_values)}
{(min_size range_of_values)}
{(max_size range_of_values)}
...
{(<Attributes of TEC-REP> range_of_values)}
{(tolerance_extent range_of_values)})

As attributes all attributes of the TEC-REP entities are used.

edge→

(parameter-definition parameter-definition) | (featurename featurename)
| (parameter-definition featurename)

embedding_specification →

(list_of_edges)

feature_graph→

(list_of_edges)

feature_graph_grammar_rule →
(left_hand_side_graph right_hand_side_graph)

left_hand_side_graph →

feature_graph

right_hand_side_graph →

feature_graph

The graph grammar rules are productions of a formal language where the left

hand side and the right hand side are graphs. In every rule only one nonterminal will

be rewritten, even though on the right hand side and on the left hand side

nonterminals could occcur as context.

23

digit→

digit digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

featureapplication→

"design" | "assembling" | "milling" | "drilling" | "turning" | ...

featurekind→

"atomical" | "geometrical" | "functional" | "qualitative"

featurename →
string

featuretype →
featurekind featureapplication

function→

(function_name list_of_terms)

function_name→

CAR | CDR | + | / | <system or user defined function names> ...

letter →
a | b | c | . | A | B | C | ...

list_of_context_constraints →

(context_constraint*)

list_of_edges→

(edge*)

list_of_embedding_specifications→

(embedding_specification*)

list_of_featurenames →
(featurename*)

list_of_functional_constraints →

(functional_constraint*)

list_of_params→

(param*)

list_of_qualitative_constraints →
(qualitative_constraint*)

list_of_rule_attributes→

(rule_attributet*)

24

list_of_terms→

(term*)

lower_value→

value

number→

sign digit | sign digit , digit | sign digit , digit sign E digit

parameter→

x | y | z | ...

parameter-definition→

(parameter range_of_values)

range_of_values→

(lower_value upper_value) | value

set_of_feature_graph_grammar_rules →
(feature_graph_grammar_rule*)

sign →
+ | -

string →
string symbol | letter

symbol →
letter | ! | " | ? | - | _ | / | ...

term →
range_of_values | function | parameter-definition

upper_value→

value

value→

string | number

These specifications describe the needed terms like strings, terms ore numbers. An

example of the turning feature insertion is given below and illustrated in figure 9.

25

Featurename: insertion

Featuretype: geometrical turning feature

Subsumes_Features: (O-ring_groove)

is_part_of: (left_shoulder, right_shoulder, long_turning_surface, step)

has_parts: (left_shoulder, right_shoulder)

Feature_Rule: ((((insertion), (left_shoulder, right_shoulder)),

 ((insertion), (left_shoulder, insertion,

right_shoulder))))

Rule_Attributes: (nil)

26

7. Feature Recognition

As proposed in the previous sections the importance of feature recognition in ma-

nufacturing stems from the fact that each feature can be associated with knowledge

about how the feature should be manufactured; this information can be used to

generate a process plan. From this point of view feature recognition forms a major

component of the CAD/CAM interface for CAPP. In our paper we concentrated on

the recognition of geometrical and qualitative features; the functional features are

important for design only. Working with manufacturing features means to recognize

these features from the CAD data to generate a working plan. Working with design

features means to construct by means of these features and to expand them to the

CAD data. The most recent developments in this research field can be read in e.g.

[15, 6, 5, 22, 29] and [16].

Within our current research the features will be recognized or expanded by

parsing methods which are based on graph matching methods and heuristics

(background knowledge). This is facilitated through the representation of the feature

definitions in a well-formed attributed node-label-controlled graph grammar. The

feature-parser finds the complete set of features derivable from the productions of an

ANLCGG given the grammar and a workpiece described in the terms of TEC-REP

(an augmented topology graph representing the geometry and technology of a

workpiece). So the problem of feature recognition is the problem of finding

isomorphic subgraphs, in general a NP-complete problem [4]. But it maybe come

solvable in O(nx) time using e.g. the method described in [35]: "The technique is, to

incorporate application dependent knowledge systematically ...". The detail of the

feature recognition algorithm will be published in a separate paper. Besides these

activities there are examinations to recognize features via combined logical forward

and backward reasoning in conjunction with taxonomies [32].

One problem that arises in the CAPP systems from the integration of CAD and

CAM is that a workpiece must be transformed through different feature-languages,

e.g. the one of a designer, a driller or a turner. On this way the workpiece passes

different qualitative description languages. The gap between the single qualitative

levels will be brigded by a quantitative description level, e.g. TEC-REP. This level

contains all information needed to generate another qualitative description of the

workpiece. But why forget the previous qualitative description? So when another

qualitative description of the workpiece will be generated, the previous qualitative

27

description could be used to make this generation more efficient. In figure 10 this

method is illustrated.

FEAT-REP

Design Features

qualitative level

TEC-REP

Surfaces,

Technology,...

quantitative level

FEAT-REP

Manufacturing Features

qualitative level

fig. 10 Getting from one qualitative description to the other

For example when a designer constructs a Seeger circlip ring groove the same

geometry can be seen as groove by the manufacturer; only the feature-names and the

semantics must be changed. This method will be integrated in the feature recognition

algorithm.

28

8. Conclusion

Grammars are the rewriting systems that define languages in terms of syntax,

semantics and pragmatics. The relationship between grammars and languages is that

a grammar strictly defines an associated language. In our paper we show that it is

possible to describe features by means of formal languages via attributed node-label-

contolled graph grammars. The area of formal languages is a well established field of

research and provides a powerful set of methods like parsing and knowledge about

problems, their complexity and how they could be solved efficiently. The use of

formal languages for feature descriptions facilitates the application of these results to

the area of feature recognition and CAPP. As result ANLCGG's enables a user to

define his own feature-language containing complex features and makes feature

recognition a parsing process for workpiece interpretation.

The graph grammar based formalism FEAT-REP is a powerful and general tool

to represent feature descriptions. A feature language defined in this fomalism

represents a link between the quantitative (low-level) geometrical/technological

representation and the qualitative (high-level) abstractions, as qualitative entities are

expressed in terms of quantitative ones. Because the quantitative description of a

workpiece can be seen as a topological graph, the features can be recognized by

graph-based parsing.

In future research a domain dependent graph-based parsing algorithm based on

ANLCGG's will be developed. Currently, a small feature-grammar of one of our

experts has been implemented using the extended D-PATR system (Karttunen L.: D-

PATR: A Development Environment for Unification-Based Grammars , CSLI Report,

CSLI-86-68), a formalism to represent unification-based grammars. Our quantitative

representation formalism TEC-REP serves as a lexicon in this system.

29

9. References

[1] CONTAX: Constraint-Based Reasoning over Taxonomies , forthcoming 1991.

[2] Abecker, A. and Hanschke, P.: TAXON: Instruction for use , october 1990.

[3] Abeln, O.: Die Ca-Techniken in der industriellen PraxisHandbuch der

computergestützten Ingenieur-Methoden, Hanser Verlag (1990).

[4] Aho, A.V., Hopcroft, J.E., and Ullman, J.D.: The Design and Analysis of

Computer Algorithms, Addison-Wesley (1974).

[5] Anderson, D.C. and Henderson, M.R.: Computer Recognition and Extraction

of Form Features: A CAD/CAM Link . Computers in Industry (6) 4 (1984),

315-325.

[6] Anderson, D.C., Chang, T.C., and Mitchell, O.R.: QTC- An Integrated

Design/Manufacturing/Inspection System for Prismatic Parts. In International

Computers in Engineering Conference and Exhibition, july/august 1988, pp.

417-426.

[7] Baader, F. and Hanschke, P.: A Scheme for Integrating Concrete Domains into

Concept Languages. In Proceedings of the 12th International Joint Conference

on Artificial Intelligence, 1991.

[8] Bernardi, A., Klauck, C., and Legleitner, R.: STEP: Überblick über eine

zukünftige Schnittstelle zum Produktdatenaustausch. Dokument, D-90-04

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, Postfach 20

80, D-6750 Kaiserslautern, september, 1990.

[9] Bernardi, A., Klauck, C., and Legleitner, R.: Abschlußbericht des

Arbeitspaketes PROD. Dokument, D-90-03 Deutsches Forschungszentrum für

Künstliche Intelligenz GmbH, Postfach 20 80, D-6750 Kaiserslautern,

september, 1990.

[10] Bernardi, A., Klauck, C., and Legleitner, R.: Formalismus zur Repräsentation

von Geometrie- und Technologieinformationen als Teil eines Wissensbasierten

Produktmodells. Dokument, D-90-05 Deutsches Forschungszentrum für

Künstliche Intelligenz GmbH, Postfach 20 80, D-6750 Kaiserslautern,

december, 1990.

[11] Bernardi, A., Klauck, C., and Legleitner, R.: PIM: Planning in Manufacturing.

In forthcoming, DFKI�GmbH, 1991.

[12] Bernardi, A., Klauck, C., and Legleitner, R.: TEC-REP: Repräsentation von

Geometrie- und Technologieinformationen. Dokument, D-91-07 Deutsches

Forschungszentrum für Künstliche Intelligenz GmbH, Postfach 20 80, D-6750

Kaiserslautern, june, 1991.

30

[13] Bernardi, A., Boley, H., Hanschke, P., Hinkelmann, K., Klauck, C., Kühn, O.,

Legleitner, R., Meyer, M., Richter, M.M., Schmalhofer, F., Schmidt, G., and

Sommer, : ARC-TEC: Acquisition, Representation and Compilation of

Technical Knowledge. In Expert Sytems and their Applications:Tools,

techniques and Methods, 1991, pp. 133-145.

[14] Chang, G.J. and Henderson, M.R.: FRAPP: Automated Feature Recognition

and Process Planning from Solid Model Data. In International Computers in

Engineering Conference and Exhibition, july/august 1988.

[15] Chang, T.C.: Expert Process Planning for Manufacturing, Addison-Wesley

(1990).

[16] Chuang, S.H. and Henderson, M.R.: Compound Feature Recognition by Web

Grammar Parsing . Research in Engineering Design 2 (1991), 147-158.

[17] Claus, V., Ehrig, H., and Rozenberg, G. (Eds). Graph-Grammars and Their

Application to Computer Science and Biology. 1978.

[18] Cunningham, J.J. and Dixon, J.R.: Designing with features: the origin of

features. In International Computers in Engineering Conference and

Exhibition, july/august 1988, pp. 237-243.

[19] Cutkosky, M.R. and Tenenbaum, J.M.: Features in Process-Based Design. In

International Computers in Engineering Conference and Exhibition,

july/august 1988, pp. 557-562.

[20] Dixon, J.R. and Finger, S.: A Review of Research in Mechanical Engineering

Design. Part II :Representations, Analysis, and Design for the Life Cycle .

Engineering DesignSpringer-Verlag New York Inc. (1) 2 (1989), 121-137.

[21] Dixon, J.R. and Finger, S.: A Review of Research in Mechanical Engineering

Design. Part I : Desriptive, Prescriptive, and Computer-Based Models of

Design Processes. Engineering DesignSpringer-Verlag New York Inc. (1) 2

(1989), 51-67.

[22] Finger, S.: Parsing Features in Solid Geometric Models. In ECAI90, 1990.

[23] Finger, S., Fox, M.S., Prinz, F.B., and Rinderle, J.R.: Concurrent Design .

Applied Artificial Intelligence Special Issue and AI in Manufacturing (1990).

[24] Friedland, P.E. and Iwasaki, Y.: The Concept and Implementation of Skeletal

Plans. Journal of Automated Reasoning (1)(october 1985), 161-208.

[25] Fu, K.S. and Lee, Y.C.: Machine Understanding of CSG: Extraction and

Unification of Manufacturing Features . IEEE Computer Graphics and

Applications (7) 1 (january 1987), 20-32.

[26] Goos, G. and Hartmans, J. (Eds). Graph-Grammars and Their Application to

Computer Science . H. Ehrig and M. Nagl and G. Rozenberg and A. Rosenfeld,

december 1986.

31

[27] Gossard, D.C. and Hirschtick, J.K.: Geometric Reasoning for Design Advisory

Systems. In International Computers in Engineering Conference and

Exhibition, july 1986, pp. 263-270.

[28] Gossard, D.C. and Sakurai, H.: Shape Feature Recognition from 3D Solid

Models. In International Computers in Engineering Conference and

Exhibition, july/august 1988, pp. 515- 519.

[29] Gossard, D.C. and Sakurai, H.: Recognizing Shape Features in Solid Models.

IEEE Computer Graphics and Applications (1990), 22-32.

[30] Grätz, J.: Handbuch der 3D - CAD - TechnikModellierung mit 3D-

Volumensystemen, Siemens - Aktiengesellschaft (1989).

[31] Heragu, S.S. and Kusiak, A.: Analysis of Expert Systems in Manufacturing

Design . IEEE Transactions on Systems, Man, and Cybernetics (SMC-17) 6

(november 1987), 898-912.

[32] Hinkelmann, K.: Combining Forward and Backward Logic Evaluation for

Feature Recognition. In forthcoming, 1991.

[33] Janssens, D. and Rozenberg, G.: A Survey of NLC Grammars. In Trees in

Algebra and Programming8th Colloquium, march 1983, pp. 114-128.

[34] Joshi, S.B.: CAD interface for automated process planning , Ph.D. dissertation,

Purdue University, august 1987.

[35] Kaul, M.: Practical Applications of Precedence Graph Grammars. In Graph-

Grammars and Their Application to Computer Science, Goos, G. and

Hartmans, J., H. Ehrig and M. Nagl and G. Rozenberg and A. Rosenfeld,

december 1986, pp. 326-342.

[36] Kyprianou, L.K.: Shape Classification in Computer-Aided Design, Ph.D.

dissertation, Christ`s College, University of Cambridge, P.O Box

1745NicosiaCyprus, July 1980.

[37] Mullins, S. and Rinderle, J.R.: Grammatical Approaches to Engineering

Design, Part I: An Introduction and Commentary. Research in Engineering

Design 2 (1991), 121-135.

[38] Murakami, T. and Nakajima, N.: Design-Diagnosis using Feature Description.

In IFIP WG 5.2 Workshop on Intelligent CAD Systems, Gossard, D., IFIP,

october 1987, pp. 169-185.

[39] Nagl, M.: Graph-Grammatiken: Theorie, Implementierung, Anwendungen,

Friedrich Vieweg & Sohn (1979).

[40] Pratt, M.J.: Solid Modeling and the Interface Between Design and

Manufacture. IEEE Computer Graphics and Applications (july 1984), 52-59.

[41] Rinderle, J.R.: Grammatical Approaches to Engineering Design, Part II:

Melding Configuration and Parametric Design Using Attribute Grammars .

Research in Engineering Design 2 (1991), 137-146.

32

[42] Rogers, M.T. and Shah, J.J.: Expert form feature modelling shell . Computer

Aided Design (20) 9 (november 1988), 515-524.

[43] Rozenberg, G.: An Introduction to the NLC Way of Rewriting Graphs. In

Graph-Grammars and Their Application to Computer Science, Goos, G. and

Hartmans, J., H. Ehrig and M. Nagl and G. Rozenberg and A. Rosenfeld,

december 1986, pp. 55-66.

[44] Schuette, A.: Knotenattributierte Kontextfreie Graphgrammatiken. Bericht,

1/1984 Erziehungswissenschaftliche Hochschule Rheinland-Pfalz (EWH),

Rheiau 3-4, D-5400 Koblenz, 1984.

[45] Schuette, A.: Einführung in Theorie und Konzepte von attributierten

Z e i c h e n k e t t e n - u n d Graphgrammatiken. B e r i c h t , 1 / 1 9 8 5

Erziehungswissenschaftliche Hochschule Rheinland-Pfalz (EWH), Rheiau 3-4,

D-5400 Koblenz, 1985.

[46] Schuster, R.: Graphengrammatiken und Grapheneinbettungen: Algorithmen

und Komplexität, Ph.D. dissertation, Universität Passau, Fakultät für

Informatik, Universität Passau, Fakultät InformatikPostfach 2540, 8390

PassauMIP-8711, june 1987.

[47] Tengvald, E.: The Design of Expert Planning Systems: An Experimental

Operations Planning System for Turning , Ph.D. dissertation, Lingköping

University, Department of Computer and Information ScienceLinköping

UniversityS-58183 Linköping, Sweden, 1984.

[48] Woodwark, J.R.: Some speculations on feature recognition . Computer Aided

Design (20) 4 (may 1988), 189-196.

33

10. Appendix

The listet paper will be published in the Proceedings, and presented in the IV

International Symposium on Artificial Intelligence: Applications in Informatics, to be

heldin Cancún, México on November 13-15 1991.

Universal Language for

AI Applications

Universal

Language
A

b

s

t

r

a

c

t

i

o

n

C

o

m

p

l

e

x

i

t

y

Application Specific

Language

CLDATASTEP

LANCOTEC-REP

FEAT-REP SKEP-REP

fig. 1 The basic method of PIM

FEAT-REP:
Representing Features in CAD/CAM

C. Klauck, A. Bernardi, R. Legleitner

ARC-TEC Project
German Research Center for Artificial Intelligence

DFKI GmbH, Postfach 2080, D-6750 Kaiserslautern, Germany
Telefon: +49631/205-3477, 205-4068

Fax: +49631/205-3210
email: {klauck|bernardi|legleit}@dfki.uni-kl.de

Abstract

When CAD/CAM experts view a workpiece,
they perceive it in terms of their own expertise.
These terms, called features, which are build
upon a syntax (geometry) and a semantics
(e.g. skeletal plans in manufacturing or
functional relations in design), provide an
abstraction mechanism to facilitate the
creation, manufacturing and analysis of work-
pieces. Our goal is to enable experts to repre-
sent their own feature-language via a feature-
grammar in the computer to build feature-
based systems e.g. CAPP systems. The
application of formal language terminology to
the feature definitions facilitates the use of
well-known formal language methods like
parsing in conjunction with our flexible
knowledge representation formalism FEAT-
REP.

Keywords: feature, feature recognition, fea-
ture-language, feature-grammar, Attributed
Node-Label-Controlled Graph Grammars

1. Introduction

An important step towards truely Computer
Integrated Manufacturing (CIM) is the
Computer Aided Process Planning (CAPP). A
CAPP system will use the information provi-
ded by CAD (Computer Aided Design) to

generate the process plan for the
manufacturing of the workpiece by means of
CAM (Computer Aided Manufacturing).

The solid modellers currently used in
CAD describe a workpiece only in terms of
lower-level entities like faces, edges, vertices
(topology), surfaces, lines and points
(geometry), or volumetric primitives like
cylinders or cones. While these lower-level
entities represent the complete quantitative
information about a workpiece, efficient plan-
ning strategies rely on higher-level
(qualitative) information supporting abstract
reasoning to accomplish their goals. In our
approach these higher-level entities are the so-
called features which must be extracted from
the data of the CAD models [7, 5]. In the
discussion about the role of solid modelling as
the interface between design and
manufacturing these higher-level informations
build the bridge between the workpiece
created by the designer and the process plan.
Employing features, an experts knowledge in
this domain can be suitable formalized and
used in planning systems ([3]).

The proposed system PIM (Planning In
Manufacturing) in [3] recognizes features in a
given representation of a workpiece, finds
skeletal plans associated to these features, and
refines these plans to the CLDATA code
(Cutter Location DATA) necessary for

manufacturing. This sequence of
abstractions/refinements is illustrated in figure
1 and follows the expertise model of human
experts (cf. [13]). To bridge the gap between
the geometric description e.g. represented in
STEP (STandard for the Exchange of Product
model data) and the manufacturing
instructions e.g. represented in CLDATA
code, the sequence of representations on
different abstraction levels reduces this pro-
blem to the problem of finding an associated
skeletal plan to a given workpiece represented
in terms of features. So representing and reco-
gnizing features is a necessary step to bridge
the gap between CAD and CAM. It is impor-
tant to note that in general different domains
like design, turning or milling leads to different
features and that a standardization of all
features is just unreasonable.

In this paper we show that it is possible to
describe features by means of formal lan-
guages via attributed node-label-contolled
graph grammars. The area of formal
languages is a well established field of research
and provides a powerful set of methods like
parsing and knowledge about problems, their
complexity and how they could be solved
efficiently. The use of formal languages for
feature descriptions facilitates the application
of these results to the area of feature
recognition and CAPP.

2. What are Features ?

Currently there is no consensus on a pre-
cise definition of the term feature . Most resear-
chers working in this area agree that a feature
is an abstraction of lower-level design and ma-
nufacturing information which depends on the
context of the machine shop. Features that are
required for design may differ considerably
from those required for manufacturing or
assembly, even though they may be based on
the same lower-level entities. Cunsulting
several experts of manufacturing and design
showed that these differences are reasonable.

John R. Dixon and John J. Cunningham
have defined a feature as "any geometric form
or entity that is used in reasoning in one or
more design or manufacturing activities"[6].
Tien-Chien Chang has defined a feature in his
book [5] as "a subset of geometry on an
engineering part which has a special design or
manufacturing characteristic.". Other similar
definitions of features can be found in e.g. [7].

We define the term f e a t u r e as a
description element based on geometrical and
technological data of a product which an
expert in a domain associates with certain
informations. They are firstly distinguished by
their kind as

• functional features, e.g. seat of the rolling
bearing or O-ring groove ,

• qualitative features, e.g. bars or solid work-
piece ,

• geometrical (form-) features, e.g. shoulder ,
groove or drilled hole,

• atomic features, e.g. toroidal shell , ring, shape
tolerance or surface finish .

and they are secondly distinguished by
their application as

• design features, e.g. crank or coupler,
• manufacturing features:
- turning features, e.g. shoulder or neck ,
- milling features, e.g. step or pocket,
- drilling features e.g. stepped-hole or

lowering,
- ...

• ...
Our definition follows the one of Tien-

Chien Chang [5] and is distinguished by the
emphasis on an expert in a domain. In
particular every feature will be defined by a
respective expert because his area, like
machines, tools or their characteristics, and his
ideas, creativity and experience, like special
tricks, is included in this defini tion. In this
sense features can been seen as a language of
an expert in a domain. It is important to note
that this language represents the know-how of
the expert respectively the machine shop and
that this language is an individual ("expert in a
domain" dependent) one. It is also important to
note that such a language has a syntax and a
semantics. What we interpret as syntax and
semantics of these feature-languages will be
explained in the next section. So it is
incumbent upon the XPS-shells or -tools only
to define a representation language for
features and not the features itself; they must
be defined individually for every XPS in its
individual area.

3 . Syntax and Sematic of Feature-
Languages

In the previous chapter we defined the
term feature. There also is mentioned briefly
an analogue between the feature descriptions
and (formal) languages which results in the
term feature-language . In this chapter the
syntax and semantics of feature-languages will
be described in general. Before we will discuss
the syntax it should be pointed out that the
expert chooses/creates a syntax of the features
which dependents on the information
associated with the features.

3.1 The Syntax

The first important issue about the fea-
tures is that the expert bases his definitions on
the boundary surfaces and the technological
informations of the workpiece, like tolerances
or surface finish, which are assigned to one or
more surfaces. Our representation formalism
TEC-REP ([4]) supplies these entities which
are used as atomic features. TEC-REP also
supplies a topology graph to represent the
neighbourhoodness of surfaces.

To define the geometrical features the ex-
pert uses the atomic features and the geometri-

RectAngle

#9

Cylinder Jacket Section

#7

Composed Planar Surface

#10

Cylinder Jacket Section

#6

RectAngle

#8

8

67

109

fig. 2 topology graph of a key groove

cal features itself. One simple example of fea-
tures described by an expert is shown in figure
4.

It is important to note that rules for string
grammars are only sufficient when features of
rotational symmetric parts are described; in
general graph-based rules are needed (cf.
[12]) because the features will be defined by
the topological graph of their parts. An
example can be seen in figure 2.

The descriptions of functional features are
based upon the descriptions of geometrical fea-
tures and differ in the connection to other pro-
ducts. The functionality is defined via the
description of the functional relation between
the functional feature and one or more other
products. The syntax rules of these features
differ in the additional attributes which
describe the functional relation and the
technological restrictions. The descriptions of
qualitative features are also based upon
geometrical features and represent a more
abstract description of a workpiece. Their
syntax rules differ in the addi tional attributes
which describe the technological and
geometrical restrictions. As conclusion we can
state out that the geometrical description in
addition with attributes about the context,

functionality and technology forms the syntax
of a feature.

3.2 The Semantics

Now we can describe the semantics of a
feature-language. The main thing of the fea-
tures is, that the expert associates certain in-
formations with the features. From this view
the syntax of the features can be seen as a ves-
sel to carry the information, the semantics of
the features. What kind of informations asso-
ciates the expert with his features ? This de-
pends on his working field. A designer for ex-
ample associates first the functionality and the
costs with his features. So when he says "seat
of the rolling bearing" he first describes the
syntax of the feature, e.g. geometry and tech-
nology, and secondly he describes the seman-
tics of the feature, e.g. that this part will be
used as a seat. Our research concentrates on
the semantics of the manufacturing features.
Figure 3 illustrates the analogue between the
manufacturing features and a formal language
with semantics. More information about the

semantics in design can be found in e.g. [11 &
12].

The manufacturer associates skeletal plans
and also costs with his features. We define a
skeletal plan as an abstract working plan. A
machine-ready working plan describes the
complete process necessary for the production
of a given workpiece in sufficient detail to be
carried out by a machine. A skeletal plan on
the other hand describes parts of the whole for
producing (a part of) the workpiece on
different levels of abstraction. This definition
is similar to the one in [8]. The analogue of
formal languages with the descriptions of
manufacturing features results in our CAPP-
system PIM (figure 1).

4. The Feature Representation
Language

In this section the representation language
FEAT-REP (FEATure-REPresentation) will be
presented which allows to represent the
feature-language of different experts for use in
e.g. feature-based CAPP systems like PIM.
Figures 2 and 4 illustrate some requests to
FEAT-REP via some characteristics of feature
descriptions: The first is feature interaction .

Two or more different features with equal
rights, which can be used together to describe
a feature, like left and right shoulder, may
share some mutual (identical) features, like
long turning surface. The second is that the
same geometrical structures may have different
names , e.g. groove and insertion. This results
from the semantics; the expert divides the
semantics of the same geometrical structure
into different semantical groups via different
feature-names. A third characteristic of feature
descriptions not yet illustrated is their
contextsensitivity, e.g. a long turning surface is
called a groove ground dependent of the
features around it. The forth characteristic of
feature descriptions is the f ragmentary
description : features could be described via
not directly adjoint surfaces respectively
features. This may be the result e.g. of special
tools which manufacture not directly adjoint
surfaces. Finally a characteristic of the feature
descriptions is the abstract description level.
To describe a feature an expert uses only less
geometrical and technological informations; he
uses a qualitative description. Quantitative
informations are used only when they are

Geometry -

Topology -

Technology
Syntax

Language

Pieces of text

Sentence

Word

Syntactical Categories

Workpiece

World of Products

Product

Surface

Features

Semantics Process Planing

Skeletal Plans for

Product

Skeletal Plans for

Workpiece

Skeletal Plans for

Surface

Skeletal Plans for

Features

Semantics of the

Word

Semantics of the

Sentence

Semantics of the

Pieces of text

Semantics of the

Syntactical Categories

Letters
Points -

Lines

fig. 3 The Language Analogue with Manufacturing Features

needed. FEAT-REP allows to represent all
these characteristics adequately.

4.1 Attributed Node-Label-Controlled
Graph Grammars (ANLCGG's)

Before the syntax of FEAT-REP will be
shown in the next section we briefly define as
theoretical background of our FEAT-REP an
attributed node-label-controlled graph
grammar (ANLCGG). Introduction and survey
can be found in more detail e.g. in [9].

In our paper the term (feature-)graph
means an attributed finite undirected node
labeled topology graph, in the sequel shortly
called graph. Such a graph g is formaly given

as a 4-tupel FG := (V, E, S, f), with:

V:= a finite (nonempty) set of attributed
nodes ,

E := {(x, y)| x, y ™ V, x is directly topological

connected to y} ∑ V ≈ V, a finite set of
edges ,S := {names of TEC-REP}˙{names of FEAT-
REP}, a finite (nonempty) alphabet of
node labels or node sorts andf : V µ S := a labeling function respectively a
sort function.

For v ™ V, f(v) is the sort of v. v together

with f(v) forms an entity of TEC-REP or
FEAT-REP. The class of all graphs with the

alphabet of node sorts of S is denoted by GS .

For a graph g = (V, E, S , f) the unlabeled
graph g' := (V, E), which results from g by
eleminating the node labels, is called the
underlying graph of g and denoted by
g' := unl(g).

An attributed node-label-controlled
(feature-)graph grammar (ANLCGG) is a 4-
tuple FGG := (T, N, P, S), with:

T:= {entities of TEC-REP}, a finite
(nonempty) set of terminals ,

N:= {entities of FEAT-REP}, a finite
(nonempty) set of non-terminals ,

P:= a finite set of productions and

S ™ N is a node, called the start node.

We assume T œ N = Ø and T ̇N = V. Note
that a featuregraph over T describes a workpiece.

A production p ™ P is a 4-tuple p := (l, r, e, c)

where l is a (nonempty) graph over T ˙ N, called
the left hand side and r is a (nonempty) graph

over T ˙ N, called the right hand side. p ™ P is

called contextfree if l ™ N, else p is called

contextsensi tive . Note that every production p ™
P defines an entity of FEAT-REP, say a feature.e i s an embedding specification which
determines how the left hand side graph will be
joined to the intermediate graph. c is a finite set
of constraints over l and r, the so-called local
dependency relations.

A production p = (l, r, e , c) ™ P is applied
to a featuregraph g by
• searching for a subgraph r' of g with
- unl(r') = unl(r),
- for every isomorphic nodes v' of r' and v of rf(v') = f(v) and
- the set of constraints c is solvable,
• removing r' (and all adjacent edges) from g

(leaving the intermediate graph g \ r'),
• adding l', an isomorphic copy of l disjoint

from g, and finally

#12 #18 #19#11

ring #14 ring #16
cylinder

jacket #13

cylinder

jacket #15

cylinder

jacket #17

left shoulder right shoulder

insertion

flank
ground of

a groove

long turning

surface
long turning

surface
flank

right shoulder

insertion

step stepstep

shaft

fig. 4 Description of a shaft in terms of an experts features

• adding the embedding edges between l' and

g \ r' specified by e, resulting in a new
graph g'.

g directly concretely derives g' by
replacing graph r' with l' using p, denoted by g˜ p g'. Note that the application of a
production p to a featuregraph g result in a
"shrinking" of g to g': The graph r' describing
the feature L' (L' a node of l') is shrinked to
the node L'. Every adjacent edge to r' is then
adjacent to L'. One key feature of ANLCGG's
is that both, the rewriting of a subgraph and
the embedding of a newly introduced
subgraph are controlled by node sorts.

4.2 The Syntax of FEAT-REP

Now the syntax of FEAT-REP is shown.
In this (formal) language a knowledge
engineer can represent the experts knowledge
about the structure hierachies and
manufacturing qualities of workpieces. The
characteristics of the features (feature
interaction, different names, contextsensitivity,
fragmentary description and abstract
description) could be represented adequately.

What can be used as the quantitative level
of FEAT-REP ? The Boundary
Representation (B-Rep) serves as a basis for
the most feature representations in the feature-
based systems, i. e. the boundary surfaces of a
workpiece are the atomic geometrical entities
which are used to describe features. There are
also efforts in research to use Constructive
Solid Geometry (C S G) as the atomic
geometrical entities (cf. [14]). In this paper
TEC-REP serves as basis of FEAT-REP which
is based on the B-Rep. FEAT-REP itself is a
frame like language which is illustrated below.

Feature → Qualitative_Feature | Functio-
nal_Feature | Geometrical_Feature

Qualitative_Feature →

Featurename: featurename
Featuretype: featuretype
{Specialize_Feature: featurename}
{Subsumes_Features:
(list_of_featurenames)}
{is_part_of: (list_of_featurenames)}
{has_parts: (list_of_featurenames)}
{Feature_Rule:
(set_of_feature_graph_grammar_rules)}
{Rule_Attributes:
(list_of_rule_attributes)}
{Embedding_Specifications:
(list_of_embedding_specifications)}
{Described_Feature: featurename}
Description:
(list_of_qualitative_constraints)
{Feature_Context:
(list_of_context_constraints)}

Functional_Feature →
Featurename: featurename
Featuretype: featuretype
{Specialize_Feature: featurename}
{Subsumes_Features:
(list_of_featurenames)}
{is_part_of: (list_of_featurenames)}
{has_parts: (list_of_featurenames)}
{Feature_Rule:
(set_of_feature_graph_grammar_rules)}
{Rule_Attributes: (list_of_rule_attributes)}
{Embedding_Specifications:
(list_of_embedding_specifications)}
{Described_Feature: featurename}
Description:
(list_of_functional_constraints)
{Feature_Context:
(list_of_context_constraints)}

Geometrical_Feature →
Featurename: featurename
Featuretype: featuretype
{Specialize_Feature: featurename}
{Subsumes_Features:
(list_of_featurenames)}
{is_part_of: (list_of_featurenames)}
has_parts: (list_of_featurenames)
Feature_Rule:
(set_of_feature_graph_grammar_rules)
Rule_Attributes: (list_of_rule_attributes)
{Embedding_Specifications:
(list_of_embedding_specifications)}
{Feature_Context:
(list_of_context_constraints)}

Featurename and Featuretype together
identify the feature. The featurenames are
given by the expert; the featuretypes are the
differentations in the definition of the term
feature, like geometrical drilling feature or
f u n c t i o n a l d e s i g n feature. Via
Specialize_Feature and Subsumes_Features a
hierachical structure over the features is
constructed. This structure is generated and
managed by a KL-ONE like conceptual
language formalism called TAXON [2].
Is_part_of and Has_parts makes the part-of
relation explicit. It is a redundant information
like Subsumes_Features, too, and helps to
make it easier to read the feature descriptions.
Feature_rule is a set of alternative graph
grammar rules which describes the
featuregraph. Via this rule the parts of a
feature are set into a (topological) relation.
The attributes of a rule are divided via
Rule_Attributes and Feature_Context into the
attributes which depend only on the data of
the featureparts itself and the attributes which
depend on the data of the feature context. The
context also includes informations about
machines or tools. When Embedding_ Specifi-
cations is not specified, the default specifica-
tion is used: Every adjacent edge to the right
hand side of the rule is adjacent to the left
hand side of the rule. Described_Feature is the
link to the geometrical features but the
underlaying geometry can also be described
explicitly. Description is the list of the
functional or qualitative constraints which
describe the feature.

An example of the turning feature inser-
tion is given below and illustrated in figure 4.

Featurename: insertion
Featuretype: geometrical turning feature
Subsumes_Features: (O-ring_groove)
is_part_of: (left_shoulder,
right_shoulder, long_turning_surface, step)
has_parts: (left_shoulder, right_shoulder
)
Feature_Rule: ((((insertion),
(left_shoulder, right_shoulder)),
((insertion), (left_shoulder_insertion,
right_shoulder))))
Rule_Attributes: (nil)

5. Feature Recognition

As proposed in the previous sections the
importance of feature recognition in manufac-
turing stems from the fact that each feature can
be associated with knowledge about how the
feature should be manufactured; this informa-
tion can be used to generate a process plan.
From this point of view feature recognition
forms a major component of the CAD/CAM
interface for CAPP. In this paper we
concentrated on the recognition of geometrical
and quali tative features; the functional
features are important for design only.
Working with manufacturing features means
to recognize these features from the CAD data
to generate a working plan. Working with
design features means to construct by means of
these features and to expand them to the CAD
data. The most recent developments in this
research field can be read in e.g. [5] and [1].

Within our current research the features
will be recognized or expanded by parsing
methods which are based on graph matching
methods and heuristics (background know-
ledge). This is facilitated through the represen-
tation of the feature definitions in a well-
formed attributed node-label-controlled graph
grammar. The feature-parser finds the
complete set of features derivable from the
productions of an ANLCGG given the
grammar and a workpiece described in the
terms of TEC-REP (an augmented topology
graph representing the geometry and
technology of a workpiece). So the problem of
feature recognition is the problem of finding
isomorphic subgraphs, in general a NP-
complete problem. But it become solvable in

O(nx) time using e.g. the method described in
[10]: "The technique is, to incorporate
a p p l i c a t i o n d e p e n d e n t knowledge
systematically ...". The detail of the feature
recognition algorithm will be published in a
separate paper.

One problem that arises in the CAPP
systems from the integration of CAD and
CAM is that a workpiece must be transformed
through different feature-languages, e.g. the
one of a designer, a driller or a turner. On this
way the workpiece passes different qualitative
description languages. The gap between the
single qualitative levels will be brigded by a
quantitative description level, e.g. TEC-REP.
This level contains all information needed to
generate another qualitative description of the
workpiece. But why forget the previous quali-
tative description? So when another qualitative
description of the workpiece will be generated,
the previous qualitative description could be
used to make this generation more efficient. In
figure 5 this method is illustrated.

Design Features

qualitative level
Surfaces, Technology,...

quantitative level
Manufacturing Features

qualitative level

fig. 5 Getting from one qualitative description to the other

For example when a designer constructs a
Seeger circlip ring groove the same geometry
can be seen as groove by the manufacturer;
only the feature-names and the semantics must
be changed. This method will be integrated in
the feature recognition algorithm.

6. Conclusion

In our work we show that formal langua-
ges are useable to represent feature descripti-
ons. The graph grammar based formalism
FEAT-REP is a powerful and general tool to
represent feature descriptions. A feature lan-
guage defined in this fomalism represents a
link between the quantitative (low-level) geo-
metrical/technological representation and the
qualitative (high-level) abstractions, as qualita-
tive entities are expressed in terms of quantita-
tive ones. Because the quantitative description
of a workpiece can be seen as a topological
graph, the features can be recognized by
graph-based parsing.

In future research a domain dependent
graph-based parsing algorithm will be develo-
ped. Currently, a small feature-grammar of
one of our experts has been implemented using
the extended D-PATR system, a formalism to
represent unification-based grammars. Our
quantitative representation formalism TEC-

REP serves as a lexicon in this system.

7. References

[1] Anderson, D.C. and Henderson, M.R.:
Computer Recognition and Extraction
of Form Features: A CAD/CAM Link .
Computers in Industry (6) 4 (1984),
315-325.

[2] Baader, F. and Hanschke, P.: A
Scheme for Integrating Concrete
Domains into Concept Languages. In
International Joint Conference on AI,
1991.

[3] Bernardi, A., Klauck, C., and
Legleitner, R.: PIM: Planning in
Manufacturing. In f o r t h c o m i n g ,
DFKI�GmbH, 1991.

[4] Bernardi, A., Klauck, C., and
L e g l e i t n e r , R . : TEC-REP:
Repräsentation von Geometrie- und
Technologieinformationen. Dokument,
D-91-07 Deutsches Forschungszentrum
für Künstliche Intelligenz GmbH,
Postfach 20 80, D-6750 Kaiserslautern,
june, 1991.

[5] Chang, T.C.: Expert Process Planning
for Manufacturing, Addison-Wesley
(1990).

[6] Cunningham, J.J. and Dixon, J.R.:
Designing with features: the origin of
features. In International Computers in
Engineering Conference and
Exhibition, july/august 1988, pp. 237-
243.

[7] Dixon, J.R. and Finger, S.: A Review
of Research in Mechanical Engineering
Design. Part II :Representations,
Analysis, and Design for the Life
Cycle . Engineering DesignSpringer-
Verlag New York Inc. (1) 2 (1989),
121-137.

[8] Friedland, P.E. and Iwasaki, Y.: The
Concept and Implementation of
Skeletal Plans . Journal of Automated
Reasoning (1)(october 1985), 161-208.

[9] Goos, G. and Hartmans, J. (Eds).
Graph-Grammars a n d T h e i r
Application to Computer Science. H.
Ehrig and M. Nagl and G. Rozenberg
and A. Rosenfeld, december 1986.

[10] Kaul, M.: Practical Applications of
Precedence Graph Grammars. In
Graph-Grammars a n d T h e i r
Application to Computer Science,
Goos, G. and Hartmans, J., H. Ehrig
and M. Nagl and G. Rozenberg and A.
Rosenfeld, december 1986, pp. 326-
342.

[11] Mullins, S. and Rinderle, J.R.:
Grammatical Approaches to
Engineering Design, Part I: An
Introduction and Commentary .
Research in Engineering Design 2
(1991), 121-135.

[12] R i n d e r l e , J . R . : Grammatical
Approaches to Engineering Design,
Part II: Melding Configuration and
Parametric Design Using Attribute
Grammars. Research in Engineering
Design 2 (1991), 137-146.

[13] Tengvald, E.: The Design of Expert
Planning Systems: An Experimental
Operations Planning System for
T u r n i n g , Ph.D. dissertation,
Lingköping University, Department of
C o m p u t e r a n d Information
ScienceLinköping UniversityS-58183
Linköping, Sweden, 1984.

[14] Woodwark, J.R.: Some speculations on
feature recognition . Computer Aided
Design (20) 4 (may 1988), 189-196.

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

DFKI
-Bibliothek-
PF 2080
67608 Kaiserslautern
FRG

DFKI Publikationen

Die folgenden DFKI Veröffentlichungen sowie
die aktuelle Liste von allen bisher
erschienenen Publikationen können von der
oben angegebenen Adresse oder per
anonymem ftp von ftp.dfki.uni-kl.de
(131.246.241.100) unter pub/Publications
bezogen werden.
Die Berichte werden, wenn nicht anders
gekenn-zeichnet, kostenlos abgegeben.

DFKI Publications

The following DFKI publications or the list of
all published papers so far are obtainable from
the above address or per anonymous ftp
from ftp.dfki.uni-kl.de (131.246.241.100)
under pub/Publications.
The reports are distributed free of charge
except if otherwise indicated.

DFKI Research Reports

RR-92-49
Christoph Klauck, Ralf Legleitner, Ansgar
Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR-92-50
Stephan Busemann:
Generierung natürlicher Sprache
61 Seiten

RR-92-51
Hans-Jürgen Bürckert, Werner Nutt:
On Abduction and Answer Generation
through Constrained Resolution
20 pages

RR-92-52
Mathias Bauer, Susanne Biundo, Dietmar
Dengler, Jana Koehler, Gabriele Paul: PHI - A
Logic-Based Tool for Intelligent Help Systems
14 pages

RR-92-53
Werner Stephan, Susanne Biundo:
A New Logical Framework for Deductive
Planning
15 pages

RR-92-54
Harold Boley: A Direkt Semantic
Characterization of RELFUN
30 pages

RR-92-55
John Nerbonne, Joachim Laubsch, Abdel
Kader Diagne, Stephan Oepen: Natural
Language Semantics and Compiler
Technology
17 pages

RR-92-56
Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR-92-58
Franz Baader, Bernhard Hollunder:
How to Prefer More Specific Defaults in
Terminological Default Logic
31 pages

RR-92-59
Karl Schlechta and David Makinson: On
Principles and Problems of Defeasible
Inheritance
13 pages

RR-92-60
Karl Schlechta: Defaults, Preorder Semantics
and Circumscription
19 pages

RR-93-02
Wolfgang Wahlster, Elisabeth André,
Wolfgang Finkler, Hans-Jürgen Profitlich,
Thomas Rist:
Plan-based Integration of Natural Language
and Graphics Generation
50 pages

RR-93-03
Franz Baader, Berhard Hollunder, Bernhard
Nebel, Hans-Jürgen Profitlich, Enrico
Franconi:
An Empirical Analysis of Optimization
Techniques for Terminological Representation
Systems
28 pages

RR-93-04
Christoph Klauck, Johannes Schwagereit:
GGD: Graph Grammar Developer for features
in CAD/CAM
13 pages

RR-93-05
Franz Baader, Klaus Schulz: Combination
Tech-niques and Decision Problems for
Disunification
29 pages

RR-93-06
Hans-Jürgen Bürckert, Bernhard Hollunder,
Armin Laux: On Skolemization in Constrained
Logics
40 pages

RR-93-07
Hans-Jürgen Bürckert, Bernhard Hollunder,
Armin Laux: Concept Logics with Function
Symbols
36 pages

RR-93-08
Harold Boley, Philipp Hanschke, Knut
Hinkelmann, Manfred Meyer: COLAB: A
Hybrid Knowledge Representation and
Compilation Laboratory
64 pages

RR-93-09
Philipp Hanschke, Jörg Würtz:
Satisfiability of the Smallest Binary Program
8 Seiten

RR-93-10
Martin Buchheit, Francesco M. Donini,
Andrea Schaerf: Decidable Reasoning in
Terminological Knowledge Representation
Systems
35 pages

RR-93-11
Bernhard Nebel, Hans-Juergen Buerckert:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of Allen's
Interval Algebra
28 pages

RR-93-12
Pierre Sablayrolles: A Two-Level Semantics
for French Expressions of Motion
51 pages

RR-93-13
Franz Baader, Karl Schlechta:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach
25 pages

RR-93-14
Joachim Niehren, Andreas Podelski,Ralf
Treinen: Equational and Membership
Constraints for Infinite Trees
33 pages

RR-93-15
Frank Berger, Thomas Fehrle, Kristof
Klöckner, Volker Schölles, Markus A. Thies,
Wolfgang Wahlster: PLUS - Plan-based User
Support
Final Project Report
33 pages

RR-93-16
Gert Smolka, Martin Henz, Jörg Würtz:
Object-Oriented Concurrent Constraint
Programming in Oz
17 pages

RR-93-17
Rolf Backofen:
Regular Path Expressions in Feature Logic
37 pages

RR-93-18
Klaus Schild: Terminological Cycles and the

Propositional m-Calculus
32 pages

RR-93-20
Franz Baader, Bernhard Hollunder:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

RR-93-22
Manfred Meyer, Jörg Müller:
Weak Looking-Ahead and its Application in
Computer-Aided Process Planning
17 pages

RR-93-23
Andreas Dengel, Ottmar Lutzy:
Comparative Study of Connectionist
Simulators
20 pages

RR-93-24
Rainer Hoch, Andreas Dengel:
Document Highlighting —
Message Classification in Printed Business
Letters
17 pages

RR-93-25
Klaus Fischer, Norbert Kuhn: A DAI
Approach to Modeling the Transportation
Domain
93 pages

RR-93-26
Jörg P. Müller, Markus Pischel: The Agent
Architecture InteRRaP: Concept and
Application
99 pages

RR-93-27
Hans-Ulrich Krieger:
Derivation Without Lexical Rules
33 pages

RR-93-28
Hans-Ulrich Krieger, John Nerbonne,
Hannes Pirker: Feature-Based Allomorphy
8 pages

RR-93-29
Armin Laux: Representing Belief in Multi-
Agent Worlds viaTerminological Logics
35 pages

RR-93-33
Bernhard Nebel, Jana Koehler:
Plan Reuse versus Plan Generation: A
Theoretical and Empirical Analysis
33 pages

RR-93-34
Wolfgang Wahlster:
Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-35
Harold Boley, François Bry, Ulrich Geske
(Eds.): Neuere Entwicklungen der
deklarativen KI-Programmierung —
Proceedings
150 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

RR-93-36
Michael M. Richter, Bernd Bachmann, Ansgar
Bernardi, Christoph Klauck, Ralf Legleitner,
Gabriele Schmidt: Von IDA bis IMCOD:
Expertensysteme im CIM-Umfeld
13 Seiten

RR-93-38
Stephan Baumann: Document Recognition of
Printed Scores and Transformation into MIDI
24 pages

RR-93-40
Francesco M. Donini, Maurizio Lenzerini,
Daniele Nardi, Werner Nutt, Andrea Schaerf:
Queries, Rules and Definitions as Epistemic
Statements in Concept Languages
23 pages

RR-93-41
Winfried H. Graf: LAYLAB: A Constraint-
Based Layout Manager for Multimedia
Presentations
9 pages

RR-93-42
Hubert Comon, Ralf Treinen:
The First-Order Theory of Lexicographic Path
Orderings is Undecidable
9 pages

RR-93-44
Martin Buchheit, Manfred A. Jeusfeld,
Werner Nutt, Martin Staudt: Subsumption
between Queries to Object-Oriented Databases
36 pages

RR-93-45
Rainer Hoch: On Virtual Partitioning of Large
Dictionaries for Contextual Post-Processing to
Improve Character Recognition
21 pages

RR-93-46
Philipp Hanschke: A Declarative Integration
of Terminological, Constraint-based, Data-
driven, and Goal-directed Reasoning
81 pages

DFKI Technical Memos

TM-92-01
Lijuan Zhang: Entwurf und Implementierung
eines Compilers zur Transformation von
Werkstückrepräsentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication
and Introspection in a Multi-Agent
Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jürgen Müller, Jörg Müller, Markus Pischel,
Ralf Scheidhauer:
On the Representation of Temporal
Knowledge
61 pages

TM-92-05
Franz Schmalhofer, Christoph Globig, Jörg
Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kühn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM-93-01
Otto Kühn, Andreas Birk: Reconstructive
Integrated Explanation of Lathe Production
Plans
20 pages

TM-93-02
Pierre Sablayrolles, Achim Schupeta:
Conlfict Resolving Negotiation for
COoperative Schedule Management
21 pages

TM-93-03
Harold Boley, Ulrich Buhrmann, Christof
Kremer:
Konzeption einer deklarativen Wissensbasis
über recyclingrelevante Materialien
11 pages

TM-93-04
Hans-Günther Hein: Propagation Techniques
in WAM-based Architectures — The FIDO-
III Approach
105 pages

DFKI Documents

D-92-24
Jürgen Müller, Donald Steiner (Hrsg.):
Kooperierende Agenten
78 Seiten

D-92-25
Martin Buchheit: Klassische Kommunikations-
und Koordinationsmodelle
31 Seiten

D-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls
mit Hilfe des Constraint-Systems CONTAX
28 Seiten

D-92-27
Martin Harm, Knut Hinkelmann, Thomas
Labisch: Integrating Top-down and Bottom-up
Reasoning in COLAB
40 pages

D-92-28
Klaus-Peter Gores, Rainer Bleisinger: Ein
Modell zur Repräsentation von
Nachrichtentypen
56 Seiten

D-93-01
Philipp Hanschke, Thom Frühwirth:
Terminological Reasoning with Constraint
Handling Rules
12 pages

D-93-02
Gabriele Schmidt, Frank Peters,
Gernod Laufkötter: User Manual of COKAM+
23 pages

D-93-03
Stephan Busemann, Karin Harbusch(Eds.):
DFKI Workshop on Natural Language
Systems: Reusability and Modularity -
Proceedings
74 pages

D-93-04
DFKI Wissenschaftlich-Technischer
Jahresbericht 1992
194 Seiten

D-93-05
Elisabeth André, Winfried Graf, Jochen
Heinsohn, Bernhard Nebel, Hans-Jürgen
Profitlich, Thomas Rist, Wolfgang Wahlster:
PPP: Personalized Plan-Based Presenter
70 pages

D-93-06
Jürgen Müller (Hrsg.):
Beiträge zum Gründungsworkshop der
Fachgruppe Verteilte Künstliche Intelligenz
Saarbrücken 29.-30. April 1993
235 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-93-07
Klaus-Peter Gores, Rainer Bleisinger:
Ein erwartungsgesteuerter Koordinator zur
partiellen Textanalyse
53 Seiten

D-93-08
Thomas Kieninger, Rainer Hoch: Ein
Generator mit Anfragesystem für strukturierte
Wörterbücher zur Unterstützung von
Texterkennung und Textanalyse
125 Seiten

D-93-09
Hans-Ulrich Krieger, Ulrich Schäfer:
TDL ExtraLight User's Guide
35 pages

D-93-10
Elizabeth Hinkelman, Markus
Vonerden,Christoph Jung: Natural Language
Software Registry
(Second Edition)
174 pages

D-93-11
Knut Hinkelmann, Armin Laux (Eds.):
DFKI Workshop on Knowledge
Representation Techniques — Proceedings
88 pages

D-93-12
Harold Boley, Klaus Elsbernd, Michael
Herfert, Michael Sintek, Werner Stein:
RELFUN Guide: Programming with Relations
and Functions Made Easy
86 pages

D-93-14
Manfred Meyer (Ed.): Constraint Processing –
Proceedings of the International Workshop at
CSAM'93, July 20-21, 1993
264 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-93-15
Robert Laux: Untersuchung maschineller
Lernverfahren und heuristischer Methoden im
Hinblick auf deren Kombination zur
Unterstützung eines Chart-Parsers
86 Seiten

D-93-20
Bernhard Herbig:
Eine homogene Implementierungsebene für
einen hybriden
Wissensrepräsentationsformalismus
97 Seiten

D-93-21
Dennis Drollinger:
Intelligentes Backtracking in Inferenzsystemen
am Beispiel Terminologischer Logiken
53 Seiten

