
Improved Network Traffic Classification
Using Ensemble Learning

Isadora P. Possebon⇤, Anderson S. Silva⇤, Lisandro Z. Granville⇤, Alberto Schaeffer-Filho⇤, Angelos Marnerides†
⇤ Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Email: {ippossebon, assilva, granville, alberto}@inf.ufrgs.br
†School of Computing and Communications, Lancaster University, United Kingdom

Email: angelos.marnerides@lancaster.ac.uk

Abstract—Despite the large number of research efforts that
applied specific machine learning algorithms for network traffic
classification, recent work has highlighted limitations and partic-
ularities of individual algorithms that make them more suitable
to specific types of traffic and scenarios. As such, an important
topic in this area is how to combine individual algorithms using
meta-learning techniques in order to obtain more robust traffic
classification metrics. This paper presents a comparative analysis
among meta-learning approaches and individual classifiers to
classify network traffic. We investigate and evaluate a range
of meta-learning techniques, including Voting, Stacking, Bagging
and Boosting. We then propose a new experimental analysis
of different meta-learning techniques - also known as ensemble
learners - and compare them with their own base classifiers when
used individually. Finally, considering the emerging popularity of
Neural Networks, we analyze this scenario using the Multi-layer
Perceptron classifier. The experiments were performed with data
provided by the UCI Machine Learning Repository. The best
performance was obtained by an ensemble technique (Bagging),
which obtained accuracy of 99.972% and false positive rate of
0.00018%.

I. INTRODUCTION

One of the main challenges in automating the detection and
classification of anomalies in modern computer networks is the
fact that different anomalies present diverse spatio-temporal
network traffic characteristics; as such, a single detection and
classification process is unlikely to be effective [1]. It is also
resource intensive and actually infeasible to precisely describe
all anomalies of a domain, since the set of anomalies does
not remain the same; new anomalies typically emerge when
system domains evolve with new features, enhancements, and
fixes. Still, because new features continue to appear over
time, anomaly detection systems should be flexible enough
to accommodate new conditions, instead of being restricted to
a steady set of predefined anomalies. One of the approaches
that have been used to cope with this scenario is the use of
machine learning-based classifiers [2].

Research in the area shows that anomalies can be detected,
to some extent, by base classifiers individually [1]. In order for
traffic classifiers to acquire new skills and adapt to different
environments, they should learn from previous experiences
rather than considering each isolated classification task. This
learning-to-learn (meta-learning) [3] approach is a critical step
for achieving versatile traffic classifiers. This topic has become

especially attractive based on the premise that meta-classifiers
are often more accurate than the individual classifiers that
make them up [4]. The area of meta-learning is also known
as ensemble learning [5].

Ensemble learning includes a wide range of research efforts
that seek to find the best methods to build combinations of
classifiers [6]. Works such as [7] and [8] started to investigate
meta-learning techniques in the context of network traffic
classification. However, they considered a more limited set
of meta-learning techniques. In this paper, we present a
comparative study between different meta-learning techniques
and individual classifiers within the scope of network traffic.
Thus, we can determine the best technique to be used in this
context. The classifiers are employed to distinguish normal
from attack traffic from a data set containing real traffic data.
For this, we selected four meta-learning techniques commonly
presented in the literature, defined the base classifiers to be
used, compared the performance of these techniques among
each other, and also the execution of the same base classifiers
when used individually.

The main contributions of this paper are: (i) a study of
the state-of-the-art and an investigation of the main existing
techniques for meta-learning, (ii) an architecture that classifies
network flows using different techniques of ensemble learning,
and (iii) a comparative study between the application of meta-
learning techniques and base classifiers.

This paper is organized as follows. In Section 2, we present
the theoretical basis for this work. In Section 3, we propose an
architecture for network traffic classification using ensemble
learners. In Section 4, we present experimental results and
associated analysis. Finally, in Section 5, we discuss the
conclusions and final considerations of this work.

II. BACKGROUND AND RELATED WORK

For the purposes of this paper, a network anomaly is a
sudden deviation from the normal behavior of the observed
network traffic [9]. Different network anomalies can manifest
through specific deviations in the traffic features of network
flows. For example, DoS attacks might have low interarrival
time (time between the arrival of two packets), while port
scanning attacks could be identified by multiple requests for
different ports sent from the same source. Algorithms based on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/196590865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pre-established models (rule-based techniques that work under
some heuristics) are restricted to the detection of pre-defined
anomalies and are too sensitive to any changes in the nature of
traffic, which may lead the monitored flow to be misclassified.
On the other hand, learning algorithms are able to learn the
most relevant metrics and to identify possible variations of a
stream considered normal.

Previous research efforts already used ensemble learning
techniques to detect anomalies. For instance, The work pre-
sented in [10] proposes an Intrusion Detection System (IDS)
based on ensemble learning. Each base classifier is trained
with a distinct set of features that represents patterns of
the data set. Then, the results from each base classifier are
combined. This is motivated by the observation that experts
combine attack characteristics from different sets of features
to generate new attacks. Three different combination rules
were used: majority voting, mean and belief function call -
probabilistic estimates based on observed patterns. The authors
evaluated their proposal with the DARPA 1998 data set. The
results showed that ensemble learners are able to reduce the
overall error rate, but also decrease the generalization capacity
of the system.

In the area of network traffic classification, existing work
exploring the use of meta-learning is limited to the use of
Stacking and Voting techniques [11] [8], or only execute
experiments with ensemble classifiers that have the same
paradigms (variations of the same base classifier) [12].

He et al. [11] present a new machine learning model that
combines meta-learning with co-training techniques (semi-
supervised technique, which uses several training subsets,
where only some of them are classified). This work compares
previous approaches that use individual classifiers with the
new proposal. This helps overcome three major shortcomings:
limited flow precision rate, low adaptability of machine learn-
ing techniques, and the need for a set of classified training
data. The data set, like the work proposed here, is represented
by a set of features extracted from flow records. Experiments
showed the effectiveness of the technique.

In addition, the work of Wang et al. [8] proposes a clas-
sification approach based on subflow characteristics, using
meta-learning. A flow truncation method was developed for
real-time processing, and an aggregation machine learning
system based on the accuracy of each classifier for different
applications. The authors performed experiments with real
data, which verify the effectiveness of the proposed methods.
The final result shows that the proposed method performs, on
average, 8% better than the base classifiers used, and about
3% better than the best of the base classifiers used.

Finally, Gmez et al. [12] also use ensemble learning for
classifying network traffic. The authors compare the per-
formance of seven popular ensemble algorithms based on
Decision Trees, focusing on model accuracy, latency and byte
accuracy (total number of bytes it transfers). They show that
some of these algorithms overcome single Decision Tree in
terms of model accuracy and byte accuracy. Additionally, a
novel ensemble classifier is presented. This classifier is able

to exploit imbalanced populations presented in traffic networks
data sets to achieve a faster classification. Results show that
ensemble techniques can, in fact, present better accuracy and
low latency results.

In contrast to the above works, we aim to study the
impact of the use of ensemble learners in different metrics –
accuracy, precision, recall, false positives and negatives, true
positives and negatives, error rate and F1-score – considering
an extended set of ensemble learning techniques. Differently
from the research efforts described above, the performance

of the base classifiers when used individually and Multi-layer

Perceptron classifier was also measured.

III. DESIGNING A META-LEARNING BASED SYSTEM FOR
CLASSIFYING NETWORK TRAFFIC

The area of meta-learning is also known as ensemble
learning, and it consists of combining different classifiers, with
the goal of achieving better performance. In the context of
this work, the anomaly detection process is performed offline,
i.e., based on previously collected data and using supervised
classifiers. The process consists in, given a set of labeled data,
composing a training set for the system. This training set is
used for training base classifiers and some of the ensemble
learning techniques. Next, the validation set is classified by all
classifiers in the system. The final stage consists in analyzing
the results to compare the performance of the classifiers.

The following subsections present a brief description of
the meta-learning techniques considered, and the proposed
architecture for classifying network traffic using ensemble
learning.

A. Meta-learning

In this section, we review the main meta-learning concepts
and the four techniques used in the proposed architecture.
Meta-learning can be defined as learning from information
generated by other learning systems [3]. This experience
is obtained through the exploitation of data extracted from
other learning systems or even from different domains of
the problem. The task of a system that applies meta-learning
techniques is to combine the different classifiers, i.e., to learn
an integration rule based on the behavior of the trained
classifiers. Meta-learning can be employed with a variety of
classifier combination configurations and techniques. The main
meta-learning techniques available in the literature are:

1) Voting: Each base classifier is entitled to one vote and
the classification with the highest number of votes is the final
prediction. For this approach, an arbitrary number of classifiers
may be used. If there’s an even number of classifiers, a tie-
break rule should be determined. The Voting technique is the
most simple meta-learning approach, and consists of verifying,
for a given instance, which was the most voted prediction. The
most voted prediction is elected the final prediction for this
instance.

2) Stacking: The process works with a layered architecture
[13]. Each layer is composed by one or more classifiers. The
prediction of a layer is used to extend the original feature

vector of the corresponding instance. Figure 1 represents the
two-tier architecture we used. The first layer consists of 3 clas-
sifiers: SVM, KNN and Decision Tree. Each of these classifiers
is trained with a subset of instances. Given a new instance to
be classified, each classifier will produce a prediction. The
predictions of these classifiers are then combined by majority
voting. The resulting prediction is used to extend the feature
vector of this instance, and this vector is the input for the next
layer, which is the Decision Tree classifier. Finally, with this
new feature vector, the Decision Tree will predict a class for
this same instance. The prediction of this last layer is the final
prediction for the instance.

SVM

KNN

Decision
Tree

Majority
Vote

P_SVM(i)

P_KNN(i)

P_DT(i)

i = F Decision
Tree

P_L1(i)
P(i)

Level 1: Base classifiers Level 2: Meta-classifier

Fig. 1. Stacking using SVM, KNN and Decision Tree as the base classifiers
at the first level, and Decision Tree at the second level.

3) Bootstrap Aggregating (Bagging): Bagging is a tech-
nique that generates a combination of classifiers by manipulat-
ing the training set provided to a base classifier. It consists of
selecting a single base classifier and invoking it several times,
using different training sets [14]. In this method different
subsets of training data are created. These subsets are formed
by randomly selected instances of the original training set.
Each training subset is used to train a base classifier. The
predictions of each of the base classifiers are combined by a
predefined combination rule.

P_DT(i)

Training set

P(i)

Training
set n

Training
set n’

Training
set n’’

P_DT’(i) P_DT’’(i)

Decision
Tree’’

Majority
Vote

Decision
Tree’

Decision
Tree

Fig. 2. Bagging using Decision Tree as the base classifier.

Figure 2 shows the process of classifying an instance i,
represented by the set of features F. The meta-classifier con-
sists of a combination rule (in the example, majority voting)
to combine these different predictions and provide the final
classification P(i) of instance i.

4) Boosting: Unlike the Bagging strategy, Boosting creates
different base classifiers through a process in which the

instances of the data set sequentially receive new weights.
In the first step, all instances are initialized with uniform
weights. After this initialization, each iteration adapts a base
classifier to the training instances with their respective weights.
The error is computed and the weight of the correctly sorted
instances is reduced, while the weight of the incorrectly
sorted instances is increased. The final model obtained by the
Boosting technique is a linear combination of several base
classifiers, weighted for their best performance. This process
is repeated until the desired accuracy is achieved or until no
improvement is achieved. The version of Boosting used in this
work is AdaBoost [15].

B. Ensemble learning architecture for traffic classification

In this section, we detail the proposed architecture for
traffic classification using ensemble learning, considering the
aspects presented in the previous sections. The meta-learning
techniques used are Voting, Stacking, Bagging and Boosting.
Figure 3 illustrates the concept and the following subsections
provide details about it.

1) Data collection and labeling: Considering that we rely
on supervised learning, a set of already classified data is
needed. The data set used in these project was obtained from
Meidan et al. [16]. Originally, the authors aimed distinguish-
ing between benign and Malicious traffic data by means of
anomaly detection techniques, but they were able to detect 10
different attacks a part from normal traffic. For the purpose
of this work, we focus on the distinction of anomalous traffic
into one single class, thus one instance is classified as normal
or anomalous according to its features.

Data collection. This data set was obtained from a novel
network-based anomaly detection method which extracts be-
havior snapshots of the network and uses deep autoencoders
to detect anomalous network traffic emanating from com-
promised IoT devices. The authors were able to infect nine
commercial IoT devices with two of the most widely known
IoT-based botnets, Mirai and BASHLITE [16].

Feature extraction and data labeling. For each packet, a
behavioral snapshot of the hosts and protocols that commu-
nicated this packet is taken. The snapshot obtains the packets
context by extracting 115 traffic statistics over several temporal
windows to summarize all of the traffic that has (1) originated
from the same IP in general, (2) originated from both the
same source MAC and the same IP address, (3) been sent
between the source and destination IPs (channel), and (4)
been sent between the source to destination TCP/UDP sockets
(socket). The 115 attributes for each instance are generated
from an extraction of the same set of 23 features from five
time windows of the most recent 100ms, 500ms, 1.5sec, 10sec,
and 1min. These 23 features include packet size, packet count
and packet jitter (the amount of time between packet arrivals).
All data used for this research is available at UCI Machine
Learning Repository1.

1https://archive.ics.uci.edu/ml/datasets/detection of IoT botnet attacks N BaIoT

MLP KNN DT

Voting

Meta-learning

MLP KNN DT

Stacking Bagging

DT

Base classifiers

Boosting
MLP

KNN

DT

Base classifiers

DT

Voting

Results analysis

MLP KNN DT Stacking Bagging Boosting

Machine learning subsystem

Data collection and labeling

Data collection

Data classification

Normal
flows

Anomalous
flows

Feature calculation

Set division

Normal
instances

Anomalous
instances

Fig. 3. Ensemble learning architecture for traffic classification.

2) Classification stage: The processed data from the pre-
vious step is sent to the classification stage, that uses a meta-
learning system and the set of individual base classifiers. The
division of the data set between training and validation sets is
performed according to user-set parameters. Also parameter-
ized by the user is the configuration of the individual classifiers
and ensemble learners of the meta-learning system.

Base classifiers. The base classifiers adopted in our work
were Multi-layer Perceptron (MLP), Decision Tree (DT) and
K-Nearest Neighbors (KNN). The choice of these classifiers
was due to the fact that they are unrelated algorithms - with
different error rates for the same data set and because they
are algorithms widely used in the literature in the context of
meta-learning.

For the purposes of evaluating the prototype, the behavior
of the individual classifiers was also analyzed. That is, the
classifiers MLP, DT and KNN were applied alone to a set of
data with the same settings. The prototype is based on the
scikit-learn

2 library version 0.19.1 and Python version 3.6.
Meta-learning techniques. Again scikit-learn was used,

because it also provides an implementation for the Voting,
Bagging and AdaBoost techniques. To ensure a fair evaluation,
the base classifiers used for ensemble learning were created
with the same parameters as when they were used individually.

Since Stacking was not directly supported by the scikit-learn

library, we further developed a custom implementation of this
technique. At the first level, each classifier provides, for each
instance, an associated classification. The base classifiers used
at this level were the same as those used by the other meta-
learning techniques to validate the comparison process. Thus,
each instance of the set has three associated classes, which
correspond to the classification provided by each of the base
classifiers. The combination rule used is majority voting as
well. The final classification is appended to the feature vector
of the instance. Then, at the second level, we receive the new
vector of features associated with the instance (now with the
classification obtained in level 1). Level 2 consists of a single
classifier. For the developed prototype, the classifier chosen for
level 2 was a Decision Tree. It receives the feature vector from
each instance and, based on it, provides the final classification.

2http://scikit-learn.org/stable/

3) Result analysis: To better evaluate each technique,
different metrics were extracted from the obtained results,
including number of false positives, number of false negatives,
number of true positives, number of true negatives, recall,
precision, f1-score and mean accuracy for a given number
of experiment repetitions [17]. A positive classification corre-
sponds to an anomalous flow, whereas a negative classification
corresponds to a normal flow. Therefore, the number of false
positives corresponds to the number of instances considered
normal flows that were classified as anomalous flows. Like-
wise, the number of true positives corresponds to the number
of instances considered anomalies that were classified as, in
fact, anomalies. Analogously, we calculated the number of
false negatives and true negatives.

The recall metric corresponds to the number of positive
cases (anomalous flows) that the classifier was able to identify.
Also, the precision metric corresponds to the number of posi-
tive predictions that were correct, that is, anomalous flows that
were, in fact, anomalies. Ultimately, F1-score is the weighted
average of precision and recall. Therefore, this score takes both
false positives and false negatives into account.

As stated by Boutaba et al. [6], supervised learning tends to
yield high classification accuracy, due to a priori information
about the characteristics of the classes of interest. Moreover,
one of the main challenges in classifying network traffic is
to correctly identify anomalies previously unseen. Therefore,
we focus on the false positives rate and the precision metric.
These, allied to the accuracy metric, provide better insights
about the obtained results.

IV. EXPERIMENTAL ANALYSIS

In this section we present an experimental analysis of the
implemented meta-learning system. Our results describe (i) the
performance metrics of the ensemble learners considering data
derived from real network traffic traces. Further, we present
results on (ii) the memory consumption and execution time of
the algorithms. Finally, (iii) results are reported both for the
ensemble learners and for the base classifiers used individually.

For evaluation purposes, we implemented a repeated K-fold

cross-validation process [18]. For the experiments presented
in this section, we used K = 5 and repeated the K-folding
process five times, with shuffled data. This is done to avoid
overfitting. The experiments were executed on a 2,6 GHz Intel
Core i5 processor. The settings for each base classifier are as
follows. The optimization of their parameters has been also
evaluated in order to achieve better results. The following
parameters correspond to the combination that yields the best
results.

• KNN: Suppose an instance with coordinates (x, y). This
will be assigned to the most common class amongst its K
nearest neighbors measured by a distance function. For
this work, euclidean distance is used, calculated as shown
in Equation 1.

Distance =

vuut
kX

i=1

(xi � yi)2 (1)

In addition, K = 3 because of the small set of anomalous
instances (low values should be used).

• MLP: Given a training dataset of n points of the form
(~x0, y0), ..., (~xn, yn), where perceptron is a linear clas-
sifier; that is, it is an algorithm that classifies input
by separating two categories with a straight line. A
multilayer perceptron (MLP) is a deep, artificial neural
network. It is composed of more than one perceptron.
They are composed of an input layer to receive the signal,
an output layer that makes a decision or prediction about
the input, and in between those two, an arbitrary number
of hidden layers that are the true computational engine
of the MLP.
The activation function used was RELU - Rectified Linear
Unit function. For weight optimization, we used the
solver LBFGS to converge faster and perform better,
suggested by scikit-learn documentation. We configured
the network with 8 hidden layers, with 110, 100, 50,
20, 15, 10, 5 and 2 perceptrons respectively. Additional
experiments with 21 hidden layers (with 110, 1000, 900,
800, 700, 600, 500, 450, 400, 350, 300, 350, 200, 150,
100, 50, 20, 15, 10, 5 and 2 perceptrons respectively)
were also performed but did not yield better results.

• Decision Tree: the quality of a split was measured as a
function of the entropy for information gained. Entropy
is calculated as shown in Equation 3.

Entropy = �
X

j

pj log2pj (2)

where pj is the probability of belonging to the class j.
The chosen split criterion was best split and we did not
define a maximum depth.

A. Experiments

Due to resource limitations, the data set used in these
experiments is a selection data provided by Meidan et al.
[16]. We randomly selected 20000 instances –1000 considered
normal and 10000 generated from attacks – of the so called
Danmini Doorbell device3.

Table I shows the performance of the algorithms with
respect to accuracy, false positive rate, recall, precision and
F1-score, respectively. Observing these results, we see that
the individual classifiers are not correlated – that is, they do
not provide the same results for the same data set. According
to the literature, the use of highly correlated classifiers is
detrimental to the performance of ensemble learners. For this
reason, ensemble learning applied to non-correlated classifiers
should yield better results.

Regarding the three base classifiers, KNN presented the best
results, while MLP, the worst. Overall, we see that Voting,
AdaBoost and Bagging were able to improve the performance
of its base classifiers. Stacking, on the other hand, was not.

3https://archive.ics.uci.edu/ml/machine-learning-
databases/00442/Danmini Doorbell/

TABLE I
RESULTS FOR THE PERFORMED EXPERIMENTS. x̄ DENOTES THE MEAN

VALUE, AND � DENOTES THE STANDARD DEVIATION.

Voting AdaBoost Bagging Stacking KNN Decision Tree MLP

False negatives x̄ 0.84 0.76 0.76 0.44 0.88 0.72 970.24
� 1.1893 0.9912 0.8616 0.8040 0.9086 0.96 1009.9182

False positives x̄ 0.88 0.84 0.36 1050.6 1.04 0.72 1050.28
� 1.0323 0.7838 0.5571 1008.8193 0.7736 0.7756 1009.1522

True negatives x̄ 1998.92 1998.96 1999.44 949.2 1998.76 1999.08 949.52
� 25.9583 26.4340 26.3940 988.0181 26.8034 26.4407 988.3533

True positives x̄ 1998.96 1999.04 1999.04 1999.36 1998.92 1999.08 1029.56
� 25.9438 26.1862 26.3249 26.0521 26.5223 26.1807 989.2455

Recall x̄ 0.9996 0.9996 0.9996 0.9998 0.9996 0.9996 0.52
� 0.0006 0.0005 0.0004 0.0004 0.0005 0.0005 0.4996

Precision x̄ 0.9996 0.9996 0.9998 0.7373 0.9995 0.9996 0.2574
� 0.0005 0.0004 0.0003 0.2521 0.0004 0.0004 0.2473

Accuracy x̄ 0.9996 0.9996 0.9997 0.7372 0.9995 0.9996 0.4948
� 0.0003 0.0003 0.0002 0.2521 0.0003 0.0003 0.0041

Error rate x̄ 0.0004 0.0004 0.0003 0.2628 0.0005 0.0004 0.5052
� 0.0003 0.0003 0.0002 0.2521 0.0003 0.0003 0.0041

F1-score x̄ 0.4998 0.4998 0.4999 0.4121 0.4998 0.4998 0.1722
� 0.0001 0.0001 0.0001 0.0843 0.0001 0.0001 0.1654

Considering the Voting approach, we can clearly see the
majority voting heuristic: despite MLP bad performance, KNN
and Decision Tree classifications prevailed.

AdaBoost uses unplaced sampling to create subsets of
training data, used to train classifiers sequentially. Then,
new classifiers are trained focusing on the error of previous
classifiers. Because this base classifiers have different errors,
there is a gain of information and therefore, a performance
improvement.

With the Bagging approach, on the other hand, diversity is
obtained from multiple replicas of the training set (obtained by
sampling with replacement). There are two main reasons for its
performance improvement: (i) the diverse subset generated; (ii)

Bagging works best with base classifiers with high variance.
Since MLP has high variance, there is a clear benefit in
using Bagging, since we were able to achieve the lowest false
positive rate (0.000018%) and highest precision and accuracy
results.

Conversely, Stacking first level predictions are obtained by
majority voting among the base classifiers. Because only MLP
classifier was highly non-correlated to the other two (KNN and
Decision Tree), there was not much gain of information for
the second level. Then, its second level extends the original
features set with the gained information on the first level
and obtains a new prediction. However, since the gain of
information on the first level is very low, there is little
performance improvement.

It is also important to consider F1-score because this metric
indicates the balance between precision and recall - that is, the
overall quality of the classifier. When we look at the results,
we see that Bagging has the highest score and, therefore, could
be considered the classifier with the best quality.

Finally, considering that the main objectives of the classifi-
cation are to increase accuracy and reduce the number of false
positives identified, we see that the meta-learning technique
Bagging is best suited for this problem. This technique was
able to improve accuracy (resulting in 0.9997) and decrease
the number of false positives (0.36).

B. Performance Analysis

Next, we analyzed each ensemble learning algorithm and
their base classifiers in terms of training time. We evaluated

the time needed to train a classifier considering repeated cross-
validation, with k=5 and 5 repetitions. Figure 4 shows the
results for training time of each technique when classifying
different number of instances. At first, stacking approach
stands out with the highest training time needed. In fact,
Stacking is a technique that requires two different training
phases, which explains the obtained results. More specifically,
in our case, there are 4 training processes for this algorithm
(its 3 base classifiers on the first level, and the final classifier
on the second level). The remaining ensemble techniques
require similar effort to its base classifiers. This, allied to their
improvement on accuracy and false positives, reinforces its
importance.

0

20

40

60

40002000100050025050 40002000100050025050 40002000100050025050 40002000100050025050 40002000100050025050 40002000100050025050 40002000100050025050
Number of instances

Ti
m

e
(s

)

Algorithm
Adaboost
Bagging
DT
KNN
MLP
Stacking
Voting

Fig. 4. Training time measured in seconds for each technique.

V. CONCLUSIONS AND FUTURE WORK

Although the literature on the use of machine learning for
traffic classification is vast [6], there are a number of limi-
tations and particularities of individual algorithms that make
them more suitable to specific types of traffic and scenarios.
As such, an important research topic in this area is how to
combine individual algorithms using meta-learning techniques
in order to obtain more robust classification metrics.

In this work, a comparative analysis was performed be-
tween ensemble learning techniques and individual classifiers
to classify network traffic. Based on experiments with real
data, meta-learning techniques presented clear benefits when
compared to their base classifiers, mainly because the base
classifiers were little correlated. Overall, the ensemble learners
were able to reduce the number of false positives (Bagging
achieved 0.36 false positives out of 4000 instances), except
for Stacking, due to its few gain of information on its first
level.

Future work includes obtaining more representative data sets
to conduct new experiments. It is also worth highlighting the
possible in-depth study of the best individual classifiers to
be used in this context, as well as the associated parameters.
Additionally, emerging machine learning approaches like Deep
Learning could be studied for this context [19].

REFERENCES

[1] A. L. Buczak and E. Guven, “A survey of data mining and ma-
chine learning methods for cyber security intrusion detection,” IEEE

Communications Surveys Tutorials, vol. 18, no. 2, pp. 1153–1176,
Secondquarter 2016.

[2] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba,
F. E. Solano, and O. M. C. Rendon, “Machine learning for
cognitive network management,” IEEE Communications Magazine,
vol. 56, no. 1, pp. 158–165, 2018. [Online]. Available:
https://doi.org/10.1109/MCOM.2018.1700560

[3] P. K. Chan and S. J. Stolfo, “Experiments on multistrategy learning by
meta-learning,” in Proceedings of the Second International Conference

on Information and Knowledge Management, ser. CIKM ’93. New
York, NY, USA: ACM, 1993, pp. 314–323.

[4] S. Džeroski and B. Ženko, “Is combining classifiers with stacking better
than selecting the best one?” Machine Learning, vol. 54, no. 3, pp. 255–
273, Mar 2004.

[5] C. Zhang and Y. Ma, Ensemble Machine Learning: Methods and

Applications. Springer Publishing Company, Incorporated, 2012.
[6] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,

F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, p. 16, Jun 2018.

[7] J. M. Reddy and C. Hota, “P2p traffic classification using ensemble
learning,” in Proceedings of the 5th IBM Collaborative Academia

Research Exchange Workshop, ser. I-CARE ’13. New York, NY, USA:
ACM, 2013, pp. 14:1–14:4.

[8] C. Wang, X. Guan, and T. Qin, “A traffic classification approach
based on characteristics of subflows and ensemble learning,” in 2017

IFIP/IEEE Symposium on Integrated Network and Service Management

(IM), May 2017, pp. 588–591.
[9] A. S. da Silva, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-Filho,

“Atlantic: A framework for anomaly traffic detection, classification,
and mitigation in sdn,” in NOMS 2016 - 2016 IEEE/IFIP Network

Operations and Management Symposium, April 2016, pp. 27–35.
[10] L. Didaci, G. Giacinto, and F. Roli, “Ensemble learning for intrusion de-

tection in computer networks,” in AI*IA, Workshop on ”Apprendimento

automatico: metodi e applicazioni”, Siena, Italy, 11/09/2002 2002.
[11] H. He, X. Luo, F. Ma, C. Che, and J. Wang, “Network traffic

classification based on ensemble learning and co-training,” Science in

China Series F: Information Sciences, vol. 52, no. 2, pp. 338–346, Feb
2009. [Online]. Available: https://doi.org/10.1007/s11432-009-0050-8

[12] S. E. Gmez, B. C. Martnez, A. J. Snchez-Esguevillas, and
L. Hernndez Callejo, “Ensemble network traffic classification,” Comput.

Netw., vol. 127, no. C, pp. 68–80, Nov. 2017. [Online]. Available:
https://doi.org/10.1016/j.comnet.2017.07.018

[13] R. Vilalta, C. Giraud-Carrier, and P. Brazdil, Meta-Learning - Concepts

and Techniques. Boston, MA: Springer US, 2010, pp. 717–731.
[14] T. G. Dietterich, “An experimental comparison of three methods for

constructing ensembles of decision trees: Bagging, boosting, and ran-
domization,” Machine Learning, vol. 40, no. 2, pp. 139–157, Aug 2000.

[15] Y. Freund and R. E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting,” J. Comput. Syst.

Sci., vol. 55, no. 1, pp. 119–139, Aug. 1997. [Online]. Available:
http://dx.doi.org/10.1006/jcss.1997.1504

[16] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breit-
enbacher, and Y. Elovici, “N-baiotnetwork-based detection of iot botnet
attacks using deep autoencoders,” IEEE Pervasive Computing, vol. 17,
no. 3, pp. 12–22, Jul 2018.

[17] S. Yingchareonthawornchai, D. N. Nguyen, V. T. Valapil, S. S. Kulkarni,
and M. Demirbas, “Precision, recall, and sensitivity of monitoring
partially synchronous distributed systems,” CoRR, vol. abs/1607.03369,
2016.

[18] S. Arlot and A. Celisse, “A survey of cross-validation procedures for
model selection,” Statist. Surv., vol. 4, pp. 40–79, 2010. [Online].
Available: https://doi.org/10.1214/09-SS054

[19] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine intel-
ligence toward tomorrows intelligent network traffic control systems,”
IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2432–2455,
Fourthquarter 2017.

