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H I G H L I G H T S

• Orexin serves as a bridge between the lateral hypothalamus and the reward system.

• Orexin system has a crucial role in morphine conditioned place preference.

• Orexin antagonists may have a potential therapeutic use in addiction.

A R T I C L E I N F O

Keywords:
Orexin
Morphine
Lateral hypothalamus
Conditioned place preference
Therapeutics

A B S T R A C T

Despite a history of more than a century of intense research in drug addiction, with currently available medi-
cation and behavioral therapy, the rate of relapse to drug use is 40–60 percent within a year after the cessation of
treatment. The discovery of the neuropeptide orexin/hypocretin in 1998 and subsequent research during the
past 20 years revealed an important role for the lateral hypothalamus (LH) in driving the reward pathway. The
present review includes an overview of the orexinergic system and focuses on the role of LH orexin neurons
targeting different components of the brain’s reward pathway in addictive behaviors. Among major animal
models of drug reinforcement and addictive behaviors, we narrowed our focus to include conditioned place
preference (CPP) and self-administration methods. In this regard, studies on both orexin-1 receptors (OX1Rs)
and orexin-2 receptors (OX2Rs) have shown some positive results, suggesting that single orexin receptor an-
tagonists (SORAs) and dual orexin receptor antagonists (DORAs) may hold promising efficacy in the treatment of
addiction compared to the currently used methods. We conclude that since current evidence is still preliminary,
development of new SORA and DORA compounds and their evaluation in animal and clinical studies will guide
us in our future efforts for developing effective medication.

1. Clinical aspects of substance use disorders

Substance use disorder is a maladaptive pattern of substance use
leading to clinically significant impairment or distress, as defined by the
Diagnostic and Statistical Manual of Mental Disorders; Fifth Edition
(DSM-5). Clinically, a substance use disorder is diagnosed when two or
more of the DSM-5 criteria are present within a 12-month period
(Supplementary Table 1). The severity of substance use disorder is
measured based on the number of diagnostic criteria met by the patient
at the time of diagnosis: 2–3, mild; 4–5, moderate; ≥6, severe

(American Psychiatric Association, 2013). Drug addiction is a chroni-
cally relapsing disorder, characterized by a compulsion to seek and take
the drug, loss of control in limiting drug intake, and the emergence of a
negative emotional state like dysphoria, anxiety, and irritability when
access to the drug is prevented (Koob and Volkow, 2016). Transition to
addiction, moving from impulsivity to compulsivity, is a progression of
three consecutive phases: 1) recreational and sporadic drug use, in
which drug intake is moderate and occasional; 2) intensified, sustained,
and escalated drug use, in which drug intake intensifies frequency and
intake amount; and 3) loss of control and full drug addiction, where a
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crystallization of behavior around drug-taking is present and drug-de-
voted activities are the principal occupations of the individual (Piazza
and Deroche-Gamonet, 2013).

2. Current approaches for the treatment of opiates addiction

Traditional treatment of substance use disorders often includes de-
toxification, aimed at reducing withdrawal symptoms, followed by
helping to re-establish normal brain functions and to diminish cravings
and prevent relapse (Larsen et al., 2014). For example, medically-su-
pervised withdrawal and maintenance treatment for opiates may in-
clude the use of methadone, naltrexone, buprenorphine, and clonidine
(National Consensus Development Panel on Effective Medical
Treatment of Opiate Addiction, 1998). Methadone, a µ-opioid receptor
agonist, has a slow-onset, long duration of action, and once-daily dosing
that produces a blunted euphoric effect and may prevent withdrawal
symptoms for about 24 h. Naltrexone is a µ-opioid receptor antagonist
that blocks the cognitive and behavioral effects of opioids. Buprenor-
phine is a partial agonist at the µ-opioid receptor that attenuates
withdrawal symptoms because of its prolonged occupation of the re-
ceptors. Clonidine is an alpha-2 agonist that reduces many of the au-
tonomic signs and symptoms of opioid withdrawal (National Consensus
Development Panel on Effective Medical Treatment of Opiate
Addiction, 1998). With currently available medication and behavioral
therapy for addiction, the rate of relapse to drug use is from 40% to
60% within a year following cessation of treatment (Volkow et al.,
2011). Therefore, the treatment of substance use disorders represents a
substantial area of unmet medical needs (Fuehrlein and Ross, 2017). In
this context, the discovery of the orexin neuropeptide (also called hy-
pocretin) in 1998 and later findings that revealed its role in signaling
drug-related reward opened a new horizon in the neurobiology of ad-
diction. As a result, orexin receptors are being considered as a tentative
target for developing candidate drugs with strong therapeutic potential
for the treatment of opioid use disorder.

The present review aimed to refine our current understanding of
how the orexin system is involved in opiates addiction and to discuss
the current evidence pointing to the potential efficacy of orexin-based
therapies for the treatment of opiates addiction. We also discussed
novel opportunities that orexin-based therapies may present.

3. Orexin, the bridge between the lateral hypothalamus and the
reward system

The orexin/hypocretin system consists of two types of G-protein
coupled receptors: the orexin-1 (OX1Rs) and the orexin-2 (OX2Rs) re-
ceptors; and two neuropeptides: orexin-A and orexin-B, both derived
from prepro-orexin in the LH by a cascade of enzymatic reactions
(Gatfield et al., 2010). Orexin-A is a 33-aminoacid peptide that acti-
vates both OX1Rs and OX2Rs with similar potencies, whereas orexin-B
is a 28-aminoacid peptide and modestly selective for OX2Rs (Matsuki
and Sakurai, 2008). Although the orexin neurons are few in number,
the orexin receptors are distributed throughout the central nervous
system (CNS). While many brain areas express both OX1Rs and OX2Rs,
some regions only express either OX1Rs or OX2Rs (Marcus et al., 2001).
The orexin system is conserved across many mammalian species, and a
high level of structural and functional homology has been reported
between rat and human orexin receptors (Nilaweera et al., 2003).
Having extensive projections, the orexin neurons in the LH affect a
variety of homeostatic functions (Sakurai et al., 2005; de Lecea and
Sutcliffe, 2005; Peyron et al., 1998) including the wakefulness, likely to
promote goal-oriented behavior and energy homeostasis (Mileykovskiy
et al., 2005; Lee et al., 2005; Chemelli et al., 1999).

The mesocorticolimbic dopaminergic system was, for many years,
the center of focus in investigations on drug reward and craving and the
related neural changes in reward-sensitive regions (Chen et al., 2010;
Deadwyler, 2010). However, in 1954, it was shown that electrical

stimulation of the LH induced a profound reinforcement, represented
by a robust intracranial self-stimulation (ICSS) in rodents (Olds and
Milner, 1954; Olds, 1965). In 1958, Olds declared that a specific mo-
tivation system can be found in the LH of rats and subsequently labeled
this region as the “pleasure center” (Olds, 1958). Subsequent studies
showed that ICSS is more robust in the LH than in other brain regions
(Gallistel et al., 1981), and can be modulated by opiates and several
other drugs of abuse and their antagonists (Adams et al., 1972; Goodall
and Carey, 1975). The medial forebrain bundle (MFB) was shown to be
important for overcoming barriers to get a food reward (Morgane et al.,
1961). These studies revealed the important role of the LH in reward-
seeking behavior.

Georgescu and colleagues showed the involvement of LH orexin
neurons in morphine dependence and withdrawal (Georgescu et al.,
2003). Other studies indicated that different sets of hypothalamic or-
exin neurons may have different functions. The orexin neurons in the
perifornical area and dorsomedial hypothalamic nucleus regulate
arousal, whereas those in the LH regulate reward processing (Mahler
et al., 2014; James et al., 2017). There is also a dichotomous role of
OX1Rs and OX2Rs in the brain. OX1Rs are mostly implicated in driving
drug-seeking for morphine (Harris et al., 2005; Harris, 2007) and co-
caine (Harris et al., 2005; Borgland et al., 2006), whereas OX2Rs are
implicated largely in sleep/wake cycle regulation and arousal (Willie
et al., 2003). Orexin neurons project to the major components of the
reward system such as the ventral tegmental area (VTA), nucleus ac-
cumbens (NAc), and medial prefrontal cortex (Baldo et al., 2003; Fadel
and Deutch, 2002). The mesolimbic dopamine system is a well-re-
cognized target for drugs of abuse, and plasticity within this system has
been implicated in the development and maintenance of addiction
(Hyman et al., 2006; Kauer and Malenka, 2007). VTA neurons are the
main source of dopamine for the ventral striatum and the prefrontal
cortex, the critical forebrain regions that mediate incentive learning
and reinforcement mechanisms associated with rewards (Berridge,
2007). The VTA receives intense projections from the LH. Indeed, the
LH is one of the largest sources of input fibers to the VTA (Phillipson,
1979). Orexin projections form about one-fifth of the inputs (Fadel and
Deutch, 2002) and although a major share of the fibers is in close
proximity to dendrite and cell bodies of dopamine neurons (Fadel and
Deutch, 2002), five percent of them form synapses with GABA-con-
taining neurons (Balcita-Pedicino and Sesack, 2007).

Orexin neurons have been shown to be activated by drugs (Yeoh
et al., 2012; Rao et al., 2013) and drug-related cues (Harris et al.,
2005). In addition, bilateral neurotoxic lesions that abolished more
than fifty percent of LH orexin neurons prevented learning to associate
an environment with morphine reward (Harris et al., 2007). Orexin also
increased the firing rate of VTA dopamine neurons and enhanced do-
pamine release in downstream targets (Korotkova et al., 2003; Narita
et al., 2006; Narita et al., 2007; Vittoz and Berridge, 2006). The levels
of dopamine and its major metabolite in the NAc core were found to be
markedly increased by microinjection of orexins into the VTA. These
results strongly suggest that activation of orexin-containing terminals in
the VTA leads to the direct activation of mesolimbic dopamine neurons
at the somatodendritic level (Narita et al., 2006). Indeed, orexin po-
tentiated excitatory synaptic transmission onto the VTA dopamine
neurons and promoted drug-seeking behavior (Baimel and Borgland,
2012). In contrast, intra-VTA injection of SB-334867, an OX1R an-
tagonist, attenuated the development and expression of morphine-in-
duced conditioned place preference (CPP) in rats (Sadeghzadeh et al.,
2016).

Although, there is still a lack of concrete evidence linking orexin
and addiction in human patients, there is compelling evidence that
orexin neurons are required for the development of reward-seeking and
addiction in both animal models and human patients (Baimel and
Borgland, 2012; España and Calipari, 2012; Mahler et al., 2012).
Firstly, orexin neurons showed Fos-activation when animals were ex-
posed to opiates, cocaine, amphetamine, and nicotine (Georgescu et al.,
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2003; Harris et al., 2005; Pasumarthi and Fadel, 2008; McPherson
et al., 2007; Plaza-Zabala, 2012). Secondly, drug-seeking behavior was
elicited by the infusion of orexin into the reward-related areas of the
brain (Harris et al., 2005; España and Calipari, 2012; Boutrel et al.,
2005). Thirdly, drug-seeking behavior was impaired after disruption of
orexin receptor-mediated signaling with pharmacological or genetic
approaches (Georgescu et al., 2003; Borgland et al., 2006; España and
Calipari, 2012; LeSage et al., 2010; Hollander et al., 2012; Hollander
et al., 2008). In sum, the research during the past 20 years has revealed
an important role for the LH in driving the reward circuitry and has
indicated that orexin is the main bridge between the LH and the me-
solimbic pathway for reward processing.

4. The role of orexin system in morphine reinforcement

Here, we focused on the involvement of the orexin system in mor-
phine reward and reinforcement using the CPP model. The CPP is one of
the most commonly employed paradigms for studying drug-related re-
ward and addiction-like behaviors. In this model, a special context is
associated with the rewarding properties of drug. The model has been
used to determine how the acquisition and/or expression of the ad-
dictive behaviors are affected by experimental manipulations of the
orexin system (Harris et al., 2007; Sharf et al., 2010; Farahimanesh
et al., 2017).

Harris and colleagues showed that the LH orexin neurons are acti-
vated by morphine-context pairing during the acquisition phase of CPP
and that systemic administration of an OX1R antagonist, SB-334867,
before the drug-free CPP test markedly reduced the expression of
morphine-seeking (Harris et al., 2005; Harris et al., 2007). We elabo-
rated on this concept to further elucidate the role of orexin neurons in
reward processing. Our results revealed that: 1) Chemical stimulation of
the LH by local injection of carbachol, a muscarinic and nicotinic re-
ceptor agonist, induced CPP in rats (Taslimi et al., 2011) and po-
tentiated the rewarding properties of a sub-effective dose of morphine
(Zarepour et al., 2013). 2) Blockade of OX1Rs in the VTA inhibited the
acquisition of both LH stimulation CPP (Taslimi et al., 2011) and LH
stimulation-induced potentiation of morphine CPP (Zarepour et al.,
2014). 3) Dopaminergic transmission in the NAc was involved in CPP
induced by the LH stimulation (Haghparast et al., 2013). 4) Chemical
stimulation of the LH changed the phosphorylation rate of CREB and
ERK, and c-fos induction in the VTA, hippocampus, and prefrontal
cortex after the CPP test, which indicates a functional relationship be-
tween the LH and other brain areas involved in reward processing in
rats (Haghparast et al., 2011). 5) Orexin receptors in the CA1 region of
the hippocampus were critically involved in LH stimulation-induced
CPP, as intra-CA1 administration of SB-334867 or TCS-OX2-29 (the
OX1R and OX2R antagonists, respectively) significantly attenuated the
development of CPP induced by the stimulation of the LH (Rashidy-
Pour et al., 2015). 6) Administration of orexin-A into the VTA produced
CPP in a dose-dependent manner and blockade of D1 or D2 receptors of
the ipsilateral NAc inhibited the effect (Taslimi et al., 2012).

Haghparast and his team further investigated the role of orexin re-
ceptors in morphine-seeking. Their findings revealed that both OX1Rs
and OX2Rs in the VTA are critical for the acquisition and expression of
morphine CPP (Farahimanesh et al., 2017). Additionally, blockade of
OX1R, but not OX2R, in the NAc during the CPP test attenuated the
expression of morphine-seeking. However, blockade of both receptors
decreased the development of morphine CPP and shortened the ex-
tinction phase in rats. The latter effects were more significant when
OX1Rs were blocked, suggesting that OX1Rs within the NAc are critical
for the development, expression, and maintenance of morphine-seeking
behaviors (Sadeghzadeh et al., 2016; Alizamini et al., 2017). The team
also showed that OX1Rs in the CA1 were involved in the expression and
maintenance of morphine-seeking, as intra-CA1 administration of the
antagonist attenuated the expression and facilitated the extinction of
morphine CPP (Farahimanesh et al., 2018). Moreover, blockade ofTa
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OX2Rs in the CA1 attenuated the acquisition and expression of mor-
phine CPP (Sadeghi et al., 2016). Table 1 summarizes the data on the
role of orexin receptors in other aspects of morphine use.

5. The role of orexin system in morphine withdrawal syndrome

Opioids produce euphoric effects that favor chronic drug use cul-
minating in dependence (O'Brien, 2011). In contrast, abstinence from
opiate use in dependent individuals elicits negative physical and emo-
tional signs, called withdrawal syndrome. Different components of the
withdrawal syndrome are thought to be mediated through distinct
neural systems (Maldonado et al., 1992). In morphine-treated animals,
infusion of opiate antagonists into the locus coeruleus (LC) (Aghajanian
and Wang, 1987; Taylor et al., 1988) or the periaqueductal gray
(Maldonado et al., 1992; Laschka et al., 1976) induced robust somatic
withdrawal syndromes, whereas infusion into the NAc precipitated only
a few somatic symptoms (Maldonado et al., 1992). Administration of
opiate antagonists into the NAc and amygdala in morphine-dependent
animals resulted in motivational withdrawal as well (Koob et al., 1989;
Stinus et al., 1990). All things considered, these findings indicate the
involvement of limbic structures in both somatic and motivational
withdrawal. The involvement of the orexin system in the development
of morphine dependence and emergence of withdrawal syndrome has
been reported in several studies (Sharf et al., 2008; Azizi et al., 2010).
Specifically, naloxone-induced precipitation of morphine withdrawal
signs has been shown to be associated with increased c-Fos expression
in LH orexin neurons (Georgescu et al., 2003), and in neurons of the
NAc, VTA, and LC (Sharf et al., 2008). Orexin knock-out mice devel-
oped attenuated morphine dependence, as they displayed a less severe
withdrawal syndrome (Georgescu et al., 2003). Systemic administration
of an OX1R antagonist, SB-334867, attenuated precipitated morphine
withdrawal syndrome in mice (Sharf et al., 2008). There is some evi-
dence for the critical involvement of orexin-A and OX1Rs in the acti-
vation of brain stress system including the NAc shell, bed nucleus of
stria terminalis, central amygdala, and hypothalamic paraventricular
nucleus during morphine withdrawal (Laorden et al., 2012).

Blockade of dorsal hippocampal OX1Rs by SB-334867 prior to each
morphine injection prevented the development of morphine depen-
dence; however, a single injection of SB-334867 after the development
of morphine-dependence did not prevent expression of the withdrawal
syndrome (Hooshmandi et al., 2017). Orexin neurons heavily innervate
the LC nucleus (Nambu et al., 1999) that is critically involved in drug
withdrawal syndrome (Ivanov and Aston-Jones, 2001). Indeed, among
various brain regions receiving orexinergic fibers, the LC receives the
densest projections (Peyron et al., 1998). Opioid withdrawal syndrome
is associated with an increase in the activity of LC neurons (Nunez et al.,
2013). Local infusion of orexin-A into the LC elicited an OX1R-depen-
dent withdrawal-like syndrome in chronically morphine-treated ani-
mals (Ghaemi-Jandabi et al., 2017). Conversely, blockade of LC OX1Rs
prevented naloxone-elicited neuronal activation of LC neurons in
morphine-dependent animals (Fakhari et al., 2017).

6. Modulation of the addictive properties of drugs of abuse by
orexins

The orexin system is an important role player in addictive properties
of opiates and exerts its effects through different brain areas. Animal
studies have revealed that in the VTA orexin can provoke morphine
preference in animals that had shown extinguished morphine-CPP, an
effect that was blocked by systemic administration of SB-334867
(Aston-Jones et al., 2009). Direct involvement of the orexin neurons in
the rewarding effect of morphine in the VTA has also been emphasized
by other studies (Narita et al., 2006). In addition, orexin-A function in
the insular cortex and LC reported to be involved in nicotine reinforcing
effects (Hollander et al., 2008) and morphine somatic withdrawal
syndromes (Azizi et al., 2010), respectively. In the NAc, while blockade

of OX1Rs significantly decrease the expression of morphine-CPP,
blockade of OX2Rs did not produce a similar effect (Sadeghzadeh et al.,
2016). In the medial prefrontal cortex (mPFC) orexin enhanced mPFC-
evoked responses in dopaminergic neurons once applied before mPFC
stimulation. The application of orexin during the stimulation, however,
resulted in an equal number of neurons showing enhanced and di-
minished evoked responses (Aston-Jones et al., 2009). Subsequent work
showed that simultaneous release of the orexin into the VTA from LH
when reward associated cues were presented could potentiate the re-
sponses of dopaminergic neurons of the VTA to the inputs from mPFC
(Aston-Jones et al., 2010). In the CA1 region of the hippocampus, ap-
plication of OX1R antagonist attenuated both the expression of mor-
phine-CPP and maintenance of morphine rewarding properties
(Farahimanesh et al., 2018). In the central nucleus of the amygdala
(CeA), orexins increased firing rate of neurons (Bisetti et al., 2006). The
CeA neurons innervate the orexin neurons in the LH (Nakamura et al.,
2009). These studies emphasize the role of orexin signaling in different
brain areas that are connected to the addiction-related behaviors.

7. OX1Rs represent a target for developing novel therapeutics for
addiction

Previous reports strongly suggest that OXRs, particularly OX1Rs,
represent a valuable target for the development of effective medication
for the treatment of substance use disorders across a broad range of
addictive drugs including marijuana (Flores et al., 2014), tobacco
(Kenny et al., 2018; Hollander et al., 2008; LeSage et al., 2010), opioids
(Sharf et al., 2010; Smith and Aston-Jones, 2012; Lupina et al., 2018),
psychostimulants (Smith et al., 2009; Smith et al., 2010; Hutcheson
et al., 2011), and alcohol (Anderson et al., 2014; Moorman and Aston-
Jones, 2009). Although there are some indications of OX2Rs involve-
ment in drug reward and craving (Farahimanesh et al., 2017; Zhang
et al., 2007; Sadeghi et al., 2016; Ebrahimian et al., 2016), a wealth of
evidence from preclinical studies suggests that a single orexin receptor
antagonist (SORA) that specifically block OX1Rs (1-SORA) may hold
more promising efficacy in the treatment of addiction. For instance, SB-
334867 (a 1-SORA) decreased reinstatement of an extinguished co-
caine-seeking elicited by drug‐paired cues, but 4TP (a 2-SORA) failed to
do so (Smith et al., 2009). SB-334867 also blocked footshock-induced
reinstatement of cocaine-seeking behavior (Boutrel et al., 2005) and
decreased cannabinoid intake and motivation to obtain the drug, but
the 2-SORA TCS-OX2-29 failed to decrease cannabinoid intake (Flores
et al., 2014).

On the other hand, studies on OX2Rs have also shown some positive
results. For instance, while SB-334867 suppressed the acquisition and
expression of morphine CPP in naïve, but not in morphine-dependent
mice, TCS-OX2-29 suppressed CPP acquisition and expression in both
naïve and morphine-dependent mice (Tabaeizadeh et al., 2013).
Treatment with the 2-SORA JNJ-10397049 reduced ethanol self-ad-
ministration, as well as the acquisition, expression, and reinstatement
of ethanol CPP and ethanol-induced hyperactivity in mice. In contrast,
the 1-SORA SB-408124 had no effect in reducing the reinforcing effects
of ethanol (Shoblock et al., 2011). Systemically administered NBI-
80713, a 2-SORA, decreased escalated heroin self-administration in rats
with extended access to heroin, which is believed to model the transi-
tion from controlled drug use to compulsive-like drug-seeking and
taking (Schmeichel et al., 2015).

Since orexin peptides have been implicated in the maintenance of
arousal, several orexin receptor antagonists have been developed for
the treatment of sleep disorders (Sakurai and Mieda, 2011). Although
the pharmacology and kinetics of these antagonists are not optimal for
treating substance use disorders, there are some promising signs (Khoo
and Brown, 2014). For instance, almorexant, a dual orexin receptor
antagonist (DORA), attenuated the expression of CPP to cocaine and
amphetamine, though not to morphine (Steiner et al., 2013). Almor-
exant also reduced ethanol intake and its reinforcing efficacy
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(breakpoint value in progressive ratio self-administration model)
(Anderson et al., 2014). Suvorexant, an FDA-approved DORA to treat
insomnia, attenuated cocaine self-administration and CPP, and reduced
cocaine-induced elevations in ventral striatal dopamine (Gentile and
Simmons, 2018). Suvorexant also modestly, albeit insignificantly, sup-
pressed self-administration of the synthetic psychostimulant 3,4-me-
thylenedioxypyrovalerone in rats (Simmons et al., 2017). On the other
hand, TCS1102, a potent and selective DORA, which is used solely for
preclinical research, failed to reduce nicotine self-administration, and
cue-induced or nicotine-primed reinstatement of nicotine-seeking
(Khoo et al., 2017).

8. Potential applicability of orexin antagonists in different phases
of addiction

Addiction can be considered as a recurring cycle of three stages:
binge-intoxication stage driven by the basal ganglia, withdrawal-ne-
gative affect stage driven by the extended amygdala, and preoccupa-
tion-anticipation (or craving) stage driven by the prefrontal cortex. This
cycle worsens over time and involves neuroplastic changes in the brain
reward, stress, and executive function systems (Koob and Volkow,
2016). Preclinical evidence indicates that SORAs and/or DORAs may
bear beneficial effects in all of these stages. Since the orexin system is
implicated in drug reinforcement and reward (Aston-Jones et al., 2010;
Borgland et al., 2009), it is likely that SORAs and DORAs help addicts
limit their drug use when they attempt to quit or when they relapse
after a protracted period of abstinence. The notion is supported by a
pile of preclinical evidence showing the effectiveness of SORAs and
DORAs in reducing drug intake and motivation to take the drug
(Table 2). In addition, orexin neurons appear to be an essential com-
ponent of the brain circuitry responsible for the expression of with-
drawal symptoms of drugs (see above). As a result, both local and
systemic administration of SB-334867 (a 1-SORA) proved remarkably
effective in attenuating morphine withdrawal syndrome (Sharf et al.,
2008; Laorden et al., 2012; Hooshmandi et al., 2017; Mousavi et al.,
2014). Therefore, a clinically administrable SORA would be theoreti-
cally beneficial for medically assisted detoxification. Finally, the orexin
system contributes to the reinstatement of extinguished drug-seeking
behavior (see above) (Harris et al., 2005; Boutrel et al., 2005). The 1-
SORA SB-334867 consistently attenuated reinstatement of heroin, co-
caine, and ethanol-seeking elicited after the extinction period (Table 2).
As a result, clinically developed 1-SORAs may provide therapeutic
benefit for preventing relapse in patients struggling to remain abstained
from drugs. This multipotentiality of SORAs to be administered over the
entire course of addiction and across a broad range of addictive drugs
highlights their high applicability for the treatment of substance use
disorders.

9. No candidate drug that targets OX1R has progressed into
clinical development

Despite the wealth of animal studies supporting the role of OX1R
signaling in drug reward and craving, clinical development of selective
OX1R antagonists has not progressed adequately. This has been, in
large part, due to the difficulties in finding drug candidates that spe-
cifically target OX1R without targeting OX2R. Among several OX1R
antagonists that have been described thus far (Lebold et al., 2013;
Roecker and Coleman, 2008; Coleman and Renger, 2010), SB-334867
was the most frequently used compound for targeting OX1R pathways
in vivo and in vitro (Lebold et al., 2013). Despite its high selectivity (50
times greater for OX1R over OX2R) (Winrow and Renger, 2014), SB-
334867 has poor pharmaceutical properties, in that it has low bioa-
vailability (45.7% in rats) (Morairty et al., 2012) and stability
(McElhinny et al., 2012). It may also cause unwanted side effects in-
cluding abnormal posture and immobility when administered at high
doses (30mg/kg) (Nair et al., 2008). Additionally, relevant off-target

affinities for the adenosine A2A and the 5-HT2C receptors have recently
been reported (Lebold et al., 2013). Therefore, there is an unmet need
for specific OX1R antagonists with desirable pharmaceutical properties
that may serve as candidate therapies across various areas of drug ad-
diction.

10. Potential side effects of orexin antagonists

The orexin system has been implicated in multiple physiological
processes including motivation (Thompson and Borgland, 2011),
arousal (Berridge et al., 2010; Boutrel and de Lecea, 2008), attention
(Fadel and Burk, 2010), feeding and energy balance (Girault et al.,
2012), and regulation of gastrointestinal functions (Okumura and
Takakusaki, 2008). As a result, the clinical use of orexin antagonists is
likely to be associated with some side effects including anhedonia,
sleepiness, anorexia, weight loss, cataplexy, and functional gastro-
intestinal disorders (Khoo and Brown, 2014). Additionally, long-term
suppression of the orexin system may precipitate in depressive-like
symptoms (Yeoh et al., 2014). The clinical evidence is decreased orexin
levels in the cerebrospinal fluid (CSF) of suicide patients with major
depressive disorders (Brundin et al., 2007). Interestingly, CSF orexin
levels increased at 6 and 12months following the suicide attempt
(Brundin et al., 2009). Similarly, preclinical studies indicated that early
life stress and chronic stress were associated with a decrease in the
activity of orexin neurons along with the behavioral symptoms of de-
pressive-like phenotype (Lutter et al., 2008; James et al., 2014).

The profile and severity of the side effects may depend on the se-
lectivity of the compound and its off-target activity. Randomized con-
trol trials that evaluated the efficacy and tolerability of suvorexant (a
DORA) for the treatment of primary insomnia concluded that it was
generally well tolerated (Tampi et al., 2018). However, some of the
observed adverse events were somnolence, fatigue, dry mouth, dys-
pepsia, and peripheral edema (Tampi et al., 2018; Michelson et al.,
2014). Suvorexant appeared to have abuse potential in healthy re-
creational polydrug users. This abuse liability was similar to zolpidem,
but with a reduced incidence of abuse-related adverse events (Schoedel
et al., 2016). A reverse-translational study demonstrated that chronic
administration of suvorexant did not cause significant behavioral or
withdrawal-related changes in rats, did not elicit complete cross-gen-
eralization to either zolpidem or morphine in rats, and did not show any
behavioral evidence of positive reinforcing efficacy in monkeys (Born
et al., 2017). Almorexant, a DORA that was advanced into clinical
studies, increased sleep efficiency and total sleep time and reduced
sleep latency and latency to REM sleep. No significant side effect or
tolerability issues were noted (Hoever et al., 2012). However, an un-
disclosed tolerability issue resulted in the cessation of Phase III clinical
development in 2011 (GlaxoSmithKline, 2011). Interestingly, a recent
clinical trial that evaluated the efficacy and safety of almorexant in
patients with chronic insomnia demonstrated that adverse events were
similar with almorexant and placebo (Black et al., 2017).

11. Concerns on the translatability of preclinical evidence into
human application

The most frequently used preclinical models in addiction research
are intravenous self-administration and drug-induced CPP. These pro-
cedures model the positive reinforcing properties of addictive drugs
(Heidbreder and Hagan, 2011). Typically, a fixed-ratio self-adminis-
tration schedule replicates volitional drug-taking while a progressive-
ratio schedule measures the motivation of a subject to obtain the drug
(Spanagel, 2017). In addition, both paradigms can be reconstructed to
model relapse to drug-seeking, which is indicative of craving (Spanagel,
2017). A critical issue about these procedures is how well they replicate
the clinical aspects of addiction in drug users. Rationally, in order to
extrapolate preclinical evidence to clinical application, there should be
a robust face validity between the preclinical models and the DSM-5
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Table 2
Studies showing the effects of systemic administration of dual orexin receptor antagonists (DORAs) and single orexin receptor antagonists (SORAs) in animal models
of drug abuse.

Selectivity Compound Model and drug Main finding(s) Reference

DORA Almorexant
(clinical development
discontinued)

FR5 nicotine SA in rats Decreased nicotine intake;
Decreased food pellet SA

(LeSage et al., 2010)

Morphine, amphetamine, or cocaine
CPP in rats

Decreased expression of cocaine and amphetamine CPP;
Had no effect on the expression of morphine CPP;
Decreased expression of morphine-induced locomotor sensitization

(Steiner et al., 2013)

2-bottle choice ethanol consumption;
PR ethanol SA in rats
Drinking in the dark in mice

Decreased ethanol and water intake;
Decreased motivation to consume ethanol;
Decreased binge-like ethanol drinking

(Anderson et al., 2014)

DORA Suvorexant
(FDA-approved for
insomnia)

PR cocaine SA; cocaine CPP in rats Decreased motivation to obtain cocaine;
Slightly attenuated acquisition of cocaine CPP;
Had no effect on cocaine-induced hyperlocomotion

(Gentile and Simmons,
2018)

FR1 MDPV SA in rats Had no significant effect on MDPV intake;
Increased time to retrieve initial ten MDPV infusions

(Simmons et al., 2017)

1-SORA SB-334867 FR5 nicotine SA; PR nicotine SA; ICSS
thresholds in rats

Decreased nicotine intake;
Decreased motivation to obtain nicotine;
Abolished the stimulatory effects
of nicotine on brain reward circuitries;
Had no effect on food pellet self-administration

(Hollander et al., 2008)

FR5 nicotine SA in rats Decreased nicotine intake;
Had no effect on food pellet SA

(LeSage et al., 2010)

FR1 heroin SA; PR heroin SA in rats Decreased heroin intake;
Decreased motivation to obtain heroin;
Decreased cue-induced reinstatement of heroin seeking;
Had no effect on heroin-induced reinstatement of heroin seeking

(Smith and Aston-Jones
et al., 2012)

Morphine-induced sensitization in
mice;
Morphine and cocaine CPP in mice

Decreased morphine CPP;
Had no effect on cocaine CPP;
Had no effect on acute locomotor and sensitization responses to
morphine

(Sharf et al., 2010)

Morphine-induced sensitization in
mice

Inhibited the acquisition of morphine-induced sensitization to
locomotor activity

(Lupina et al., 2018)

Morphine CPP in mice Decreased acquisition and expression of morphine CPP in naïve mice,
but not in morphine-dependent mice

(Tabaeizadeh et al.,
2013)

1-SORA SB-334867 FR1 cocaine SA in rats Decreased cocaine-seeking following 1 day or 2weeks of abstinence;
Decreased context-induced reinstatement of cocaine-seeking

(Lupina et al., 2018)

FR cocaine SA; amphetamine CPP in
rats

Decreased acquisition and expression of cocaine-seeking;
Decreased expression of amphetamine CPP

(Hutcheson et al., 2011)

FR1 cocaine SA in rats Had no effect on an established cocaine intake;
Had no effect on late extinction session responding;
Had no effect on learning cocaine-stimulus associations;
Decreased cue-induced reinstatement of cocaine-seeking

(Smith and Aston-Jones
et al., 2012)

FR1 cocaine SA in rats Decreased footshock-induced reinstatement of cocaine-seeking (Boutrel et al., 2005)
FR1 cocaine SA in rats Decreased cue-induced reinstatement of cocaine-seeking;

Had no effect on cue-induced reinstatement of sweetened condensed
milk SA

(Martin-Fardon and
Weiss, 2014a,b)

PR cocaine SA in rats Decreased consumption and appetitive responding for low dose
cocaine;
Decreased appetitive, but not consumption, responding for high dose
cocaine;
Had no effect on sleep/wake patterns

(Brodnik et al., 2015)

1-SORA SB-334867 FR1 and PR cocaine SA in short and
long access rats

Decreased escalated cocaine intake in long access, but not in short
access rats;
Decreased motivation to obtain cocaine in short and long access rats

(Schmeichel et al., 2017)

WIN55212-2 SA in mice Decreased acquisition of cannabinoid SA;
Decreased cannabinoid intake;
Decreased motivation to obtain cannabinoid;
Had no effect on water-maintained operant behavior

(Flores et al., 2014)

2-bottle choice ethanol consumption;
PR ethanol SA in rats
Drinking-in-the-dark in mice

Decreased ethanol intake;
Had no effect on motivation to consume ethanol;
Decreased binge-like ethanol drinking

(Anderson et al., 2014)

FR3 ethanol SA in rats Decreased ethanol intake;
Decreased cue-induced reinstatement of alcohol-seeking;
Had no effect on responding for water

(Lawrence et al., 2006)

FR3 and PR ethanol SA in rats Decreased ethanol intake;
Decreased sucrose intake;
Decreased motivation to consume ethanol;
Had no effect on motivation to consume sucrose

(Jupp et al., 2011)

Ethanol SA in rats Decreased cue-induced reinstatement of ethanol-seeking;
Had no effect on the reinstatement of glucose/saccharine seeking

(Martin-Fardon and
Weiss, 2014a,b)

1-SORA SB-408124 FR3 ethanol SA in rats; Ethanol
withdrawal in rats; ethanol CPP in
mice

Had no effect on ethanol intake,
saccharine intake, the acquisition and expression of ethanol CPP,
ethanol-induced hyperactivity, and signs of ethanol withdrawal

(Shoblock et al., 2011)

(continued on next page)
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criteria of substance use disorders. The face validity refers to the degree
to which the models are effective in measuring what they aim. As a
result, drug-reinforced behavior cannot be considered as an animal
counterpart of human addiction (Piazza and Deroche-Gamonet, 2013).
As previously stated, the three stages of transition to addiction include
recreational, escalated, and compulsive drug use. Self-administration
paradigms using unit drug doses above the median effective dose
(ED50), fixed-ratio schedules, and short access to the drug for short
periods of time (1–3 h for 2–4weeks) are considered as the models of
recreational drug use (Piazza and Deroche-Gamonet, 2013). Self-ad-
ministration methods using low unit doses of drugs (Piazza et al., 1989)
or alternatively with long daily access to the drug (6–12 h) (Ahmed and
Koob, 1998) are models of escalated drug use as they bring about rapid
escalation of drug intake in high-responder rats. Finally, prolonged self-
administration of a drug (3months) appears to cause addiction-like
behaviors, in that it provokes behaviors that resemble three of the es-
sential diagnostic criteria for addiction: difficulty in stopping drug use,
having extremely high motivation to take the drug, and continued drug
use despite adverse consequences (Deroche-Gamonet et al., 2004). In
sum, current preclinical evidence that supports potential therapeutic
uses for DORAs and SORAs in the treatment of addiction is still pre-
liminary and should be interpreted with the highest caution.

12. Concluding remarks

Researchers and pharmaceutical companies have developed an in-
terest in the orexin system over the past 20 years. Although the orexins
were first noted for their roles in energy homeostasis, many studies
since 1998 have highlighted their key roles in addiction. The extent to
which OX1Rs and OX2Rs are involved in each of the physiological
functions is still an area of controversy, but we have currently enough
evidence at hand to know that the development of new agents targeting
these receptors, either in form of single orexin receptor antagonists or
as dual orexin receptor antagonists, can be beneficial for the treatment
of addiction to certain drugs of abuse. Our current knowledge indicates
that OX1Rs represent a target for developing novel therapeutics for
addiction, but considering the complicated interactions among stress,
anxiety, and compulsive and addictive behaviors one shall still consider
possible positive effects resulted from OX2Rs manipulations. Future
animal research as well as clinical studies with novel SORA and DORA
compounds will guide us in our future efforts for developing effective
medication.
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