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Influenza vaccine: Where are we and where do we go?
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Summary

The alarming rise of morbidity and mortality caused by influenza pandemics and

epidemics has drawn attention worldwide since the last few decades. This life‐

threatening problem necessitates the development of a safe and effective vaccine to

protect against incoming pandemics. The currently available flu vaccines rely on

inactivated viral particles, M2e‐based vaccine, live attenuated influenza vaccine (LAIV)

and virus like particle (VLP). While inactivated vaccines can only induce systemic

humoral responses, LAIV and VLP vaccines stimulate both humoral and cellular immune

responses. Yet, these vaccines have limited protection against newly emerging viral

strains. These strains, however, can be targeted by universal vaccines consisting of con-

served viral proteins such as M2e and capable of inducing cross‐reactive immune

response. The lack of viral genome in VLP and M2e‐based vaccines addresses safety

concern associated with existing attenuated vaccines. With the emergence of new

recombinant viral strains each year, additional effort towards developing improved uni-

versal vaccine is warranted. Besides various types of vaccines, microRNA and exosome‐

based vaccines have been emerged as new types of influenza vaccines which are asso-

ciated with new and effective properties. Hence, development of a new generation of

vaccines could contribute to better treatment of influenza.
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1 | INACTIVATED INFLUENZA VACCINE

Monovalent influenza vaccine was first produced after the isolation of

influenza A virus (H1N1) from outbreak‐associated cases of influenza

in Puerto Rico in 1934. Subsequently, in 1942, 2 years after isolation
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of type B influenza virus, first bivalent influenza vaccine was tested

for efficacy in military recruits. Then, this whole‐virus inactivated vac-

cine was approved for use in civilian populations of the United States

in 1945. Trivalent influenza vaccine was introduced in 1977 and con-

tains two representative strains of type A (ie, H1N1, H3N2) and one of
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the two strains of type B. Quadrivalent influenza vaccines were devel-

oped during 2013‐14 influenza season in the United States and con-

tain the same A strains and two strains of influenza B lineages.1

These vaccines have high intrinsic immunogenicity that makes them

effective against pandemic.2,3

International surveillance is performed annually by the World

Health Organization4 to choose appropriate virus strains for inclusion

in seasonal influenza vaccines. These selected strains provide HA and

NA genes for reassortant vaccine viruses, which also possess internal

genes from A/Puerto Rico/8/34 (PR8). PR8 is a strain that confers

high viral yield in embryonated eggs. Formalin or β‐propiolactone is

used to inactivate influenza viruses. Thiomersal or formaldehyde is

used in vaccines as a preservative in order to inhibit bacterial or fungal

growth. Some manufacturers may also use aminoglycoside antibiotics.

Some vaccines contain additives like gelatine to stabilize them in

unfavorable conditions. Residual egg proteins are also present in low

quantities in egg‐derived inactivated vaccines.5,6 Although virus multi-

plication on embryonated chicken eggs remains the most common

method for production of influenza vaccines, it contains several limita-

tions. For instance, securing sufficient qualified eggs for mass vaccine

production of the vaccine is very challenging, especially in context of

influenza outbreak among poultry.7 Furthermore, optimization of

influenza wild type strains for growth in eggs requires recombination

of these strains with high‐yield laboratory strains. Thereupon, muta-

tions in the egg‐adapted reassortant strain can contribute to a mis-

match between the vaccine strain and the circulating strain which

was reported recently.8

Trivalent inactivated vaccination can induce local and systemic

immune responses (Figure 1). Influenza‐specific antibodies including

IgG especially IgG1 (high concentration), IgA, and IgM (low concentra-

tion) are detectable 2 to 6 days post‐vaccination and peak 2 to

3 weeks after vaccination in primed subjects.9-13 Upon vaccination,

antibody production is typically type specific. However, it can be

highly cross‐reactive which results in protection towards earlier and

newer viral strains.14,15

It has been shown that Influenza inactivated vaccines up‐regulate

three activation markers of MHC II (CD40, CD80, and CD86), while

exposure to active virus and subunit (SU) vaccine has a less similar
FIGURE 1 Inactive influenza vaccine. Trivalent inactivated vaccines can
virus induced high level production of IFN‐α and inflammatory cytokines s
dependent manner by recognition of viral ssRNA. Signaling of TLR7 in pDC
antibodies especially IgG1 (high concentration), IgA, and IgM (low concentra
SIgA2 are the major antibody response in the oral fluid. Inactivated vaccin
markers of MHC II (CD40, CD80, and CD86); high expression of this mole
antigen presentation process and then high activation of innate and adapt
effect on CD86 expression. Studies show that treatment of DCs with

SU vaccines results in similar levels of IL‐6 and TNFα. In contrast, in

influenza attenuated vaccine (AV) and IV‐treated DC cultures, IL‐6

and TNFα levels were clearly increased.16

Live or inactivated influenza virus can induce production of IFN‐α

and inflammatory cytokines from plasmacytoid DC (pDCs) in aToll‐like

receptor (TLR7) and MyD88‐dependent manner by recognition of viral

single‐stranded RNA virus (ssRNA).17 Signaling of TLR7 in pDCs has

an important role in inducing productive antibody response by virion

RNA‐containing split vaccine18 and inactivated whole virus vaccine.19

Conversely, following influenza virus infection in the lungs, cytokine

production did not require TLR7‐signaling in pDCs.20

Similar to live viral vaccines, the live attenuated influenza vaccine

(LAIV) induces the expression of several interferon‐related genes.

Whereas, the TIV vaccine induces a signature composed of genes

highly expressed in plasma B cells. In the case of TIV, there are 44

genes identified to accurately predict the outcome of immunization

as either high or low antibody titres. Of these, the

calcium/calmodulin‐dependent protein kinase IV (CaMKIV) gene

has no known role in regulating immunity, but has a negative

correlation with antibody titres. In agreement with this finding, high

antibody titres were observed in the CAMKIV‐deficient mice after

vaccination.21

There are comprehensive data about safety properties of

inactivated influenza vaccines. Soreness at the vaccination site is a

very common local reaction. These kinds of reactions are self‐limiting

and require no intervention. Systemic reactions such as fever,

headache, myalgia, or any physical unease happen mostly in children

and due to initial exposure to influenza vaccine antigens. These

mild adverse events (AEs) are found within 6 to 12 hours post‐

immunization and last for 1 to 2 days.22 Figure 2 and Table 1 illustrate

various forms of influenza vaccines.
2 | LIVE ATTENUATED INFLUENZA VACCINE

Customary live influenza vaccines are usually attenuated by adapting

them to replicate at lower temperatures. These cold adapted virions
induce innate and adaptive immune responses. Inactivated influenza
uch as IL6, IL1, and TNF‐a from pDCs in a TLR7‐and MyD88‐
s has an important role for inducing productive. Influenza‐specific IgG
tion) produced in primed subjects. SIgA1 with lower concentrations of
ation results in obvious up‐regulation of each of the three activation
cules on antigen presenting cells (ex: DC, MQ) results in increased
ive immune responses.



FIGURE 2 Various forms of influenza vaccine. Application use of the vaccine of the complete influenza virus (LAIV), surface proteins (subunit
vaccine), nucleoproteins (CTL‐based vaccine), viral genomes (DNA vaccine), and inactive viruses (inactivated vaccine) is shown in the figure.
Looking at which distinct types of vaccines, different immunological pathways are induced in innate and adaptive immunity. Finally, the stimulation
of the B lymphocytes and the production of specific antibodies secreting plasma cells.
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are generated by re‐assortment of a cold‐adapted virus with seasonal

influenza A virus. There are additional methods for virus attenuation.

For example, the NS1‐based escape mutants of influenza virus can

be applied to create live‐attenuated influenza viruses by elimination

of NS1 through truncation or deletion of the corresponding gene.23-

25 Another way is modification of viral M1 protein, which can induce

protective humoral and cellular immune responses against homologous

and heterologous influenza viruses in mice.26

Live attenuated vaccination induces both secretory (mucosal

response) and systemic immune responses, which is closely similar to

immune response observed upon natural infection. Previously, in

young children, live AVs were administered by nasal drops27; cur-

rently, this vaccine is administered intranasally. However, immunoge-

nicity between the two approaches is similar. Mucosal response

induced by live attenuated vaccination is characterized by IgA anti-

bodies in nasal secretions, which peak 2 to 11 weeks after vaccination

and slowly decrease by 6 months to 1 year post‐vaccination in

children (Figure 3).28,29

Live attenuated (cold‐adapted) influenza vaccines are likely to

activate TLR3 and ‐7 during viral replication intracellularly leading to

the up‐regulation of inflammatory cytokines, and thus adjuvants are

not needed.30

Studies have shown that influenza virus infection induces the

expression and activation of NLRP3 inflammasome components

(NLRP3, ASC, and Caspase‐1).31 The NLRP3 inflammasome compo-

nents mediate IL‐1β and IL‐18 production in different cell types

in vitro including mice bone marrow dendritic cells (BMDCs) and bone

marrow macrophage (BMMΦ), human macrophage (MΦ), nasal airway

epithelial cells, and monocytic cell line THP‐1.32-35 For this reason, the

NLRP3 inflammasome‐deficient mice did not produce IL‐1β and IL‐18

following the high lethal dose influenza virus infection. Hence, the

reduced protective inflammation including the suppressed
accumulation of neutrophils and monocytes to the lungs and airways

and consequently higher mortality upon influenza virus were observed

in NLRP3‐deficient mice.35

Due to the previously mentioned side effects, it seems that

inactivated influenza vaccines are no longer such safe options for

immunization, and, as a result, researchers are trying to develop alter-

native vaccines such as live AVs and VLPs, which are expected to have

lower adverse effects; however, some studies have reported opposite

results. Higher rate of respiratory AEs and hospitalizations was

observed among children receiving LAIV compared with trivalent

inactivated influenza vaccine recipients.36 A study indicates that

despite of higher rate of AEs like respiratory inflammatory responses

in LAIV vaccinated individuals in comparison with TIV vaccines,

Guillain‐Barre Syndrome and paralysis are significantly more abundant

in TIV recipients.37 Although fever, abdominal pain, and other symp-

toms are reported after LAIV vaccination, it is indicated that overall

various AEs like asthma/wheezing do not increase significantly among

LAIV vaccinated children compared with controls.38
3 | RECOMBINANT SUBUNIT VACCINES

The use of recombinant SU influenza vaccines can solve the problems

associated with the use of chicken embryos and the urgency to atten-

uate strains of the influenza virus. One of the new methods to the

manufacture of SU influenza vaccines is use of different expression

systems for rapid production of individual viral proteins in preparative

levels. Baculoviral expression systems produced influenza antigens in

insect cells by using baculoviral vectors that transport the genes of

the target antigens. The Autographa californica multiple

nucleopolyhedrovirus (AcMNPV) genome is used in Sf9 cell lines

obtained from Spodoptera frugiperda for production of different



TABLE 1 Advantages and disadvantages of different influenza vaccines

Vaccine Type Advantage Disadvantage

Inactive vaccine a) All age groups (except children under 6 months) with no
contraindications can receive inactivated influenza vaccine

b) Safe in pregnant women
c) Use in immunocompromised patients

a) Soreness at the vaccination site,fever, headache, myalgia,
or any physical unease happen mostly in children

b) Allergy
c) In rare case autoimmune disorders

Live attenuate a) Safe in cystic fibrosis patients
b) No systemic allergic reactions such as urticaria,

angioedema, rhinitis, and eczema

a) Mild to moderate symptoms including runny nose,
sneezing, nasal discomfort, fever and headache

b) Is not recommended to be routinely used in pregnant
women

Recombinant a) High safety profile without involving infectious viruses
b) Rapid, stable
c) Induces humoral and cellular immune responses

a) Low immunogenicity
b) Require appropriate adjuvants

DNA vaccine a) Induce all three arms of adaptive immunity, CTLs,
antibodies, and helper T cells

b) Possible mucosal delivery and thus may stimulate innate
immunity

a) Lower immunogenicity, low level of T‐cell, and B‐cell
memory due to

b) Integration of DNA vaccine genetic material into cellular or
host DNA,

c) Development of autoimmune disorders against host DNA

Universal vaccine M2e:
a) Induces M2e‐specific humoral and cellular immune

responses;
b) Elicits broad cross‐protection against divergent virus

strains

a) Single M2e molecule induces lower immune responses

Epitope‐base:
a) They are considered to be safe, easy to produce, and

stable.
b) Can induce B‐cell and T‐cell in the same formulation

a) The main disadvantage of the epitope‐based vaccine is
that algorithms may fail to predict all the appropriate
epitopes

CTL inducing vaccine a) Target conserved influenza virus proteins and improve
recovery and inhibit disease progression

a) Need to have an epitope that can be recognized by all
major histocompatibility complex (MHC)

RNA vaccine a) Safety
b) Efficacy
c) Higher potency (especially with self‐amplifying RNA

vaccines)

a) Possibility of adverse consequences like thrombus and/or
edema

b) Limited availability in cases of pandemic and endemic
diseases.

FIGURE 3 Live attenuated influenza vaccine. Live attenuated vaccination induces both innate and adaptive immune response. Among all
receptors in the innate immune system, TLRs and NLRs have an important role. Live attenuated influenza vaccines activate TLR3 and 7 leading
to the up‐regulation of inflammatory cytokines. NLRs have a differential role in response to influenza virus infection in order to innate immunity
balance. Expression and activation of NLRP3 inflammasome components (NLRP3, ASC, and Caspase‐1) mediate IL‐1β and IL‐18 production in
different cell types. NLRC2 (or NOD2) recruit MAVS adaptor protein and type I IFN production in DCs and MΦ after recognizes the viral genomic
ssRNA in response to influenza virus. In addition, NLRX1 promotes both MΦ survival as well as type I IFN signaling in mice after binding to viral
protein PB1‐F2. Mucosal response induced by live attenuated vaccination is characterized by IgA antibodies in nasal. Systemic immune response
against live attenuated vaccine characterized by production of IgA and IgM in serum. IgG1 is the major IgG subclass produced by live attenuated
vaccination in the serum.
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antigens of the influenza A virus. The main disadvantage of this

recombinant SU vaccine is low immunogenicity; therefore, the need

for repeated vaccination and use of adjuvants are recommended.39,40

As mentioned, use of adjuvants in the composition of SU vaccines

can resolve this problem. The recombinant protein STF2.4 × M2e that

includes flagellin and produced in Escherichia coli cells has protected

mice to a lethal dose of the influenza virus. In another study, safety

and efficacy of a vaccine based on this construct were illustrated in

adult volunteers. Immunization of mice with the recombinant fusion

protein 4 × M2e. HSP70c demonstrates a reduced viral titer in the

lungs, significant decrease in weight loss, and a less pronounced man-

ifestation of the symptoms of the disease after challenge mice groups

with a lethal dose of the influenza A H1N1, H3N2, or H9N2 viruses.41

The most favorable candidate for influenza SU vaccines is M2 pro-

tein (the ion channel‐forming protein). M2 is a highly conserved protein

expressed on the virion's surface. The M2 protein ectodomain (M2e) is

regarded as a candidate for designing broad‐spectrum vaccines. Because

of low immunogenicity, using this type of vaccines needs adjuvants and

repeated vaccination (Figure 4). Molecular adjuvants such as ligands of

several receptors of the innate immunity system can be used in combi-

nation with SU vaccines. One study shows that the recombinant protein

StF2.4 × M2e produced in Escherichia coli cells, which includes flagellin

(the toll‐like receptor 5 (tLr‐5) ligand), causes immunization against a

lethal dose of the influenza virus in mice.42
4 | VIRUS LIKE PARTICLE (VLP) VACCINE

In recent years, VLP vaccines are under precise study as potential can-

didates for vaccination against influenza. Produced VLPs are devoid of

viral genomes which reflects high safety of these vaccines. Glycopro-

teins of these particles are not exposed to destructive fixatives, and

their membrane‐anchored state imitates the conformation of native
FIGURE 4 Subunit vaccine. Subunit vaccination induces both innate an
as TLRs and NLRs have an important role in the production of inflamma
receptors TLR7 and NLRP3 are more important from other receptors. P
providing mucosal and systemic immunity to vaccine. Subunit vaccinatio
markers including CD80/86 and MHC II molecules results in high activ
viral glycoproteins. VLPs can effectively stimulate APCs especially

dendritic cells and also induce both humoral and cellular responses

as well.43-49 These vaccines are able to induce immune responses of

CD4+ T‐cells as well as cytotoxic T‐cells.48,50,51 Headless HA2 protein

expressed on VLPs can induce cross‐reactive antibody response which

is effective against heterologous influenza strains in vivo.52 Immune

responses to NA and M2 antigens of influenza are relatively low which

is due to immune dominancy of HA antigen and higher number of this

antigen on influenza virions. However, by presenting less immuno-

genic viral proteins on separate VLPs, these antigens can avoid the

immune‐dominant effect of HA and thereupon will be more immuno-

genic.53,54 In addition, VLP vaccines can become more effective by

direct incorporation of adjuvant molecules.55-58

Several surveys also have demonstrated a satisfactory safety profile

for VLP vaccines. In a blinded, randomized, placebo‐controlled trial about

safety and immunogenicity of a pandemic influenza A (H1N1) 2009 VLP

vaccine generated by recombinant baculovirus culture in Sf9 cells, partic-

ipants showed only mild local reactions with no vaccine‐related systemic

AEs and the vaccine seemed to be well‐tolerated and safe enough. This

method of VLP production is considered safer than other expression sys-

tems.59 Another clinical trial also has evaluated a VLP vaccine produced

by the same method and side effects were mostly mild. However,

adjuvanted VLP vaccine could raise local and systemic reactions.60 Also,

a phase I clinical trial on previously healthy non‐immune adults exhibited

remarkable safety results for a bacterially produced VLP vaccine (gH1‐

Qbeta). Most of the reported local and systemic AEs were mild in sever-

ity and no serious AEs were occurred.61
5 | INFLUENZA DNA VACCINE

Although conventional influenza vaccines in preventing seasonal influ-

enza viruses are successful, they have some of the problems including
d adaptive immune response. Innate immune system receptors such
tory cytokines significantly IL6 after subunit vaccination. Among this
roduction of antibodies such as IgA, IgM, and IgG is important in
n can induce both T CD4+ and T CD8+ cells. Expression of APC
ation of these cells and increased antigen presentation by APCs.
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allergic reactions and strain‐specific in some patients. Therefore, the

current influenza vaccines need to be reformulated every year to act

efficient against sudden epidemics and pandemics. The production

process of a conventional influenza vaccine is time‐consuming and

so the need to design newer vaccines is of utmost importance. To

solve the disadvantages of conventional influenza vaccines, DNA

influenza vaccines are a promising approach. These vaccines are able

to induce humoral and cellular immune responses via incorporating a

gene encoding an antigen, in transfected host cells. Actually, DNA

vaccines unlike protein base vaccines can provide anti‐influenza

T‐cell‐mediated protection.62-64

Since DNA vaccine are egg‐free and can be produced more

expeditiously, thus reducing the delay from vaccine production to

clinical use and can be produced rapidly in response to epidemics or

pandemics. One of the concerns about the use of DNA vaccines is

possible risk of integration into the human genome but that

advantages make it pave for human application. Bacterial plasmids,

recombinant viral vectors, and bacterial vectors are existing DNA‐

based antigen delivery platforms which are used for DNA vaccines

manufacturing.65,66

It has been shown that intranasal DNA vaccination induces

potent mucosal and systemic immune responses and cross‐protective

immunity against influenza viruses (Figure 5). New strategies for stim-

ulation of nasal immune response have been reported with PEI/DNA

complexes. Polyethylenimine (PEI), a synthetic polycation, was previ-

ously shown to improve the efficacy of gene delivery both in vitro

and in vivo.67,68

In recent reports, adaptor molecules in TLR signaling pathway

such as MyD88 (myeloid differentiation primary response gene) and

TRIF (Toll/IL‐1 receptor (TIR)‐domain‐containing adaptor inducing

interferon‐β) were incorporated into plasmid DNA as genetic adju-

vants and improved humoral immune responses against plasmid‐

encoded antigen.69 These studies suggest that TLR agonists may act

as DNA vaccine adjuvants. Flagellin, as aTLR5 agonist, activates innate

immune responses. Dermal injection of plasmids encoding flagellin and

influenza A virus nucleoprotein results in both humoral and cellular

immune responses. The flagellin vaccine adjuvant induces antigen‐

specific IgA production and enhances protective immunity to lethal

influenza A virus infection. These findings indicate that expression of

DNA‐encoded TLR agonists can improve the immunogenicity of

DNA vaccines.70
FIGURE 5 DNA vaccine. DNA vaccines have been created in complex w
DNA/Flagellin complex, in addition to cellular immunity, stimulates TLR5 in
IRF3.7 complexes and DNA/TRIF and MYD88 complexes stimulate the B
other hand, the DNA/IRF1.7 complexes mainly stimulate the pathway of c
Furthermore, IRF1, 3, and 7 are other genetic adjuvants for influ-

enza virus DNA vaccines. IRF1 genetic adjuvant strongly stimulates

humoral immune responses. Conversely, IRF3 induces stronger cellular

immune responses. Meanwhile, IRF7 genetic adjuvant enhances

both humoral and cellular immune responses.71 These findings suggest

that IRF genetic adjuvants can improve both humoral and/or cellular

immune responses. Also, constitutive active forms of IRF3 and IRF7,

as DNA vaccine adjuvants, elicit both humoral and cellular immune

responses against virus infection.72 In addition, studies showed that

DNA binding domain‐lacked IRF1 (ΔIRF1) genetic adjuvant enhanced

cellular immune responses.73
6 | UNIVERSAL VACCINE

Genes encoding influenza virus hemagglutinin (HA) and neuraminidase

(NA) proteins have the high mutation rate, therefore yearly vaccina-

tion against circulating seasonal influenza virus strains is of great

importance. Running research priorities include the development of a

universal influenza vaccine that could evoke humoral and cellular

responses, be safe, manufactured rapidly in large amounts, and pro-

vides long‐lasting and cross‐strain protection. Moreover, efforts are

being made to design M2e‐based or stalk‐based vaccines, since these

proteins (the type‐2 matrix protein and the stalk domain of HA,

respectively) are entirely well conserved from an evolutionary stand-

point and can elicit immune response against influenza virus.74
6.1 | M2e‐based vaccine

Universal influenza A vaccines focus on using highly conserved

sequences among influenza virus subtypes in order to provoke

cross‐reacting antibody responses. Major targets consist of

ectodomain of matrix protein 2 and conserved epitopes of some other

influenza proteins.75 Recombinant multimeric M2e proteins can be

incorporated with several adjuvants in order to induce specific

antibodies.76 Vaccines containing M2e antigen coupled with carrier

proteins or adjuvants are able to induce strong cross‐protection

against influenza in mice. Some reports indicate a trend towards Th1

responses after vaccination, leading to induction of cytotoxic lympho-

cytes.77,78 This proton‐selective ion channel protein of influenza virus

is required to stimulate the NLRP3 inflammasome pathway. M2
ith different stimulant components that stimulate different pathways.
the innate immunity leading to TNF and NO production. DNA/

lymphocytes differentiation and specific antibody secretion. On the
ellular immunity and differentiate T lymphocytes.
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localization to the trans‐Golgi network is important for NLRP3 activa-

tion.79 Due to lacking its proton selectivity, the mutant influenza virus

M2 protein enables the transport of other cations (Na+ and K+),

which mediates increased IL‐1β secretion compared with the wild‐

type M2 protein.79

An acceptable safety profile has been revealed for these vaccines.

ACAM‐FLU‐A,a M2e_HBc vaccine manufactured by Sanofi Pasteur

was tested in phase I clinical trial and showed no serious side

effects.80 STF2.4xM2e, M2e vaccine with flagellin as an adjuvant,

was reported to be safe, but two high doses of the vaccine were

observed to be associated with raised levels of C‐reactive protein

(CRP).81 Another universal influenza vaccine, Multimeric‐001, was

announced to be safe in phase I/II clinical trial, and no severe AE

was reported.82
6.2 | Epitope base vaccine

Progression in biotechnology methods has provided the emergence

of new approaches towards rational design of vaccines. One impor-

tant approach is the use of epitopes corresponding to immuno-

genic, conserved sequences of microbial proteins. Focuses on the

minimal component of these microbial pathogens that activates

the lymphocyte in the epitope‐based approach are very important.

Short peptides with 8 to 10 amino acids truly activating T‐cells

and peptides up to 20 amino acids induce B‐cells responses. Such

conserved epitopes are found in M, NP, and even HA protein of

influenza virus.83,84 Moreover, perception of the molecular basis

of antigen recognition and human leukocyte antigen (HLA) binding

motifs has ameliorate selection of peptides predicted to bind to

human class I or class II MHC molecules. The immunological effi-

cacy of peptide‐based vaccines versus infectious diseases is very

important, and it is demonstrated in animal models and clinical

studies. The most important challenges associated with peptide vac-

cines are low immunogenicity and the need for valid and simple

assays to measure the T‐cell responses. On the other hand, the

range of production options is a distinct and notable advantage of

peptide‐based vaccines.85,86
7 | CYTOTOXIC
T‐LYMPHOCYTE‐ INDUCING VACCINES

Cytotoxic T lymphocytes (CTLs) have the ability to target more con-

served influenza virus proteins. Unlike antibody‐mediated responses,

this response is induced mainly by the internal viral proteins.87-89

CTL responses improve recovery and inhibit disease progression and

clearance of the virus.90 As a problem, CTL vaccines need to have an

epitope that can be recognized by all major histocompatibility complex

(MHC) subclasses. Assarsson et al showed that although epitope

recognition varied across individuals, it is possible to identify epitope

regions that are recognized by all six HLA super‐ types.91 Their

study and a study by Lee et al resulted in identification of highly

conserved epitopes in the M1, NP, and PB1 proteins from more than

17 strains across six different subtypes which are targeted by CD4

and CD8 T cells.92
An immunodominant CTL vaccine epitope is likely to reduce

the extent of response in primed vaccinated subjects. Thus, epitope

choice can also alter the outcome of the response, depending on

the binding avidity of the T‐cell antigen receptors (TCRs) with the

MHC peptide.93

For a strong CD8 T‐cell response, the antigen should be proc-

essed via the MHC class I processing pathway of dendritic cells

(DCs). During infection, the viral antigen is loaded onto DCs by direct

entry of the virus or through uptake of infected cells undergoing

apoptosis.94 Hence, CTL responses during vaccination are different.

In other words, LAIV induces a strong CD8 T‐cell response, while

the conventional SU TIV is less effective than the whole‐virus vaccine

at inducing CTLs.90 Thus, taking all of these considerations is needed

in the successful design and execution of a CTL‐based vaccination

approach.
8 | INFLUENZA RNA VACCINE

Owing to fewer regulatory tests and being products with invariant

base regardless of the type of pathogen, a large body of evidence

have nominated nucleic acid‐based vaccines as encouraging vaccine

candidates.95

Particularly, a great deal of effort, accompanied by technological

innovation, have enhanced qualification of mRNA, thereby promot-

ing therapeutic potential in the fields of vaccine development.96

The capability of RNA vaccines to trigger strong, protective immune

responses against a wide spectrum of pathogens has led to a large

number of studies focusing on the use of these vaccines against

influenza virus. As recently approved influenza vaccines demon-

strated variable and inadequate protection, a promising efficacy has

been shown for several more recently RNA vaccines types in pre-

clinical models.97

Several features have made mRNA vaccines superior over the

other types of vaccines. First, safety: since mRNA is a non‐infectious

and has a platform which does not integrate into the genome, there

would be no possibility for infection or mutagenesis. Additionally,

the safety of mRNA vaccines is substantially enhanced by down‐

modulation of their immunogenicity. Second, efficacy: the high

stability and translatability of mRNA are a result of a variety of modi-

fications. Rapid and efficient uptake and expression of mRNA are

guaranteed through formulating it into carrier molecules. The charac-

teristic of mRNA as a minimal genetic vector impedes the anti‐vector

immunity, allowing mRNA vaccines to be administered repeatedly.

Third, production: mRNA vaccines are capable of being produced in

a rapid, cheap, and scalable manner, mainly because of the high yields

of in vitro transcription reactions.96 As toxic chemicals are not used in

manufacturing of mRNA, there is no possibility of common risks asso-

ciated with other vaccine platforms.95 However, possible undesired

consequences such as fever can originate from the extreme induction

of type I interferons and proinflammatory cytokines, mediated by

some RNA vaccines. Also, extracellular RNA arisen from vaccine may

result in safety concerns via mediating the formation of pathological

thrombus or edema.97 Despite the good antiviral protection, mRNA

vaccines require a great amount of synthetic mRNA material, probably
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limiting the accessibility of vaccine in cases of epidemics and

pandemics. Owing to the greater length of constructed products,

challenges remained to be addressed in terms of the production pro-

cess and stability of the mRNA products, especially with self‐

amplifying RNA vaccines.95

There are two leading types of RNA that are recently employed as

vaccines: non‐replicating mRNA and virally derived, self‐amplifying

RNA. Containing 5′ and 3′ UTRs, non‐replicating mRNA‐based

vaccines encode the antigen of interest, while self‐amplifying

RNAs encode both the antigen and the viral replication machinery,

allowing the amplification of intracellular RNA and substantial protein

expression.96
8.1 | Self‐amplifying mRNA vaccines

A majority of recently used self‐amplifying mRNA (SAM) vaccines are

based upon the genome of an alphavirus genome. The full‐length RNA

with an approximate length of 9 kb can be readily yielded by in vitro

transcription (IVT) from a DNA template. Intracellular replication of

RNA which encodes antigen guarantees the highly effective antigen

production from an extremely small dose of self‐amplifying RNA vac-

cine. SAM vaccines are capable of self‐production of adjuvants, inter-

mediates of replication, and the rest of contributory motifs in their

high potency.95

dsRNA is well known as a powerful pathogen‐associated molecu-

lar pattern (PAMP), identified by pattern recognition receptors in

various cellular compartments. Robust type I interferon responses

are driven by Recognition of dsRNA‐contaminated IVT mRNA. In

addition to dsRNA contaminants, exogenously delivered single‐

stranded mRNA molecules are in turn a PAMP. Single‐stranded

oligoribonucleotides and the products of their degradation are recog-

nized by the endosomal sensors Toll‐like receptor 7 (TLR7) and

TLR8, leading to type I interferon production.96 In addition, trivalent

saRNA (small activating RNAs) vaccination could result in anti‐H1N1

and H3N2 IgG responses.97

A number of delivery formulation platforms have been explained

to enhance the RNA vaccination, including PEI‐based delivery

vehicles.95 Furthermore, a validated adjuvant strategy is TriMix,

which is formed by a combination of mRNAs encoding three

immune activator proteins: CD70, CD40 ligand (CD40L), and consti-

tutively active TLR4. TriMix mRNA prolonged the immunogenicity of

naked, unmodified, unpurified mRNA and was especially linked with

increased DC maturation and cytotoxic T lymphocyte (CTL)

responses. Substantial activation of TLR7 (mouse and human) and

TLR898 and yields of type I interferon, pro‐inflammatory cytokines,

and chemokines was demonstrated following intradermal immuniza-

tion with the RNActive vaccines. Unlike the immunization with pro-

tein, several mRNA vaccines foster potent CD8+ T cell responses,

probably through efficient presentation of endogenously produced

antigens on MHC class I molecules, besides strong CD4+ T cell

responses. Additionally, unlike DNA immunization, neutralizing anti-

body responses with much lower doses of mRNA vaccines have

been generated. Consequently, mRNA vaccines have induced
protective immunity against various infectious agents in preclinical

models.96
9 | MICRORNA AND EXOSOME‐BASED
VACCINE

MicroRNAs are small non‐coding RNAs which act as epigenetic regu-

lators.99-106 These molecules play critical roles in regulation of gene

expression in the RNA and protein levels.22,107-113 It has been shown

that deregulation of microRNAs is associated with initiation and pro-

gression of various diseases such as infectious diseases, cardiovascular

diseases, diabetes, neurogenerative diseases, and cancer.112,114-134

Exosomes are other particles which have critical roles in the path-

ogenesis of various diseases.122,135-137 Exosomes are nano‐carriers

which carry many cargos such as DNAs, RNAs, microRNAs, LncRNAs,

and proteins. Targeting these cargos to host cells could lead to change

behaviors of cells and contribute to progression of physiological and

pathological processes.138,139

As vaccine preparation through classical temperature‐based

attenuation method was a time‐consuming procedure, the need for

urgent control of influenza outbreaks emerge from mutant viruses,

highlighting the importance of preparing vaccines based on other

mechanisms such as (microRNA) miRNA and exosome technolo-

gies.140 MiRNA‐based strategy for influenza virus attenuation could

act through sequence‐specific gene silencing mechanism or using

miRNA/siRNA to suppress virus replication or infection.

According to previous studies, inserting miRNA response element

(MRE) of viral microRNAs into Influenza virus genome could limit tis-

sue tropism, and incorporating miRNA target site into viral NP or HA

segment resulted to attenuate influenza A virus.99,141,142 Further, in

numerous studies, specific miRNAs have been recruited to demon-

strate which gene targeting segments have maximal potential for

viral attenuations. For example, a recent study on mice models

demonstrated that inserting of miR‐let‐7b target sequence into 2009

pandemic H1N1virus (H1N1) genome successfully produced a recom-

binant virus which was slow to grow and attenuated in mice respira-

tory system.143

Another in vivo study found that incorporating miR‐93 target sites

into H1N1 and H5N1 viruses could result in viral attenuation in

human lines and mouse lungs.141 Similarly, fusing of miR‐192 target

sequence into IAV genome could attenuate influenza pathogenicity

in mice.142 Furthermore, the ability of miRNA‐based attenuation

method to determine virus fitness through introducing various number

and location of target sites is superiority over classical viral attenua-

tion methods.144 Together, these evidences suggested that the engi-

neering flu genome virus containing the target sites of deregulated

miRNAs in a species‐specific manner could be employed as a high‐

throughput strategy which is able to provide a new class of flu IAV

vaccines. Fortunately, at the moment, a MRE design web server is

available in which users could design various number of MRE tools

for Influenza A genome to produce LAVs and help reduce experimen-

tal time and costs.145

Exosomes are two membrane‐enclosed nano‐vesicles that are

actively secreted by a variety of cells into the extracellular space.

https://www.thermofisher.com/us/en/home/references/ambion-tech-support/probe-labeling-systems/general-articles/the-basics-in-vitro-transcription.html
https://www.thermofisher.com/us/en/home/references/ambion-tech-support/probe-labeling-systems/general-articles/the-basics-in-vitro-transcription.html
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These vesicles exchange information between cells and transfer

biologically active proteins, lipids, and various nucleic acids including

mRNA, miRNA, ribosomal RNA (rRNA), long noncoding RNA

(lncRNA), and variably some DNA.146-149 Through different studies

conducted on distinct techniques such as stem‐loop PCR and

microfluidic microarray, it was found that more than 274 miRNAs were

secreted by different cell types via exosomes.150,151 The secretion of

miRNAs through exosomes in the extracellular fluids guarantees their

half time and keeps them away from degradation by body fluid

enzymes.148,150,151 Based on previous studies, exosome‐mediated

extracellular delivery also exists in viral life cycles. Transition of viral

components including viral mRNA, miRNA, and genomic RNA, as well

as genetic regulatory through exosomes, increased viral persistence,

skipping host immune system and spread to uninfected cells.146 These

findings are promising that an expressional exosomal miRNA could be

used in therapeutic and diagnostic fields. However, exosomes which

are produced naturally in tissues are not filled with a great amount of

proteins or miRNAs; therefore, to prepare more efficient targeted

delivery exosomes, it is crucial to develop an efficient purification

method to enrich specific miRNA in isolated exosome.

In two recent studies,152,153 exosomes were enriched with a

selected miRNA using a modified calcium‐chloride mediated or elec-

troporation. The results show these exosomes as cargo could success-

fully deliver a great deal of miRNA mimic(s) or inhibitor(s) to the target

cells and lead to overexpression or deletion of the designed miRNA in

recipient cells as well as alter cellular function.

These findings suggested that engineered exosomes as natural

vehicles could represent a powerful tool for targeted delivery. Hence,

exosomes could be clinically suitable applications for enhancing

patient condition. Despite these advances, it seems there are still

many challenges ahead, and existing techniques in exosome‐mediated

drug delivery need further development.
10 | CONCLUSION

In conclusion, most studies indicate that each type of influenza vac-

cines has particular excellences compared with another. For example,

LAIV and VLP vaccines in addition to induction of antibody responses

are able to stimulate effective cellular immune responses and in this

respect are better than inactivated vaccines. However, newer vaccines

such as VLPs can be more advanced and effective choices for exten-

sive immunization of different populations. Influenza vaccines also

can cause various inevitable adverse effects which for some vaccines

with more severe local and systemic side effects may lead to uncer-

tainty for clinical applications. Up to now among available influenza

vaccines, emerging VLP vaccines seem to have the lowest reported

AEs, although universal utilization of these vaccines needs more

comprehensive clinical surveys. Overall, if advantages can overcome

disadvantages, a vaccine will be suitable for immunization programs.

Future studies can offer more ideal products by assembling the advan-

tages of existing vaccines in a unique influenza vaccine.
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