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ABSTRACT 
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Master of Science Thesis, 44 pages, 0 Appendix pages 
May 2016 
Integrated Master’s Degree in Electronic and Telecommunications Engineering 
(EUR-ACE label), in collaboration with the University of Aveiro, Portugal, through 
the Erasmus+ program. 
Examiner: Professor Mikko Valkama  
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Fifth-generation telecommunications networks are expected to have technical 

requirements which far outpace the capabilities of modern power amplifier linearization 

techniques such as digital predistortion. For this reason, this thesis proposes an alternative 

linearization method: a base band analog predistorter consisting of an artificial neural 

network trained using the Temporal Difference learning method. A vectorized model of 

the coupling of Temporal Difference learning (learning of the task) and backpropagation 

(structural adaptation of the neural network) is presented. While the specifics of the model 

may be quite complex, its formal simplicity allows for a very quick and straightforward 

implementation as well as its algorithmic realization, available as an appendix to this 

thesis. In effect, this thesis outlines a way towards the meeting of the specifications of 

next-generation networks. 
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1. INTRODUCTION 

While the requirements and specifications for fifth-generation (5G) mobile systems and 

services have yet to be fully defined, some goals of the next generation of mobile 

networks are already very clear: a tremendous increase in connection density and speed 

(over 1 Gbps downlink bit rate) and a similarly significant decrease in connection latency 

(under 1 ms roundtrip delay) [1]. 

However desirable, these advancements impose changes not only on the hardware that 

constitutes cellular networks, but on their topology as well. To be able to yield such high 

bit rates at such low latencies, cellular base station transmitters will need to have a wider 

operational bandwidth – on the order of 500 to 1000 MHz [2], in contrast to the few tens 

of MHz that current base stations possess –, and their center frequencies will have to be 

adjusted to higher regions of the spectrum – reportedly as high as 6 to 300 GHz [1]. 

Radiation at such high frequencies will evidently have limiting effects on the propagation 

of radio frequency (RF) signals through buildings and objects, thus leading to a structural 

change in network architectures: instead of network coverage being provided by central, 

hugely encompassing, high power transmitters, it will instead be done through the 

deployment of swarms of small, low power, distributed transmitters [1,3]. 

Ultimately, all of these changes, from the higher signal bandwidths to the lower power 

levels of the transmitting amplifiers, contribute to one critical outcome: the downfall of 

digital predistortion (DPD) as a viable linearization technique. Not only will the 

bandwidth of 5G power amplifiers (PAs) be too wide for the limited processing speed of 

state-of-the-art digital processors, but also their own power consumption (proportional to 

their switching frequency) will be too great compared to the power level of the PAs they 

linearize, thus defeating any sort of effort for increased power efficiency – in other words, 

it would not be sensible to linearize a 1 W power amplifier with a 20 W digital processor. 

Naturally, the need for a means of PA linearization will remain: without it, achieving any 

of the next-generation (or even current-generation) goals would be impossible. New ideas 

must, therefore, be proposed and explored, and that is what this dissertation is all about. 
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1.1 The Thesis 

Extraordinary needs require extraordinary measures, and thus a new line of thinking must 

begin. The aim of this dissertation is not to solve the problem of replacing 20 years’ worth 

of research and technological development on digital predistortion, but to start the 

discussion on one way in which it might be possible to do so – eventually. 

The headline of this work is the linearization of power amplifiers using the predistortion 

technique, performed at base band using analog implementations of artificial neural 

networks (ANNs), which are trained using the classical, mathematically sound machine 

learning method of Temporal Difference (TD). 

This thesis builds upon analog predistortion (APD), the precursor to digital predistortion. 

Due to very significant technical advancements in digital electronics at the turn of the 

century, APD has been mostly put aside in favor of DPD. However, a small set of 

researchers have realized that the requirements for next-generation telecommunications 

will prove to be insurmountable for DPD, thus promoting the authoring of new literature 

on APD [4–6], albeit at a still relatively slow pace. 

Another topic this thesis builds upon is the use of ANNs as predistortion devices, which 

has also been explored in the past. Most existing publications on neuronal predistortion 

are about DPD [7–9], since only recently has it been possible to implement ANNs as 

analog circuits. For this reason, the literature on this topic is still lacking [10,11].  

The main contribution of this thesis is, then, the use of a formal, mathematical approach 

called TD(λ) to the training of the ANNs used as predistortion devices: one which, as far 

as we are aware, has not been used in the field of telecommunications as of yet. All of the 

mathematical formalization in vector form is original work. 

In broad strokes, this project may be envisioned as follows: 

1.  Propose a formal, mathematical description of the problem and its parts: one 

which is simple enough to be almost intuitive, yet powerful and complete enough to be 

readily implementable in an algorithmic fashion. 

2.  Idealize a model of the system based on the previously defined mathematics. 

This entails, for instance, the establishment of the structure of the ANN: exactly how 

many neurons it should have, and their relation to the predistorted data (to differentiate 

between static and dynamic models). 

3.  Synthesize the implementation of the model as an analog circuit. Extensive 

research will undoubtedly be required in order to build ANNs capable of meeting the 

specifications and requirements of 5G networks. 

Naturally, this is far from a one-man job. The objective was to set up the foundation for 

future work, and that meant focusing on the first item of the list: building the 

mathematical model of a novel predistortion solution. 
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2. LINEARITY AND THE LACK THEREOF 

Power amplifiers are some of the most fundamentally important devices in radio 

frequency telecommunications, since they are that which guarantees an information-

carrying signal is of sufficiently high power level to be successfully transmitted by an 

antenna as small as a cell phone's or as large as a broadcasting radio station's. 

Power amplifiers typically handle large amounts of power (for varying degrees of 

“large” – power ratings can vary by several orders of magnitude depending on the 

application), which means that power efficiency is of the highest importance: if efficiency 

is low, a cell phone's battery life may be severely compromised or the operational cost of 

a base station’s cooling system may become unreasonably high. 

On the other hand, if an amplifier is not perfectly linear – that is, if it does anything to the 

input signal other than to increase its power level (besides introducing a constant delay) –, 

the information that is supposed to be transmitted through the succeeding antenna may be 

corrupted. 

And therein lies the problem. In general, the more linear an amplifier is, the less efficient 

it is [12]. For example, a class A amplifier (such as the textbook common emitter, single 

transistor amplifier) has very high linearity, but a theoretical (absolute maximum) 

efficiency limit of 50%. This isn't as unintuitive as it might seem – consider a class D 

amplifier, which is ideally a switch: because it is a switch, it can either be on or off, making 

it extremely nonlinear; but also because it is a switch, its theoretical efficiency is 100%, 

since “an ideal switch in its on state conducts all the current but has no voltage loss across 

it and therefore no heat is dissipated, and when it is off it has the full supply voltage across 

it but no leak current flowing through it, and again no heat is dissipated”. 

In short, typical applications demand high efficiency power amplifiers; because they are 

highly power efficient, they are very nonlinear, and because they are very nonlinear, the 

amplified signals – as well as the information they carry – are distorted. To solve this, 

these amplifiers are linearized in a variety of ways, resulting in a system that is both highly 

power efficient and highly linear: the best of both worlds. 

 

 

 

 



4 

2.1 Linearity: An Intuitive View 

Static linearity can be formally defined through two distinct properties: superposition 

(2.1), and first-degree homogeneity (2.2). Essentially, this means that the net response of 

a linear system to a number of simultaneous inputs is the sum of the responses of the 

system to each individual input. 

𝐹(𝑥1 + 𝑥2) =  𝐹(𝑥1) + 𝐹(𝑥2) (2.1) 

𝐹(𝛼𝑥) = 𝛼𝐹(𝑥) (2.2) 

It is much easier, however, to think of a static linear system as one whose input/output 

response is, as the name implies, linear: a line. This line cannot have an offset, however, 

as there should be no output when there is no input. See Figures 2.1 and 2.2 for examples 

of linear and nonlinear static input/output responses. 

On a more general and formal note, a linear system – be it static or dynamical –, is one 

whose variation of its state vector x is defined as in (2.3), where A is a constant matrix 

and b is a constant vector. 

�̇� =  𝐴𝑥 + 𝑏 (2.3) 

 

 

 

 

Figure 2.1.  A linear static system. 

 

Figure 2.2.  Nonlinear static systems. 

 

 



5 

2.2 Effects of Nonlinearity 

It has been established that nonlinearity produces distortion in signals and has the 

potential to corrupt the information they carry. But how so? How can that be quantified? 

Consider an amplifier whose behavior can be modeled by a simple third-order (nonlinear) 

polynomial with input x(t) and output y[ x(t) ], as in (2.4): 

𝑦[ 𝑥(𝑡) ] =   𝑎1𝑥(𝑡) + 𝑎2𝑥(𝑡)2 + 𝑎3𝑥(𝑡)3 (2.4) 

Consider also a signal composed of two close tones, one at frequency ω1 and amplitude 

X1 and another at frequency ω2 and amplitude X2, defined in (2.5): 

𝑥(𝑡) =  𝑋1 cos(𝜔1𝑡) + 𝑋2cos (𝜔2𝑡) (2.5) 

The response of the amplifier to the signal is the sum of various tones at the following 

frequencies [13]: 

 Base-band:  ω2 – ω1 

 Coincident with the signal:  ω1  ,  ω2 

 In-band distortion:  ω1  ,  ω2  ,  2ω1 – ω2  ,  2ω2 – ω1 

 2nd harmonic:  2ω1  ,  ω1 + ω2  ,  2ω2 

 3rd harmonic:  3ω1  ,  2ω1 + ω2  ,  ω1 + 2ω2  ,  3ω2 

Clearly, the response of the amplifier is not an amplified version of its input, otherwise 

the output tones would only be those coincident in frequency with the input ones; the 

spectrum has, therefore, expanded – see Figures 2.3 and 2.4 for a graphical example of a 

slightly more complex PA model (fifth-degree polynomial), showing only the 

fundamental frequency band. 

High order harmonics and base band distortion are not exactly the problem, because they 

can be easily filtered out by the amplifier’s output matching network. The real problem 

is in having to deal with spurious (unwanted) tones very near the input tones, because 

they would require filters with extremely high Q-factors (sharp frequency responses) to 

be eliminated, and those are not at all trivial to design. Also, filtering would not be 

reasonable for transceivers operating with multiple channels (at distinct frequency 

locations, although in nearby regions of the spectrum). Thus, intermodulation distortion 

(IMD) tones cannot be filtered – they have to be suppressed with linearization techniques. 
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Figure 2.3.  The spectrum of the input 

signal of a nonlinear device. 

 

Figure 2.4.  The spectrum of the output 

signal of a nonlinear device. 

  

2.3 Linearization Techniques 

Most linearization techniques fall into the four different categories explained in this 

section. Naturally, one can take advantage of a combination of them, producing fairly 

complex linearization circuits, but each of them may be used separately to great effect. 

2.3.1 Power Back Off 

Most power amplifiers have three operation regimes: at low powers, the amplifier is linear, 

with constant gain; when the amplifier approaches its saturation point, the device starts 

behaving nonlinearly and the gain starts decreasing; finally, when either the maximum 

rail voltage is reached or the maximum current is drawn, the amplifier saturates and its 

gain reaches its minimum. 

Power back off simply consists in operating an amplifier in its linear regime, “backing 

off” (or “away”) from the nonlinear ones; see Figure 2.5. Generally, the amount of back 

off power (say, 3 dB) is in respect to the device's 1 dB compression point, which is the 

point at which the power gain is 1 dB lower than its maximum value (the gain in the linear 

region, in the case of single-transistor class-A amplifiers). 

The advantage of the employment of this technique is its extreme simplicity: either the 

input power is lowered so the amplifier operates exclusively in its linear region, or the 

supply voltage is increased so that the amplifier’s linear region is extended. The 

disadvantage, however, is that the efficiency rapidly decreases with the increase of the 

back off power, since a linear amplifier is (usually) an inefficient one. Also, as a general 

rule, the higher the maximum power rating of an amplifier, the more expensive it is, so 

using a 200 W amplifier to produce a 100 W signal (3 dB back off) would certainly be 

more expensive than using a 100 W amplifier to produce the same signal. 



7 

 

Figure 2.5.  Power back off from the perspective of an 

amplifier's normalized voltage input/output response. 

2.3.2 Cartesian Feedback 

Most RF signals are generated through the modulation of a high frequency carrier signal 

using lower frequency data signals, called the in-phase (I) and in-quadrature (Q) signals. 

It is these I and Q components that define a system as “Cartesian”, since they directly 

relate to a Cartesian representation of the transmitted signal (composition of two vectors, 

I and Q), rather than a polar one (magnitude and phase). 

The most distinguishing feature of Cartesian feedback [14] – and the fundamental concept 

behind it – is the use of a negative feedback loop to control each of the input I and Q 

components so that the output I and Q components of the amplifier correspond to an 

output composite signal that is a linearly amplified version of the input composite signal. 

In Cartesian terms, a system is said to be linear if its output (I, Q) vector is a scaled version 

of its input (I, Q) vector – their phases should, therefore, be equal. 

The output of an RF amplifier is an RF signal, so, in order to perform the feedback of its 

I and Q output components, these must be extracted with a demodulator which reverses 

the up-conversion done by the modulator that mixes the input I and Q signals with the 

carrier signal. After extracting the output I and Q components, I and Q error signals (the 

difference between the respective I and Q input and output components) are fed to control 

systems that guarantee the linearity of the overall system. These control systems, 

represented as “H(s)” blocks in Figure 2.6, may be designed with classical techniques 

such as dominant pole compensation [14]. 

The advantage of the Cartesian feedback linearization technique is, similarly to the power 

back off technique, its fair simplicity and reasonable IMD suppression. Feedback systems 

are inherently slow, though, so this technique is only reliable for low base band 

frequencies – up to hundreds of kHz at most [15] –, so RF feedback is not even attempted: 

any phase shift from the feedback path would ruin the system's stability. 
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Figure 2.6.  Cartesian Feedback. 

2.3.3 Feedforward Linearization 

In a feedback loop, a sample of the controlled system's output is subtracted from a 

reference input signal, producing an error signal. Likewise, in a feedforward scheme a 

sample of the controlled system's output is also subtracted from a reference input signal, 

producing an error signal as well. Naturally, if the system has a gain of A W/W then the 

sampled output should be attenuated by A W/W to achieve a proper difference or error 

signal; see Figure 2.7. 

The difference between the two architectures – feedback and feedforward – is how they 

use the error signal which carries the information of how exactly the actual system output 

differs from the intended, target output: in a feedback topology, the error signal is used 

as the input of a controller which adjusts the controlled system's output so it matches the 

reference signal, i.e., the error signal has an indirect consequence on the system's output; 

in a feedforward topology, the error signal is directly subtracted from the system's output, 

producing a new, error-free signal further down the road. 

Consider the following example: 

 An amplifier has a power gain of 10 and introduces some spurious signals, whose 

power shall be named D (“D” for “distortion”). [e.g., D = 0.2 W] 

 Let X be the input of the amplifier. Then, the output of the amplifier is 

Y = 10X + D, that is, a 10 times amplified version of the input signal plus some 

D amount of distortion. [e.g., X = 7 W; Y = 70.2 W] 

 Now, to get the error signal, E, the input and output signals are subtracted while 

taking into account the gain of the amplifier (so both signals are at the same power 

level), so E = X – Y/10 = X – (10X + D)/10 = – D/10. [E = -0.02 W] 
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 Finally, the feedforward part: the error signal is coupled (added) to the amplifier's 

output; again, the amplifier's gain has to be taken into consideration, so the error 

signal has to be multiplied by 10. The overall output of the linearized system is 

therefore Y + 10E = 10X + D – D = 10X, a perfectly amplified, distortion-free 

version of the input signal. [Y + 10E  =  70.2 W + 10×(-0.02 W)  =  70 W] 

The main advantages of feedforward linearization are the wide operating bandwidth and 

the compensation of any sort of distortion produced by an amplifier – even that which is 

caused by the device's memory effects. The tradeoff, though, is the high complexity and 

the requirement of automatic adaptation to maintain performance specifications [15]. 

 

 

Figure 2.7.  Error signal generation through signal cancellation. 

 

A typical feedforward linearization system, schematized in Figure 2.8, consists of two 

circuits: a signal cancellation circuit and an error cancellation circuit. 

The first circuit implements steps 1 to 3 of the previous example, that is, it produces a 

signal that only contains the distortion created by the power amplifier; it does this by 

attenuating the output of the amplifier (by an amount equal to the amplifier’s gain) and 

combining the resulting signal with a copy of the input signal. Because these two signals 

have opposite phases, this essentially results in a subtraction, rather than an addition. 

Finally, the second circuit implements step 4 of the previous example, that is, it amplifies 

the distortion signal extracted by the first circuit and couples it to the output of the 

amplifier. Similarly to the previous case, these two signals have opposite phases, so this 

essentially results in a subtraction. This means that the distortion generated by the 

amplifier is subtracted from the amplifier’s own output signal, leaving a signal that is free 

of distortion and, by definition, a linearly amplified version of the input signal. 



10 

 

Figure 2.8.  Feedforward Linearization [15]. 

2.3.4 Predistortion 

Predistortion [16], illustrated in Figure 2.9, is the act of distorting a signal before it is fed 

to a nonlinear system in such a way that the distortion generated by the system is exactly 

canceled by the distortion synthesized by the predistorter (PD), resulting in an overall 

linear cascade of two devices. As an example, consider a system that has an input/output 

transfer function of  y  =  x3, which is clearly nonlinear; if a predistorter with an 

input/output transfer function of  y  =  ∛(x) is used, then the cascade of the PD and the 

system is  y  =  [∛(x)]3  =  x and the overall system is perfectly linear. 

The main advantage of predistortion is its potential to achieve fantastic intermodulation 

distortion suppression, i.e., very high linearity. However, predistortion usually requires 

the physical modeling of the amplifier, which is extremely complex, since most amplifiers 

exhibit memory effects, that is, their outputs depend not only on the current input, but the 

input at previous times as well. These models, as well as the predistortion of the input 

signals, are usually implemented using digital processors, which means that the 

bandwidth of the input signals is either limited by the sampling rate or the processing 

speed of the digital predistorter. 

A common modification of the basic concept of predistortion is Cartesian predistortion 

(Figure 2.10), which is the predistortion of the base band (low frequency) in-phase and 

quadrature components (I and Q) instead of the predistortion of the RF (high frequency) 

composite signal. Among other things, this greatly reduces the required bandwidth of the 

predistorter. While this is a welcome relaxation of performance specifications in the case 

of APD, it is the very basis of DPD, since the predistortion of the RF signal would require 

extremely fast analog/digital conversion units and even faster processing units. 
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Finally, a very common way of simplifying the modeling of an amplifier and the resulting 

predistortion algorithm is to forgo the modeling of the amplifier's non-electrical 

characteristics, like temperature dependence, ageing, and other very slow phenomena. 

These can be compensated by recalculating the parameters of the amplifier’s model based 

on the measurement of its response to a set of test signals. This way, the slow drifts of the 

input/output response of the PA due to changing temperature and other causes can be 

compensated. This is called “adaptive predistortion”. 

 

 

 

Figure 2.9.  RF Predistortion. 
 

Figure 2.10.  Cartesian Predistortion. 



12 

3. ANALOG PREDISTORTION  

Following Arthur C. Clarke’s 1945 article on “Extra-Terrestrial Relays” [17] and John R. 

Pierce’s 1955 article on “Orbital Radio Relays” [ 18 ], efforts towards global 

communications escalated along with a demand for higher transmission bandwidths at 

lower costs, leading to an increased interest in high order modulation techniques such as 

QPSK (Quadrature Phase Shift Keying) or QAM (Quadrature Amplitude Modulation) 

and multiple-access schemes such as TDMA (Time Division Multiple Access). 

In order to achieve acceptable bit error rates and to meet the increasingly stringent spectral 

purity requirements of these data rate-increasing schemes, much attention was given 

between the late 1970s and the early 1980s to problems such as the linearization of high 

power microwave amplifiers used in satellite earth stations [19] and traveling wave tube 

amplifiers used in satellite transponders [20]. 

Because of the high power levels of these amplifiers, most linearization circuits consisted 

in the analog realization of the predistortion technique, applied not only to the microwave 

signals [20], but also (though less frequently) to the base band signals [19]. Regardless of 

the idiosyncrasy of each implementation, the great majority of the linearizers adhered to 

two main classes of predistortion circuits: cubic predistorters, and series diode 

predistorters [21]. 

 

In essence, cubic predistorters (Figure 3.1) couple the input signal to a distortion 

generator, a pair of antiparallel diodes which produces exclusively odd-order harmonics 

of the input signal while the even-order harmonics circulate inside the loop. Note that a 

single diode, when driven with RF, will generate both even- and odd-order distortion, and 

it should be biased close to the turn-on point so that sufficient distortion may be generated 

for low power RF signals [21]. 

A variable phase shifter is used to guarantee a 180º phase difference between the input 

and the distortion signals. This, along with a delay line that is used to equalize the group 

delays of the two signals, ensures that their coupling is subtractive. Finally, a variable 

attenuator ensures the amplitude of the generated distortion matches that of the harmonic 

distortion produced by the predistorted device (such as an amplifier). This amplitude 

matching, along with the 180º phase difference between the clean signal and the generated 

distortion, results in an appreciable suppression of the spurious odd-order tones produced 

by the nonlinear predistorted device. 
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Series diode predistorters (Figure 3.2) consist of a single forward-biased series diode, 

which may be modeled as a nonlinear resistor with a parasitic capacitance – an RC phase 

shift network. The S21 of the circuit is given in (3.1), where R is the resistance of the series 

diode, C is the sum of the parallel capacitance and the junction capacitance of the diode, 

and Z0 is a characteristic impedance [22]. 

The principle of operation is fairly straightforward: as per Shockley’s diode equation 

(3.2), an increase in forward (RF) power results in a decrease in the diode’s series 

resistance. This, in turn, provided that the series resistance is not too high [22], results in 

an expanding gain and a decreasing phase shift, effectively countering the predistorted 

amplifier’s undesired AM-AM and AM-PM characteristics: amplitude compression and 

phase advance. 

 

𝑆21 =
2𝑍0𝑌

1 + 2𝑍0𝑌
 

where 𝑌 =
1

𝑅
+ 𝑗𝜔𝐶 

(3.1) 

𝐼 = 𝐼𝑆 (𝑒
𝑉𝐷

𝑛𝑉𝑇 − 1) (3.2) 

 

 

Figure 3.1.  Cubing Predistorter. 

 

 

 

Figure 3.2.  Series Diode Predistorter. 
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With the advent of high speed digital computing, analog predistortion plummeted into 

near oblivion and was swiftly replaced by more capable and more configurable digital 

predistortion schemes. Still, some research was done, mainly in the early 2000s, and not 

only did old analog predistortion technology improve, some new interesting ideas even 

came to light. 

The first great advancement in analog predistortion was the refinement of the cubing 

predistorter, which led to the development of fully configurable, independently 

controllable “IMD generators” [23–26]. These IMD generators are essentially branched 

versions of the cubing predistorter that generate 3rd- and 5th-order (and higher) 

intermodulation distortion tones, which can be independently scaled in magnitude and 

shifted in phase. See Figure 3.3 for an example of such a scheme. 

The example circuit depicted in Figure 3.3 [24] is a 5th-order IMD generator predistorter. 

It has three main branches: the signal branch, the 3rd-order distortion branch, and the 5th-

order distortion branch. The distortion components are generated using circuits based on 

cubic predistorters. To allow for individual control of each distortion component, the 3rd-

order component on the 5th-order path is cancelled by coupling the 5th-order distortion 

signal with a copy of the 3rd-order distortion signal. In order for this to work, the two 

signals must be in anti-phase and with the correct amplitudes, so a vector modulator is 

used in the 5th-order path. Finally, vector modulators are used to tune each individual 

distortion component, and the resulting signals are coupled to the output of the complete 

predistorter. 

The second great advancement – perhaps the most noteworthy, due to its novelty – was 

the realization that the AM-AM and AM-PM characteristics of a moderately nonlinear 

amplifier can be modelled to some extent by complex-valued polynomials of low order 

[27–29]. These polynomials, in turn, – or, rather, their inverse – can be approximated by 

transistor circuits based on the Gilbert cell [30] (Figure 3.4): a cascode circuit used as an 

analog four-quadrant multiplier and frequency mixer. A new class of CMOS circuits was 

therefore designed to implement high order polynomials (as high as 11th-order) with 

freely configurable coefficients and thus synthesize the inverse transfer characteristic of 

an amplifier – an almost ideal predistorter. 

The Gilbert cell shown in Figure 3.4 consists of two pairs of transistors, Q2-Q3 and 

Q5-Q6, which have their collectors cross-connected. The bases of these transistors are 

driven by a third pair of transistors, Q1-Q4, connected as diodes, which makes the circuit 

linear [30]. 

The Gilbert cell is a circuit with two inputs, X and Y, and one output, Z. The first signal 

input X is the pair of currents xIB and (1 – x)IB, where 0 ≤ x ≤ 1, and the second signal 

input Y is the pair of currents yIE and (1 – y)IE, where 0 ≤ y ≤ 1. Because the ratio of the 

emitter currents in the Q2-Q3 and Q5-Q6 pairs is equal to that of the Q1-Q4 pair, we can 

write (3.3) [30]: 
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𝐼𝐶2 = 𝑥𝑦𝐼𝐸 

𝐼𝐶3 = (1 − 𝑥)𝑦𝐼𝐸 

𝐼𝐶5 = 𝑥(1 − 𝑦)𝐼𝐸 

𝐼𝐶6 = (1 − 𝑥)(1 − 𝑦)𝐼𝐸 

(3.3) 

Thus, the normalized differential output is (3.4) [30],  

𝑍 =
𝐼𝑜𝑢𝑡

𝐼𝐸
=

𝐼𝐶2 + 𝐼𝐶6 − 𝐼𝐶3 − 𝐼𝐶5

𝐼𝐸
= 1 − 2𝑦 − 2𝑥 + 4𝑥𝑦 (3.4) 

Then, if both signals X and Y are bipolar and between the range [-1, +1], the normalized 

output is (3.5): 

𝑍 = 𝑋𝑌  (3.5) 

 

Figure 3.3.  5th-order IMD generating predistorter [24]. 

 

Figure 3.4.  The Gilbert cell [30]. 
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Finally, in the present decade, various novel analog predistortion schemes have surfaced, 

possibly in anticipation of the 5G networking challenges already summarized. These 

schemes include, among others, the bandwidth reduction of error signals [31], the use of 

mirror amplifiers [32], and lookup table-based, combined digital/analog predistortion 

systems [33]. 

In a mirror predistorter (Figure 3.5), a low power PA is used before the main high power 

PA. If the construction of the low power PA is identical to that of the main PA, then its 

distortion characteristics will be the same as the main PA’s, though at a lower power level 

[32]. In effect, these characteristics mirror those of the main PA in both magnitude and 

phase, hence the name of the predistortion technique. 

Similarly to the feedforward linearization technique, the distortion caused by the mirror 

PA is isolated by coupling it with an anti-phase copy of the input signal. Then, it is scaled 

and phase shifted in such a way that, when fed to the main PA alongside the input signal, 

they are canceled by the main PA’s nonlinear characteristics. 

 

 

Figure 3.5.  Mirror predistorter [32]. 
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3.1 Proposed APD System Architecture 

The system architecture of the proposed predistortion solution, schematized in Figure 3.6, 

consists of an analog feedforward artificial neural network that predistorts the base band 

I and Q components of a complex telecommunications signal. As usual, the predistorted 

signal is then transposed to a much higher frequency with an RF modulator and it is then 

fed to the power amplifier that should be linearized. Naturally, some additional 

components – such as filters and intermediate amplification stages – are required for the 

implementation of the solution, but the ones illustrated in Figure 3.6 are the main blocks 

of the system. 

This base band architecture is ideal for an analog solution based on an artificial neural 

network, since the bandwidth requirements of the ANN are much lower than they would 

be if it were used as a radio frequency predistorter. As an additional reason for having 

chosen a base band solution, the predistortion of the I and Q components of the complex 

RF signal is a matter of amplitude scaling, which means that the function the ANN is 

supposed to learn is real-valued. This contributes to a relatively simple model of the 

ANN-based predistorter and its learning algorithm. 

The ANN-based PD is trained using a reinforcement learning algorithm called Temporal 

Difference learning, which requires a feedback of the I and Q components output by the 

PA. The training, however, can be done through simulation using a forward model of the 

PA, leaving the effective predistortion system architecture unchanged. 

 

 

Figure 3.6.  Predistortion system architecture. 
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4. ARTIFICIAL NEURAL NETWORKS 

Not unlike polynomials or Volterra series, artificial neural networks are a family of 

nonlinear function models which consist of a series of basic computational units, the 

neurons (akin to polynomials’ power products), that are interconnected by means of 

model-defining weights (akin to polynomials’ coefficients). Even though there are 

metrics such as the Vapnik-Chervonenkis dimension, the evaluation of the complexity of 

an ANN (similar to a polynomial’s degree) has yet to be formally and unequivocally 

defined [34], though it is intuitive that it is related to the number of neurons it comprises 

and the way they are interconnected. 

The basic computational unit of an ANN is the neuron, or node, illustrated in Figure 4.1. 

A neuron can have an arbitrary positive number of inputs x, one of which acts as a bias, 

and these are processed by an activation function Φ, which is selected by the ANN 

designer to calculate the neuron’s activation a: its output. Typical activation functions 

include a purely linear transfer function (4.1) and the (logistic) sigmoid function (4.2), 

and these can be used at will throughout an ANN. A variety of sigmoid (meaning 

s-shaped) functions can be used for different levels of algorithmic optimization. 

 

 (4.1) 

 

(4.2) 

 

 
 

 

Figure 4.1.  A neuron with three inputs. 

 



19 

 

Figure 4.2.  An example feedforward network with three input nodes, 

one hidden layer with five nodes, and two output nodes. Displayed 

as well are the biasing nodes for the hidden and output layers. 
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There is a nearly endless number of ways of arranging and interconnecting neurons in an 

ANN. There are, however, classical and established ways of doing so, such as the 

feedforward network illustrated in Figure 4.2. In a feedforward network, neurons are 

distributed between different, sequentially ordered layers: the input layer, a set of hidden 

layers, and an output layer. Each neuron in each layer connects to every neuron in the 

immediately succeeding layer, and there are no backward or intra-layer connections – 

meaning that there are no cyclical connections, hence the network’s designation of 

“feedforward”. 

Feedforward ANNs are universal approximators [35]. This means that for any given 

continuous nonlinear function, there is at least one feedforward ANN that approximates 

it, in a closed and bounded input range (a compact set of Rn), with an arbitrarily small 

error. This was proven for feedforward networks containing a single hidden layer of 

neurons with sigmoidal activation functions [36,37], though it stands to reason that more 

expressive networks, with more hidden layers, would perform at least as well as ANNs 

with a single hidden layer. Naturally, the output layer should have neurons with purely 

linear activation functions, otherwise the range of each of the network’s output neurons 

would be limited to (-1, 1). 

4.1 ANNs as Feature-Learning Systems 

While this thesis concerns the use of an ANN as a control (regression) system, ANNs can 

also be used as feature-learning agents. For instance, ANNs can be used for classification, 

which includes pattern and sequence recognition. With proper training, these networks 

can assign labels to data. Examples include the classification of email as “spam” or “not-

spam”, the identification of drawn digits and letters, and the classification of medical data 

as indicative of the presence of a tumor, with a stated probability. 

ANNs can also be used for behavioral modeling, that is, creating arbitrarily complex 

models of physical devices. This has been used even in the predistortion of power 

amplifiers, where an ANN learns the forward model of the PA and is then used as the 

basis for the training of another predistorting network. 

Another example of the use of ANNs as feature-learning systems is game playing. The 

classical example is Tesauro’s Backgammon-playing ANN [38]. Backgammon is a board 

game in which two players alternately roll a pair of dice and move their checkers (black 

vs. white) in opposite directions around the playing board. On each turn, a player rolls the 

dice, moves one checker the number shown on one die, and then moves a second checker 

(or the same one) the number shown on the other die [39]. The point of the game is to be 

the first to move each of one’s checkers all the way around and off the board. 
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Tesauro’s Backgammon-playing network had an input layer with 198 nodes that 

represented the board state and a single hidden layer with 40 nodes. The output layer of 

the network consisted of four sigmoidal nodes which estimated the probability of white 

or black both achieving a regular win or a gammon (special win case) [39]. 

The network was trained completely by self-play: a computer simulated a dice roll and 

generated all board positions that were possible from the current position and the number 

of the die. The network was fed each of these board positions and the one that the network 

ranked highest was chosen as the next state. The network then did the same for the next 

player and repeated the process [39]. After a sufficient number of games, the network had 

acquired good game-playing strategies and deeply explored the state space. 

4.2 ANNs as Analog Control Systems 

Due to their massive expressive ability and structural simplicity, as well as ease of 

training, artificial neuronal networks have been used to solve board games such as 

backgammon [38]  and Go [40], control physical systems such as inverted pendulums 

[41], and even predistort RF power amplifiers [7,8]. 

In the neuronal predistorter described in [8], a double-input and double-output design is 

used (just like the one proposed in this thesis). The input vector of the ANN contains the 

in-phase and in-quadrature components of the transmitted signal, and the output vector 

contains the corresponding components of the predistorted signal. 

The internal structure of this ANN includes a “tapped delay line” to describe the memory 

effect of the PA – see Figure 4.3. While this is interesting, it could very well have been 

implemented as a regular ANN, but instead of having two inputs (for the I and Q signals), 

it would have additional inputs for the delayed signals. 

As shown in Figure 4.4, the neural network was first used to perform post-distortion 

linearization of the PA, and then used as a predistorter. With enough repetitions, this 

resulted in the (simulated) compensation of the PA’s nonlinearities. 

 

Figure 4.3.  Neural network with 

a tapped delay line [8]. 

 

Figure 4.4.  System architecture of the 

neuronal predistorter in [8]. 
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Despite their differences, all of these applications of ANNs have one thing in common: 

they are digital implementations. Recent technological advances have brought the 

possibility of reliably implementing ANNs as analog circuits. Further advances, such as 

commercially-available memristors, are expected to lead to even more robust and higher-

performing analog ANNs. 

Compared to the analog predistortion schemes presented in section 3, analog 

implementations of ANNs provide very substantial advantages. Not only are relatively 

simple ANNs much more expressive than 11th-order polynomials (the state-of-the-art 

predistortion circuits until recently) in terms of function synthesis, but they also have an 

increased capability for generalization due to their saturating (sigmoidal) neurons, which 

is important when the predistorter’s input range may not be clearly defined – high-order 

polynomials grow very quickly towards infinity outside the training sample space. 

Furthermore, the bandwidth of each of an ANN’s computational units (neurons) is similar 

to that of the predistorted signal, in contrast to the bandwidth of a polynomial’s 

computational units (power products), which grows mostly linearly with the degree of 

each product (i.e., over an order of magnitude for an 11th-order polynomial predistorter). 

 

4.3 Analog Implementations of ANNs 

The class of circuits which emulate the behavior of neurons (high network connectivity, 

simple base processing element, and distributed memory and computation) is called 

neuromorphic circuits [42]. The purpose of these circuits is not to exactly replicate the 

processing performed by a biological brain, but to emulate some of its characteristics and 

do so with very different elements. 

ANN chips usually offer one of three different learning capabilities of increasing 

complexity [42]: “off-chip learning”, where the learning is done on a simulated network 

using software; “chip-in-the-loop learning”, a combined approach where the forward pass 

is performed in hardware but the actual learning algorithm is implemented in software; 

and “on-chip learning”, where all stages of learning are done by the hardware itself. 

In an analog chip, the weights of the network can be stored either digitally (thus requiring 

digital/analog converters for the learning and chip configuration) or using analog 

elements, such as resistors or capacitors [42]. Additionally, they can be stored by digitally 

programmable, reconfigurable analog elements, though this still requires the learning to 

be done digitally. 

Summation of the neuron inputs is rather trivial in an analog circuit, since they will either 

be represented as currents (which sum by joining branches in parallel) or voltages (which 

sum by joining branches in series). The sigmoidal activation function is usually 

implemented using strongly nonlinear amplifiers [42]. 
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The implementation of ANNs using CMOS processes suffers from significant drawbacks, 

the most important one being the poor scalability of these circuits: a large enough ANN 

may prove to be impossible to be wired due to the sheer number and density of 

connections [42]. A new class of post-CMOS circuits seems very promising, however. 

These circuits are based on the memristor, a long-anticipated fundamental circuit element 

on the level of resistors, capacitors and inductors [ 43 ]. In a very simplified way, 

memristors can be used as electrically-programmable resistances. This, along the fact that 

the memristive effect occurs mostly at the nanoscale, points towards the analog 

implementation of easily-configurable ANNs with phenomenal scaling capabilities [42]. 

Commercially available analog ANN chips include the Intel 80170NX and the Synaptics 

Silicon Retina [44]. The Intel 80170NX, also known as Electrically Trainable Analog 

Neural Network, was the first commercially available ANN chip. It stores the weights as 

electrical charges in floating gates and uses Gilbert cells for the weighting of the neuron 

inputs. The Synaptics Silicon Retina is a special case of hardware implementation of 

ANNs because it tries to emulate biological neurons as close as possible, instead of 

implementing a conventional, more formal architecture [44]. 

Commercially available hybrid implementations include the AT&T Artificial Neural 

Network ALU (ANNA), the Bellcore CLNN-32, the Mesa Research Neuroclassifier, and 

the Ricoh RN-200 [44]. The first two circuits provide a digital input interface, despite 

their internals being fully analog. The AT&T ANNA stores its weights as capacitor 

charges that are refreshed periodically, and provides a variable number of neurons from 

16 to 256, though it has no built-in learning algorithm. The CLNN-32, on the other hand, 

implements fully connected recurrent networks and provides a built-in Boltzmann 

learning algorithm [44]. The Mesa Research Neuroclassifier provides an analog input and 

output interface, but the weights are stored digitally as 5-bit words per weight. This is the 

highest performing chip available, claiming a speed of 21 Giga-Connections Per Second 

(the number of multiply and accumulate operations per second), over an order of 

magnitude higher than the other enumerated chips [44]. Finally, the RN-200 implements 

ANNs with 16 neurons of 16 synapses each through pulse rates and widths, as well as a 

built-in learning algorithm. An array of 12 Ricoh RN-100 chips (the precursor to the 

RN-200) was used to learn how to balance a 2-D inverted pendulum in just 30 seconds 

[45]. 
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4.4 Mathematical Formalization 

Figure 4.2 represents a feedforward ANN with three layers: LX, the input layer; LH, the 

hidden layer; and LY, the output layer. Let there be the following symbols: 

 

nX : the number of input nodes in LX (excluding bias) – in this case, nX = 3; 

nH : the number of hidden nodes in LH (excluding bias) – in this case, nH = 5; 

nY : the number of output nodes in LY – in this case, nY = 2; 

   

x : a column vector, indexed as xi, holding the node activations of  LX; 

h : a column vector, indexed as hj, holding the node activations of  LH; 

y : a column vector, indexed as yk, holding the node activations of  LY; 

   

v : a matrix, indexed as vji, holding the weights of the connections from LX to LH; 

w : a matrix, indexed as vkj, holding the weights of the connections from LH to LY. 

 

These symbols are defined as such, with example values based on Figure 4.2: 
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Thus, xi is the activation of the i-th input node (the i-th input value, for i > 0), 

hj is the activation of the j-th hidden node, yk is the activation of the k-th output node, 

vji is the weight of the connection between the input node i and the hidden node j, and 

wkj is the weight of the connection between the hidden node j and the output node k. 

One can read the matrix v, then, as a series of columns containing the weights of the 

connections of each input node to every hidden node. Similarly, the matrix w can be read 

as a series of columns containing the weights of the connections of each hidden node to 

every output node. 

The indexing of the v and w matrices is intentionally backwards. It would have been 

more aesthetic to define them as vij and wjk, but this would have required the computation 

of their transpose matrices to perform forward propagation (explained below). The 

algorithmic performance gain is minimal, but it comes at essentially no cost. 

To be precise, the nodes of the input layer aren’t exactly neurons, but mere representations 

of the “input ports” of the ANN. There is no data processing or neuronal activation: input 

values just pass on through unchanged. This does not undermine the presented 

formalization, however, since it is trivial to devise neurons which would exhibit that exact 

behavior: a neuron, with no biasing and one data input with unitary weight, whose 

activation function is purely linear. 

Furthermore, despite biasing being a property of the neurons and not the network 

architecture (even from the original, biological standpoint), it can be abstracted away as 

a node with constant activation (eg: a = 1) which connects to each neuron with weights 

proportional (or even equal) to the required biasing values. These biasing nodes and their 

connections are represented in Figure 4.2 with dashed lines, and they are referred to as 

the zeroth (0-th) node in each layer, if applicable. The output layer is the last layer, so, 

naturally, it doesn’t contain bias nodes for its (nonexistent) succeeding layer. 
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4.5 Forward Propagation 

Having defined a model for the architecture and the constituting parts of an ANN, it is 

now possible to model the network’s operation, that is, to define how to determine its 

output vector. Forward propagation, the classical algorithm for doing precisely that, 

consists of sequentially computing the activations of each layer, from the input to the 

output layer. 

Let the input (column) vector of the ANN – that is, the data being fed to it at a given 

instant – be netInput. Then, the vector of input node activations x is the concatenation of 

the activation of the input bias node, here defined as a constant 1 (the number one), and 

the activations of the externally-stimulated data nodes – that is, netInput. Similarly, the 

vector h is the concatenation of the hidden bias node and the activations of the hidden 

nodes connected to the input layer; as discussed earlier, each node’s activation is a 

function of the weighted sum of its inputs. Finally, because there are no output bias nodes, 

the y vector is simply obtained by computing the activations of the output nodes. 

It should be noted that the Φ function is to be applied in an element-wise fashion, and it 

is not necessarily the same function for every neuron (even in the same layer) – the Φ 

symbol is used repeatedly only to simplify the notation. 

 

 

 

4.5.1 Example 

Let us consider the ANN illustrated in Figure 4.2. The activation function of the hidden 

nodes is the sigmoid function (4.2), referred to as sig(), and the activation function of the 

output nodes is the purely linear function (4.1), referred to as purelin(). 

 

Let v  =  0.01 × [10 11 12 13;   20 21 22 23;   30 31 32 33;   40 41 42 43;   50 51 52 53]. 

Let w =  0.01 × [10 11 12 13 14 15;   20 21 22 23 24 25]. 

 

Let netInput  =  [1 2 3] T. 

Then, x  =  [1;  netInput]  =  [1 1 2 3] T. 

Then, h  =  [1;  sig( v ∙ x )]  =  [1.0000  0.6985  0.8235  0.9038  0.9498  0.9744] T. 

Finally, y  =  purelin( w ∙ h )  =  [0.6723  1.2073] T. 
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4.6 Backpropagation 

The Backward Propagation of Errors, or backpropagation, is the most common method 

of training artificial neural networks, used typically in conjunction with optimization 

algorithms which aim to minimize the cumulative squared error between the ANN’s 

actual output and its target output. Such algorithms include the Nelder-Mead method [46] 

and the Levenberg-Marquardt algorithm [47]. 

Backpropagation is typically called a supervised learning algorithm, in which the target 

output of the ANN is explicitly specified by the modeler. This, however, is not a precise 

way of describing backpropagation. While it is true that it can be used (and is most often 

used) to perform supervised learning tasks when coupled with one of the optimization 

algorithms enumerated above, the true purpose of backpropagation is to solve the problem 

of structural credit assignment, that is, the problem of adjusting the weights in the 

network to minimize the error [39]. There is a subtle but important distinction between 

the two definitions – one which will be expanded upon further. Meanwhile, let us explore 

the formalism behind backpropagation proper, that is, the mechanics of weight 

adjustment. See [39] for this (and more) information. 

 

Let there be an ANN whose nodes’ activations have been obtained through the forward 

propagation of a training input vector and whose output error E has been determined 

according to some specific metric. For the purpose of completeness, let this metric be the 

sum of the square of the errors between the actual output vector y and the target output 

vector t of the network. 

The global weight update rule is displayed in (4.3). This rule asserts that the change Δθij 

in every weight θij of the network (the elements of the v and w matrices) should be 

proportional (with constant α) to the negative of the derivative of the error with respect 

to the weight itself: 

∆𝜃𝑖𝑗 =  −𝛼
𝜕𝐸

𝜕𝜃𝑖𝑗
 (4.3) 

 

Using the chain rule, the partial derivative of the error with respect to each weight 

between the hidden and output layers can be calculated, resulting in (4.4), where netk is 

the net input of the output node k, that is, w ∙ h: 

𝜕𝐸

𝜕𝑤𝑘𝑗
=  

𝜕𝐸

𝜕𝑎𝑘
 ∙  

𝜕𝑎𝑘

𝜕𝑛𝑒𝑡𝑘
 ∙  

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
 (4.4) 
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Simple substitutions lead to (4.5), where Φ’
k (netk) is the derivative of the activation 

function of the output node k evaluated at netk: 

𝜕𝐸

𝜕𝑤𝑘𝑗
=  −2(𝑡𝑘 − 𝑎𝑘)  ∙  𝛷𝑘

′ (𝑛𝑒𝑡𝑘)  ∙ 𝑎𝑗 (4.5) 

We can now use δk to represent (tk – ak) ∙ Φ
’
k (netk), thus leading to (4.6): 

−
𝜕𝐸

𝜕𝑤𝑘𝑗
 ∝  𝛿𝑘 𝑎𝑗 (4.5) 

 

Using the chain rule, the partial derivative of the error with respect to each weight 

between the input and hidden layers can be calculated, resulting in (4.7), where netj is 

the net input of the output node j, that is, v ∙ x: 

𝜕𝐸

𝜕𝑣𝑗𝑖
=  

𝜕𝐸

𝜕𝑎𝑘
 ∙  

𝜕𝑎𝑘

𝜕𝑛𝑒𝑡𝑘
 ∙  

𝜕𝑛𝑒𝑡𝑘

𝜕𝑎𝑗
 ∙  

𝜕𝑎𝑗

𝜕𝑛𝑒𝑡𝑗
∙  

𝜕𝑛𝑒𝑡𝑗

𝜕𝑣𝑗𝑖
 (4.7) 

Simple substitutions lead to (4.8), where Φ’
j (netj) is the derivative of the activation 

function of the hidden node j evaluated at netj: 

𝜕𝐸

𝜕𝑣𝑗𝑖
=  𝛿𝑘 ∙ 𝑤𝑘𝑗  ∙  𝛷𝑗

′(𝑛𝑒𝑡𝑗)  ∙ 𝑎𝑖 (4.8) 

Contrary to the weights between the hidden and output layers, the weights between the 

input and hidden layers affect all of the output nodes simultaneously. Thus, the partial 

derivative of the error across all of the output nodes is defined in (4.9)  

𝛿𝑗 =   𝛷𝑗
′(𝑛𝑒𝑡𝑗) ∑ 𝛿𝑘 ∙ 𝑤𝑘𝑗

𝑘

 (4.9) 

Finally, the partial derivative of the error with respect to the weights between the input 

and hidden layers can be defined as in (4.10): 

−
𝜕𝐸

𝜕𝑣𝑗𝑖
=  𝛿𝑗  𝑎𝑖 (4.10) 
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5. TEMPORAL DIFFERENCE LEARNING 

Temporal Difference (TD) is a reinforcement learning method, that is, a way of using past 

experience with an incompletely known system to predict its future behavior [48]. In a 

more mechanistic sense, TD is an algorithm for an agent (like a predistorter) to learn 

which actions to take over an environment (like a power amplifier) in order to maximize 

some notion of cumulative reward (like a measure of an amplifier’s linearity). 

TD is an unsupervised learning algorithm, which means that it does not require the 

a priori knowledge of the desired output of the learning agent. This is an exceptionally 

important detail: using a supervised learning algorithm to teach an ANN how to predistort 

a power amplifier does not make much sense if one does not know the amplifier’s inverse 

transfer function to begin with. 

This does not mean that it is impossible to do so, as there are a variety of papers on 

neuronal predistortion of power amplifiers [7–9]. These papers, however, either don’t 

explicitly specify the learning procedure (only mentioning backpropagation, which, as is 

hopefully clear by now, is not a serious answer), or describe a learning procedure 

consisting of iteratively training an ANN to be a post-distorter, testing its performance as 

a predistorter, and training it again in order to gain some measure of improvement. 

While this sort of methodologies may lead to acceptable results, TD provides a learning 

solution that is formal and serious, and it has been used in applications as diverse as 

solving the game of Backgammon [38], controlling quadcopter motors and inverted 

pendulums [41], simulating the steering of a boat across a river [49], and sensor state 

prediction [50]. 

It should be noted that TD is a general learning algorithm, that is, it does not make any 

assumptions regarding the learning agent. TD is not, therefore, immediately applicable to 

the training of structurally complex constructs such as ANNs, and that means that some 

sort of mathematical coupling needs to be devised. Luckily, this problem has already been 

solved, and it is explained further. 

 

 

 

 

 

 



30 

5.1 Mathematical Formalization 

5.1.1 TD Error 

Let V be the value function an agent is trying to learn. TD learning consists in adjusting 

V so that V(st) – where st is the input state at time t – approximates the return Rt at 

time t, defined in (5.1) as a discounted sum of future rewards. γ is the discount constant, 

and it controls how far the agent should look ahead when making predictions at the current 

time step [39]. Equation (5.2) is derived trivially from (5.1).  

𝑅𝑡  =   𝑟𝑡+1  +  𝛾 𝑟𝑡+2  +  𝛾2 𝑟𝑡+3  +  ⋯   =  ∑ 𝛾𝑘 𝑟𝑡+𝑘+1

∞

𝑘=0

  (5.1) 

𝑅𝑡  =   𝑟𝑡+1  +  𝛾 𝑅𝑡+1 (5.2) 

Thus, the TD error Et at time t can defined as in (5.3): 

𝐸𝑡  =   𝑅𝑡 − 𝑉(𝑠𝑡)   =   (𝑟𝑡+1 + 𝛾 𝑅𝑡+1) −  𝑉(𝑠𝑡) (5.3) 

Finally, using V(st+1) as an approximation of Rt+1, we obtain the generalized TD error 

in (5.4): 

𝐸𝑡  =   𝑟𝑡+1 + 𝛾 𝑉(𝑠𝑡+1) −  𝑉(𝑠𝑡) (5.4) 

 

5.1.2 Weight Update  

The derivation of the weight update rule (5.5) is rather involved, and can be found in [39].  

∆𝑤𝑡  =   𝛼[𝑉(𝑠𝑡+1) −  𝑉(𝑠𝑡)] ∑ 𝜆𝑡−𝑘

𝑡

𝑘=1

∇𝑤𝑉(𝑠𝑘)  (5.5) 

This is the generalized formula for TD(λ), which is the generalized form of TD itself, 

introduced in [25]. α is a learning-rate parameter, V(st+1) – V(st) is the (temporal) 

difference between consecutive predictions, ∇wV  is the gradient of the value function 

with respect to its defining weights, and λ is a gradient discount parameter such that 

0 ≤ λ ≤ 1. λ tracks to which extent the prediction values for previous observations are 

eligible for updating based on current errors [39]. Therefore, the sum (5.6) is called the 

eligibility trace at time t. 

𝑒𝑡  =  ∑ 𝜆𝑡−𝑘

𝑡

𝑘=1

∇𝑤𝑉(𝑠𝑘)  (5.5) 
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5.2 TD(λ) Neural Networks 

As discussed earlier, backpropagation solves the problem of structural credit assignment. 

On the other hand, TD solves the problem of temporal credit assignment, that is, the 

problem of attributing credit (or “blame”) for error over the complete history of 

predictions made by the learning agent [39], and it does so through the mechanism we’ve 

just introduced: eligibility traces. 

Through TD(λ) learning, an agent can determine its error based on successive predictions, 

and through backpropagation an agent can modify its model of prediction in order to 

reduce the error. Thus, combining the two algorithms results in a very powerful coupling: 

a universal nonlinear function approximator which learns through acquired experience. 

Contrary to other neural predistortion schemes found in the literature, the one proposed 

in this thesis – a TD(λ) Neural Network (TDNN) – is actually capable of learning how to 

be a predistorter. Since the learning algorithm does not require the knowledge of the target 

output of the ANN, the problem of predistortion may be tackled directly, and not 

indirectly by training the network as a post-distorter and hoping it works as a predistorter. 

 

5.2.1 Mathematical Formalization 

5.2.1.1 Weight Update 

The coupling of TD learning and backpropagation is done at the weight update stage of 

the algorithms. Thus, and referring back to section 4, the change in the network’s weights 

v and w is a function of the TD error E (at each output node k) and their respective 

eligibility traces ev and ew: 

∆𝑤𝑘𝑗 =   𝐸𝑘𝑒𝑤𝑘𝑗 (5.6) 

∆𝑣𝑗𝑖 =   ∑ 𝐸𝑘𝑒𝑣𝑗𝑖
(𝑘)

𝑘

 (5.7) 

From (5.6) it is very apparent that ew should be a matrix with the same size as w: 

(nY × (nH+1)). From (5.7) it is apparent that ev should be, however, a three-dimensional 

matrix of size (nH × (nX+1) × nY) – or, rather, a set of nY matrices of size (nH × (nX+1)), 

which is the size of w. The superscript (k) notation refers to each of the nY matrices. 
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5.2.1.2 Eligibility Traces 

In section 4, a mathematical formalization – a model – of a generic artificial neural 

network was proposed. In this section, this model is expanded to include the eligibility 

traces introduced by the TD learning method, effectively resulting in a model of a TDNN. 

The basis of this work can be found in [39] and [51]. 

Let ewkj denote the eligibility trace correspondent to the weight of the connection from 

the hidden node j to the output node k. Let δyk denote Φ’
k (netk). Then, the update rule 

for ewkj is (5.8): 

𝑒𝑤𝑘𝑗 ∶=   𝜆𝑒𝑤𝑘𝑗 +  Δ𝑒𝑤𝑘𝑗, 

where  Δ𝑒𝑤𝑘𝑗 =  𝛿𝑦𝑘ℎ𝑗 

(5.8) 

 

The matrix form of (5.8) is self-evident, but the scheme in Figure 5.1 illustrates a simple 

way of deducing it: 

 

 

Figure 5.1.  Deduction of the matrix form of Δew. 

Thus we get the update rule for the matrix form of ew: 

𝑒𝑤 ∶=   𝜆𝑒𝑤 +  Δ𝑒𝑤, 

where  Δ𝑒𝑤 =  𝛿𝑦 ⋅ ℎ𝑇 

(5.9) 

The activation function of the output nodes of the TDNN is purely linear, so δyk = 1 for 

all k. 
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Let evji
(k)

 denote the derivative of the output unit k with respect to the weight from the 

input unit i to the hidden unit j, that is, a partial eligibility trace correspondent to the 

weight of the connection from the input node i to the hidden node j. 

Let �̅� be the w matrix without its first column. Let 𝛿ℎ̅̅ ̅ be the δh vector without its first 

row. This removes the elements of these objects correspondent to h0, the hidden bias 

node. This is necessary because there are no connections from the input nodes to the 

hidden bias node, which means that there are no corresponding weights or eligibility 

traces. 

Then, the update rule for evji
(k)

 is (5.10): 

𝑒𝑣𝑗𝑖
(𝑘)

∶=   𝜆𝑒𝑣𝑗𝑖
(𝑘)

+  Δ𝑒𝑣𝑗𝑖
(𝑘)

, 

where  Δ𝑒𝑣𝑗𝑖
(𝑘)

= 𝛿𝑦𝑘 𝑤𝑘𝑗̅̅ ̅̅ ̅ ℎ�̅� 𝑥𝑖 
(5.10) 

Let us explore the Δ term of ev based on Figure 4.2: 

 

Δ𝑒𝑣10
(1)

= 𝛿𝑦1 𝑤11 𝛿ℎ1 𝑥0 

Δ𝑒𝑣11
(1)

= 𝛿𝑦1 𝑤11 𝛿ℎ1 𝑥1 

Δ𝑒𝑣12
(1)

= 𝛿𝑦1 𝑤11 𝛿ℎ1 𝑥2 

Δ𝑒𝑣13
(1)

= 𝛿𝑦1 𝑤11 𝛿ℎ1 𝑥3 

 

Δ𝑒𝑣20
(1)

= 𝛿𝑦1 𝑤12 𝛿ℎ2 𝑥0 

Δ𝑒𝑣21
(1)

= 𝛿𝑦1 𝑤12 𝛿ℎ2 𝑥1 

Δ𝑒𝑣22
(1)

= 𝛿𝑦1 𝑤12 𝛿ℎ2 𝑥2 

Δ𝑒𝑣23
(1)

= 𝛿𝑦1 𝑤12 𝛿ℎ2 𝑥3 

⋮ 

Δ𝑒𝑣10
(2)

= 𝛿𝑦2 𝑤21 𝛿ℎ1 𝑥0 

Let (5.11), where ∙ is the matrix multiplication operator and .* is the element-wise 

multiplication operator: 

ζ = 𝛿𝑦 ∙  ℎ̅  .∗  �̅�  (5.11) 

Thus, 

ζ
(𝑛𝑌 × 𝑛𝐻)

= [

𝛿𝑦1𝑤11𝛿ℎ1 𝛿𝑦1𝑤12𝛿ℎ2 ⋯ 𝛿𝑦1𝑤1𝑛𝐻𝛿ℎ𝑛𝐻

𝛿𝑦2𝑤21𝛿ℎ1 𝛿𝑦2𝑤22𝛿ℎ2 ⋯ 𝛿𝑦2𝑤2𝑛𝐻𝛿ℎ𝑛𝐻

⋮ ⋮ ⋱ ⋮
𝛿𝑦𝑛𝑌𝑤𝑛𝑌1𝛿ℎ1 𝛿𝑦𝑛𝑌𝑤𝑛𝑌2𝛿ℎ2 ⋯ 𝛿𝑦𝑛𝑌𝑤𝑛𝑌𝑛𝐻𝛿ℎ𝑛𝐻

] (5.12) 
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Substituting (5.11) in (5.10) we get (5.13): 

Δ𝑒𝑣𝑗𝑖
(𝑘)

= ζkj 𝑥𝑖 (5.13) 

Let ζ(k)
 denote the k-th row of the ζ matrix. Then, finally, we get the update rule for the 

matrix form of each ev(k)
: 

𝑒𝑣 
(𝑘) ∶=   𝜆𝑒𝑣 

(𝑘) +  (𝑥 ∙ ζ(k))
𝑇
 (5.14) 

 

As a final note, the derivative of the activation functions used throughout the ANN are 

defined in (5.15) for the sigmoid function and in (5.16) for the purely linear function. 

𝛷𝑗
′(𝑛𝑒𝑡𝑗) = 1 (5.15) 

𝛷𝑘
′ (𝑛𝑒𝑡𝑘) = 𝑎𝑘(1 − 𝑎𝑘) (5.16) 

 

5.2.2 TDNN Algorithm 

The model for an artificial neural network using temporal differences as a learning 

method has been established. Now, let us explain how it can be used and present a class-

based Matlab implementation of the vectorized TDNN model and the learning algorithm 

based on Sutton’s (the creator of TD(λ)) own TD/Backpropagation pseudo-code [51], also 

used as a reference for the expansion of the model. 

In a slightly simplified way, the TDNN algorithm consists of repeatedly iterating over the 

following set of steps: 

1. Perform the forward propagation of an input vector; 

2. Calculate the TD error at the output of the network; 

3. Update the network’s weights; 

4. Perform the forward propagation of the same input vector with the new weights; 

5. Update the eligibility traits of the network. 

The provided Matlab implementation allows the creation of a TDNN with an arbitrary 

number of input, hidden, and output nodes. For instance, the command 

>> net = TDNN(2, 5, 2); 

Creates, through the class’s constructor and the init function, a TDNN object named net 

with two input nodes (plus a bias node), one layer of five hidden nodes (plus a bias node), 

and two output nodes. The nodes are initialized as vectors of zeros, except the bias nodes 

which are initialized as vectors of BIAS = 1. 
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The matrices of connection weights are initialized uniformly with random numbers. This 

not only helps prevent the training of the network towards a local minimum of the error, 

but it also nearly eliminates the possibility of the network not learning at all due to being 

permanently stuck at a zero state. 

The main interface to the TDNN class presented below is the train function, which 

implements the learning loop described above. At first, it forward propagates the first 

sample of the input vector and calculates the eligibility traces of the network’s weights. 

No learning is performed because the TD error equation (5.4) requires one skipped time 

step to be causal. Then, it loops through the learning algorithm for every input vector 

sample. 

Forward propagation is done by the forwardProp function. In this function, the externally-

connected input nodes are activated by the TDNN’s input vector, and the activations of 

the rest of the network’s nodes are calculated as explained in section 4.3. 

The sigmoid activation function is implemented as the Matlab function tansig, which is 

a computationally faster version of Matlab’s own hyperbolic tangent function. Although 

it produces some numerical errors, these are not exceptionally relevant in the case of 

neural networks, since they don’t inhibit learning. It is a good tradeoff for speed, then. 

The updateElig function updates the eligibility traces of the network’s weights. As 

described in the section 5.2.1, it first computes the delta terms of the eligibility traces and 

then performs the update rules defined in (5.9) and (5.10). Naturally, the delta terms 

depend on the chosen activation functions, so both options (sigmoid and purely linear) 

were left for choosing by the programmer. To pick an activation function, comment out 

the line correspondent to the other activation function. 

Finally, the TDLearn function updates the weights of the network according to the update 

rules defined in (5.6) and (5.7). Note that the matrix of eligibility traces for the weights 

of the connections between input and hidden nodes is three-dimensional, so the update of 

these weights has to be done in a loop to account for all eligibility traces. 

 

This implementation took a very significant amount of time to develop, so it is presented 

as part of the body of this thesis, and not as just an appendix. In a way, it is the 

practical/lab part of the thesis. 

 

 

 

 



36 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

 
 
 
 
 
 
 

classdef TDNN 
    properties (GetAccess = 'public', SetAccess = 'public') 
        RAND_INIT_EPSILON; 
         
        numInputs; 
        numHidden; 
        numOutputs; 
         
        BIAS;       % Strength of the bias (constant) contribution 
        ALPHA;      % 1st layer learning rate (typically 1/numInputs) 
        BETA;       % 2nd layer learning rate (typically 1/numHidden) 
        GAMMA;      % Discount-rate parameter (typically 0.9) 
        LAMBDA;     % Trace decay parameter (should be <= GAMMA) 
                 
         
        x; h; y;    % Neuron activations for layers 1 to 3 
        v; w;       % Weights 
         
         
        oldY;       % Last output 
        ev; ew;     % Hidden and output eligibility traces 
        error;      % TD error 
    end 
     
    methods 
        function self = TDNN(numInputs, numHidden, numOutputs) 
            validateattributes(numInputs, ... 
                {'numeric'}, {'scalar', 'positive', 'integer'}, ... 
                '', 'numInputs'); 
            validateattributes(numHidden, ... 
                {'numeric'}, {'scalar', 'positive', 'integer'}, ... 
                '', 'numHidden'); 
            validateattributes(numOutputs, ... 
                {'numeric'}, {'scalar', 'positive', 'integer'}, ... 
                '', 'numOutputs'); 
             
            self.numInputs = numInputs; 
            self.numHidden = numHidden; 
            self.numOutputs = numOutputs; 
             
             
            self.RAND_INIT_EPSILON = 0.5; 
            self.BIAS   = 1; 
            self.ALPHA  = 1/numInputs; 
            self.BETA   = 1/numHidden; 
            self.GAMMA  = 0.9; 
            self.LAMBDA = 0.5; 
             
            self = self.init(); 
        end 
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        function self = init(self) 
            % Neuron Activations Initialization 
            self.x = [self.BIAS ; zeros(self.numInputs, 1)]; 
            self.h = [self.BIAS ; zeros(self.numHidden, 1)]; 
            self.y = zeros(self.numOutputs, 1); 
            self.oldY = zeros(self.numOutputs, 1); 
             
            % Random Weight Initialization 
            self.v = rand(self.numHidden, self.numInputs + 1)  * ... 
                (2 * self.RAND_INIT_EPSILON) - self.RAND_INIT_EPSILON; 
            self.w = rand(self.numOutputs, self.numHidden + 1) * ... 
                (2 * self.RAND_INIT_EPSILON) - self.RAND_INIT_EPSILON; 
             
            % Eligibility Traces Initialization 
            self.ev = zeros(self.numHidden, self.numInputs + 1, ... 
                            self.numOutputs); 
            self.ew = zeros(self.numOutputs, self.numHidden + 1); 
        end 
         
         
        function [self, output] = forwardProp(self, input) 
            self.x(2:end) = input; 
            self.h(2:end) = tansig(self.v * self.x); 
            %self.y = tansig(self.w * self.h); 
            self.y = purelin(self.w * self.h); 
            output = self.y; 
        end 
         
         
        function self = TDLearn(self) 
            self.w = self.w + self.BETA * repmat(self.error, 1, ... 
                     self.numHidden + 1) .* self.ew; 
             
            dv = zeros(size(self.v)); 
            for k = 1 : self.numOutputs 
                dv = dv + self.error(k) * self.ev(:,:,k); 
            end 
            self.v = self.v + self.ALPHA * dv; 
        end 
         
         
        function self = updateElig(self) 
            %deltaY = self.y .* (1 - self.y);% Output nodes: tansig() 
            deltaY = ones(size(self.y));     % Output nodes: purelin() 
            deltaH = self.h .* (1 - self.h); 
             
            self.ew = self.LAMBDA * self.ew + deltaY * self.h'; 
             
            tmp = deltaY * deltaH(2:end)' .* self.w(:,2:end); 
            for k = 1 : self.numOutputs 
                self.ev(:,:,k) = self.LAMBDA * self.ev(:,:,k) + ... 
                                 (self.x * tmp(k,:))'; 
            end 
        end 
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        function self = train(self, netInput, reward) 
            t = 1; 
            self = self.forwardProp(netInput(:,t)); 
            self.oldY = self.y; 
            self = self.updateElig(); 
             
            for t = 2 : size(netInput, 2) 
                self = self.forwardProp(netInput(:,t)); 
                self.error = reward(:,t) + self.GAMMA * self.y - ... 
                             self.oldY; 
                self = self.TDLearn(); 
                 
                self = self.forwardProp(netInput(:,t)); 
                self.oldY = self.y; 
                self = self.updateElig(); 
            end 
        end 
         
         
        function netOutput = output(self, netInput) 
            numSamples = size(netInput, 2); 
            netOutput = zeros(self.numOutputs, numSamples); 
             
            for t = 1:numSamples 
                [~, tmp] = self.forwardProp(netInput(:,t)); 
                netOutput(:,t) = tmp; 
            end 
        end 
    end 
end 

Program 1. A class-based Matlab implementation of the TDNN algorithm. 
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6. CONCLUSION 

A new generation of telecommunications networks requires a new generation of 

linearization systems for the power amplifiers they rely on. Thus, a base band analog 

predistorter implemented as an artificial neural network was proposed as a solution. 

Traditionally, ANNs are trained in a supervised manner. This, however, goes against the 

very essence of the problem of predistortion: to find the optimal predistortion function. 

Roundabout ways of solving this paradox have been documented in the literature, such 

as training the ANN as a post-distorter and testing it as a predistorter. 

In this thesis, a fundamentally different training approach is proposed: temporal 

difference learning. While this is a classical unsupervised learning technique, it has never 

been used in the field of telecommunications as far as we are aware – and definitely not 

as a learning procedure for power amplifier predistortion. This marks an important 

contribution to the state of the art, then. 

The most important piece of original work in this thesis is the vectorized mathematical 

model for the coupling of artificial neural networks and temporal difference learning. 

While the specifics of the model may be quite complex, its formal simplicity allows for a 

very quick and straightforward implementation, exemplified in Program 1. 

 

6.1 Future Work 

It would be of value to verify the model proposed in this thesis through simulation. While 

this was initially part of the list of objectives to be achieved, this task was not possible to 

be completed due to time constrains and the workload caused by other courses.  

The implementation exists – Program 1 –, but it is merely a means, not the end: the 

simulation of the model requires the tuning of a variety of parameters and a good selection 

of a reward signal. While this was attempted, success unfortunately proved to be elusive. 

Notwithstanding, there is plenty of other research left to do – as was the point of proposing 

the solution described in this thesis. Main topics include the determination of the optimal 

size of the ANN to be used as a predistorter, and also the physical implementation of the 

ANN as an analog circuit capable of meeting the performance specifications of 5th-

generation telecommunications networks. 
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