
Sami Hautamäki

ForeVid: an Open Source Software for Forensic Video Analysis

Master of Science Thesis

Examiner: Tarmo Lipping

Examiner and topic approved in the

council meeting of the Faculty of

Computing and Electrical Engineering

on April 7, 2010

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master's Degree Programme in Tampere University of Technology

Sami Hautamäki: ForeVid: an Open Source Software for Forensic Video

Analysis

Master of Science Thesis, 45 pages, 2 Appendix pages

January 2011

Major: Signal processing

Examiner: Tarmo Lipping

Keywords: ForeVid, Avisynth, Forensic, Video processing

The main aim of the thesis was to develop a free software application for processing

surveillance videos. Methods discussed in this thesis are mainly incorporated in the

developed application. The open source Avisynth environment is intensively used

both in the application for �ltering video clips and in the thesis for gaining more

deeper understanding of how video processing works. In this thesis I focus mostly

on processing digital video material. Digital imaging is usually much more accurate

than analog, but because the lack of storage capacity makes video compression nec-

essary, the quality of video is often signi�cantly decreased.

Before starting actual programming process, it was necessary to �nd out what

features are essential for software used in forensic video editing. In this task the

guidance given by forensic experts in NBI play big role. Main tools used in this

project were: Python 2.6 as basic programming tool, PyQt 4.0 was used creat-

ing GUI for the software, Avisynth provides the tools for video editing, FFMPEG

is being used for video compression, PDF library is being used for creating PDF �les.

Open source software created in this project, enables all basic functions needed

in forensic video processing. This sofware was named ForeVid for it's Forensic video

editing features. With this software it is possible to resize, sharpen and cut video.

Avisynth that is being used for powering video editing features, o�ers wide vari-

ety of �lters. In ForeVid the user can take still photos and create videos or PDF

documents.

III

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Signaalinkäsittelyn koulutusohjelma

Sami Hautamäki: ForeVid: Avoimen lähdekoodin ohjelmisto forensiseen video

analysointiin

Diplomityö, 45 sivua, 2 liitesivua

Tammikuu 2011

Pääaine: Signaalinkäsittely

Tarkastajat: Tarmo Lipping

Avainsanat: ForeVid, Avisynth, forensiikka, Videon käsittely

Tämän diplomityön tärkeimpänä osana oli tuottaa viranomaiskäyttöön soveltuva

videonkäsittely-ohjelmisto videovalvontatallenteille. Sovelluksessa hyödynnetään dip-

lomityössä käsiteltäviä menetelmiä. Kehitetty sovellus perustuu Avisynth ympäris-

töön. Avisynth ympäristöä käytetään sekä ohjelman luomiseen, että videoeditointi-

ominaisuuksien tutkimiseen. Tarkastelussa keskitytään lähinnïä digitaalisen kuva-

materiaalin käsittelyyn, silä suurin osa tämän päivän valvontavideo-materiaalista on

digitaalista. Vaikka digitaalisen kameran kuvanlaatu olisikin huomattavasti parempi

kuin analogisen edeltäjänsä, pakottaa tallenustilan puute turvautumaan datanpak-

kaukseen. Datanpakkaus saattaa olla useissa tapauksissa erittäin voimakasta, jolloin

menetetään huomattava osa informaatiosta.

Ennen varsinaisen ohjelmointityön aloittamista, oli välttämätöntä selvittää millaisia

vaatimuksia forensinen videoeditointi ohjelmistolle asettaa. Tässä työssä Keskus-

rikospoliisilla työskentelevien experttien asiantuntemus osottautui erittäin tärkeäksi.

Projektissa käytetyt pääasialliset työkalut olivat: Python 2.6, joka toimi perus ohjel-

mointi työkaluna, PyQt 4.0:n avulla toteutettiin ohjelman graa�nen käyttöliittymä,

Avisynth tarjosi työkalun videon varsinaiseen editointiin, FFMPEG:n avulla to-

teutetaan editoitujen videoiden pakkaus, PDF kirjaston avulla luodaan PDF tiedos-

tot.

Työssä toteutettu ohjelmisto mahdollistaa kaikki perustoiminnot forensiselle video-

tutkinnalle. Ohjelma sai nimen ForeVid sen forensisten videon editointi ominaisuuk-

sen vuoksi. Ohjelman avulla voidaan suorittaa mm. suurennus, terävöinti ja leikkau-

soperaatioita. Pohjana käytettävä Avisynth editointiympäristö tarjoaa erittain moni-

puolisen suodinvalikoiman. Ohjelma mahdollistaa niin still kuvien, videoiden kuin

PDF dokumenttienkin tallentamisen.

IV

ABBREVIATIONS

ACM Audio Compression Manager

ATM Automatic Teller Machine

AVC Advanced Video Coding

AVI Audio Video Interleave

AVS Avisynth Script File

CCTV Close Circuit TV

DIB Device-Independent Bitmap

DLL Dynamic-Link Library

DTG Desk Top Grabber

DVB Digital Video Broadcasting

DVD Digital Video Disc or Digital Versatile Disc

DVI Digital Visual Interface

DVR Digital Video Recorder

FLV Flash Video

GPL General Public License

GUI Graphical User Interface

IEC International Electrotechnical Commission

IP Internet Protocol

IR Infrared

ISO International Organization for Standardization

ITU International Telecommunication Union

ITU-T Telecommunication Standardization Sector for ITU

JPE Joint Video Team

MAE Mean Absolute Error

MKV Matroska Video

MP4 MPEG-4 Part 14

MPEG Moving Picture Experts Group

MSE Mean Square Error

MSN Multi Sensor Network

NBI National Bureau of Investigation

PDF Portable Document Format

RGB standard for red, green, and blue color model

SQL Structured Query Language

TIFF Tagged Image File Format

TUT Technical University of Tampere

VCEG Video Coding Experts Group

V

VDR VirtualDub frameserver

VGA Video Graphics Array

XML eXtensible Markup Language

YUV Color Space Model

VI

ACKNOWLEDGEMENTS

I would like to deeply thank the various people who, during the several months in

which this endeavor lasted, provided me with useful and helpful assistance. Without

their help and expertise, this thesis would likely not have matured.

First, I would like to thank Antti Lehmussola for creating reason for this thesis

and being essential help in the programming and design process. Equally as much

thanks goes to my instructor professor Tarmo Lipping who helped me a lot in layout

and language issues.

Secondly, I would like to thank all personnel in National Bureau of Investigation

(NBI) and Technical University of Tampere (TUT) for making it pleasant to work

during my studies.

Third, I want to thank the support of our institutions, the Forensic Laboratory

of the NBI and the Department of Computer Science of the TUT.

Fourth, I want to thank all the people who's previous work helped me to do mine.

That includes creators of the Avisynth and all other programs that are essential

parts in the ForeVid or helped in it's creation.

Most important, to Katri Ekola, who put up with a string of trips, and odd working

hours.

Kauhava, January 11, 2011

Sami Hautamäki

VII

CONTENTS

1. Introduction . 1

2. Forensic Video Analysis . 2

2.1 Introduction to Forensic Video Analysis 2

2.1.1 Surveillance Cameras . 5

3. Processing Methods for Surveillance Videos 10

3.1 Image compression . 10

3.2 Video compression . 11

3.3 Video editing with Avisynth . 14

3.3.1 Media �le �lters . 14

3.3.2 Color conversion and adjustment �lters 15

3.3.3 Geometric deformation �lters . 17

3.3.4 Pixel restoration �lters . 18

3.3.5 Timeline editing �lters . 20

3.3.6 Interlace �lters . 20

3.3.7 Conditional and other meta �lters 23

4. ForeVid . 24

4.1 Tools used . 24

4.1.1 Python 2.6 . 25

4.1.2 PyQt 4.0 . 26

4.1.3 FFMPEG . 27

4.1.4 The Open Source PDF library . 27

4.2 Functional description . 28

4.3 Introduction to the source code . 33

4.4 Example cases solved by ForeVid . 37

5. Conclusions and Future Work . 44

Bibliography . 45

A.Appendix . 48

VIII

LIST OF FIGURES

2.1 IP-technology based surveillance systems are taking over the industry.[6] 3

2.2 With the advancement in technology, video surveillance has gone to

the next level of facial feature recognition. In this image the basic

measurement principles for facial feature recognition are presented.[19] 4

2.3 Future surveillance will strongly depend on the networks with IP-

technology, creating MSN multi sensor network.[11] 6

3.1 Starting from left: orginal clip, blurred clip, clip after sharpening.

In visual evaluation sharpening seems to be working well. Frame is

being sharpened near to original one. 19

3.2 The �gure shows how well sharpen works in general. The areas of

similar pixel values (i.e., relatively �at areas) do not change much in

blurring. 20

3.3 Separate �elds causes edges of moving object to blur. 21

3.4 After deinterlace �lter moving objects are sharper. 22

4.1 Basic blocks of ForeVid. 25

4.2 The project menu of ForeVid. This is where projects are controlled. . 29

4.3 Main working window of ForeVid. 30

4.4 The marker list of ForeVid. 31

4.5 Filemenu selections for ForeVid. 31

4.6 The �lemenu selections for ForeVid. 32

4.7 When ForeVid cannot open a �le or the media �lter in use is wrong

video information box is presented with error message. Video infor-

mation box can also be seen from video drop box by selecting video

information. 39

4.8 One of the main jobs in forensic usage of ForeVid is to take still

images. That's why it has been made as easy as possible. 40

4.9 When comment is added, the user can determine for how long the

comment screen is being shown and where it is being positioned. . . . 41

4.10 Comment frame can give information for the viewer. 42

4.11 In the video saving window the user can select the pro�le to be used. 43

4.12 Video created in case 2 is presented here. Every frame presents one

part of the clip. Reading order is from left to right. 43

IX

LIST OF TABLES

3.1 MSE is used for determining errors of di�erent compression pro�les.

Results for compression comparison are obtained using the MSU video

quality measurement tool. Original video was coded with H.263 com-

pression method which causes slight quantization error in lossless pro-

�les. 12

3.2 Comparing compression rates for di�erent compression pro�les. As

can be noticed lossless compression methods use much more hard

drive space than lossy methods. Lossless methods still manage to

halve the disk space used. Lossless methods that are fast to calculate

are taking most disk space. 13

3.3 Comparison of resize-methods by Y-MSE value. By looking the num-

bers it is clear that Blackman and Lancos4 perform best in this eval-

uation. Therefore these two �lters are the most recommended ones. . 18

1

1. INTRODUCTION

This thesis is concerned with processing of surveillance videos according to the needs

of forensic science. Development of surveillance technology has been exponential,

especially after the attack in September 11, 2001. The amount of video material to

be handled grows rapidly as surveillance technology becomes more an more common

all around the World.

The main aim of the thesis was to develop a free software application for processing

surveillance videos. Methods discussed in this thesis are mainly incorporated in the

developed application. The open source Avisynth environment is intensively used

both in the application for �ltering video clips and in the thesis for gaining more

deeper understanding of how video processing works. In this thesis I focus mostly

on processing digital video material. Digital imaging is usually much more accurate

than analog, but because the lack of storage capacity makes video compression nec-

essary, the quality of video is often signi�cantly decreased. Typically video data is

processed in the same way as images, frame by frame. However, time dependence of

the frames in a video o�ers additional possibilities for video data processing. One

can, for example, improve video quality and decrease the noise level for more de-

tailed images. If we can recognize object movement in the video we can try to remove

shaking camera e�ect or even use more advanced operations like super-resolution.

In chapter 2 an introduction to forensic video analysis is given. The general pur-

pose as well as the problems faced in video analysis for forensics are described. In

chapter 3 the most common methods and algorithms for surveillance video analysis

are presented. The main aim of the thesis work was to develop a new open source

forensic video analysis application. The developed application was named ForeVid.

The application, its functions and user interface are described in chapter 4 of this

thesis. Finally, in chapter 5 I draw some conclusions and make suggestions for future

work.

2

2. FORENSIC VIDEO ANALYSIS

In this chapter a background on video surveillance is given with the emphasis on

forensic video analysis. Also, an overview on available forensic video editing software

is presented and a need for yet another application is discussed. Firstly I look at

video surveillance in general. I also take a fast look at surveillance cameras to give

some idea on what kind of data we are getting from our sensors. Secondly I look at

programs available for forensic video editing.

2.1 Introduction to Forensic Video Analysis

Forensic video analysis incorporates scienti�c examination, comparison and/or eval-

uation of video material for legal matters. Although a relatively new �eld in forensic

science, it has proven its e�ectiveness in clarifying events. As video surveillance de-

velops and image quality improves, more powerful analyzing methods are needed to

handle the growing amount of data and to get greatest advantage of it. Ongoing de-

velopment and evolution in video processing methods makes it possible to use these

new methods in forensic analysis. As video technology develops, so do the proces-

sors used in the hardware platforms for video processing. Therefore, when more

complex algorithms are used, better processors help making those methods operate

in reasonable time. Nowadays video data is usually in digital form and old analog

systems are being replaced by newer digital IP-based systems as shown in Figure

2.1. Cameras may be analog but the actual storing is made in digital form. If video

is still saved in analog form, it must be digitalized before it can be processed and an-

alyzed. Video processing is usually quite similar to photo editing. Video is typically

processed frame by frame like images. Images have typically much better resolution

and much lower compression ratio. More advanced methods like de-shaker, super

resolution analysis or motion detection use multiple frames to enhance a frame.

Some problems in the surveillance video analysis come from the fact that, video

processing methods are generally created according to the needs of the entertainment

industry. For entertainment industry actual data doesn't mean as much as the visual

experience. This concerns most video editing and compression methods. Video

compression taking place in the camera is actually a much greater problem for

forensic analysis than for video processing for entertainment applications because

it deteriorates the video badly. In surveillance video applications, compression is

3

Figure 2.1: IP-technology based surveillance systems are taking over the industry.[6]

usually quite heavy. Still compression is considered necessary because available hard

drive capacity is usually quite limited. Even as storage capacity grows, growing

resolution and amount of cameras used for surveillance eats the development up.

Video compression is a process that should be avoided to the last moment. Basically

every process that loses information can be considered as harmful. Selecting right

tools from the available video processing toolkit can be quite a challenge for a person

who doesn't know the basics of video technology and processing. Many of the basic

methods �t for the forensic applications but as surveillance business grows, more

and more algorithms are developed purely for forensic use. Some of those methods

can be quite advanced including face recognition and super resolution. With the

advancement in technology, video surveillance has gone to the next level of facial

feature recognition, in not only �nding people from previously enrolled database

but also trying to understand the moods and intentions of strangers through pre-

programmed attributes and alert people upon detecting a facial attribute associated

with threats. This technology is promising and can be considered as a basic and

beginning stage of 'Arti�cial Intelligence' in facial recognition. Some principles of

facial feature recognition are presented in Figure 2.2.

Because we are processing data for legal matters it is important to know what

4

Figure 2.2: With the advancement in technology, video surveillance has gone to the next
level of facial feature recognition. In this image the basic measurement principles for facial
feature recognition are presented.[19]

5

processing steps the video has gone through. Di�erent situations allow di�erent

kinds of methods to be used. It is obvious that the value of video material as an ev-

idence decreases if any questionable methods have been used. Forensic scientist can

never forget legal rights of the suspect. When using more powerful methods that,

for example, are based on probability theory or some data model, it is important to

keep in mind how the results will be used. They can direct the investigation to the

right track or push it badly o�track. So it is important that the value of processed

data is estimated.

The future of security and surveillance brings up advancement in data processing

towards arti�cial intelligence and mobility of surveillance. In terms of mobility, cam-

eras mounted on wheels are already available and the future could be that more and

more cameras are mounted both in land, sea and air vehicles. These vehicles could

be even unmanned doing only surveillance missions by preprogrammed instructions,

taking surveillance to hitherto unknown nooks and corners of capabilities. Simi-

larly, arti�cial intelligence technology has a lot of promise in processing data and

reacting appropriately to counter perceived threats even without the intervention of

human beings for prolonged periods[1]. Future surveillance will strongly depend on

the networks using IP-technology, creating MSN (see Figure 2.3). This MSN uses

advanced arti�cial intelligence technology to process huge amount of data created

by security cameras and other security sensors.

2.1.1 Surveillance Cameras

When looking for a security surveillance system for home or business use, one of the

decisions that has to be made is whether to go with a digital or an analog camera.

Even when digital cameras present the future of the surveillance technology, it is not

necessarily simple decision to make as both types of cameras have their advantages

and disadvantages. In the following I will explore some of these di�erences in more

detail. The key di�erence between these two camera types is the way they deliver

the video signal. In analog cameras the video signal is delivered in a format that can

be received by a television or other analog receiver such as a VCR or a monitor. A

digital-based camera digitizes the video signal using a specialized encoder. Digital

camera can act as a network device, thus allowing the captured video images to

be viewed not only through an existing network but also through a web browser

that can be accessed through the Internet. Analog and digital-based video cameras

can transmit signals either wirelessly or through a wired connections such as Cat-5

cables. IP-based cameras have the added bene�t of being able to use switches, hubs,

and routers that allow the Cat-5 network to be expanded to much broader ranges.

Let us take a closer look at some of the pros and cons of each camera type. It

6

Figure 2.3: Future surveillance will strongly depend on the networks with IP-technology,
creating MSN multi sensor network.[11]

7

should be kept in mind that IP cameras are evolving rapidly so the features and

opportunities provided by IP cameras are developing rapidly.

Analog Cameras

Analog camera encodes image and sound information and transmits it as an analog

signal: one in which the message conveyed by the broadcast signal is a function of

deliberate variations in the amplitude and/or frequency of the signal. Analog cam-

eras use old methods, so resolution is lower than in up to date digital cameras. In

Finland the most common analog system is PAL. Saving can be done digitally even

if an analog camera is used, meaning that the quantization operation is performed

before saving and the data becomes digital. Typically analog components are much

more expensive than digital components.[7]

Bene�ts of analog cameras include:

• Analog cameras generally have lower prices than IP cameras.

• Analog cameras often have a larger variety of designs such as mini covert

cameras to large PTZ models. Given unique surveillance needs one may �nd

a suitable analog camera more easily than a similar digital one.

• Compatibility with existing system: if there is a need to �nd a camera that

suits an existing surveillance system, a compatible analog camera might be

easier to �nd.

Disadvantages of analog cameras include:

• Many of the basic analog cameras lack some of the more advance features,

which are cheaper to engineer using digital components and signal processing.

• If there is a need to install a wireless surveillance system, analog systems can

have interference problems. More importantly, the resulting signals cannot

be encrypted. This can potentially mean that someone else can interrupt the

transmission.

• When surveillance needs to encompass a wide area, analog cameras may not be

the best choice. Analog cameras generally do not accommodate big distances,

and getting them to work over broad ranges can be di�cult.

8

Digital Cameras

Digital camera records video by means of electronic image sensor. Electronic image

sensor records video frame by frame, giving bit value for every pixel. Digital cam-

eras are gradually replacing analog cameras in most applications. The resolution

of digital cameras can be much higher and functions much more �exible than in

analog cameras. Digital components are nowadays much cheaper and this lowers

the manufacturing cost of digital cameras. Because of digitalization and IP-network

capabilities, cameras can be connected directly to the network by cable or wirelessly

enabling data to be transferred wherever it is needed.[7]

Bene�ts of Digital cameras include:

• Better wireless connection. Digital cameras have encryption built right into

them providing a more secure network. Interference is also not a problem with

IP-based models.

• IP cameras can utilize existing wiring. Because digital cameras can usually

act as independent network devices, they can often take advantage of existing

network wiring within a house. This can make the installation task much

easier.

Disadvantages of Digital cameras include:

• If a system has too many unnecessary features built into each camera, the cost

can be higher than if using analog versions.

• Higher bandwidth required. Digital cameras require more bandwidth than

analog cameras.

IR Cameras

Last but not least, IR-cameras are discussed. IR-camera is a good choice if surveil-

lance is done at night in low light areas. The answer to this problem is an infrared

camera. Infrared camera is an ideal product for anyone who needs to capture images

in the dark. One thing that is not often mentioned when using IR-cameras is that

colors can be really confusing. Dark colors for the eye do not necessarily seem dark

in IR-cameras, for example black clothes can seem lighter than white clothes because

the light intensity in the visible wavelength band does not necessarily correspond to

the intensity in the IR band.[7]

An infrared camera uses infrared light instead of the visible light spectrum in order

to produce better images in complete darkness or low light conditions. Night vision

9

cameras only record in black and white, but some will record color during the day.

A regular camera can become an infrared camera with the use of infrared illumina-

tors. The illuminator lights the area under surveillance with infrared light so that a

regular camera can record black and white images with the use of infrared radiation,

which the naked eye cannot see.[7]

Infrared cameras are not to be confused with a day/night cameras. Day/night cam-

eras can record in low light, but not in zero light and do not use infrared lighting.

Infrared cameras are also available for a CCTV camera system. The complexity of

infrared camera system is entirely up to the user. The cameras are often lightweight

and easy in both use and setup.[7]

In order to fully understand the clear images that can be produced in complete

darkness, one has to see it. Most manufactures have examples of the images or

videos their cameras are capable of producing available on their websites. [7]

10

3. PROCESSING METHODS FOR

SURVEILLANCE VIDEOS

In this section main focus is on processes that are helpful in forensic video analysis.

Processes a�ecting the creation of the video �le are determined and their in�uence

on later edition of the video is studied. Main focus is on Avisynth-�lters that are

used in ForeVid. First we study e�ects of compression on the image and video.

Secondly we study some Avisynth-�lters that may be useful in forensic use.

3.1 Image compression

In this chapter a closer look at three di�erent image compression methods is taken.

Selected methods are common and widely used. Methods are being evaluated for

their functionality in forensic use.

JPEG is probably the most common image format used by digital cameras and

other photographic image capture devices. The degree of compression can be ad-

justed, allowing a selectable tradeo� between storage size and image quality. JPEG

is not lossless so it has limited use in forensics. Still the incoming material can be

in JPEG format so it's main features should be known. There are variations of the

standard baseline JPEG that are lossless; however, these are not widely supported[2].

JPEG2000 is a di�erent standard from JPG, but is not studied in this thesis because

it is not currently used in ForeVid[3].

The BMP �le format, sometimes called bitmap or DIB �le format (for device-

independent bitmap), is an image �le format used to store bitmap digital images,

especially in Microsoft Windows and OS/2 operating systems. Many graphical user

interfaces use bitmaps in their built-in graphics subsystems; for example, the Mi-

crosoft Windows and OS/2 platforms' GDI subsystem, where the speci�c format

used is the Windows and OS/2 bitmap �le format, usually named with the �le ex-

tension of .BMP or .DIB. Advantages of this type of images is that they are lossless,

but the downside is high requirement for hard drive space.

TIFF is a �le format for storing images, popular among Apple Macintosh owners,

graphic artists, the publishing industry, and both amateur and professional photog-

11

raphers in general. As of 2009, it is under the control of Adobe Systems. Originally

created by the company Aldus for use with what was then called "desktop publish-

ing", the TIFF format is widely supported by image-manipulation applications, by

publishing and page layout applications, by scanning, faxing, word processing, op-

tical character recognition and other applications. Adobe Systems, which acquired

Aldus, now holds the copyright for the TIFF speci�cation. TIFF has not had a

major update since 1992, though several Aldus/Adobe technical notes have been

published with minor extensions to the format, and several speci�cations, including

TIFF/EP (ISO 12234-2) and TIFF/IT (ISO 12639) have been based on the TIFF

6.0 speci�cation. The ability to store image data in a lossless format makes a TIFF

�le a useful image archive, because, unlike standard JPEG �les, a TIFF �le us-

ing lossless compression (or none) may be edited and re-saved without losing image

quality. This is not the case when using the TIFF as a container holding compressed

JPEG.

3.2 Video compression

Compression is one of the most crucial procedures in forensic video analysis. In this

section an overview on several video compression methods is given to get better in-

sight into their performance. By comparing the error between the original video and

the compressed-decompressed version of the video using similar compression ratios

one can evaluate how a certain compression algorithm a�ects a video. Another im-

portant quality criterion is the visual appearance of the compressed-decompressed

material compared to that of the original.

H.264 is only compression method that is used in ForeVid. H.264 also known as

AVC(Advanced Video Coding) and MPEG-4 Part 10 is a video compression stan-

dard. The �rst version of the standard was completed in May 2003. H.264/AVC is

block-oriented motion-compensation-based codec standard developed by the ITU-T

Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture

Experts Group (MPEG), and it was the product of a partnership e�ort known as the

Joint Video Team (JVT). The ITU-T H.264 standard and the ISO/IEC MPEG-4

AVC standard (formally, ISO/IEC 14496-10 - MPEG-4 Part 10, Advanced Video

Coding) are jointly maintained so that they have identical technical content. Some

of the applications that use H.264 are Blu-ray Disc, DVB broadcast, direct-broadcast

satellite television service, cable television services, and real-time video conferences.

Main advantage of H.264 over its predecessors is its capability to compress video with

only minor loss of quality. The CCTV or Video Surveillance market has included

the technology in many products. With the application of the H.264 compression

technology to the video surveillance industry, the quality of the video recordings

12

Table 3.1: MSE is used for determining errors of di�erent compression pro�les. Results
for compression comparison are obtained using the MSU video quality measurement tool.
Original video was coded with H.263 compression method which causes slight quantization
error in lossless pro�les.

became substantially improved. Starting from 2008, the H.264 technology is some-

times considered as synonymous with "high quality" video.[4]

There are �ve wrapper possibilities for the user to select in ForeVid. They are

AVI, FLV, MOV, MKV and MP4. ForeVid has several pro�les for saving video �le

and here I study some of them. When comparing video �les of di�erent kinds of

compression pro�les it was discovered that even lossless doesn't necessarily means

lossless. Compression error for each pro�le is shown in table 3.1. If video uses some

other compression method like H.263 the translation to H.264 makes slight di�er-

ence to the video due to YUV and RGB transformations and quantization selections.

Compression rate for each pro�le is shown in table 3.2.

13

Table 3.2: Comparing compression rates for di�erent compression pro�les. As can be
noticed lossless compression methods use much more hard drive space than lossy methods.
Lossless methods still manage to halve the disk space used. Lossless methods that are fast
to calculate are taking most disk space.

14

3.3 Video editing with Avisynth

Avisynth is a powerful tool for video post-production. It provides many di�erent

ways for editing and processing videos. Avisynth works as a frame server. It makes

possible instant editing without the need of temporary �les. Avisynth script �les

work in principle with all media applications and players capable of opening AVI

�les. For instance, Ligos MPEG encoder will not let the user to choose anything but

straight AVI �les in the �le selector. But if AVI is loaded and the name is manually

changed in the �lename box to .AVS - it works perfectly. Because Avisynth works

like a frame server, �lters are being applied 'on-the-�y'.[8]

Avisynth does not provide a graphical user interface, but instead uses a script sys-

tem that allows advanced non-linear editing. It is remarkably powerful and is a very

good way to manage projects in a precise, consistent, and reproducible manner. Be-

cause text-based scripts are readable, projects are inherently self-documenting. The

scripting language is simple yet powerful and complex �lters can be created from

basic operations to develop a sophisticated palette of useful and unique e�ects.[8]

Not all tasks are equally easy to do in Avisynth. In general Avisynth makes it

very easy to adjust the appearance of a video, and doing fast and easy editing. In

general it's not easy to use Avisynth for cutting videos or doing advanced post-

processing. For that it is much better to use programs with GUI. That is one of the

main reasons for creating ForeVid. In general Avisynth is a very good tool when

having to compress video. Many �lters are written speci�cally for tasks regarding

video pre-processing when compressing or decompressing video. There are many

well written plugins to help you make your movie more compressible, reduce noise,

adjust color and resize your source material. And because Avisynth works as a frame

server, you often do not need a temporary �le before you compress it.[8]

3.3.1 Media �le �lters

Media �le �lters are used to read or write media �les. Usually they produce source

clips for processing. There are many di�erent kinds of �lters in this category. Video

codec that has been used a�ects the �lter to be selected. ForeVid uses three di�erent

kinds of Media �le �lters: AviSource, DirectShowSource and FFMPEG.[5]

AviSource

AviSource takes one or more �le names as quotes and opens the �les using either

the Video-for-Windows "AVIFile" interface, or Avisynth's built-in OpenDML code

(taken from VirtualDub). AviSource �lter can read any �le with an AVIFile handler.

15

This includes not only AVI �les but also WAV �les, AVS �les, and VDR �les.

When given multiple �lenames as arguments, the clips will be spliced together with

UnalignedSplice. The AviSource �lter examines the video to determine its type.

Type is used to determine which handler is appropriate to use, the AVIFile handler

or the OpenDML handler. Only the OpenDML handler can read larger AVI �les

than 2GB, but only the AVIFile handler can read other �le types like WAV, VDR

and AVS. There is also built-in support for ACM audio.[5]

DirectShowSource

DirectShowSource opens a video using DirectShow. DirectShow is codec that is

based in windows direct show. DirectShow has some minor problems with frame

handling and it should be used only as secondary choice. DirectShowSource can

read much greater number of codecs than AviSource. For better performance a

newer DirectShowSource2 is available for download.[5]

FFmpegSource

If media �le contains MPEG-4 ASP video, FFmpegSource can be used. Many non-

AVI �les contain video with variable framerate (AVI �les always have a constant

frame rate though), and in that case it is important to make sure the following two

things:

• Frame rate and the number of frames must not be changed in Avisynth. If

frame rate is changed and timecodes-�le is not changed manually, video and

audio in �nal encoding will be out of sync.

• When muxing the encoded video and audio, the timecodes �le must be used

again. If this in not done video and audio in �nal encoding will be out of sync.

The main reason for this is that FFmpegSource opens the video as it is. It doesn't

add or remove frames to convert it to constant framerate video to ensure sync.[5]

3.3.2 Color conversion and adjustment �lters

These �lters can be used to change the color format or adjust the colors of a clip.

Colors can be adjusted in many formats, typically RGB and YUV. When adjusting

brightness in a video, the user should consider which kind of �lter to use. ForeVid

version 1.0 uses Levels-function for this task, however, it is more recommended to use

Tweak- or ColorYUV-�lter, because Levels also changes the chroma of the clip.[5]

16

GreyScale

GreysScale �lter converts the input clip to greyscale without changing the color

format. If clip is based on YCbCr formats, the chroma channels are set to 128. If

clip is based on RGB formats, the conversion produces the luma using the coe�cients

given in the matrix parameter. By setting matrix="rec709", the clip is converted

to greyscale using Rec.709 coe�cients[5]. By setting matrix="Average" the luma is

calculated as:

(R +G+B)/3. (3.1)

Levels

Levels is a �lter that adjust brightness, contrast and gamma. Input pixel values can

be determined to be treated as pure black or pure white by inlow and inhigh param-

eters. Output value corresponding to black and white can be determined by outlow

and outhigh parameters. Gamma parameter controls the degree of nonlinearity in

the conversion. Level �lter uses the conversion function:

out =
in− inlow

inhigh− inlow

1
gamma

∗ (outhigh− outlow) + outlow (3.2)

If the video �le is processed in the YUV mode, Levels only gamma-corrects the luma

information, not the chroma. The reason for this is that gamma correction is really

an RGB concept, and it is much more complex to do in YUV. However, if gamma =

1.0, the �lter should have the same e�ect in RGB and YUV modes. For adjusting

brightness or contrast it is more recommended to use Tweak- or ColorYUV-�lter,

because Levels also changes the chroma of the clip.[5]

Tweak

Tweaks are preferred as small modi�cations intended to improve a system. In

Avisynth Tweak �lter can be used to adjust the hue, saturation, brightness, and

contrast of a video clip. For preventing banding, the interp-value interpolates the

adjusted saturation.[5]

ColorYUV

ColorYUV allows many di�erent methods of changing the color and luminance of

the videos. All settings for this �lter are optional. All values are defaulting to "0" or

false. Gain, o�set, gamma and contrast can be set independently for each channel.

17

A saturation of 0.8 gives for example:

contV = −0.2 ∗ 256 = −51.2. (3.3)

It must be noted that in Tweak YUV values will always be clipped to valid TV-

ranges, but here opt="coring" has to be speci�ed.[5]

3.3.3 Geometric deformation �lters

These �lters can be used to change image size, process borders or make other defor-

mations of a clip. From this �lter category the ForeVid uses �ip, rotation and resize

functions.[5]

FlipHorizontal / FlipVertical

This �lter �ips the video from left to right or upside down. It is useful for dealing

with some video codecs which output everything upside down. This function is

known as mirror function in many other programs.[5]

Resize �lters

The resize �lters re-scale the input video frames to an arbitrary new resolution, us-

ing di�erent re-sampling algorithms[5]. MSE comparison of the �lters is presented

in table 3.3. The �lters in AviSynth internal �lter list include:

• GaussResize: GaussResize uses a gaussian resize with sharpness parameter p

(default 30) which can be adjusted. Range of p is from 1 to 100, with 1 being

very blurry and 100 being very sharp.[5]

• PointResize: PointResize is the simplest possible resize. It uses ether Point

Sampler or Nearest Neighbour algorithm and the result is usually a very blocky

image. This �lter should only be used if the intention is to have inferior quality

or in need of clear pixel drawings. It is useful for magnifying small areas for

examination.[5]

• BilinearResize: BilinearResize uses standard bilinear �ltering for re-scaling the

frame. It is good basic resize �lter especially when shrinking.[5]

• BicubicResize: BicubicResize is quite similar to BilinearResize, except that it

uses the Mitchell-Netravali two-part cubic instead of a linear �ltering function.

The properties of the cubic can be adjusted, values are sometimes referred to as

"blurring" and "ringing" respectively. When magnifying video, BicubicResize

gives much better-looking results than BilinearResize.[5]

18

Table 3.3: Comparison of resize-methods by Y-MSE value. By looking the numbers it is
clear that Blackman and Lancos4 perform best in this evaluation. Therefore these two
�lters are the most recommended ones.

• BlackmanResize: BlackmanResize is created by modifying LanczosResize and

it has better control of ringing artifacts for high numbers of taps.[5]

• Lanczos4: Lanczos4 is a convolution �lter. Convolution functions are usually

de�ned so that they are zero when the distance is larger than some value so that

you don't have to consider every input value for every output value. For lanc-

zos interpolation the convolution function is based on the sinc(x) = sin(xπ)/x

function, but only the �rst four lobes are taken in lanczos4.

If input resolution is the same as output resolution along one axis, that resize will

be skipped. Which one is called �rst, is determined by which one has the smallest

down scale ratio. This is done to preserve maximum quality, so the second resize

has the best possible image to work with.[5]

TurnLeft, TurnRight and Turn180

TurnLeft rotates the clip 90 degrees counter-clockwise and TurnRight 90 degrees

clockwise. Turn180 rotates the image full 180 degrees.The operation is very simple

and fast. It is notable that the frame size changes in 90 degree rotation from NxM

to MxN.[5]

3.3.4 Pixel restoration �lters

These �lters can be used for image detail restoration of a clip. In forensic use this

usually means sharpening image and possible noise removing. Especially sharpening

is one of the most used �lters.[5]

19

Figure 3.1: Starting from left: orginal clip, blurred clip, clip after sharpening. In visual
evaluation sharpening seems to be working well. Frame is being sharpened near to original
one.

Sharpen

Sharpening is one of the basic processes for forensic video enhancing. Sharping

is basically a counter operation for blurring, which is commonly used for image

softening. Softened image is usually more pleasant to watch, but it is not usually

used in forensic because in forensic video analysis it is usually important to highlight

the changes. It clari�es changes in the image providing more detailed version of the

image. ForeVid has currently only one sharpening function which is called sharpen.

In test arrangement, a video �le is compressed using lossless max pro�les and then

blurred using blur function. Finally MSE is calculated for the video. Finally sharpen

is used to restore the video and error is calculated again. That way it is possible

to study how much the error decreased. MSE comparison of the �lter is presented

in �gure 3.2. Error was created using the blur function with the parameter value of

1.58. That is maximum value for the particular function. Y-MSE value obtained is

74.17. The parameter value used in sharpening was 0.9. After sharpen Y-MSE was

51.96. In this test the MSE dropped by 1/3 which can be considered a lot. Visual

comparison of the �lter is presented in �gure 3.1 The frame that is being processed

has huge e�ects in sharpening result. If pixel values change a lot within the frame,

result is not so good and more noise is being added to the frame. This results from

camera motion that adds blur to the frame.[5]

GeneralConvolution

This �lter performs a matrix convolution on a RGB32 clip. It uses given 3x3 or

5x5 convolution matrix. The user can also determine divider and bias for the �lter.

The divisor is usually the sum of the elements of the matrix. However, when the

sum is zero, the divisor can be leaved to one and the bias setting to correct the

pixel values. The bias could be useful if the pixel values are negative due to the

convolution. After adding a bias, the pixels are just clipped to zero (and 255 if they

are larger than 255).[5]

20

Figure 3.2: The �gure shows how well sharpen works in general. The areas of similar pixel
values (i.e., relatively �at areas) do not change much in blurring.

3.3.5 Timeline editing �lters

These �lters can be used to arrange frames in time (clip cutting, splicing and other

editing). Trim function is the only one available in ForeVid from this section. Time-

line editing �lters include various kinds of �lters from deleting frames to changing

FPS.[5]

Trim

The Trim �lter trims a video clip so that it includes only the frames from the

�rst selected frame to the last selected frame. For example, Trim(40,260) removes

frames which are not in the range 40-260. There are two arguments in the Trim �lter

separated by a comma: the �rst and the last frame to keep from the clip. If you

put 0 for the last frame, it means "end of clip,". For more complex trimming one

or more Trim functions can be summed together forming new trimmed clip. Audio

is trimmed at the same time, so the user doesn't have to trim audio seperatly.[5]

3.3.6 Interlace �lters

These �lters can be used for creating and processing �eld-based material, which is

frame-based material separated into �elds. Field-based material usually comes from

analog cameras which divide frame in two separate �elds. In old displays these �elds

formed paired and un-paired columns, these columns can be separated or merged

removing saw edge e�ect. Avisynth is capable of dealing with both progressive and

interlaced material. This is the reason that the �eld-based �ag exists and can be

used when dealing with interlaced material[5]. Separate �elds problem is shown in

21

Figure 3.3: Separate �elds causes edges of moving object to blur.

�gures 3.3 and 3.4.

Bob

Bob takes a clip and bob-deinterlaces it. This means that it enlarges each �eld into

its own frame by interpolating between the lines. The top �elds are nudged up a

little bit compared with the bottom �elds, so the image will not actually appear

to bob up and down. However, it will appear to "shimmer" in stationary scenes

because the interpolation doesn't really reconstruct the other �eld very accurately.

This �lter uses BicubicResize to do its work. A bob �lter does not really move the

physical position of a �eld. It just puts it back where it started. If SeparateFields()

is used alone then only 2 half height frames are gained: line 0 becomes line 0 of frame

0 and line 1 becomes line 0 of frame 1. Thus line 0 and 1 are now in the same place.

Bob now basically resizes each frame by a factor of two but in the �rst frame uses

the original lines for the even lines and in the second frame uses the original lines for

the odd lines. If after doing a SeparateFields() each frame is resized vertically by a

factor of 2, it wouldn't work right because the physical position of a �eld moves.[5]

Weave

Weave is the opposite of SeparateFields. It takes pairs of �elds from the input video

clip and combines them together to produce interlaced frames. The new clip has

22

Figure 3.4: After deinterlace �lter moving objects are sharper.

half the frame rate and frame count. Weave uses the frame parity information in

the source clip to decide which �eld to put on top. If the output does not come

out right, ComplementParity beforehand or SwapFields afterwards might �x the

problem. All Avisynth �lters keep track of �eld parity, so Weave will always join the

�elds together in the proper order. From version v2.56 this �lter raises an exception

if the clip is already frame-based. AssumeFieldBased can be used to force weave a

second time. Prior versions did a no-op for material that was already frame-based.[5]

DoubleWeave

If the input clip is �eld-based, the DoubleWeave �lter operates like Weave, except

that it produces double the number of frames: instead of combining �elds 0 and

1 into frame 0, �elds 2 and 3 into frame 1, and so on, it combines �elds 0 and

1 into frame 0, �elds 1 and 2 into frame 1, and so on. It does not change the

frame rate or frame count. If the input clip is frame-based, this �lter acts just as

though the clip was separated into �elds with SeparateFields �rst. Weave is actually

just a shorthand for DoubleWeave followed by SelectEven. It is recommended to

use a �lter like SelectOdd or Pulldown after using this �lter, unless a 50fps or 60fps

video is really wanted. It may seem ine�cient to interlace every pair of �elds only to

immediately throw away half of the resulting frames. But actually, because Avisynth

only generates frames on demand, frames that are not needed will never be generated

23

in the �rst place. If the clip processed is �eld-based, like a video-camera footage, this

�lter won't probably be needed. But when processing NTSC video converted from

�lm and usage of the Pulldown �lter is planned, usage of DoubleWeave is needed

�rst.[5]

3.3.7 Conditional and other meta �lters

Meta �lters can be used to control other �lters execution. The basic characteristic

of conditional �lters is that their scripts are evaluated at every frame instead of

the whole clip. This allows for complex video processing that would be di�cult or

impossible to be performed by a normal Avisynth script.[5]

24

4. FOREVID

ForeVid is forensic video processing software created for Finnish National Bureau of

Investigation (NBI). It is based on open source components such as Avisynth. All

source codes are open source and GNU licensed and therefore the software is freely

modi�able. Version management and development of the ForeVid software is done

by the NBI. The purpose of this software is to o�er functioning tool for forensic

video analysis.

ForeVid uses Avisynth as the opening and editing tool for videos. The ForeVid

can be described as a binder that binds all components together and o�ers interface

for the user. Avisynth �ts for this purpose perfectly, it has numerous �lters for

opening and editing videos. Most of the �lters are open source and free to use. The

user can also download, buy or develop more �lters and easily add them to the Fore-

Vid. ForeVid software is created using Python programming language. The GUI

is created using PyQt 4.0 which is Qt GUI-library moderated for Python. When

video information is being acquired from Avisynth the data is given in C-type DLL-

�les. Some information from C-type data must be changed into Python compatible

format for usage in Python. Python has tools for exporting images and PDF �les.

Video exporting is managed through the FFMPEG-software that allows usage of

Avisynth scripts in video compression process. Structure of the ForeVid is shown in

�gure 4.1.

4.1 Tools used

In this section the main tools that were used in the creation of the ForeVid. The

language used was Python 2.6 which is easy to learn and o�ers �exibility needed for

software of this magnitude. ForeVid is based on Avisynth that enables video frame

editing. Moving frames in the Python program is presented in section Video editing

with Avisynth. C-language was used in some cases where DLL-�les were required.

For Video compression purposes FFMPEG o�ered a great tool, due to its ability

to compress videos from Avisynth script. PDF tool o�ered a toolkit for generating

PDF �les from the case in hand. Main tools have detailed presentations below.

25

Figure 4.1: Basic blocks of ForeVid.

4.1.1 Python 2.6

Python is a high level programming language which is used as the backbone for

programming ForeVid. In this task version 2.6 was used because 3.0 had slightly

di�erent kind of command structure and it was not yet as well supported as 2.6,

which had much more tutorials and examples. Python installation comes with lan-

guage editor but the original editor is quite bulky. It is recommend to get a more

e�ective editor like eclipse.[16]

Python is an easy to learn but still very powerful object-orientated language. It

has e�cient high-level data structures and a simple but e�ective approach to object-

oriented programming. Its simplicity makes it easy to learn but its power means that

large and complex applications can be created. Its interpreted nature means that

Python programmers are very productive because there is no edit/compile/link/run

development cycle. Python has elegant syntax and dynamic typing, which together

26

with its interpreted nature, make it an ideal language for scripting and rapid ap-

plication development in many areas on most platforms. The Python interpreter is

easily extended with new functions and data types implemented in C or C++ (or

other languages callable from C). Python is also suitable as an extension language

for customizable applications.[16]

4.1.2 PyQt 4.0

PyQt constitutes Python bindings developed by Riverbank Computing Limited for

the Qt cross-platform GUI/XML/SQL C++ framework. Qt is developed by Nokia's

Qt Development Frameworks, formerly Trolltech framework and runs on all plat-

forms supported by Qt including Windows, MacOS/X and Linux. Qt is more than

a GUI toolkit. It includes abstractions of network sockets, threads, Unicode, regular

expressions, SQL databases, SVG, OpenGL, XML, a fully functional web browser,

a help system, a multimedia framework, as well as a rich collection of GUI widgets.

There are two sets of bindings: PyQt v4 supports Qt v4 and the older PyQt v3

supports Qt v3 and earlier. The bindings are implemented as a set of Python mod-

ules and contain over 300 classes and over 6,000 functions and methods. Together

PyQt v4 and PyQt v3 support all Qt versions since 1.43 and all Python versions

since 2.3. PyQt is dual-licensed under a commercial license and the GNU GPL

(version 2 and 3). This means that it can be used freely as long as the product is

not commercial. Unlike Qt, PyQt v4 is not available under the LGPL. PyQt4 is

a set of Python bindings for Qt 4 that exposes much of the functionality of Qt 4

to Python. It contains over 600 classes that cover graphical user interfaces, XML

handling, network communication, SQL databases, Web browsing and other tech-

nologies in Qt. With Qt come QTDesigner, that can be used to draw GUI. PyQt is

able to generate Python code from Qt Designer. It is also possible to add new GUI

controls written in Python to Qt Designer. ForeVid GUI was created in text form.

When starting to use Python and PyQt, internet is the best place to start. There

are lots of tutorial and forums with information for all kinds of situations. Qt classes

employ a signal/slot mechanism for communicating between objects that is type safe

but loosely coupled making it easy to create re-usable software components. PyQt

combines all the advantages of Qt and Python. A programmer has all the power of

Qt, but is able to exploit it with the simplicity of Python.

The most used Python modules in ForeVid were QtCore and QtGui. The QtCore

module contains the core non-GUI classes, including the event loop and Qt's signal

and slot mechanism. It also includes platform independent abstractions for Unicode,

threads, mapped �les, shared memory, regular expressions, and user and application

27

settings. The QtGui module contains the majority of the GUI classes. These include

a number of table, tree and list classes based on the model-view-controller design

pattern. Also provided is a sophisticated 2D canvas widget capable of storing thou-

sands of items including ordinary widgets. PyQt4 has Qt module that consolidates

classes contained in all of the modules into a single module. This has the advantage

that the user doesn't have to worry about which underlying module contains a par-

ticular class. It has the disadvantage that it loads the whole of the Qt framework,

thereby increasing the memory footprint of an application.[14][15]

4.1.3 FFMPEG

FFMPEG is video compression tool that can create a video �le, having Avisynth

script as it's input. FFMPEG has many settings for video processing and it o�ers

great amount of �exibility. FFMPEG is a fast video and audio converter. It can also

grab from a live audio/video source. In ForeVid it is used for converting videos with

changes made in Avisynth. It can take Avisynth script and turn it into new video

based on the original video. The command line interface is designed to be intuitive,

in the sense that FFMPEG tries to �gure out all parameters that can possibly be

derived automatically. Usually the only speci�ed target is bitrate. FFMPEG can

also convert from any sample rate to any other, and resize video on the �y with a

high quality polyphase �lter. By default, FFMPEG tries to convert as losslessly as

possible: it uses the same audio and video parameters for the outputs as speci�ed

for the inputs. FFMPEG has been licensed under the GPL.[13]

4.1.4 The Open Source PDF library

The ReportLab Toolkit is a library for programmatically creating documents in

PDF format. It's a robust, �exible, time-proven, industry-strength solution. It �ts

in ForeVid environment because it is written in Python and it is open-source. It

makes possible to quickly and easily create or automate complex or data-driven

documents. The ReportLab Toolkit has evolved over the years in direct response

to the real-world reporting needs of large institutions. It's in production use across

the world as the trusted and proven foundation of existing enterprise solutions.[12]

The library implements three main layers:

• A graphics canvas API allowing to 'draw' PDF pages and also create many of

the special features of PDF �les (outline entries, links and so on)

• A charts and widgets library for creating reusable data graphics, including

many common business and �nancial charts

28

• A �exible page layout engine - PLATYPUS ("Page Layout and TYPography

Using Scripts") - which builds documents from components like headlines,

paragraphs, fonts, tables, images, and vector graphics.

4.2 Functional description

When the ForeVid program is launched, initial screen is displayed to the user for

3 seconds. After that the project menu appears. The project menu is shown in

�gure 4.2. In project menu the user can create, open or delete projects. Case that

is being studied can be created as a project in project menu. Project menu shows

current projects that are in the particular working directory. When new project

is being created the program creates a blank project that only has its folders and

state �les created. If the user chooses to open a project, the project's last state is

being loaded and the user can continue where he left last time. A Project saves

it's state in closing situations so users do not need to save their projects. There is

only one saving state so previous states cannot be recovered directly. If a project

is deleted it cannot be restored. In the project menu is also an option for setting

up a working directory. Working directory is a directory where project folders and

�les are created. It should be kept in mind that ForeVid doesn't save video �les in

a project, so removing or deleting an opened video �le corrupts the project.

After the project menu closes, ForeVid loads �les that have been imported to

the project earlier. In this case loading screen is displayed to the user while loading

is performed. Loading screen informs the user that the program is loading �les and

that it is working properly. When all �les are loaded to a project, the main working

window is displayed.

The main working window is shown in �gure 4.3. In the center of the window

there is the video displaying area. On the left side is the playlist where all videos

in the particular project are listed. Video can be added to a project by dragging

it to the playlist or using the �le import selection from the dropdown menu at the

toolbar. Dropdown menus are located at the upper section of the working window

just below the title bar. Below the dropdown menus is the toolbar which includes

some quick buttons for frequently used functions. On the right side is a marker list,

it contains markers that are made in the project. Marker positions can be changed

using buttons below the marker list. Moving cursor on top of a marker brings up the

marker text of that marker. Activating marker by a double click selects that marker

point as the current video frame. Marker text is shown below the video display area

if the marker is activated. This is presented in �gure 4.4.

29

Figure 4.2: The project menu of ForeVid. This is where projects are controlled.

30

Figure 4.3: Main working window of ForeVid.

Below the marker text area is the video sliding bar, showing current video progress.

It can also be used for moving in the video by dragging the slider or clicking on the

preferred position. Below the slider is the video control bar where all quick buttons

for video watching and time line editing are located. Markers can be seen in �gure

4.4. At the bottom of the screen is the status bar which is used for displaying in-

formation about the video and process status. There are six menu selections on the

menubar: File, Video, Action, Go to, Setup, Help

The �le menu holds all video importing and exporting selections. File import asks

the user to locate the right �le by a graphical interface. The program remembers

the folder the last �le was picked up from, helping the user if he needs to import

more �les later. File export is a submenu. In the �le export the user can export

images from markers, frame sequences or export edited videos or export PDF �les

from markers. All exports have two options: exporting into �xed project folder or

exporting into a folder selected by the user. In the user selected folder option the

program remembers it and suggests it at the next time. File menu includes also a

selection for returning to the project menu. Current project state is saved if project

is changed. There is also exit selection in the �le menu.

Video menu includes all selections for processing a video like �lter adding and

31

Figure 4.4: The marker list of ForeVid.

Figure 4.5: Filemenu selections for ForeVid.

32

Figure 4.6: The �lemenu selections for ForeVid.

removing, motion detecting, header screen, etc. Filter adding is one of the most

important functions in ForeVid, it allows Avisynth �lters to be applied to the video.

Filter removing is also performed in the �lter menu. The �lter set includes all �lters

like trim, blankscreen, etc. Filter function brings up a window that has multiple

�lters which can be selected. When the user selects a �lter, a window is created for

that �lter's attributes. If �lter has no attributes, attribute window is not created.

More �lters can be added to the basic set quite easily by incorporating their source

code.

On the toolbar the user can �nd all quick buttons for functions that are fre-

quently used. The functions on the toolbar are quit, video import, clip deleting,

�lter adding, zoom out, zoom in and return to original size. The action menu in-

cludes all selections that are used for performing an operation to a clip. There are

also some time line editing and marker managing functions. These menus can be

seen in �gure 4.3.

Goto menu is used for moving within the clip. There are functions for playing the

video or a whole video list. There are also multiple selections for moving to di�erent

locations within the clip. Setup handles some parameters that can be changed. User

can select which media�lter is used for opening videos. Saving format for the image

as well as the language of the environment can also be selected here. Currently

available languages are English and Finnish. ForeVid is built so that further adding

of languages is easy.

Current version of the program can be found in the help menu. When a video

is added to the project, the program checks if the video can be opened. If the �le

33

does not open, the program informs the user about this and shows the info window

containing additional information about that �le. If a �le is opened successfully, a

video icon appears in the play list and the imported video becomes active. When a

video is activated it's �rst frame is shown in the display area. Only one copy of a

video can be opened in the project, but the video can be copied inside ForeVid for

duplicates for editing purposes.

4.3 Introduction to the source code

ForeVid has thousands of lines of code. In the following a fast overview is o�ered to

clarify the coding process of the ForeVid. Like mentioned before, ForeVid uses video

processing tools of the Avisynth to open and edit the video. First thing to code

is the plugin for the Avisynth. For this "AvsClip" class was created. AvsClip uses

"avisynth"-class which was modi�ed from the AvsP program[17]. In "avisynth" class

avidll=ctypes.windll.Avisynth is de�ned creating interface to the DLL-�le. These

classes create binding between Avisynth and ForeVid. For controlling data stream

from Avisynth, "AvsClip" class has C type structures and functions. An example of

creating a C type structure is given below:

class BITMAPFILEHEADER(ctypes.Structure):

�elds = [

("bfType", WORD),

("bfSize", DWORD),

("bfReserved1", WORD),

("bfReserved2", WORD),

("bfO�Bits", DWORD)]

An example of creating a C type function looks like:

CreateFile = ctypes.windll.kernel32.CreateFileA

WriteFile = ctypes.windll.kernel32.WriteFile

CloseHandle = ctypes.windll.kernel32.CloseHandle

"AvsClip" class also contains following information: �lter list, �lter values, marker

list, name of the clip, zoom values and number of the current frame. Information

that "AvsClip" class has is used to identify the clip in ForeVid. All this information is

needed to allow multiple clips in a session. The most used function in the "AvsClip"

class is the "GetFrame function". This function asks a frame from Avisynth by using

a frame number. Frame information is given as C-type data. Another important

34

function is "addFilter" and it uses "Invoke" to apply �lters to an opened clip. The

function is used as:

addFilter(Avisynth command, Avisynth clip, parameter1, parameter2,...,parameter6)

In "addFilter" Invoke is used as follows:

avs�le = self.env.Invoke(�lter,args,0)

arg0.Release() #release the clip

self.clip = avs�le.AsClip(self.env)

In here "�lter" contains Avisynth �lter command and args is a vector containing

all the parameters. In the main program of ForeVid the video clip is opened as

follows:

self.AVI = omaAvi.AvsClip(�leName, �,�tHeight=None, �tWidth=None, oldFrame-

count=1, keepRaw=True)

"omaAvi" is the �le where "AvsClip" class is presented. "�leName" is a char type

value containing �le path and name. Another problem was to get the frame infor-

mation in Python compatible form. Solution can be found from the "drawFrame"

function of the main program. In the code there are lines for error checking and

setting up the right clip. Finally in the seventh line the _GetFrame-function is

called. The function activates the frame that was called and it can be pointed in the

computer memory. Using the pointer data is converted from C-type data to Python

compatible form. Image information comes out as mirrored so " mirrored()" func-

tion of "QImage" class is used to correct the image. Finally "vaihda"-function of

the "videoWindow" is used to change the current frame shown. "videoWindow"

is a widget object created for showing the video frame. Rest of the "drawFrame"

function is setting up GUI parameters and an option for showing original clip and/or

histogram. The "drawFrame" function is shown below:

def drawFrame(self,frame):

if len(self.creatureList) > 0:

self.AVI = self.creatureList[str(self.lastVideo)]

self.pituus = self.AVI.Framecount

self.slider.setRange(0, self.pituus)

self.viive = 1/self.AVI.Framerate

self.AVI._GetFrame(frame)

35

a = ctypes.string_at(ctypes.pointer(self.AVI.pBits),

self.AVI.Width*self.AVI.Height*self.kanavia)

B =

QImage(a,self.AVI.Width,self.AVI.Height,QImage.Format_ARGB32)

B = B.mirrored()

B = B.scaledToHeight(self.AVI.Height*self.AVI.getZoom()[0],1)

self.videoWindow.vaihda(B)

self.statusBar().showMessage(self.dict.getWord('Clip: ')+'%s

'%(self.lastVideo)+self.dict.getWord('Frame:')+' %.0f / %.0f -

(%.0f X %.0f) %s'%(frame,self.pituus,self.AVI.Width,

self.AVI.Height,self.time(self.AVI.getTime()[0],

self.AVI.getTime()[1], self.AVI.getTime()[2])))

self.checkMarker()

if self.showOrig:

if self.isChanged:

self.showOriginal()

self.orginalAVI._GetFrame(frame)

a2 =

ctypes.string_at(ctypes.pointer(self.orginalAVI.pBits),

self.orginalAVI.Width*self.orginalAVI.Height*self.kanavia)

B2 =

QImage(a2,self.orginalAVI.Width,self.orginalAVI.Height,

QImage.Format_ARGB32)

B2 = B2.mirrored()

B2 =

B2.scaledToHeight(self.orginalAVI.Height*self.AVI.getZoom()[0],1)

self.videoWindow2.vaihda(B2)

if self.showHisto:

B.save(QString("temp\hist.bmp"),"BMP",70)

self.hist.refresh()

PDF �les are created by the following method. Function "makePdf" is called to

create a PDF �le. "makePdf" uses class named "ForevidPdf". The function creates

a PDF �le and inserts marked frames as images with marker text into to the �le

one by one. The image is obtained from the "AvsClip" class as presented earlier.

"self.markerL" is a list containing name of the clip, number of the marked frame

and marker text. The "ForevidPdf" class has a function "addFigure" that inserts

an image and text into the PDF �le. the "build()" function builds up the actual

36

�le to be saved to the hard drive. Value of the "self.lastVideo" is stored in the help

parameter so that current situation can be restored after PDF �le creation. The

"makePdf" function is shown below:

def makePdf(self):

if len(self.markerL)>0:

if len(self.folder) < 1 and not self.toFolder:

directory = self.path[0]+self.project[0]+'\\docs\\'

else:

if len(self.folder)/<4:

directory = self.folder[:2]

else:

directory = self.folder+'\\'

pdf = ForevidPdf(unicode(directory)+

unicode(self.project[0])+".pdf",str(self.project[0]))

help = self.lastVideo

for k in self.markerL:

self.lastVideo = k[1]

self.frame = k[0]

self.AVI = self.creatureList[self.lastVideo]

self.AVI._GetFrame(self.frame)

a =types.string_at(ctypes.pointer(self.AVI.pBits),

self.AVI.Width*self.AVI.Height*self.kanavia)

B =

QImage(a,self.AVI.Width,self.AVI.Height,QImage.Format_ARGB32)

B = B.mirrored()

pdf.addFigure(B,unicode(k[2]))

self.lastVideo = help

pdf.build()

self.statusBar().showMessage(self.dict.getWord('Created:

')+unicode(self.project[0])+".pdf")

else:

reply = QMessageBox.warning(self, 'Warning',

self.dict.getWord("There aren't any bookmarks"), QMessageBox.Ok)

self.toFolder = False

37

One of the main goals of the software is to create video �les. For this task a work-

ing video compression library is needed. FFMPEG compression tool o�ers solution

to this problem. FFMPEG has been presented in earlier sections. In the following

it is shown how it was implanted into ForeVid. FFMPEG takes parameters from

the command line. First task was to �gure out how commands in FFMPEG work

and what kind of parameters it can have. Next step was to �nd out how Python

can handle command line streams. In ForeVid a "aviSave" class operates as Python

wrapper for FFMPEG. "aviSave" has �xed pro�les that have been presented earlier

in video compression section. These pro�les are read from an XML �le. The main

commands of the "aviSave" class are:

self.process = QProcess()

self.process.setProcessChannelMode(QProcess.MergedChannels)

...

def startCommand(self):

...

command = '�mpeg\\�mpeg -i "'+self.avsFile+'" -r '+str(self.fps)

+ ' -f ' + format + parameters + ' -y"'

+self.path+self.fnameEdit.text()+'"'

self.process.start(command)

...

It is desirable to get information about the saving process, so the output stream of

standard output is printed. "SIGNALS" function as triggers that are waiting for

the signal they are given. Key commands of the function are presented below:

self.connect(self.process, SIGNAL("readyReadStandardOutput()"), self.readOutput)

self.connect(self.process, SIGNAL("readyReadStandardError()"), self.readOutput)

def readOutput(self):

self.output.append(str(self.process.readAllStandardOutput()))

4.4 Example cases solved by ForeVid

In this section we introduce some of the features and abilities of ForeVid. The main

goal of this section is to show basic usage of ForeVid, not making any fancy tricks.

Two example cases are presented: the �rst one is from a store where two suspects

are using stolen credit card, in the second one a video clip from attempted ATM

robbery is shown.

38

CASE1: Surveillance video shows a couple using stolen credit card.

Background: The credit card was reported stolen from a parked truck. The vic-

tim told deputies that her wallet and credit cards and about 20 DVDs were stolen

from her truck. Before she was able to cancel all of her credit cards, some were used

at businesses in Orange City, Sanford and Lake Mary. Shortly after the break-in, a

white woman who appeared to be in her late teens was captured by a surveillance

camera in Target purchasing merchandise with one of the stolen credit cards. She

had red hair and was wearing blue jeans and a green shirt. She was accompanied

by a man of Hispanic or Middle Eastern descent who had short, dark hair and was

wearing blue jeans and a black shirt.[18]

Processing: �rst ForeVid is started like presented before. When the project screen

appears, a name for this project (case number, for example) is given. In this case

the name is "Appendix A" for obvious reasons. As can be remembered a case can

contain multiple videos, however for simplicity this particular example has only one

video. When the project is set, it is time to import the video clip. "File=>Import

video �le" function or quick icon in the toolbar can be used. In each case the �le

selection window is presented. When video �le is imported, an icon should appear

in the video clip list. However, in this case an error box is presented saying: "Could

not open �le as video!". Video information box from that �le is presented. Video

information box is shown in �gure 4.7. The video information box gives all the

information from the �le that was opened. From this particular �le we can see that

it is in fact a video clip. The reason that it didn't open is that the media �lter

in use didn't support this clip. Avisource �lter is the default �lter in use, but in

this case we need to change it to DirectShowSource from: "Settings=>Set opening

�lter for clip". Now we can open this video clip and icon appears in the video clip list.

First we take a look at the clip to see what is going on in it. It shows the

scene described earlier. Lights in the clip are good so there is no point in changing

them. Resolution of the video clip is small (320x240) as typical. For this I double

the resolution using Lanczo4Resize �lter. Now I have clip that has resolution of

640x480. The image looks blurry, but image quality is almost as good as it gets. In

this example the value used for sharpen was 0.5, but like said before, the changes

were not signi�cant. Next step is to take a couple of still images from the suspects

and take a PDF �le describing what is happening. One of the still images is pre-

sented in �gure 4.8. Regarding the still shots, the fast way is to use the still shot

button (red big dot) in the video control bar. Second way is to use "File=>Export"

39

Figure 4.7: When ForeVid cannot open a �le or the media �lter in use is wrong video
information box is presented with error message. Video information box can also be seen
from video drop box by selecting video information.

40

Figure 4.8: One of the main jobs in forensic usage of ForeVid is to take still images. That's
why it has been made as easy as possible.

and select to take images from speci�c frame sequence or turn markers into images.

PDF �le is created using markers. Comment of the marker is placed as image text.

Of course it is possible to change comment later from "Actions=> Edit bookmark".

When markers are all set and commented right we can start to create the PDF �le.

It can be created by using the toolbar or "File=>Export" sequence. In all options

it is possible to determine where the �le is saved. In this example I use the toolbar

option. Created PDF �le can bee seen in appendix A.

CASE2: Video clip from attempted ATM robbery

Background: This video shows two suspects trying to rob ATM inside a store [18].

The video includes video footage from two di�erent cameras. First camera is record-

ing inside of the store and the second one outside the store. Footage quality is not

the best possible, but that is the real world situation.

Processing: In this case it is presented how to create new clip. Because there

are two clips merged together, they need to be separated. First use "copy current

video" function from the video menu. Copy function was created because ForeVid

41

Figure 4.9: When comment is added, the user can determine for how long the comment
screen is being shown and where it is being positioned.

prevents user from opening same �le multiple times. After this there are two clips,

the original and the copy. Next thing to do is to cut out unwanted material. In the

�rst clip which is the original one, cut out the footage outside the store. In the copy

do the opposite. After cutting process there are two clips, one outside of the store

and one inside of the store. Next both videos are to be resized into bigger size. In

this case size is doubled just like in case 1. For outside footage using "levels" �lter

for light adjustment gives better result. When using "levels" the user can adjust

"input high" and "input low" attributes, same goes for "output low" and "output

high" attributes. These are best used in situations where increasing light level make

lighter spots too light. The user can determine so that only light in darker spots

is increased. Ihe next step is to add comment screen in the beginning of the clip,

between the clips and in the end. Comment can be added from "Video=>Add

comment". Add comment window is then opened and the user can select where

the comment is positioned: in beginning of the clip or in the end of the clip. Add

comment window is presented in �gure 4.9. First we make comment in beginning

of the clip. The �rst text "ATM robbery" is typed and below that text "Inside the

store" then "beginning of the clip" selection is set on and second setting is left for

3 seconds. Now we get 3 second clip in front of the original clip of saying:

ATM robbery

Inside the store

This message is being shown for 3 seconds just as was speci�ed. One frame from the

comment screen is being presented in �gure 4.10. Text size is �xed so text appears

smaller if the resolution is higher. When this is done it is time to do the next clip

42

Figure 4.10: Comment frame can give information for the viewer.

from outside the store. This works like in the �rst clip and the following text is

added in the beginning of the clip:

ATM robbery

Outside the store

Now two clips with comment frames have been added in front of the video. Next

thing is to merge those two clips back together. This is done by selecting "Video=>Merge

selected clips". After this an icon of the new clip appears in the video list. Next

ending comment is placed in end of this new clip. This new clip is not real �le on the

hard drive it is simply a script binding those clips involved together. In last part the

video is saved so it becomes something real. This can be done from "File=>Export".

Selections for video saving are saving it directly to the project folder or asking the

saving folder from the user. Saving window is presented in �gure 4.11. Simpli�ed

version of the video created in this project can be seen in �gure 4.12.

43

Figure 4.11: In the video saving window the user can select the pro�le to be used.

Figure 4.12: Video created in case 2 is presented here. Every frame presents one part of
the clip. Reading order is from left to right.

44

5. CONCLUSIONS AND FUTURE WORK

Development of the surveillance technology has been exponential. Surveillance tech-

nology has become more common all around the world continuously, because the

amount of video material to handle grows rapidly. That makes video material more

and more important in forensic investigations. Typically video data is processed in

the same way as images, frame by frame. However, time dependence of the frames

in a video o�ers additional possibilities for video data processing. One can, for ex-

ample, improve video quality and decrease the noise level for more detailed images.

If we can recognize object movement in the video we can try to remove shaking

camera e�ect or even use more advanced operations like super-resolution.

Although there are commercial software available for the task, no free, open-source

alternatives are available. This is the main reason of making this thesis and Fore-

Vid, a free, open-source software for the forensic analysis of surveillance videos.

Similarly as its commercial counterparts, Forevid contains the necessary features for

forensic analysis of surveillance videos, including several options for video playback,

processing and documentation. In a typical law enforcement organization, the high

licensing costs of commercial software can considerably limit the amount of people

having access to a proper analysis software. As the amount of surveillance video

material is constantly increasing and licensing costs limiting the amount of peo-

ple working with professional software, the reliable analysis of video material may

become challenging. However, with Forevid these restrictions do not apply. The

organization can save money in license fees, and concurrently increase the amount

of people working with surveillance video.

NBI of Finland continues development of ForeVid. This thesis handles ForeVid

version 1.0 and even when writing this version 1.01 is on it's way. Reception for

ForeVid has been good and the software's future looks good. Software is now used

in many police station in the country. Feedback from these station give valuable

information for future development of the ForeVid. GUI will probably be changed

according to the feedback that is given by the users. Also new features will be added

as need occurs. Here are many interesting possibilities for the future development

of Forevid. First, the selection of available video processing operations can be ex-

45

tended. With more e�cient processing operations, the user has more options to

enhance low quality video material. Second, the potential of automated video con-

tent analysis could be explored. Although automated analysis could not be used for

producing forensic evidence, it would give us valuable tools, when reviewing large

amounts of surveillance video material.

Source code of the software is freely available. Hopefully there is interest for this

kind of work and development of this software continues.

46

BIBLIOGRAPHY

[1] Arun Hampapur, Lisa Brown, Jonathan Connell, Sharat Pankanti, Andrew

Senior, Yingli Tian, Smart surveillance: applications, technologies and

implications, URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.140.8004&rep=rep1&type=pdf, May 2010

[2] Gregory K. Wallace, The JPEG Still Picture Compression Standard, URL:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.226

&rep=rep1&type=pdf, May 2010

[3] Athanassios Skodras, Charilaos Christopoulos, Tourradj Ebrahimi, The JPEG

2000 Still Image Compression Standard, URL:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.183

&rep=rep1&type=pdf, May 2010

[4] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, Ajay Luthra,

Overview of the H. 264/AVC video coding standard, URL:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.92.4000&rep=rep1&type=pdf

[5] Avisynth, URL: http://Avisynth.org/mediawiki/Internal�lters, May 2010

[6] EE Times:Video surveillance rides IP networks, URL:

http://www.eetimes.com/showArticle.jhtml?articleID=198500214, July 2010

[7] Video-Surveillance-Guide ,URL: http://www.video-surveillance-guide.com/,

July 2010

[8] Ben Rudiak-Gould et al. Avisynth, URL: http://Avisynth.org/, June 2010

[9] Fabrice Bellard et al. FFmpeg, URL: http://www.�mpeg.org/, July 2010

[10] Laurent Aimar et al. x264 a free h264/avc encoder, URL:

http://www.videolan.org/developers/x264.html, May 2010

[11] IP Video Surveillance, URL:

http://www.preferredtechnology.com/solutions/videosurveillance/

videotransport.html, June 2010

[12] ReportLab's Open Source Libraries, URL:

http://www.reportlab.com/software/opensource/, December 2010

[13] FFMPEG, URL: http://www.�mpeg.org/, December 2010

47

[14] PyQt-Python Info, URL: http://wiki.python.org/moin/PyQt, December 2010

[15] Riverbank PyQt, URL:

http://www.riverbankcomputing.co.uk/software/pyqt/intro, December 2010

[16] Python Programming Language O�cial Website, URL:

http://www.python.org/, June 2010

[17] AvsP; Avisynth scrip tool, URL: http://Avisynth.org/qwerpoi/index.html,

December 2010

[18] Volusia County sheri�'s o�ce; Video Download Page, URL:

http://www.volusia.org/sheri�/press/Video%20Downloads/default.htm,

Janyary 2011

[19] Image, Biometric Facial Recognition, URL:

http://mbpgsu.ca/category/science/, April 2010

Appendix A

Suspects arrive at the cash desk with purchases

Suspects pay for the purchases with stolen credit card.

Suspects leave the store.

