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Abstract 
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Examiners: Professor Mikko Valkama and Professor Markku Renfors 
 
The waveforms of the emerging communication systems aiming at high data rates and high 

spectral efficiencies are becoming more and more complex and thereon also sensitive to many 

implementation nonidealities. One good example is multicarrier waveforms having high peak-

to-average power ratio (PAPR) and thus high sensitivity to any nonlinearity in the radio 

components such as transmitter power amplifier (PA). On the other hand, when emphasizing 

power efficiency, power amplifiers operate typically close to their saturation region and are 

thus heavily nonlinear. Such power efficient operation is especially important in handheld 

terminal equipment but also on the base-station side of, e.g., cellular systems. Thus efficient 

linearization of power amplifiers is seen as one essential element in obtaining proper 

compromise between power efficiency and spectral efficiency in the emerging 

communications systems. 

Various approaches have been proposed and demonstrated for power amplifier 

linearization in the literature, among which the so-called feedforward approach is one of the 

most established ones. Feedforward linearizer builds on two stages, the so-called signal 

cancellation loop (SCL) and error cancellation loop (ECL), which aim at isolating and 

subtracting the distortion created by the PA from the overall linearizer output. In practice, 

however, the operation of feedforward linearizer is susceptible, e.g., to any parameter 

mismatches in the SCL and ECL components. Also the characteristics of the PA can change in 

time when the operating conditions or operating point are varying. 

Adaptive feedforward linearizer is a promising linearization method that is able to adjust 

the signal cancellation loop and error cancellation loop coefficients to minimize the effects of 

component mismatch and to track the possible variations in the characteristics of the circuit 

components. In this thesis, the performance of least-mean squares (LMS) adaptation in terms 
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of steady-state SCL and ECL coefficient behavior and the corresponding suppression of inter-

modulation distortion (IMD) are studied, covering both memoryless PA's and PA's with 

memory. The analysis shows that the adaptive feedforward linearizer is independent from 

memory effects in terms of IMD suppression even though convergence of SCL coefficient is 

affected by memory. An estimate for the final IMD suppression is driven for the memoryless 

amplifier model and it also holds for the model with memory under reasonable assumptions. 

The findings of the analysis are supported with simulation results.   
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Chapter 1  

Introduction 

There is an increasing demand for having wireless access with high data rates to many 

different types of services. There has been great effort and development on service providers 

side to meet those demands and provide service to more and more users. Starting from Global 

System for Mobile Communications (GSM) [25] with radio channels of 200 kHz, the new 

generation 3G networks offer 5 MHz of bandwidth which is planned to be increased upto 20 

MHz by long term evolution (LTE) [1] whereas wireless local area network (WLAN) 

supported by multiple input multiple output (MIMO) feature aims 40 MHz (IEEE 802.11n). 

This entails different choice of transmission schemes and signal waveforms such as 

orthogonal frequency division multiplexing (OFDM). One consequence of such choice is to 

end-up with signal waveforms that have high amplitude variations causing high peak-to-

average power ratio (PAPR).  

Amplification of the signal to be transmitted is one of the indispensable processes of 

wireless communications which is shown in Figure 1-1 as the last stage before antenna.  

Information
Source

Baseband
Waveform
Generation

DAC
RF

Modulator

Power
Amplifier

Wireless Radio Transmitter

 

Figure 1-1. Conceptual block diagram of wireless radio transmitter. 

Real world amplifiers performing this task are inherently nonlinear when their input-output 

relation is considered. In other words, different amplitude levels are experiencing different 

gains which definitely introduce distortion compared to an ideal amplification where all the 
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amplitude levels are scaled with the same gain. The significance of the distortion increases as 

PAPR increases since the experienced gains will vary more among different amplitude levels. 

In linear time-invariant systems, the output spectrum cannot contain any frequency 

components that are not present in the input, which is in general not true for nonlinear 

systems. These additional components can be categorized under two types of distortion, 

referred to as harmonic and inter-modulation distortion (IMD) [22]. The components at 

integer multiples of input frequencies are called harmonic distortion, while the latter refers to 

all other products which are generally the linear combination of those input frequencies. 

Harmonic distortion can usually be eliminated rather easily with ordinary linear filtering 

methods, whereas the removal of IMD is not necessarily that trivial. There are two 

problematic cases stemming from IMD which can be categorized as spectral re-growth and in-

band distortion [4], [6], [22]. Spectral re-growth refers to the expansion of the original signal 

band due to frequency components falling within the very close vicinity of the useful signal 

band. Satellite communication systems as well as the mobile communication systems listed 

above strictly define the allowable interference with adjacent portions of the spectrum. In 

other words there should be a limitation on the power of those additional frequency 

components originating from the nonlinear nature of the amplifier. On the other hand, in-band 

distortion which is another consequence of IMD referring to frequency components that fall 

within the band of signal is a source of degradation from individual link point of view such as 

increased symbol error rate (SER) or bit error rate (BER) [4], [15]. Backing-off the average 

power of amplifier input to a more linear region is one way to prevent these two shortcomings 

of nonlinear amplification. 

The efficiency of the amplifier is another important concern which basically defines a 

percentage for how much of the direct current (DC) power it consumes is used for 

amplification. For instance in [3], a definition for efficiency is given as 

 
, ,RF out RF in

eff
DC

P P
PA

P

−
≜  

 

where ,RF outP , ,RF inP  and DCP  indicates the output, input and DC powers respectively. A 

power efficient operation is desirable for long battery life in mobile terminals, and for lower 

cost operation in base stations. However, the demands for efficiency conflict with the 

demands for linear operation since amplifiers are more efficient in the nonlinear operation 

region. Despite its simplicity, backing-off the input power level is not the best possible 

solution due to its low power efficiency. Therefore more advanced linearization methods are 
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proposed in literature which are offering better trade-off between power efficiency and 

linearity.  

Feedforward linearization is one of the oldest and widely used linearization techniques 

especially in wideband systems where amplifiers tend to show memory effects, i.e. the output 

is a function of the past instances of input in addition to the instantaneous mapping. However, 

the basic principle of feedforward linearizer which is based on the separation of amplifier 

output into linearly amplified and additive distortion terms gives rise to a linearization that is 

independent of amplifier modeling. In the ideal operation, the identified distortion (whether it 

includes the memory effects or not) is then subtracted from the amplifier output leaving the 

linearly amplified term as the only signal to be transmitted. However, delay and coefficient 

mismatches and non-ideal error amplifier operation are the limiting factors for the 

cancellation of distortion terms in feedforward system [11], [12], [22], [34]. 

Adaptive feedforward linearization is offered to track aging effects of amplifier and 

changes in the parameters of other analog components present in the circuitry [11], [12], [28]. 

Thereby the accuracy of coefficients is improved yielding a better linearization performance. 

This thesis focuses on the performance of least mean-square (LMS) adaptation of signal 

cancellation loop (SCL) and error cancellation loop (ECL) coefficients in feedforward 

linearizer. As a motivation and background, Chapter 2 introduces most common power 

amplifier models with and without memory. The time and frequency domain modeling of the 

distortion introduced to waveforms due to memoryless nonlinearities presented in Chapter 2 

are discussed in Chapter 3. Following that, the most popular linearization methods that have 

taken attention in real world implementations are discussed in Chapter 4 with emphasis on 

basic feedforward linearizer. The core of this thesis is presented in Chapter 5 where the 

optimum Wiener coefficients for SCL and ECL are derived for memoryless amplifiers as well 

as amplifiers with Wiener-Hammerstein memory model. In the same chapter, the achievable 

IMD suppression is analyzed in terms of the chosen step sizes. Then Chapter 6 illustrates and 

verifies the foundations of Chapter 5 with computer simulations. Finally conclusions are 

drawn in Chapter 7. 



Chapter 2  

Power Amplifier Modeling  

In this chapter, essential mathematical models that are used to describe the behavior of power 

amplifiers are discussed. As a physical component, power amplifier typically has nonlinear 

relation between its input and output. Memoryless models, as well as the models with 

memory that are widely discussed in literature to describe such nonlinearities, are presented in 

this chapter. 

2.1 Memoryless Nonlinearity Models   

Power amplifiers are considered as bandpass nonlinearities, implying a nonlinear mapping 

between the real-valued bandpass input and output of the amplifier. When arguing about 

memoryless nonlinearities, this mapping is assumed to be between only the instantaneous 

values of the input and output of the nonlinearity and can be expressed as 

 ( ) ( ( ))y t G x t=  (2.1) 

where ( )y t  and ( )x t  are the real-valued bandpass output and input of the nonlinearity at time 

t , respectively, and (.)G  is generally a nonlinear function. Let’s assume that the input to the 

nonlinearity is of the general bandpass signal form   

 ( ) ( )cos(2 ( ))cx t A t f t tπ φ= +  (2.2) 

where ( )A t  and ( )tφ  are the instantaneous amplitude (envelope) and phase of the input, 

respectively, and cf  is the center frequency. Then the widely accepted model for the 

corresponding output is of the form [24], [27], [30], and [38] 

 ( ) ( ( ))cos(2 ( ) ( ( )))A cy t g A t f t t g A tφπ φ= + +  (2.3) 
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where (.)Ag  and (.)gφ  are two separate functions. The baseband equivalent signal for (2.2) 

can be given as 

 ( )( ) ( ) j tx t A t e φ=ɶ  (2.4) 

whereas the baseband equivalent signal for (2.3) is 

 
( ( ) ( ( )))( ) ( ( )) j t g A t

Ay t g A t e φφ +=ɶ  (2.5) 

then it is clear that (.)Ag  is a mapping from the amplitude of the baseband input to amplitude 

of the baseband output whereas (.)gφ  is a mapping from the amplitude of the baseband input 

to phase of the baseband output. Therefore (.)Ag , and (.)gφ  are often referred as AM/AM 

(amplitude-to-amplitude) and AM/PM (amplitude-to-phase) mapping and/or conversions.  

x t A t e( )= ( )
j ( )f t~ y t( )= ( ( ))= ( ( ))G A t g A t eA

j ( )+ ( ( ))f ft g A t~

g gA(.), (.)f

G(.){
INM

 

Figure 2-1. AM/AM and AM/PM characterization of a baseband equivalent memoryless nonlinearity. 

In Figure 2-1, a baseband equivalent nonlinearity characterized by AM/AM and AM/PM 

mappings is illustrated, although there is a slight abuse of notation since Ag  and gφ  are 

actually functions operating only on the amplitude of the baseband signal ( )x tɶ . The block in 

Figure 2-1 is referred to as instantaneous nonlinear mapping (INM) since the system is 

memoryless. This notation will be used in this thesis whenever the nonlinearity under 

discussion is considered to be memoryless. 

The terms strictly and quasi-memoryless are also often used (e.g. [17]) to refer AM/AM 

and AM/PM conversions. The nonlinearity is said to be strictly memoryless when AM/PM 

conversion is just a constant and quasi-memoryless (nonlinearity with short term memory) 

when AM/PM conversion varies with ( )A t . In order not to cause any confusion, it should be 

mentioned that the notion of being memoryless for a system is slightly different in signal 

processing and RF/Microwave literatures. A nonlinearity model characterized with AM/AM 

and AM/PM conversions is purely memoryless from signal processing perspective whereas it 

is differentiated as strictly and quasi-memoryless depending on the behavior of AM/PM 

conversion in RF/Microwave field.  
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Next some widely accepted nonlinearity models for power amplifiers that are 

characterized by AM/AM and AM/PM conversions will be presented, and for the simplicity 

of the expressions and without loss of generality we will denote ( )A t A= . 

2.1.1 Saleh Model 

The Saleh model [30] which is originally developed for traveling wave tube amplifiers 

(TWTA) has the following AM/AM and AM/PM characteristics 

 
2( )

1
A

A
A

A
g A

A

α

β
=

+
 (2.6) 

 
2

2( )
1

A
g A

A

φ
φ

φ

α

β
=

+
 (2.7) 

where Aα , Aβ  and φα , φβ  are the parameter pairs characterizing the AM/AM and AM/PM 

conversions respectively. It is obvious that for small A , ( )Ag A  is approximately linear in A  

whereas for large A , it is proportional to 1/A  with a cofactor /A Aα β . On the other hand,  

( )g Aφ   is proportional to 2A  for small A  with φα  being the cofactor and for large A  it 

reaches a constant level of /φ φα β . AM/AM and AM/PM curves of Saleh model with these 

four parameters being varied are shown in Figure 2-2 and Figure 2-3. 
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Figure 2-2. AM/AM curve of Saleh model a) 0.5Aβ = and Aα  is varied from 1  to 1.75  b) 1Aα = and Aβ  varied 

from 0.2  to 0.5 . 
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b) 

Figure 2-3. AM/PM curve of a Saleh model a) 0.25φβ =  and φα  is varied from 0.25  to 0.55 b) 0.25φα =  and 

φβ  is varied from 0.25  to 0.55 . 

2.1.2 Rapp Model 

In [29], it is discussed that the behavior of the solid state power amplifiers (SSPA) for small 

input signals are more linear compared to TWTA and for large inputs the behavior is more 

like a clipping. Therefore Rapp model (also referred to as SSPA model) is proposed instead of 

Saleh model that has the characteristic 

 

1/22
( )

1

( ) 0

A pp

o

A
g A

A

A

g Aφ

κ

κ
=
    +       

=

 (2.8) 

where κ  is the small signal gain, oA  is the level of limiting amplitude, and p  is the 

smoothness factor of the transition from linear region to limiting amplitude. The AM/PM 

conversion is assumed to be negligibly small for SSPA, therefore ( )g Aφ  is considered as zero. 

In Figure 2-4 a), b) and c) the dependency of the AM/AM characteristic of Rapp model on the 

parameters oA  , p  , and κ  is illustrated. 
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c) 

Figure 2-4. SSPA model a) 1p = , 1000κ =  and oA is varied from 4 to 10, b) 10oA = , 1000κ =  and p  

is varied from 1  to 3 and, c) 10oA = , 1p =  and κ  is varied among values that correspond to 20 , 25  and 

30  dB power gains in the linear region. 

2.1.3 Polynomial Model  

The relation between the baseband equivalent input and output of the power amplifier is often 

modeled with polynomials. Assuming the input signal takes values from a bounded interval 

(such that the output is in the desired region of polynomial model), the corresponding 

baseband output is given in [17] and [38] as 
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1
2

2 1
0

( ) ( ) ( )
P

p
p

p

y t x t c x t

−

+
=

= ∑ɶ ɶ ɶ ɶ  (2.9) 

where 2 1pc +ɶ  are the corresponding baseband coefficients. Combining (2.4) with (2.9) , one 

can obtain 

 [ ]
1

2 1
2 1

0

( ) ( )
P

pj
p

p

y t e c A tφ
−

+
+

=
= ∑ɶ ɶ  (2.10) 

Spurious components originating from even orders are shown in [5] to be located far away 

from the center frequency in the bandpass model and can be filtered away, therefore only the 

odd terms are present in the baseband representation. The baseband polynomial model given 

in (2.10) can also be related to AM/AM and AM/PM mappings via 

 [ ]
2 11

2 1
0

( )

pP

A p

p

g A c A

+−

+
=

= ∑ ɶ  (2.11) 

 [ ]
2 11

2 1
0

( )

pP

p

p

g A c Aφ

+−

+
=

= ∠∑ ɶ  (2.12) 

Real-valued polynomial coefficients yield a zero AM/PM mapping that corresponds to strictly 

memoryless case whereas complex polynomial coefficients correspond to a non-zero and non-

constant AM/PM mapping implying a quasi-memoryless nonlinearity. 

2.2 Nonlinearity Models with Memory 

The models discussed in the previous section define a purely instantaneous mapping between 

the input and output of the nonlinearity. However, this might be a crude way of modeling 

some of real world amplifiers whose outputs depend on the past values of the input as 

discussed in [1], [8], [9] and [36] This phenomenon is called the memory of the amplifier 

which is due to both electrical and thermal effects in the underlying circuitry. The concept of 

memory mentioned here is different than the quasi-memory discussed in the context of 

AM/PM mapping. Long term memory is used to describe these electrical and thermal effects 

whereas AM/PM is referred as short term memory. In the presence of long term memory, it is 

not possible to obtain a single AM/AM and AM/PM curve to relate the input and output of the 

nonlinearity as shown in Figure 2-5 a) and b) respectively. Clearly Figure 2-5 a) and b) shows 

that for a given input amplitude value there is a set (and not a single value) of possible output 
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amplitude and phase values depending on the past instances of the input as a difference from 

the memoryless case. 

Another reflection of memory effects to the amplifier characteristics is the frequency 

selectivity. Independent of the input power level, the response of the amplifier is not flat 

(although this response is different than the response of a linear system since it cannot directly 

be used to compute the output given the input). The most common models discussed in 

literature that are used to characterize nonlinearities with such long term memory effects will 

be presented next. 
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Figure 2-5. The AM/AM and AM/PM relation of a nonlinearity with memory. 

2.2.1 Volterra Series  

One of the most powerful models that has the capability of describing a large class of 

nonlinearities with memory is the Volterra series with the following input and output relation 

 1, 1
11

( ) ( , ) ( )
p

o p p q p

qp

y t c h x t d dτ τ τ τ τ

∞

==
= + −∑ ∏∫ ∫⋯ ⋯ ⋯  (2.13) 

where oc  is a constant, and 1( , )p ph τ τ⋯  is a multivariable continuous function of pτ  where 

1 p≤ < ∞ . These functions are referred as Volterra kernels and are used to describe the 

complete behavior of a nonlinear dynamic system. The baseband equivalent of (2.13) is 

derived in [5] and [27], [38] as 

 

1 2 1
*

2 1 1 2 1 1 2 1
1 20

( ) ( , , ) ( ) ( )
p p

p p q q p

q q pp

y t h x t x t d dτ τ τ τ τ τ

∞ + +

+ + +
= = +=

= − −∑ ∏ ∏∫ ∫ ɶɶ ɶ⋯ ⋯ ⋯  (2.14) 
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where the complex baseband kernels are related to the bandpass kernels with 

 ( )
1 2 1

1 2

2
2 ( )

2 1 1 2 1 2 1

2 11
( , , )

2

p p
c q qq q p

p
j f t t

p p p

p
h t t h e

p

π
+ +
= = +

− −
+ + +

+  ∑ ∑ =    
ɶ ⋯  (2.15) 

Apparently from (2.14) , only odd kernels contribute to baseband. The limits of the integrals 

determine the depth of the memory whereas the kernels indicate the strength. It is easy to see 

that, by setting 2 1 1 2 1 2 1 1 2 1( , , ) ( , , )p p p ph t t c t tδ+ + + +=ɶ ɶ⋯ ⋯ , i.e., there is no long term memory, 

we obtain the memoryless polynomial model in (2.10). 

2.2.2 Wiener Model 

The cascade connection of a linear system and a memoryless nonlinearity which is referred as 

Wiener model is one very common method for modeling nonlinearities with memory. The 

basic structure for such model with baseband input and output signals is shown in Figure 2-6. 

b tw( ) G .( )x t( ) y t( )~ ~

Amplifier

LTI INM

 

Figure 2-6 Wiener Model showing the cascade of an LTI system with memoryless nonlinearity. 

The output of the system can be derived in terms of the input by first defining an intermediate 

signal after the linear system 

 ( ) ( ) ( )wu t b x t dτ τ τ

∞

−∞

= −∫ɶ ɶ  (2.16) 

then this filtered version of the input signal is passed through memoryless nonlinear mapping 

 ( ) ( ( ))y t G u t=ɶ ɶ  (2.17) 

where (.)G  can be one of the models presented in the previous section.   

2.2.3 Hammerstein Model 

Another very common model for long term memory is the Hammerstein model which is quite 

similar to the Wiener model with a change of order in the combination of linear system and 
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memoryless nonlinearity. This time the input signal is first passed through a memoryless 

nonlinearity and then filtered by a linear system to give the final output as seen in Figure 2-7. 

b th( )G .( )x t( ) y t( )~ ~

Amplifier

LTIINM

 

Figure 2-7. Hammerstein model showing the cascade of a memoryless nonlinearity with an LTI system. 

Similar to the Wiener model we define an intermediate signal  

 ( ) ( ( ))u t G x t=ɶ ɶ  (2.18) 

and then the system output can be given 

 

( ) ( ) ( )

( ) ( ( ))

h

h

y t b u t d

b G x t d

τ τ τ

τ τ τ

∞

−∞
∞

−∞

= −

= −

∫

∫

ɶ ɶ

ɶ

 (2.19) 

2.2.4 Wiener-Hammerstein Model 

The Wiener and Hammerstein models can be combined together for a more generalized form. 

This model shown in Figure 2-8, first pre-filters the input signal, then the filtered signal is 

passed through a memoryless nonlinearity and finally a post-filtering is done to obtain the 

final output. 

b th( )G(.)x t( ) y t( )~ ~b tw( )

Amplifier

LTI LTIINM

 

Figure 2-8. Wiener-Hammerstein model showing the cascade of two LTI systems with a memoryless nonlinearity 

located in between. 

This time, in order to derive the input-output relation of the amplifier, we will define two 

intermediate signals, before and after the memoryless nonlinearity. 
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 1( ) ( ) ( )wu t b x t dτ τ τ

∞

−∞

= −∫ɶ ɶ  (2.20) 

 2 1( ) ( ( ))u t G u t=ɶ ɶ  (2.21) 

and the final output can be written  

 

2

1

( ) ( ) ( )

( ) ( ( ))

( ) ( ( ) ( ) )

h

h

h

y t b u t d

b G u t d

b G w x t d d

ζ ζ ζ

ζ ζ ς

ζ τ ζ τ τ ς
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∞ ∞

−∞ −∞

= −
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∫

∫

∫ ∫

ɶ ɶ

ɶ

ɶ

 (2.22) 

 

 

 



Chapter 3  

Distortion Models for Signals Passing 

through Memoryless Nonlinearities 

In the previous chapter, we introduced some widely used nonlinearity models to characterize 

input-output behavior of real world amplifiers. Having a good model for the amplifier might 

have different benefits depending on how the signal after amplifier will be processed. In some 

linearization methods such as predistortion where inverse of the amplifier is deployed, a good 

model plays a significant role. However, not all linearization methods require a very detailed 

modeling of the amplifier. Yet a good model can still be beneficial for the distortion analysis 

of given waveforms. 

In this chapter, we will try to investigate the impact of power amplifier nonlinearity at 

signal level starting from simple tone signals and moving towards communication waveforms. 

In this context, the amplifier operation point, and distortion due to harmonic and IMD 

distortion will be discussed first. Then, Bussgang theorem will be presented and used to study 

the influence of nonlinearity on communication waveforms.  

3.1 Harmonic and Intermodulation Distortion 

Linear time-invariant systems do not produce any new frequency components that are not 

present in the input of the system. However, this is not true for nonlinear systems and in 

general the output signal occupies a wider spectrum. The following simple nonlinear system 

given in (3.1) will elaborate this statement. 

 2 3
1 2 3out in in iny c x c x c x= + +  (3.1) 

Now if assuming that the input is a two tone signal, i.e. 1 2( ) cos(2 ) cos(2 )inx t A f t B f tπ π= + , 

the output of the system is given as 
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( ) ( )/2 cos(2 )[ (3 / 4 3 /2) ]
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f t c B A B c B

f t c A f t c B

f f t c AB f f t c AB

f f t c A B f f t

π

π

π π

π π

π π

= + + + +

+ + +

+ +

+ + + −

+ − + + 2
3

2 2
2 1 3 2 1 3

3 3
1 3 2 3

) 3 / 4

cos(2 (2 ) ) 3 / 4 cos(2 (2 ) ) 3 / 4

cos(2 3 ) / 4 cos(2 3 ) / 4

c A B

f f t c AB f f t c AB

f t c A f t c B

π π

π π

+ − + +

+ +

 (3.2) 

In addition to the fundamental frequencies 1f  and 2f , (3.2) shows that the output spectrum has 

components at harmonics and different linear combinations of input frequencies. The 

frequencies of the form 1 2f f±  are due to the second order intermodulation whereas third 

order intermodulation products are seen as 1 22f f±  and 2 12f f± . These products due to IMD 

as well as products that are originating from harmonic distortion are illustrated in Figure 3-1 

(the amplitudes are not exact).  It is depicted in Figure 3-1 that the additional terms due to 

harmonics and 2
nd

 order IMD (IMD2) lie far away from the fundamental frequency. However, 

the 3
rd

 order IMD (IMD3) of the form 1 22f f−  and 2 12f f−  lies in a rather close vicinity of 

the fundamental frequencies. It is possible to obtain more terms by increasing the order of the 

system and/or using an input with more tones. In [22], the other IMD terms originating from 

higher odd orders that fall near to the fundamental frequencies are shown. 

Dc f2-f1
f1 f2

2f1 2-f 2f -f2 1

IMD3
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2f1 2f2

f +f2 1

IMD2

3f1 3f2

2f +f1 2 2f +f2 1

IMD3
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A
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p
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Figure 3-1. The output spectrum of a third order nonlinearity with a two tone signal. 

The distortion terms that lie far away from the fundamental frequency can be eliminated 

by ordinary linear filtering. However, it is not feasible to think of a highly selective bandpass 

filter around the center frequency that only passes the fundamental frequencies and attenuates 

the odd order IMD terms. Besides there are also distortion components that fall on top of the 

signal such as the ones starting with 3c  in the second and third term of (3.2) which again 
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cannot be filtered away. This becomes more evident if the input signal and therefore the 

corresponding distortion terms have bandwidth.  

The amplifier operation point is often mentioned to give more information about possible 

significance of distortion due to nonlinearity. One of the most commonly used terms in this 

context is 1 dB compression point that tells the input power level for which the power gain of 

the amplifier is 1 dB less than that of the linear region. On the other hand, input intercept 

point for IMD3 (IIP3) is another useful term defining the input power level at which the power 

of the fundamental frequency terms equal that of IMD3. This is actually an artificial point that 

is found when the linear part of the curves are extrapolated. These two points are illustrated in 

Figure 3-2 in addition to the typical input-output power relation of an amplifier.    

1 dB
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Log(Input Level)
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Figure 3-2. The operation , 1 dB compression, and IIP3 points of an amplifier. 

When an amplifier is said to be operating at a certain point, it refers to the average input 

power. The operating point is usually defined in comparison with the 1 dB compression point. 

When the average input power is less than that of the 1 dB compression point, the term input 

power back-off (IBO) is used to specify the difference between corresponding input power 
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levels. The concept of operation point and IBO are also illustrated in Figure 3-2.  Note that 

when the amplifier is operating at 1 dB compression point, IBO=0 dB. It is also possible to 

define negative IBO values which correspond to operations closer to saturation level of the 

amplifier compared to 1 dB compression point.  

The power of IMD and therefore the amount of distortion introduced is varying with the 

operation point. As an example, if we again consider the system given in (3.1) with an 

average input power of X dBm, then the significance of the terms 2 3
2 3in inc x c x+  depend 

highly upon the value of X. However, for practical communication waveforms with non-

constant envelopes and high peak-to-average power ratios (PAPR), the distortion can still be 

significant even though X is small. More advanced methods (other than IMD3 curve of tone 

signals) are needed to measure quantitatively the distortion introduced in such cases. Rest of 

this chapter discusses how practical waveforms are affected both in time and frequency 

domains after being processed by memoryless nonlinearities. 

3.2 Influence on Complex Gaussian Signals 

In this section, we investigate the distortion introduced to complex Gaussian signals passing 

through a memoryless nonlinearity by using Bussgang’s theorem [10], [26]. The theorem was 

originally stated for real Gaussian signals going through only AM/AM distortion. However 

the extension of theorem for complex Gaussian signals experiencing also AM/PM  distortion 

has been developed, e.g. [15], [18]. The theorem states that the cross-correlation between 

output and input of nonlinearity is related to auto-correlation of the input by only a constant. 

Therefore in the extended version of the theorem, this relation considering a system given in 

Figure 2-1 can be written 

 * *

* *[ ( ) ( )] [ ( ) ( )]

( ) ( )

o

oyx xx

E y t x t E x t x t

R R

τ α τ

τ α τ

+ = +

=ɶɶ ɶɶ

ɶ ɶ ɶ ɶ

 (3.3) 

where oα  is a complex constant and [.]E  is the expectation operation. 

The property indicated by expression (3.3) then enables to view the output of the 

nonlinearity as a sum of the scaled version of the input and a statistically uncorrelated additive 

distortion term, that is 

 ( ) ( ) ( )oy t x t d tα= + ɶɶ ɶ  (3.4) 



 CHAPTER 3. DISTORTION MODELS ON SIGNALS PASSING THROUGH MEMORYLESS NONLINEARITIES 18

where ( )d tɶ  is zero-mean noise term due to the nonlinearity that is uncorrelated with the input 

signal and will be referred to as IMD from now on. The input-output relation of nonlinearity 

given in (3.4) is also presented in Figure 3-4 b). According to model given in Figure 2-1, 

( ( ) ( ( )))( ( )) ( ( )) j t g A t
AG A t g A t e φφ +=  but considering that neither AM/AM nor AM/PM 

mappings operates on input phase, ( )tφ , then a simplified notation 
( ( ))( ) ( ) j g A

AG A g A e φ=  can 

be used keeping in mind that ( )tφ  also appears at the output. With this simplified notation, 

complex gain oα  is shown in [15] to be 

 

0 0

( )
[ ( )/ ]

( )
( ) (1/ ) ( ) ( )

o

A A

G A
E G A A

A

G A
f A dA AG A f A dA

A

α

∞ ∞

∂
= +

∂

∂
= +

∂∫ ∫
 (3.5) 

where (.)Af  is the probability density function (pdf) of A  and partial derivative with respect 

to A  is indicated by 
(.)

A
∂

∂ . It should also be remarked that for oα  to be a constant 

independent of t , right hand side of (3.5) should be independent of t . It is worthy to remind 

that A  is actually standing for ( )A t  and therefore right hand side of (3.5) is a function of t .  

Denoting ( )x t x=ɶ ɶ , ( )y t y=ɶ ɶ  and ( )d t d=ɶ ɶ , from (3.4) the complex amplitude gain can 

also be expressed as 

 
* *

* *

2

(0)/ (0) [ ]/ [ ]

( [ ( ) ]/ [ ]

o yx xxR R E yx E xx

E G A A E A

α = =

=

ɶɶ ɶɶ ɶɶ ɶɶ
 (3.6) 

where *(.)  denotes the complex conjugation. As uncorrelatedness implies, the second term in 

the numerator is, * *[ ] [ ] [ ] 0E dx E d E x= =ɶ ɶɶ ɶ . The denominator is the variance of the input that 

can be given as  

 * 2 2[ ] ( )A xE xx A f A dA σ

∞

−∞

= =∫ ɶɶɶ  (3.7) 

and the remaining term in numerator is 

 *

0

[ ] [ ( ) ] ( ) ( )AE yx E G A A AG A f A dA

∞

= = ∫ɶɶ  (3.8) 

Once the complex gain is determined, again by using the fact that noise term and the input 

are uncorrelated, it is possible to obtain the variance of the IMD term by 
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2* * *

2 2 2

0

[ ] [ ] [ ]

( ) ( )

o

A o x

E dd E yy E xx

G A f A dA

α

α σ

∞

= −

= −∫ ɶ

ɶɶ ɶɶ ɶɶ

 (3.9) 

Expressions (3.5), (3.6), and (3.9) derive an explicit expression for the complex gain and 

the variance of the noise in terms of the nonlinearity and input pdf. However, there might not 

be an analytical solution to (3.5) or (3.8) for arbitrary nonlinearities and pdf’s. Nevertheless, 

numerical solutions are possible, and we will illustrate the dependency of the complex gain, 

average noise power and average output power to the operation point with some simulation 

results. An SSPA model defined in (2.8) with parameters 10oA = , 2p = , 1000κ =  

(corresponds to 30  dB power gain in the linear region) is used for the amplifier. The input 

signal is an OFDM signal with 512N =  subcarriers and 16-QAM subcarrier-modulation. 
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Figure 3-3. a) The complex gain values of Busgang model at different IBO’s from 1  dB compression point b) 

Average output and IMD power at different IBO’s from 1  dB compression point. 

The theoretical value of oα  illustrated in Figure 3-3 a) is calculated numerically based on 

(3.5). On the other hand, the data at the input and output of the nonlinearity is used to 

approximate the expectation in (3.6) and which shows good matching with the theoretical 

value according to Figure 3-3. It is seen from Figure 3-3 a) that oα  increases as the IBO from 

1  dB compression point increases. At high values of IBO, oα  approaches to 1000κ =  as 

expected since the amplitude values of the input signal stays in the linear region of the 

amplifier. The corresponding average output, and IMD powers are shown in Figure 3-3 b). If 
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we define the ratio between the useful signal and IMD as signal-to-IMD ratio (SIMDR), then 

Figure 3-3 b) points out that SIMDR decreases as IBO decreases. Although the achieved 

average output power is about 18  dB’s for IBO 0=  dB, the noise appearing due to 

nonlinearity is about 1 dB, causing an SIMDR of 17  dB’s. On the other extreme, when 

IBO 15=  dB, average output power is about 2  dB’s whereas IMD power is only 60−  dB, 

yielding an SIMDR of 62  dB’s. 

When modeling the distortion introduced to the signal due to nonlinearity, the input-

output relation of the nonlinearity illustrated in Figure 2-1 and Figure 3-4 a) is replaced by 

Figure 3-4 b). The models are obviously connected to each other with the function (.)G  that 

characterizes the nonlinearity. In this figure, it is also illustrated which other factors does the 

complex-gain oα , variance of the output 2
yσɶ  and variance of the IMD term 2

d
σɶ  depend on. 
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b) 

Figure 3-4 Input output relation of nonlinearity given by a) AM/AM and AM/PM mapping b) Bussgang model 

with constant scaling oα  and distortion term ( )d tɶ . 

The knowledge about the power spectral density (PSD) of ( )d tɶ  is also important for two 

particular reasons. The spectral components of ( )d tɶ  that fall within the bandwidth of the input 

signal are definitely an impairment that affects the symbol detection process on the receiver 
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side. On the other hand, the spectral components that cause the spectral re-growth (the 

components that fall to close vicinity of the input signal) may cause interference with 

transmissions of other neighboring channels.  

In case of memoryless non-linearities, the output signal ( )y tɶ  and therefore ( )d tɶ  depend 

only on the magnitude of the input at the same time instant, i.e. ( )A t . Thus for an input signal 

whose magnitude values at different time instants are independent of each other, i.e. with 

white spectrum, the corresponding IMD is also white. However, in general the continuous 

time signal at the input of the amplifier is band-limited and thus PSD of the nonlinearity noise 

is not white anymore. The PSD of the noise is shown in [4] and [6] to be 
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where the coefficients an are given as 
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with (1)( )nL x  being the Laguerre function of the first form which has the general form 

 ( )( ) ( ) ( )
!

k x
k n n k x
n

x e d
L x x e

n dx

−
+ −=  (3.12) 

The PSD of the nonlinearity noise given in (3.10) can be used to compute the in-band 

distortion as well as the power of out-of-band components by integrating ( )dS fɶ  in the desired 

band. 

3.3 Influence on Single-carrier Systems 

In the previous section, we have introduced the Bussgang theorem for relating the output-to-

input and input-to-input cross-correlations of a memoryless nonlinearity to which a model 

given in (3.4) fits. In this section we will examine some time-domain effects of such model on 

single-carrier communication scheme presented in Figure 3-5.  
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Figure 3-5 Baseband equivalent of a single carrier digital communication system. 

A digital baseband equivalent of a simplified single carrier communication system [23] is 

illustrated in Figure 3-5 taking also the nonlinearity originating from power amplifier into 

account. The bit sequence to be transmitted is shown as b , which is then mapped to sequence 

of symbols nA  depending on the modulation scheme, e.g. 16-QAM, 8-PSK…etc. The symbol 

sequence is then converted to analog waveform by digital to analog converter (DAC) with 

pulse shape ( )p t . The analog waveform before the amplifier can be written as  

 ( ) ( )n s

n

x t A p t nT

∞

=−∞
= −∑ɶ  (3.13) 

where sT  is the symbol period. Then this signal goes through the power amplifier whose 

output is denoted as ( )y tɶ . This is assumed to be the final signal to be transmitted that passes 

through a baseband channel with impulse response ( )c tɶ  and is also further distorted with an 

additive white Gaussian noise (AWGN). The signal is received through a receive filter r(t) 

which can be written 

 ( ) [ ( ) ( ) ( )] ( )s t y t c t n t r t= ⊗ + ⊗ɶ ɶ ɶ ɶ  (3.14) 

where ⊗  stands for convolution operation, and ( )n tɶ  is a complex-valued white Gaussian 

process. Assuming that the sampling is done by analog to digital converter (ADC) after 

receive filter at symbol rate, then the received signal ( )s tɶ  yields the sequence  ( )ns s nTs=ɶ ɶ  

which is further processed by the equalizer and detector for the decision of received symbols 

and the corresponding bit sequence b̂ . 

The main assumption of the Bussgang theorem is that the input to nonlinearity is a zero-

mean Gaussian process which doesn’t hold in general for single-carrier system elaborated 

above where the symbols are selected uniformly among the constellation points. On the other 

hand, single carrier systems without pulse shaping can still be shown to obey the model in 

(3.4). As long as * *(0) (0)yx o xxR Rα=  is satisfied as stated in (3.6), then we still can describe 

the output process  of the nonlinearity as the summation of the input process with a constant 
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scaling and an uncorrelated noise process. It is fairly easy to show that single-carrier systems 

without pulse shaping satisfy this condition and the complex gain for a constellation of size M 

can be given as 

 * *
1 1

* *
1 1

[ *]/ [ *]

1/ ( ) ( )

1/

o

M M

i i i ii i
M M

i i i ii i

E yx E xx

M g A A g A A

M AA AA

α

= =

= =

=

= =
∑ ∑
∑ ∑

ɶɶ ɶɶ

 (3.15) 
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c) 

Figure 3-6. The constellation of 16-QAM signal a) before the nonlinearity, b) after SSPA ( 10oA = , 2p = , 

1000κ = ), and c) after a nonlinearity with Saleh model ( 1Aα = , 0.5Aβ = , 0.25φα = , 0.25φβ = ). 
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In general, AM/AM is a mapping that has higher gains for small amplitudes and lower 

gains for larger amplitudes. This is observed as the contraction of the constellation whereas 

AM/PM mapping is reflected as a rotation. The constellation of a 16-QAM signal before the 

nonlinearity is shown in Figure 3-6 a), whereas b) and c) shows the constellation after 

nonlinearities with Saleh and SSPA models. The input signal is actually scaled to 1 dB 

compression point which changes the amplitude levels even before the amplifier, however 

normalized constellations are shown. Only contraction of the constellation is observable in 

Figure 3-6 b), since there is only AM/AM mapping in SSPA model whereas both contraction 

and rotation are visible in c) as expected. 
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Figure 3-7. SER performance of 16-QAM for IBO= 0  and 3  dB at varying AWGNSNR  values.  The theoretical 

probability of error [23] curve is also shown considering that there is no effect of nonlinearity. 

The rotation of the constellation (due to the AM/PM mapping) can be compansated by the 

channel equalization process on the receiver side. The contraction of the constellation if not 

handled by transmitter or receiver, will increase SER and/or BER since the minimum distance 

is decreased. The shape of the constellation after the nonlinearity makes it rather difficult to 

derive an analytical form for probability of error. Since the performance analysis of single 

carrier systems is not the main focus of this work, we shall only illustrate the SER 

performance of 16 and 64-QAM modulations based on the simulations. In simulations, the 

system in Figure 3-5 is considered with pulse shape ( )p t  being rectangular in the interval [0 

sT ) and an SSPA model with parameters given above is used. Since we are merely paying 
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attention to the influence of nonlinearity, the channel response ( )c tɶ  is taken as Dirac delta 

( )tδ  for simplicity. Finally SER is calculated based on the comparison of sent and received 

symbol sequences of length150000 . 
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Figure 3-8. SER performance of 64-QAM for IBO= 0 , 3  and 5  dB at varying AWGNSNR  values.  The 

theoretical probability of error curve is also shown considering that there is no effect of nonlinearity. 

The SER performance degradation of 16 and 64-QAM due to the influence of nonlinearity 

are shown in Figure 3-7 and Figure 3-8. In both of the figures, as the power amplifier is 

biased towards the nonlinear region more (when IBO is decreased), the symbol error rate 

tends to increase due to IMD in addition to AWGN. It is also convenient to note that signal to 

noise ratio due to AWGN ( AWGNSNR ) is calculated as the ratio of useful signal to AWGN. In 

other words, if we consider the signal ( ) ( ) ( ) ( )oz t x t d t n tα= + +ɶɶ ɶ ɶ  , then 

2 2 210 log( / )AWGN o x nSNR α σ σ= ɶ ɶ . 

3.4 Influence on Multi-Carrier Systems  

Today’s high speed wireless communications are more and more getting based on systems 

deploying multicarrier concept. Systems with such independent carriers tend to have high 

PAPR and thus more vulnerable to nonlinear distortions. Here we will present both time and 

frequency domain effects of distortion introduced by memoryless nonlinearities on OFDM 

type of signal which is becoming more and more popular as a multi-carrier scheme [1], [21]. 
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Figure 3-9. Baseband equivalent multi-carrier digital communication system employing OFDM. 

A simplified diagram for a baseband OFDM scheme using a digital multi-carrier 

technique [37] is shown in Figure 3-9 with the power amplifier being modeled as a 

memoryless nonlinearity. The bit sequence to be transmitted is b which is then divided into 

parallel streams by a serial-to-parallel (S/P) converter. Each parallel stream of bits is then 

mapped into symbols kX  to modulate the 'k th  subcarrier, where 0,1 1k N= −⋯  with N  

being the total number of sub-carriers. These N  sub-carrier symbols are then processed by 

inverse fast Fourier transform (IFFT) and parallel-to-serial (P/S) conversion blocks 

successively, to give the 'm th  OFDM symbol before the memoryless nonlinearity. 
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x n N X e π
−

=
= ∑ɶ  (3.16) 

The addition of cyclic prefix (CP) to prevent inter symbol interference (ISI) due to multi-path 

channel and reduce the complexity for channel equalization is not considered in (3.16). 

However, the following derivations are still valid since it will be removed on receiver side.  

Hence continuing with  the signal after DAC with pulse shape ( )p t  

 

1

0

( ) [ ] ( )
N

m m b b

n

x t x n p t nT mNT

−

=
= − −∑ɶ ɶ  (3.17) 

where bT  is the separation between N  time domain samples of one OFDM symbol, i.e. one 

OFDM symbol duration s bT NT= . Finally the whole signal to be transmitted before the 

power amplifier can be written 

 ( ) ( )m

m

x t x t

∞

=−∞
= ∑ɶ ɶ  (3.18) 
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Now again the output of the power amplifier is denoted as ( )y tɶ  which is the final signal to be 

transmitted. This signal goes through a channel with impulse response ( )c tɶ  and then further 

distorted with AWGN. Receiving is done by the receive filter ( )r t , which yields the received 

waveform  

 ( ) [ ( ) ( ) ( )] ( )s t y t c t n t r t= ⊗ + ⊗ɶ ɶ ɶ ɶ  (3.19) 

and assuming that ( )s tɶ  is sampled at rate Tb, we can write the samples of the m’th OFDM 

symbol as [ ] ( )m b bs n s nT mNT= +ɶ ɶ .  After the removal of CP and serial to parallel (S/P) 

conversion block, the fast Fourier transform (FFT) of samples of each received OFDM block 

is taken which gives 

 

1
2 /

0

[ ]
N

m j nk N
k m

n

S s ne π
−

−

=
= ∑  (3.20) 

The sequence after FFT block is then serialized by the P/S converter, and sent to the equalizer 

and detector for the final decision to be done for the received bits b̂ . 

The time domain OFDM sequence [ ]x nɶ  described by the expression (3.16) can be 

considered as a complex Gaussian process for large number of sub-carriers (by central limit 

theorem). Then the Bussgang theorem introduced in Section 3.2 can directly be used to 

analyze the distortion introduced by the nonlinearity. It is also shown in [15] that the model in 

(3.4) is still valid with 
oα  being just a complex constant for two special cases of pulse-

shaping applied to time domain OFDM sequence. Either a rectangular filter or a filter band-

limited to [-1/(2 bT ), 1/(2 bT )] satisfies the conditions for oα  to be time independent. 

We can consider that the baseband OFDM signal, ( )x tɶ  has real and imaginary 

components being i.i.d Gausian, then the magnitude is Rayleigh distributed, i.e. 

2 2( ) exp( )
2

A
x x

A A
f A

σ σ
= −

ɶ ɶ

. The closed form solutions to both (3.8) and (3.9) and thus to oα  is 

given in [31] for this Rayleigh distributed amplitude going through a polynomial nonlinearity.  

The variance of IMD, dɶ , can be obtained either analytically or numerically, but the 

distribution is not straightforward. In general, the output of the nonlinearity is non-Gaussian, 

therefore the difference between the output and input is also expected to be non-Gaussian. 

However, more information is available for the distribution of IMD falling on each subcarrier. 

It is worth mentioning once again that spectrum of dɶ  is white if and only if spectrum of xɶ  is 

white. In that case with an additional condition that the channel response is ( ) ( )c t tδ= , the 

signal after FFT block on receiver side which is given by (3.20) can be re-written 



 CHAPTER 3. DISTORTION MODELS ON SIGNALS PASSING THROUGH MEMORYLESS NONLINEARITIES 28

 

1
2 /

0

1
2 /

0

[ ]

( [ ] [ ] [ ])

N
m j nk N
k m

n

N
j nk N

o m m m

n

m m m
o k k k

S s ne

x n d n n n e

X D N

π

πα

α

−
−

=
−

−

=

=

= + +

= + +

∑

∑ ɶɶ ɶ  (3.21) 

where m
kD  and m

kN  are the components of noise terms on subcarrier k  coming from 

nonlinearity and channel respectively. It can be seen that m

kD  is superposition of N  

independent time domain noise samples of dɶ , and by central limit theorem it can be claimed 

that it has Gaussian distribution for large N . For an OFDM signal with 512N = , passing 

through an SSPA model with the same parameters as in Section 3.2, the distribution of the real 

part of IMD is shown in Figure 3-10 a). It is obviously far from being Gaussian when 

compared to the distribution of WGN with the same variance. On the other hand, Figure 3-10 

b) indicates that the noise appearing on subcarrier k  due to dɶ , or in other words kD  has 

Gaussian distribution. 
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Figure 3-10.Distribution of zero mean white Gausian noise a) and real part of IMD b) and real part of IMD that 

falls on subcarrier k. 

At this point, we can state that there are two noise terms m

kD  and m

kN  on top of the desired 

subcarrier symbol m
kX  that are independent from each other and having Gaussian 

distribution. In order to obtain a normalized constellation, we can divide (3.21) by the 

amplitude gain of the amplifier in linear region. This complex constant appearing as a 

cofactor will cause a rotation and contraction of the original constellation that can be observed 

when  
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Figure 3-11 a) and c) are considered. However the amount of contraction is same for all 

constellation points as a difference from single-carrier case. In addition to that, we also expect 

to see a Gaussian cloud around the constellation points due to m

kD  and m

kN  as well which is 

illustrated in  

Figure 3-11 a) and b). 
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c) 

Figure 3-11. Constellation of subcarrier 10k =  for a) SSPA model ( 10oA = , 2p = , 1000κ = ), b) Saleh 

model ( 1Aα = , 0.5Aβ = , 0.25φα = , 0.25φβ = ) c) ideal symbol locations. 

The two noise terms being independently Gaussian also allows us to use the usual 

probability of error derivations for the basic constellations, e.g. for 16-QAM ([23], pp. 327). 
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The main idea is to take the advantage of the noise terms being independent and superpose 

their powers to obtain a signal-to-total-noise-ratio ( kSTNR = 2 2 2 2/( )o k k kX D Nα + ) 

and use this quantity for deriving the probability of error. For clarity, we shall again point out 

to different noise terms that are given as SIMDR ( kSIMDR = 2 2 2/o k kX Dα ) and 

AWGNSNR ( AWGNkSNR = 2 2 2/o k kX Nα ). The probability of error for 16-QAM 

modulation and the obtained SER are shown in Figure 3-12. 
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Figure 3-12. Analytical and simulated SER for an OFDM signal with 16-QAM subcarrier-modulation when 

AWGNSNR  is varied from 6  to 15  dB for three different values of kSIMDR . 



Chapter 4  

Linearization Methods 

In the previous chapter, the impacts of memoryless nonlinearities on signals that have 

importance from communication theory point of view are studied. Spectral re-growth and in-

band distortion are shown to be the two significant impairments. The former can cause 

unacceptable interference with transmissions of neighboring channels whereas the latter 

degrades the system performance. With the increasing concerns for power efficiency, then 

power amplifier linearization becomes more essential in the compensation of these 

impairments. In this chapter some very widely used linearization methods will be presented. 

4.1 Feedback Linearization 

Feedback linearization which is illustrated in Figure 4-1 has been widely implemented for the 

linearization of audio amplifiers. The basic principle is to compare the amplifier output with 

the signal to be amplified and feed the error signal which is any distortion other than linear 

amplification. Here a Bussgang model (eventhough, interestingly, the name Bussgang is never 

mentioned explicitly in feedback linearization techniques to the author’s knowledge) is 

assumed for the output of amplifier which consists of linearly amplified version of the input 

and additive distortion term. 

PA
x t( ) y t( )

B

 

Figure 4-1. Simplified structure for feedback linearizer.  
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The distortion terms are shown to be reduced in [22] by a factor of / oB A  where B  is the 

attenuation value on the feedback path and oA  is the linear amplitude gain of the amplifier 

with the assumption that oB A<< . On the other hand, there is a sacrifice from the gain and 

the signal is amplified only by a factor of B . 

The feedback linearization of RF signals is differentiated from the linearization of audio 

signals. One of the main reasons is that the bandwidth and location of the signal in the 

spectrum which might impose a feedback loop design up-to several GHz. The design 

specifications can be extremely difficult to achieve especially considering the delay in the 

feedback path that might be several cycles of the centre frequency. Cartesian feedback 

method [16] illustrated in Figure 4-2 is one way to deal with this problem. The amplifier 

output is down-converted to baseband and the comparison is done with the inphase and 

quadrature signals. Thus the delay in each loop has less significance due to slowly varying 

baseband signals. This baseband processing can be enhanced by the use of DSP to 

compensate for the nonidealities introduced in the down-conversion process due to mixers.   
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Figure 4-2. Simplified structure of Cartesian feedback. 

4.2 LINC 

Linear amplification with nonlinear components (LINC) [14] is another widely studied 

linearization method. The method is based on separating the signal to be amplified that might 

have both amplitude and phase variations into two constant envelope phase modulated 

components. Then the two constant envelope signals are amplified by two nonlinear 
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amplifiers and the output of the amplifiers are combined to yield a linear amplification. The 

basic structure of a LINC linearizer that deploys this idea is shown in Figure 4-3. 
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Figure 4-3.Simplified structure of LINC linearizer. 

If the general bandpass model is assumed for the signal to be amplified, say 

( ) ( )cos(2 ( ))cx t A t f t tπ θ= + , then the constant envelope signals after component separator 

are 1,2 /2 sin(2 ( ) ( ))m cx A f t t tπ θ φ= ± + ± . It is shown in [14] and [16] that mA  being 

maximum of ( )A t  and 1( ) sin ( ( )/ )mt A t Aφ −=  is a proper choice for re-combining amplifier 

outputs to produce a linearly amplified version of ( )x t . 

The major drawbacks of the LINC method are the difficulties in the realization of 

component separator, synchronization of two branches and isolating the power amplifiers. 

4.3 Pre-distortion 

One very intuitive approach to linearization problem is to use a pre-distorter that reverses the 

nonlinearity introduced by the amplifier. In other words, given a good model for the 

nonlinearity of amplifier, the idea is to either pre-distort (before amplifier) or post-distort 

(after amplifier) the signal or both so that the cascade of the nonlinearities yields a linearized 

response. However, due to drawbacks related to practical implementation ([22], [16]) pre-

distortion is more commonly used linearization method compared to post-distortion.  

Pre-distorter can be implemented at different transmitter stages such as at RF or IF stages 

or at baseband ([22], [16], [35]). The simplified illustrations for RF and baseband 

implementations are given in Figure 4-4 and Figure 4-5. 
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Figure 4-4. Pre-distorter implemented at RF. 
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Figure 4-5. Pre-distorter implemented in baseband. 

The functions (.)F  and (.)BF  try to mimic the inverse of amplifier nonlinearity (.)G  at RF 

and baseband respectively. This directly implies that a good model for (.)G  such as the ones 

introduced in Chapter 2 is essential. Therefore poor modeling of amplifier nonlinearity will 

directly cause poor linearization performance [3]. 

4.3.1 Adaptive Digital Pre-distortion 

Another possible source of poor performance is the use of fixed pre-distorter and neglecting 

the aging effects of amplifier. Then the pre-distorter will no longer match the inverse of the 

amplifier. Adaptive digital pre-distortion methods operating at baseband or low IF are 

proposed ([17], [3], [16]) to track the changes in the amplifier model and update the pre-

distorter accordingly which is illustrated in Figure 4-6.  
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Figure 4-6. Adaptive pre-distorter implemented at baseband. 

Similar to the Cartesian feedback linearizer in Figure 4-2, the feedback loop is closed at 

baseband but as a further operation ADC’s are used to have discrete observations of the down-

converted power amplifier output. These signals denoted as [ ]PAI n  and [ ]PAQ n  as well as the 

original baseband signals [ ]I n  and [ ]Q n  are then used to adapt the pre-distorter. The 

adaptation of pre-distorter may include some or all of the following processes: 

1. Choosing a model for amplifier 

2. Estimating the parameters of the chosen amplifier model 
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3. Designing a proper pre-distorter unit to inverse the stated amplifier model 

Once the parameters of pre-distorter are identified, then they can be passed to the digital pre-

distorter unit (DPU) that distorts the baseband signals [ ]I n  and [ ]Q n  to have a linearized 

output after power amplifier.  

Adaptive pre-distortion technique might still have poor linearization performance if there 

is a model mismatch at the first place. This actually emphasizes the importance of the first 

step in pre-distorter adaptation which is mentioned above. Another complication of adaptive 

digital pre-distortion is the required digital signal processing (DSP) unit for the 

implementation of necessary identification and adaptation processes. Depending on the 

complexity of the model, the required DSP might shadow the efficiency of the power 

amplifier. 
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4.4 Feedforward Linearization 

Feedforward linearization was first introduced in late 1920’s by Black [7] and after 1960’s, it 

started to take more attraction due to increase in the operating central frequencies and 

bandwidths of the communication systems. Since then it has found a vast area of application 

in military, satellite and cellular communications [22]. 

4.4.1 Basic Circuitry and Operation 
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Figure 4-7. The basic structure and components of feedforward linearizer. 

The basic structure and circuitry of feedforward linearizer with RF signals are shown in 

Figure 4-7. The input is denoted as ( )x t  whereas amplifier and linearizer outputs are shown 

as ( )y t  and ( )z t  respectively. The two loops, signal cancellation and error cancellation are 
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the basic processing units of feedforward linearizer being responsible for the identification 

and cancellation of the main amplifier’s distortion. 

4.4.2 Signal Cancellation Loop 

The first stage of feedforward linearization is to identify the distortion introduced by the main 

amplifier. For this purpose, the input signal ( )x t  is separated into a lower and upper branch of 

signal cancellation loop (SCL) by the input coupler iC . The upper branch first goes through a 

vector attenuator (a scaling and phase shift) and then passes through the main amplifier. The 

output of the amplifier, ( )y t , is again split into two by the coupler AC , where the branch 

going down is passed through an attenuator of power loss denoted as cL . The role of the 

attenuator is to bring the signal level approximately to the level of lower branch of SCL that 

merely passes through a delay line. The two signals coming from the upper and lower 

branches are coupled by eC  to yield the error signal ( )e t  which should (supposedly) contain 

the attenuated version of the distortion introduced by the main amplifier.     

4.4.3 Error Cancellation Loop 

The second stage of feedforward linearization is to eliminate the distortion of main amplifier 

that has already been identified by SCL. The distortion of the amplifier that is identified as 

( )e t  has a different scaling compared to the distortion in the upper branch due to the 

attenuator cL . Therefore an error amplifier in Figure 4-7 is used to bring the level of 

distortion approximately back to the level of upper branch. The scaling and phase is fine 

tuned by a second vector attenuator placed in the lower branch before the error amplifier. The 

distortion that is identified and scaled properly is then cancelled from the amplifier output by 

the coupler oC , to yield a distortion free, linearized output ( )z t . 
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4.4.4 Simplified Baseband Equivalent Model 
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Figure 4-8. The simplified baseband equivalent model for feedforward linearizer. 

We will next analyze the feedforward linearizer with a simplified baseband equivalent model 

shown in Figure 4-8. The vector modulators are replaced by two complex constants α and β, 

and ideal splitting is assumed for iC  and aC  whereas eC  and oC  are modeled as subtractors. 

We will also assume that the error amplifier is working in a linear manner with amplitude 

gain eG . The main amplifier is first considered to be a memoryless nonlinearity whose 

input signal is one of the types discussed in Chapter 3, enabling a characterization given by 

(3.4), i.e. ( ) ( ) ( )oy t x t d tα= + ɶɶ ɶ . Then the error signal can be written as 

 

( ) ( ) ( )

( ( ) ( )) ( )

( ) ( ) ( )

c

c o

o c c

e t L y t x t

L x t d t x t

L x t L d t

α

α α

α α

= −

= + −

= − +

ɶ ɶ ɶ

ɶɶ ɶ

ɶɶ

 (4.1) 

The expression (4.1) shows that when o cLα α= , the only content of the error signal ( )e tɶ  

will be the attenuated version of the IMD terms, i.e. ( )cL d t
ɶ . Once the IMD terms are 

identified by SCL, the error signal is processed by ECL to yield 

 
( ) ( ) ( )

( ) (1 ) ( )

e

o e c

z t y t G e t

x t G L d t

β

α β

= −

= − −

ɶ ɶ ɶ

ɶɶ
 (4.2) 

which basically tells that for 1/ e cG Lβ = , the IMD terms are removed from the output of 

the amplifier yielding only linear amplification. Here we assumed that the error amplifier does 

not introduce a phase term and simply scales the signal, implying a real valued coefficient β . 
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However, the analysis can be extended to complex case in a fairly easy way by just placing an 

additional multiplicative term eje θ  to the second term of first line of (4.2) with θe being the 

constant phase shift introduced by the error amplifier. In that case β  should also compensate 

for this phase shift as well. However for the rest of this work an error amplifier that introduces 

only amplitude scaling is considered.  

Based on the above, from linearization (IMD cancellation) point of view, the optimum 

values for SCL and ECL coefficients are 

 
1/

opt o c

opt e c

L

G L

α α

β

=

=
 (4.3) 

and the corresponding linearizer output with these coefficients is 

 ,( ) | ( )
opt opt oz t x tα β α=ɶ ɶ  (4.4) 

The expression (4.4) points out that an IMD-free, perfectly linearized signal can be obtained 

independent of the type of input signal (bandwidth, PAPR …etc) and the exact knowledge for 

the behaviour of memoryless nonlinearity.  However, there are certain practical considerations 

in real world implementations causing imperfect linearization. These can mainly be 

categorized under error amplifier demands, delay and coefficient mismatches in the loops that 

are addressed in more details below. 

4.4.5 Error Amplifier Demands 

The error amplifier in ECL is assumed to be working linearly when deriving the optimum 

coefficients in (4.3) and the linearizer output in (4.4). The output power of the error amplifier 

should only be as strong as the power of the IMD terms which is much smaller than the power 

levels of the main power amplifier. Therefore the assumption of linear error amplifier is 

usually valid.  

Another important issue discussed in [28] is the coupling loss of oC . In order not to lower 

the overall power gain, small coupling ratio is chosen for the upper branch of ECL. Thereby 

the main amplifier goes through a small attenuation whereas the error signal experiences 

much more loss. This loss should be compensated by the error amplifier, which increases the 

demands on it.  

Multiple feedforward loops are discussed in [22] to overcome any further distortion 

introduced by the error amplifier if linear operation assumption no longer holds.  
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4.4.6 Timing Synchronization 

The timing synchronization between the upper and lower branches of SCL and ECL is another 

issue that must be handled. In other words, the delays shown in Figure 4-7 should be adjusted 

such that the signals with correct timing instants are subtracted. This delay between the upper 

and lower branches of the loops are tried to be matched at the operating center frequency with 

the delay line. However, the imperfections of the components and the signal bandwidth 

becomes a limiting factor for exact matching. 

The impacts of timing mismatch on the cancellation of corresponding signals are not very 

easy to analyze. The signal characteristics such as symbol rate and applied pulse-shaping are 

also playing role on the degree of cancellation in the presence of timing mismatch. If we 

consider the difference of two signals with equal amplitudes and phases but with a delay 

mismatch of τε  

 
( ) ( /2) ( /2)w t v t v tτ τε ε= − − +

 (4.5) 

Then the corresponding spectrum for the difference signal is 

 

2 /2 2 /2( ) ( )( )

2 ( )sin(2 /2)

j f j fW f AV f e e

j V f f

τ τπ ε π ε

τπ ε

−= −

=
 (4.6) 

considering that ( )V f  is the original signal to be cancelled, then we have a frequency 

selective cancellation that can be given as 

 
( ) 2 sin( )

2

H f j f

j f

τ

τ

π ε

π ε

=

≈
 (4.7) 

where the approximation is valid for 1f τε << . Similar expression is also derived in [12]. 

We see from (4.7) that the signal bandwidth and center frequency are at least the two signal 

characteristics affecting the degree of cancellation in the presence of delay mismatch. 

4.4.7 Coefficient Sensitivity  

In this thesis, we will mainly focus on the sensitivity of IMD suppression to the SCL and ECL 

coefficients α and β. We can extend the linearizer output given in (4.2) to the case that α  is 

arbitrary and does not necessarily match the optimum value  
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 (4.8) 

then defining the mismatches between the optimum and actual values of coefficients as 

 opt o cLαε α α α α= − = −  (4.9) 

 1/opt c eLGβε β β β= − = −  (4.10) 

the expression (4.8) can be re-written as 

 ( ) ( ) ( ) ( )o e e cz t G x t G L d tα βα β ε ε= − + ɶɶ ɶ  (4.11) 

The cofactor of the first term in (4.11) is the overall amplitude gain and the second term is the 

IMD term at the output of the linearizer which we shall denote as  

 ( )o e cIMD G L d tβε= ɶ  (4.12) 

Its power can easily be related to the power of IMD  

 
2

IMDo e c IMDaP G L Pβε=  (4.13) 

and from (4.13) it is easy to see that the power of the IMDo is directly proportional to the 

absolute square of the mismatch in β . We can define the  suppression of IMD based on (4.13) 

as 

 
2

sup 10 * log( ) 10 * log(1/ )IMDa

IMDo

P
IMD

P
βε= =  (4.14) 

If we denote the normalized mismatch as ( )/n
opt optβε β β β= − , then for 10n m

βε
−= ±  with 

m  being a positive integer, an increase in m  by one corresponds to a 20 dB improvement in 

IMDsup. This is illustrated in Figure 4-9 where feedforward linearization is applied to an SSPA 

amplifier (parameters same as in Section 3.2) with α  being fixed to optα  and m  is varied 

from 1 to 3. The corresponding spectrum for linearizer output is shown in Figure 4-10. 
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Figure 4-9. The IMD spectrum for optα α=  and n
βε  set to 0.1 , 0.01  respectively. 
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Figure 4-10. The power spectral densities of amplifier and linearizer outputs for optα α= , and n
βε  set to 0.1 , 

0.01  respectively. 

We have only discussed the mismatch in β  which is apparently the only factor affecting 

the amount of IMD suppression according to (4.13). However, αε  is also critical for at least 

two important reasons. According to (4.13) it is easy to observe the effect of αε  on the overall 

amplitude gain of the useful signal at the linearizer output. Positive values of αε  will decrease 
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the overall amplitude gain, whereas more gain can be achieved with a negative αε . On the 

other hand, it is not feasible to set β  to optβ  and choose arbitrarily large negative mismatch in 

α , to obtain a linearized output with high gain. This is due to the second and rather implicit 

impact that αε  has on the feedforward circuit. The greater the value of αε  (either positive or 

negative), the greater the power of the signal going through the error amplifier, and the error 

amplifier will no longer be operating linearly. In summary, αε  should be small enough in 

order not to cause significant changes on the gain of the useful signal and keep the signal 

levels low enough for distortionless error amplification process. 

4.4.8 Feedforward Linearization of Amplifiers with Memory 

The concept of separating the linear amplification and rest of mapping done by the amplifier 

is one very powerful feature of feedforward linearization.  All the above analysis presented 

for a memoryless nonlinearity can be extended to a nonlinearity with memory with only few 

modifications. The major difference is that there will be additional terms other than IMD but 

still they will be identified by the SCL and eventually subtracted from the amplifier output by 

ECL. This can be analytically shown for some of the memory models and for generality of 

presentation we will consider Wiener-Hammerstein model below. 
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Figure 4-11. Feedforward Linearization applied to a nonlinearity with Wiener-Hammerstein memory with bw 

and bh being the Wiener and Hammerstein filters respectively. 

The modified structure with Wiener-Hammerstein memory model is shown in Figure 

4-11. We first define the output right after the memoryless nonlinearity, which can be seen as 

a Wiener model 
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u t d t

α τ τ τ

∞
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ɶɶ

 (4.15) 

Note that we have denoted the complex gain and IMD term as w
oα and wd

ɶ . The obvious 

reason is that they both depend on the distribution of the signal before the memoryless 

nonlinearity which is in this case the filtered process ( ) ( ) ( )w wx t b x t dτ τ τ
∞

−∞
= −∫ɶ ɶ . 

However, in order to be able to compare with the memoryless case, we will consider a mild 

memory for the Wiener filter wherever appropriate throughout this work such that w
o oα α≈  

and 2 2
wd dσ σ≈ɶ ɶ  are maintained. Having said that, the final output of the amplifier with 

memory is 
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h h
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 (4.16) 

The expression (4.16) can be further simplified if we define the cascade of the Wiener and 

Hammerstein filters as  

 

( ) ( ) ( )

( ) ( )

wh w h

w h

b t b t b t

b b t dτ τ τ

∞

−∞

= ⊗

= −∫
 (4.17) 

then we can re-write (4.16) as 

 ( ) ( ) ( ) ( ) ( )mem
o wh hy t b x t d b d t dα τ τ τ τ τ τ

∞ ∞

−∞ −∞

= − + −∫ ∫ ɶɶ ɶ  (4.18) 

Note that the derivations can be very easily adapted to plain Wiener or Hammerstein models 

as well by the following substitutions into (4.18) 

 

( )
( )

( )

( )
( )

( )

h

wh
w

h

h

b t Hammerstein
b t

b t Wiener

b t Hammerstein
b t

t Wienerδ

= 
= 

 (4.19) 
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As (4.19) implies, the input is either filtered with hb  or wb  depending on the model used 

whereas the filtering of IMD is done only for the Hammerstein model.  

In the following, we will be using the discrete time equivalents of the signals ( )x tɶ , ( )y tɶ , 

( )d tɶ , ( )e tɶ  and ( )z tɶ  in order to analytically show that the performance of feedforward 

linearization is independent of the memory effects. We will also assume that the Wiener and 

Hammerstein filters are FIR with orders K and L respectively. Then (4.18) will be modified as 

 
0 0

1 0

[ ] [ ] [ ] [ ] [ ]

[0] [ ] [ ] [ ] [ ] [ ]
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 (4.20) 

and the error signal going to the lower branch of ECL is then given as 
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 (4.21) 

Note that for [0] 1whb = , the cofactor of [ ]x nɶ , appearing as the first term of (4.21), is actually 

αε  given in (4.9). This will be the assumption for the rest of this thesis. Comparing (4.1) and 

(4.21), the second and third terms of (4.21) contain past instances of input and IMD which is a 

different feature compared to memoryless case with only instantaneous IMD. These terms will 

also be considered as distortion due to nonlinearity and altogether be denoted as NLD . The 

exact expressions of the distortion terms for Wiener, Hammerstein and Wiener-Hammerstein 

models as well as the memoryless case are given below  
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 (4.22) 

The actual output of the linearizer will reveal more about the independence of feedforward 

method from memory effects.  
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Now combining (4.22) with (4.23) we can write  
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 (4.24) 

The only difference between (4.11) and (4.24) is the terms that are considered as distortion. 

Therefore given the same SCL and ECL coefficients, the amount of suppression of distortion 

terms is same independent of memory. Similar analysis is carried out in [34] for only Wiener 

type memory and in general agrees the derivations here. Thus the optimum coefficients 

derived for memoryless case in (4.3) are still the optimum values since when plugged-in to 

(4.24) yield perfectly linearized output [ ] [ ]mem
opt oz n x nα=ɶ ɶ . Therefore we can state that 

 
1

,mem mem
opt opt o c opt mem

e c

L
G L

α α α β β= = = =  (4.25) 

In the rest of this thesis, only optα  and optβ will be used when referring to the optimum 

coefficients from linearization point of view since those values are independent of memory.  

 



Chapter 5  

Performance Analysis of LMS Adaptation 

The feedforward linearizer shown in Figure 4-7 and/or Figure 4-8 with fixed SCL and ECL 

coefficients is incapable of tracking possible changes occurring to the parameters of the 

analog components. For instance, the aging effects will change the value of oα  for the main 

amplifier, and possibly causing an increase in the mismatch between upper and lower 

branches of SCL. Similarly, the power loss of attenuator and/or the linear gain of the error 

amplifier might change through time. The mismatch between the upper and lower branches of 

ECL will most probably increase if the coefficient is fixed which eventually will cause a 

degradation in the performance of linearization. Therefore an adaptive mechanism is essential 

to maintain the desired performance through the life time of operation.  

The gradient based methods implemented both digitally or in analog form are proposed in 

literature [11]-[13] to adapt SCL and ECL coefficients. As a difference from the existing 

works in literature, we will derive the optimal Wiener coefficients for both loops, examine the 

convergence of both coefficients and derive the achievable IMD reduction under LMS 

adaptation. The other novel side of the work is the extension of analysis for nonlinearities 

with Wiener-Hammerstein memory and comparison with the memoryless case. 

5.1 Optimum Wiener Coefficient for SCL 

The optimum linearizer coefficient for SCL, optα , is derived in (4.3) and furthermore in (4.25) 

it is shown to be the optimal coefficient even when the memory effects are included. The 

multiplication of the lower branch of SCL with a complex coefficient as in Figure 4-8 can be 

viewed as a trivial filtering operation causing a scaling and a phase rotation only. Although 

this is true for both the continuous and discrete type of input signals, we will concentrate on 

the discrete case to be able to derive the so-called optimum Wiener filter coefficient as 
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formulated in [20]. We will first do the derivation for a memoryless power amplifier in the 

upper branch of SCL and then extend this derivation to Wiener-Hammerstein memory model. 

5.1.1 Memoryless Model 

We start the derivation by first replacing the original SCL shown in both Figure 4-8 and 

Figure 5-1 a) with an equivalent discrete baseband model as in Figure 5-1 b). The main 

amplifier is considered to be a memoryless nonlinearity and the input signal is assumed to 

obey the conditions for the model in (3.4) to hold. 

. 

x t( )
~

e t( )~

á

y t( )
~

G(.)

Lc

INM

 

a). 

y n[ ]x n[ ]
~

e n[ ]~

á

áo

d n[ ]

~

~

Lc

 

b) 

Figure 5-1. SCL with a) continuous baseband signals b) discrete baseband signals and main amplifier replaced 

by the equivalent Bussgang model. 

The upper branch of the model presented in Figure 5-1 b) forms the reference signal and 

we try to find the value of the coefficient α  to minimize the mean-squared error between the 

filter output and reference signal. Thus the cost function to be minimized is 

 
2[ [ ] ]J E e nα = ɶ  (5.1) 

where the discrete equivalent of the error signal in (4.1) is given by 

 [ ] ( ) [ ] [ ]o c ce n L x n L d nα α= − − ɶɶ ɶ  (5.2) 

The optimum Wiener coefficient that minimizes the cost function in (5.1) can now be 

calculated by setting the gradient of the cost function to zero 

 [ ] 0
J

J n α
α

α

∂
∇ = =

∂  (5.3) 

Minimizing the gradient is easily shown to be equivalent to 
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 *[ [ ] [ ]] 0E e n x n =ɶ ɶ  (5.4) 

Then we plug-in (5.2) into (5.4) to arrive at the minimum mean-squared error (MMSE) 

solution as 

 
2*[ [ ] [ ]]/ [ [ ] ]MMSE o c cL L E d n x n E x nα α= + ɶ  (5.5) 

Using then the original assumption that dɶ  and xɶ  are uncorrelated, the second term on the 

right hand side of (5.5) vanishes and we obtain  

 MMSE o cLα α=  (5.6) 

The same result can also be obtained with the well known solution of Wiener-Hopf 

equations [20]. If we denote the input sequence to Wiener filter under adaptation as [ ]i nɶ  and 

the reference signal as [ ]r nɶ , then the auto-correlation of input in this case becomes 

* *
*[ ] [ ] [ [ ] [ ]]

ii xx
R j R j E x n j x n= = +ɶɶ ɶɶ ɶ ɶ  whereas the cross correlation between the filter input 

and reference signal is *
*[ ] [ [ ] [ ] ]cir

p j E x n j y n L= +ɶɶ ɶ ɶ . Then the optimum Wiener filter in this 

special case of one tap becomes 

 

* *
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ɶɶ ɶ

ɶ
 (5.7) 

Note that the conjugation of right hand side is done since the filter output is calculated 

directly by α  instead of *α  as a difference to the notation in [20].  

An important remark is that the MMSE solution is identical to the SCL coefficient, optα , 

derived in (4.3) which was shown to be optimum from linearization point of view.  

5.1.2 Wiener-Hammerstein Memory Model 

Now having derived the optimum Wiener coefficient for memoryless nonlinearities, we will 

now extend the derivation to a generalized Wiener-Hammerstein memory model for which 

the amplifier output is given by (4.20). Then in that case, the cross-correlation between the 

input to adapt SCL coefficient and reference signal becomes  
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(5.8) 

and again using the identity in (5.7) we obtain 
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 (5.9) 

where * [0]x xx
P R=ɶ ɶɶ . 

The expression in (5.9) points out that there is a certain offset between the optimum 

Wiener and linearizer coefficients which can be written as  
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 (5.10) 

The offset is zero if and only if the input is white, i.e. * ( )
xx
R mɶɶ  is zero for all integers m 

except zero. In general the deviation of MMSE solution from the optimum linearizer 

coefficient, optα , is determined by the combined effect of the strength of Wiener-

Hammerstein filter taps (amount of memory) and auto-correlation of the input signal.    

5.2 LMS adaptation of SCL coefficient 

The optimum Wiener coefficient of SCL for memoryless case is derived in (5.6) and (5.7). 

Now we would like to define the procedure for actually adapting this coefficient and 

investigate its behavior in terms of convergence to the optimum linearizer and Wiener 

coefficients.  
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5.2.1 Basic Recursion 

The basic recursion of LMS for updating the SCL coefficient is 

 

* *

* *

ˆˆ[ 1] [ ] [ ]

ˆ[ ] 2 [ ] [ ]

n n J n

n e n x n

αα α µ

α µ

+ = − ∇

= + ɶ
 (5.11) 

or equivalently 

 *ˆ[ 1] [ ] 2 [ ] [ ]n n e n x nα α µ+ = + ɶ  (5.12) 

where µ̂  is the step size and ˆ [ ]J nα∇  is the instantaneous gradient estimate obtained by 

removing the expectation operation, [.]E , from the left hand side of (5.3) yielding an 

instantaneous product of the error and input signals. Now also denoting ˆ2µ µ= , the well 

known LMS adaptation can be written as 

 *[ 1] [ ] [ ] [ ]n n e n x nα α µ+ = + ɶ  (5.13) 

5.2.2 Convergence Behaviour of Memoryless Model 

The LMS adaptation of SCL coefficient applying the recursion given in (5.13) for a 

memoryless amplifier model is shown in Figure 5-2. 

x n[ ]
~

e n[ ]~

a[ ]n

ao

y n[ ]
~

d[ ]n
~

µ

(.)
*

Lc

 

Figure 5-2. LMS adaptation of SCL coefficient for a memoryless amplifier model. 

It is shown in Appendix A in (A.6) that lim [ [ ]] 0MMSE
n E n

α
ε→∞ =  for 0 2/ xPαµ< < ɶ . 

This states that [ ]nα  is convergent to MMSEα  in the mean sense if the input xɶ  is white. Under 
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the same conditions, also the mean square of the mismatch is given in Appendix (A.10) as 
2

lim [ [ ] ]
2

c IMDaMMSE
n

x

L P
E n

Pα

α

α

µ
ε

µ
→∞ =

− ɶ
.  

5.2.3 Convergence Behaviour of Wiener-Hammerstein Memory Model 

In Section 5.1.2, the optimum Wiener coefficient assuming a Wiener-Hammerstein type of 

memory was derived in (5.9) and shown in general to have an offset from the optimum 

linearizer coefficient, optα . When the structure of adaptation is kept same with only one 

coefficient to be adapted, as illustrated in Figure 5-3, then [ ]nα  is shown to be converging to 

mem
MMSEα  in the mean sense in Appendix A.  

x n[ ]
~

e n[ ]~

a[ ]n

ao

y n
mem

[ ]
~

d[ ]n
~

µ

(.)
*

Lc

b nw[ ] b nh[ ]

 

Figure 5-3. LMS adaptation in the presence of Wiener-Hammerstein memory. 

The main assumption is once again that the input is white (or we have a small-step size). 

However, it is more convenient to study the convergence in terms of optimum linearizer 

coefficient optα  for which we can write the mismatch between the true and optimum value as 

 

,

,

[ ] [ ]

[ ]

[ ]

mem
mem opt

mem mem mem
opt MMSE MMSE

off MMSE
mem

n n

n

n

α

α α

ε α α

α α α α

ε ε

= −

= − + −

= −

 (5.14) 

where ,
MMSE
memαε  is defined in Appendix A. Then we can write 

 ,lim [ [ ]] off
n memE nα αε ε→∞ =  (5.15) 

 since the second term is shown to be zero in (A.13) and off
αε  has a deterministic value. 

Expression (5.15) states that the mean convergence of SCL coefficient under LMS adaptation 

has constant off
αε  deviation from optimum linearizer coefficient optα .  
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We can also study the mean square of this mismatch  

 

22
, ,

2 2 *
, ,

2 2
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2 2 2
,

lim [ [ ] ] lim [ [ ] ]
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E n E n
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L P
E n

P

α α α

α α α α

α α

α
α α α

α

ε ε ε

ε ε ε ε

ε ε

µ
ε ε ε

µ

→∞ →∞= −

= + −

= +

≈ + = +
− ɶ

 (5.16) 

where the last term in the second line is dropped due to (A.13). The approximation holds for 

low auto-correlation values of input and weak memory as explained in Appendix A. 

Expression (5.16) shows that the mean square mismatch in case of Wiener-Hammerstein 

memory model additionally contains the term 
2off

αε . 

5.3 Optimum Wiener Coefficient for ECL 

The optimum linearizer coefficient for ECL is derived in (4.3) and furthermore in (4.25) it is 

shown to be the optimal coefficient even when the memory effects are included. Similar to 

discussion in Section 5.1, we can view the multiplication with β  as a trivial filtering. In order 

to be able to derive the optimum Wiener coefficient and then proceed towards the LMS 

adaptation, we will again consider ECL operating with discrete baseband signals as shown in 

Figure 5-4. There the error amplifier is considered to be performing only linear amplification.  

áx n[ ]
~

z n[ ]~

e n[ ]~

â Ge

Lc

y n / y[ ]
mem

[ ]n
~ ~

 

Figure 5-4. ECL with baseband signals and error amplifier replaced by the equivalent amplitude multiplier. 

The model presented in Figure 5-4 gives the intuition that processing of ECL is 

conditioned on the value of SCL coefficient α . In other words, we would expect the optimum 

Wiener coefficient for β  to depend on α . We will check the validity of this expectation by 
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first deriving the optimum Wiener coefficient of ECL for memoryless amplifier model and 

then extending the derivation for Wiener-Hammerstein memory model. 

5.3.1 Memoryless Model 

Now let’s first consider that the upper-branch of ECL is the output of a memoryless 

nonlinearity and serves as a reference signal. In that case, the cost function  is the power of 

the linearizer output  

 
2[ [ ] ]J E z nβ = ɶ  (5.17) 

where the discrete equivalent of the linearizer output in (4.11) can be written as 

 [ ] ( [ ] [ ]) [ ] [ ] [ ]o e e cz n n G n x n G L n d nα βα β ε ε= − + ɶɶ ɶ  (5.18) 

where both α  and β  are considered to be varying in time. In addition, the time dependent 

mismatch is defined as [ ] [ ]optn nαε α α= − . Then we can obtain the optimum Wiener 

coefficient for β  by again using the well known equality 

 * *
1[0] [0]MMSE ii ir

R pβ −= ɶɶ ɶɶ  (5.19) 

where the auto-correlation of filter input with lag zero can be written as 

 
* *

2

22 2

[0] [0] [ [ ] ]

( [ [ ] [ ] ] [ [ ] ])

eii ee

e c

R R G E e n

G E n x n L E d nαε

= =

= +

ɶɶ ɶɶ ɶ

ɶɶ
 (5.20) 

Note that we have actually integrated the scaling introduced by the error amplifier to (5.20). 

This is theoretically equivalent to exchanging the order of error amplifier and β  so that the 

signal eɶ  is amplified first before the calculation of gradient signal and being fed to β .  

In the expression (5.20), the first term in parenthesis is separable only if the amplifier 

input xɶ  is white so that [ ]nαε  depends only on the values of xɶ  earlier than n and independent 

of [ ]x nɶ . Under these assumptions (5.20) can be simplified to  

 
*

22 2

2

[0] ( [ [ ] ] [ [ ] ] [ [ ] ])

( [ [ ] ] )

e cee

e x c IMDa

R G E n E x n L E d n

G E n P L P

α

α

ε

ε

= +

= +

ɶɶ

ɶ

ɶɶ
 (5.21) 

Next we write the cross-correlation between the filter input and reference signal as 
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 (5.22) 

where we again implicitly dropped the cross terms between xɶ  and dɶ . Considering the last 

line of (5.22), the first expectation in parenthesis is again separable if and only if xɶ  is white. 

Then we can simplify (5.22) to the form 
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ɶ ɶɶ ɶ  (5.23) 

Finally the optimum Wiener coefficient for ECL given in (5.19) becomes 

 
*
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E n P L P
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α

α ε
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ε
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ɶ
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 (5.24) 

Our first intuition after the model in Figure 5-4 was that MMSEβ  is likely to depend on the 

value of α . This is now shown to be the case by (5.24) where β  depends both on the mean 

and mean square of the mismatch in α . Furthermore, if we consider that α  is also a 

coefficient that is being adapted by LMS (but has reached to steady state), the term *[ [ ]]E nαε  is 

zero due to (A.6) and 
2[ [ ] ]E nαε  is equivalent to 

2
[ [ ] ]MMSEE nαε . The simplified form of 

(5.24) in that case is 

 2
( [ [ ] ] )

c IMDa
MMSE

MMSE
e x c IMDa

L P

G E n P L Pα

β
ε

=
+ɶ

 (5.25) 

We can also consider MMSEβ  under a deterministic mismatch in α . This being the case, we 

have 

 
*

2|
( )
o x c IMDa

MMSE
e x c IMDa

P L P

G P L Pα

α
ε

α

α ε
β

ε

+
=

+
ɶ

ɶ

 (5.26) 

Note that when *[ [ ]]E nαε , 
2[ [ ] ]E nαε  in (5.24) and/or *

αε , 2
αε  in (5.26) are zero, then 

MMSE optβ β=  and/or |MMSE optαβ ε β= . For the case of deterministic mismatch in α , the 

condition that *
αε , 2

αε  are being zero implies an injection of α  that perfectly matches optα . 

In the more interesting case where α  is also being adapted, then *[ [ ]]E nαε  is zero under the 

conditions given in Appendix A. However, 
2[ [ ] ]E nαε  can only be approximately zero if the 
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step size used to adapt α  is very small or a theoretical steepest-descent adaptation with true 

gradient is applied. In order to summarize all these, we write 

 

deterministic: | , [ ] ( 0)

, [ ]
adapted:

, 0

MMSE opt opt

MMSE opt

MMSE opt

if n
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if
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 = ∇ ≈ ≈

 (5.27) 

It is also beneficial to define an offset term for β  as we have done for α  in (5.10). 

However, this offset is mostly due to the mismatch in α  (as can be seen from the conditions 

given above) instead of the memory and can be obtained by subtracting (5.25) from (4.3) 

 
2

2

2

1

( [ [ ] ] )

( [ [ ] ]

( [ [ ] ] )

off opt MMSE

c IMDa

MMSE
e c e x c IMDa

MMSE
x

MMSE
e c x c IMDa

L P

G L G E n P L P

P E n

G L E n P L P

α

α

α

β β β

ε

ε

ε

= −

= −
+

=
+

ɶ

ɶ

ɶ

 (5.28) 

We see from (5.28) that the converged value of β  has an offset from the optimum linearizer 

coefficient and this offset is a function of mean square of the steady-state noise on top of the 

converged value of α . 

5.3.2 Wiener-Hammerstein Memory Model 

We can easily extend the derivations of previous section to the case where the output of the 

amplifier is given as (4.20). Similar to (5.17) we will write the cost function as 

 
2[ [ ] ]mem memJ E z nβ =  (5.29) 

where the modified linearizer output given in (4.23) with coefficients varying with time is 

given by 
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 (5.30) 

We will also modify (4.21) considering that α  is varying with time, and write 
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 Then the auto-correlation of the filter input given originally in (5.20) will be modified as 
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(5.32) 

If we are again considering that α  is also being adapted by LMS adaptation as described in 

Section 5.2, i.e. [ ]nαε  depends on values of xɶ  prior to instant n, then the expectation in the 

first term of (5.32) is separable if and only if xɶ  is white. However, even white xɶ  will not be 

sufficient to separate the product in the second term. In this second term, there are products of 

the form *
, [ ] [ ]mem n x n mαε −ɶ  and since , [ ]mem nαε  depends on values of xɶ  prior to instant n, 

we cannot blindly separate the expectation. At this point, we can only assume that the step-

size used in the adaptation of α , αµ , is small so that the dependency of , [ ]mem nαε  to xɶ  at 

such instants is not high. Then we can make an approximation and separate those products to 

simplify (5.32) as  
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 (5.33) 

The cross-correlation between the filter input and reference signal is given by 



 PERFORMANCE OF ADAPTIVE FEEDFORWARD METHODS ON WIDEBAND PA LINEARIZATION 58

 

*
*

* * * * *
, ,

1

2 *

1

2 * *

1 1

*

[0] [ [ ]( [ ]) ]

( [ [ ] [ ] [ ]] [ ] [ [ ] [ ] [ ]]

[ ] [ [ ] [ ]]

[ ] [ ] [ [ ] [ ]]

[ ] [ ] [

mem mem
eir

M

e o mem o wh mem

m

M

o c wh

m

M M

o c wh wh

m r

c h h

p E G e n y n

G E n x n x n b m E n x n x n m

L b mE x n x n m

L b m b r E x n m x n r

L b l b k E

α αα ε α ε

α

α

=

=

= =

=

= + −

+ −

+ − −

+

∑

∑

∑∑

ɶɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ *

0 0

[ ] [ ]])
L K

l k

d n l d n k
= =

− −∑∑ ɶ

(5.34) 

We will again assume the same conditions as before to make the expectations in first and 

second term of (5.34) separable over products of expectations yielding 
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By denoting then 
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 (5.36) 

we are finally ready to write the optimum Wiener coefficient by plugging-in (5.33), (5.35) 

into (5.19) and using (5.36) as 
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The optimum coefficient can again be conditioned on the value of [ ]nα  and therefore [ ]nαε  
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Note that the conditions, white input and/or small αµ , which were assumed to hold when 

deriving (5.33) and (5.35) are not necessary for this conditional case given by (5.38). 

It was shown earlier for the memoryless case that under the conditions stated in (5.27), 

MMSE optβ β= . We also would like to see whether this property still holds when the 

corresponding conditions for the case with memory are met. When there is memory, the mean 

and mean square of the mismatch ,memαε  are given in (5.15) and (5.16) respectively. If we 

then consider pure steepest-descent adaptation method, the last term in (5.16) is zero, yielding 
22

,[ ] off
memE α αε ε= . Then inserting (5.15) and this simplified form of  (5.16) into (5.37) we 

obtain 
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 (5.39) 

This shows that in case of power amplifier with memory, and when α  is adapted with 

steepest-descent method (or LMS with very small step size) such that 
2

,[ [ ] ] 0MMSE
memE nαε =  

and 
22

,[ [ ] ] off
memE nα αε ε= , then mem

MMSE optβ β= . 

The above analysis can further be extended to the general case of LMS adaptation where 

both 
2

[ [ ] ]MMSEE nαε  and 
2

,[ [ ] ]MMSE
memE nαε  are non-zero. If we consider the numerator and 

denominator of MMSEβ  with steepest-descent (
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and mem
MMSEβ  in the same way 
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d

β

β

β β= =
ɶ
ɶ  (5.41) 

where 
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Then with LMS adaptation, non-zero 
2

[ [ ] ]MMSEE nαε  and 
2

,[ [ ] ]MMSE
memE nαε  reflects to the 

denominator as 

 
2 2

,

,
[ [ ] ] [ [ ] ]

mem
MMSE MMSE

MMSE MMSE
e x e x mem

n n

d G P E n d G P E n

β β

β α β α

β β
ε ε

= =
+ +ɶ ɶ

ɶ

ɶ
(5.43) 

Therefore if we desire mem
MMSE MMSEβ β= , then the relation between 

2
[ [ ] ]MMSEE nαε  and 

2
,[ [ ] ]MMSE
memE nαε  should be 

 

2
2

,

2

( ) [ [ ] ]
[ [ ] ]

[ [ ] ]

MMSE
e xMMSE

mem
e x

MMSE

n d n d n G P E n
E n

n G P

n
E n

n

β β β β β α
α

β

β
α

β

ε
ε

ε

− +
=

=

ɶ

ɶ

ɶɶ ɶ

ɶ
 (5.44) 

where we have used (5.40) to cancel the term in parenthesis in the first line of (5.44). 

Expression (5.44) defines the relation between the mean square of the steady-state noise on 

top of the converged value of α  in memoryless and memory cases such that the mean 

convergence of β  is identical in both cases. 

An offset can also be defined for the case when there is memory however, we have shown 

that mem
MMSE MMSEβ β=  when 

2 2
,[ [ ] ] [ [ ] ]MMSE MMSE
mem

n
E n E n

n

β
α α

β

ε ε=
ɶ

. This implies that 

mem
off offβ β=  and (5.28) can also be used to give the mismatch in β  where there is memory.  

5.4 LMS Adaptation of ECL Coefficient 

We have derived the optimum Wiener coefficient for ECL in (5.24) and (5.37) assuming a 

memoryless amplifier and Wiener-Hammerstein memory respectively. Now we would like to 

define a practical adaptation mechanism for the ECL coefficient β  using the LMS algorithm, 

as we previously did for the SCL coefficient α .  
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5.4.1 Basic Recursion 

The gradient of the cost function given in (5.17) is first given by 

 *[ ] 2 [ [ ] [ ]]e

J
J n G E z n e n

β
β

β

∂
∇ = = −

∂
ɶ ɶ  (5.45) 

then a practical instantaneous gradient estimate ˆ [ ]J nβ∇  obtained by removing the expectation 

operator from (5.45). Thus a basic update equation of the form  

 *ˆ[ 1] [ ] 2 [ ] [ ]en n G z n e nββ β µ+ = + ɶ ɶ  (5.46) 

is obtained which can further be simplified by denoting ˆ2β βµ µ=  

 *[ 1] [ ] [ ] [ ]en n G z n e nββ β µ+ = + ɶ ɶ  (5.47) 

The adaptation of the ECL coefficient defined by the recursion in (5.47) is illustrated in 

Figure 5-5.  
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Figure 5-5. LMS adaptation of ECL coefficient.  

5.4.2 Convergence Behaviour 

It is shown in Appendix B that, for the memoryless case, convergence of β  to MMSEβ  given 

in (5.24) is achieved in the mean sense if the amplifier input xɶ  is white and the mismatch αε  

is rather small. In short this can be stated as lim [ [ 1]] 0MMSE
n E nβε→∞ + =  for 
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20
e eG Pβµ< <
ɶ

 which is also given in (B.5). It is also discussed in Appendix B that under 

same assumptions with memoryless case, a Wiener-Hammerstein memory that does not cause 

a significant frequency selectivity to dɶ  is also convergent in the mean sense. 

The mean square of the mismatch for the memoryless model in steady state is derived in 

(B.11) as 
2

2
[ ] 2
MMSE o xPE β
β

µ α
ε ≈ ɶ . Furthermore it is discussed that this expression can 

also be used to calculate the mean square of mismatch for Wiener-Hammerstein memory 

model as well if the step sizes αµ  and βµ  are small enough. On the other hand, this 

expression depicts the variance of the noise around the converged point of β , i.e. around 

MMSEβ  which is not necessarily optβ . We are interested in the mean square of the mismatch 

between β  and optβ  since that is the actual quantity being responsible for the amount of IMD 

suppression as shown in (4.13). We can easily express this term by 

 

2 2 2

2 22 *

22

[ [ ] ] [ [ ] ] [ [ ]

[ ] 2 Re{ [ ]} [ ]

[ ]

opt opt MMSE MMSE

MMSE MMSE MMSE
off off off

MMSE
off

E n E n E n

E E E

E

β

β β β

β

ε β β β β β β

β ε β β ε ε

β ε

= − = − + −

= − = − +

= +

(5.48) 

where offβ  and 
2

[ ]MMSEE βε  are given in (5.28) and (B.11) respectively. Note that while 

simplifying from second line to third, we have used the fact that [ ] 0MMSEE βε =  as pointed 

out in (B.5). In addition since we have similar values for offβ  and 
2

[ ]MMSEE βε  in the case 

where there is memory, the mean square of the mismatch and therefore the IMD suppression 

is similar. While deriving  
2

[ ]MMSEE βε  given in (B.11), it is already assumed that α  has a 

small steady state noise, thus offβ  is rather small and we can approximate (5.48) by 

 
22

[ [ ] ] [ ]MMSEE n Eβ βε ε≈  (5.49) 

5.5 IMD Suppression Analysis 

 The amount of suppression of IMD terms for fixed β  is given in (4.13) . It is also discussed 

in the same chapter that the amount of suppression for the case when there is memory is 

exactly same if the definition of IMD is modified accordingly, i.e. the distortion terms 

presented in (4.22). We can state an equivalent formulation for IMD suppression with β  

being a random quantity 

 
2

sup 10 * log(1/ [ ])IMD E βε=  (5.50) 

where 
2

[ ]E βε  is given in (5.49).  
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The IMD suppression depends only on the mean-square mismatch in β  which depends on 

only αµ , βµ , oα  and xPɶ  considering (5.49) and (B.11). Assuming that xPɶ  is a known 

quantity, and oα  can be approximately calculated by the observations obtained from input and 

output of the amplifier, then the choice of αµ  and βµ  tell the achievable amount of IMD 

suppression. Here we are assuming that the choice of αµ  and βµ  are free, however it is small 

to satisfy the assumptions made during the analysis. 

 



Chapter 6  

Simulation Examples 

6.1 Convergence of SCL and ECL Coefficients  

The simulations in this part present the convergence behavior of SCL and ECL coefficients 

under LMS adaptation. An OFDM signal with 1024N =  subcarriers having spacing of 15 

kHz and 16-QAM subcarrier-modulation is used as an input to amplifier. The amplifier model 

for the memoryless case is an SSPA with 1000κ =  (30 dB power gain), 10oA =  and 

1p = . The input signal is scaled to 1  dB compression point and IBO is set to 0 dB. The 

value of attenuator loss and error amplifier gain is set to 30cL = −  and 30eG =  dB 

respectively. The simulations are averaged over 150  independent realizations.  

6.1.1  Mean Convergence of SCL Coefficient 

In addition to the common parameters stated above, the number of active sub-carriers is set to 

256aN = . For the simulations with memory, two different Wiener and Hammerstein filter 

combinations are used before and after SSPA. The coefficients of Wiener filter are fixed to 

1 [1.000 0.005]wb = , and the coefficients of Hammerstein filter are varied between two 

different simulations as 1 [1.000 0.03]hb = −  and 2 [1.000 0.03]hb = −  respectively. The step 

size 0.05αµ =  is used for adaptation (both for amplifier with and without memory). 

The optimum value for the complex constant is calculated according to 

( )/( )H H
o x y x xα = ɶ ɶ ɶ ɶ  where xɶ  and yɶ  are the data vectors showing the input and output of the 

memoryless amplifier. The vectors are chosen large enough to approximate the expectation in 

(3.6) ( 120 * 1024sN =  corresponding to 120L =  OFDM symbols).  

 

 

 



 PERFORMANCE OF ADAPTIVE FEEDFORWARD METHODS ON WIDEBAND PA LINEARIZATION 65

 

0 2 4 6

x 10
4

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

iteration -> n

|a
lp

ha
|

 

 

|αLMS
|

|αMMSE
| and/or |αopt

|

 

a) 

0 2 4 6

x 10
4

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

iteration -> n

|a
lp

ha
|

 

 

|αLMS
|

|αMMSE
mem |

|αopt
|

|ε
α
off|

 

b) 

0 2 4 6

x 10
4

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

iteration -> n

|a
lp

ha
|

 

 

|αLMS
|

|αMMSE
mem |

|αopt
|

|ε
α
off|

 

c) 

Figure 6-1. The mean convergence of absolute value of α  under LMS adaptation with step size 0.05αµ =  and 

when 120  OFDM symbols ( 1024N = , 256aN = and 16M = ) are used as an input to a amplifier a) 

memoryless (SSPA with 1000κ = , 10oA =  1p = ) b) Wiener-Hammerstein memory with 1wb - 1hb  c) 

Wiener-Hammerstein memory with 1wb - 2hb . 

SSPA which is the common nonlinearity block for both amplifier with and without 

memory yields a real oα , nevertheless the magnitudes of the related quantities are plotted in 

Figure 6-1 a), b) and c).  

The SCL coefficient α  is shown to be converging to optimum Wiener coefficient 

MMSEα (which is also equal to optimum linearizer coefficient optα ) in the mean sense by 
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Figure 6-1 a). This was the expected scenario when a memoryless amplifier model and a 

white input signal xɶ  are used. Although aN  is smaller than N  and thus yielding a non-white 

signal xɶ , the step size 0.05αµ =  is small enough to maintain convergence in the mean 

sense.  

The effect of memory on the convergence of α  is depicted in Figure 6-1 b) and c) where 

the expected off
αε  given in (5.10) is clearly observable. Actually aN  is deliberately chosen 

smaller than N  to introduce correlation within the samples of xɶ , so that we obtain a non-zero 

value for off
αε which is described in (5.10). It is true that off

αε  is non-zero even if xɶ  is white, as 

long as filter denoted by wb  introduces some correlation. However; as discussed in Section 

4.4, in order to have similar value for oα  with the memoryless case, this filter should be 

chosen with small memory taps which in turn introduces only small amount of correlation. 

6.1.2 Mean Convergence of ECL Coefficient 

The first aim of these simulations is to illustrate the impact of mean square of mismatch in α  

on MMSEβ  and mean convergence of β  for amplifier models with and without memory. In 

other words the derivations (5.25) and (5.37) are going to be justified. For this purpose, 

MMSEβ  and LMSβ  is studied by simulations for two different values of αµ  (also slightly 

different for amplifier with and without memory, see Figure 6-2 a) and b) ). In addition, the 

number of active subcarriers is chosen to be 1024aN = . By that the spectrum of amplifier 

input is guaranteed to be white (for the memoryless case) which enables IMD and thus signal 

before β  to be white (with assumption of small αε ). As discussed in Appendix A, this is the 

necessary condition for the mean convergence of β  to MMSEβ . Also in these simulations it is 

shown that mem
MMSE MMSEβ β=  for similar values of 

2
[ ]MMSEE αε  and 

2
,[ ]MMSE
memE αε . 

Remember that the exact relation to be satisfied is given in (5.44). For the simulations where 

amplifier is modeled with Wiener and Hammerstein memory, the chosen coefficients for filter 

are 2 [1.00 0.05 0.01]wb = −  and 3 [1.00 0.03]hb =  which gives more frequency selective 

response compared to filters used in the previous part. One final comment related to the 

simulations is that, the adaptation of β  is started after the convergence of α  is obtained. 

Regarding all the other simulations in this chapter, β  is started to be adapted after 10000  

iterations of α . 

The expected value of mean-square of mismatch between α  and its MMSE solution in the 

memoryless case is shown in Figure 6-2 a) for two different values of step size. As expected 

small step size provides a smaller steady state level with the cost of longer convergence time 

(which still requires only half of one OFDM symbol). Then the values of MMSEβ  
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corresponding to these steady state levels of 
2

[ ]MMSEE αε  are shown in Figure 6-3 b) to which 

the β  under LMS adaptation converges in the mean sense as expected.  
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Figure 6-2. The expected value of mean-squared mismatch between the MMSE solution of α  and value obtained 

from LMS adaptation for a) memoryless amplifier (SSPA with 1000κ = , 10oA = , 1p = ) when 0.4αµ =  

and αµ =2.5) b) Wiener-Hammerstein memory ( 2wb - 3hb ) when 0.5αµ =  and 2.6αµ = . 
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Figure 6-3. Optimum linearizer coefficient optβ , mmse solution MMSEβ  and the mean convergence of β  under 

LMS adaptation corresponding to two different values of 
2

[ ]MMSEE αε  that are shown in Figure 6-2 a) for 

memoryless amplifier. 
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Similar results are also obtained for the amplifier with memory and illustrated in Figure 

6-2 b) and Figure 6-3 b). Note that slightly different step sizes are used for the simulations 

related to memory so that the obtained 
2

,[ ]MMSE
memE αε  approximately satisfies (5.44) and similar 

MMSE solution and mean convergence are achieved. 
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Figure 6-4. Optimum linearizer coefficient optβ , mmse solution MMSEβ  and the mean convergence of β  under 

LMS adaptation corresponding to two different values of 
2

,[ ]MMSE
memE αε  that are shown in Figure 6-2 b) for 

amplifier with Wiener-Hammerstein memory . 

6.2 Estimated and Achieved IMD Suppressions  

The amount of IMD suppression from amplifier output to linearizer output is given by (5.50). 

We have an estimate for 
2

[ ]E βε  via (5.48) under the assumption of amplifier input xɶ  being 

white and the mismatch in α  being small enough as stated in Appendix B. Due to these we 

again will choose 1024aN N= =  and 0.05αµ = . Other parameters related to feedforward 

circuit and amplifier are same with the previous part except the operation point is now chosen 

to be 3  dB compression point. The observed PAPR of the amplifier input signal is about 10.5  

dB.  

The estimated and obtained values for IMD suppression for memoryless case are 

observable in Figure 6-5 a). The estimated values have still some deviation from the obtained 

values even though the simulation parameters are chosen in order to satisfy the necessary 

assumption for estimation. The reason is due to the rough approximation of (B.9), however 
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the estimated values stay within 1.5 dB range from actual values in the worst case. Same 

estimated values for IMD suppression are used for the case where there is memory and 

presented with the obtained values in Figure 6-5 b). It can be seen that performance in terms 

of IMD suppression is very close to the memoryless case as expected. 
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Figure 6-5. The estimated and obtained IMD suppression when OFDM input signal with 1024aN =  is used as 

an input to a a) memoryless amplifier (SSPA with 1000κ = , 10oA = , 1p = ) b) amplifier with Wiener-

Hammerstein memory ( 2wb - 3hb ) where in both cases the operation point is 3 dB compression point. 

Another set of simulations are carried out by relaxing the condition on xɶ  for being white 

by setting 512aN = . We can see by Figure 6-6 a) and b) that the accuracy for the estimation 

of IMD suppression is degraded slightly. However, when βµ  is small then good accuracy is 

still achieved which is also expected. Mainly MMSE
βε  has smaller dependency to dɶ  at any 

time instant therefore it is still not a poor approximation when passing from (B.6) to (B.7). 
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Figure 6-6. The estimated and obtained IMD suppression when OFDM input signal with 512aN =  is used as 

an input to a) a memoryless amplifier (SSPA with 1000κ = , 10oA = , 1p = ) b) amplifier with Wiener-

Hammerstein memory ( 2wb - 3hb ) where in both cases the operation point is 3 dB compression point.. 

The suppression of IMD depends on the value of mean-square of the mismatch in β  that 

can be controlled by βµ . Different steady state levels of this mean-square of mismatch are 

shown in Figure 6-7 a) and b) corresponding to different step sizes.  
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Figure 6-7. The expected value of mean-squared mismatch between the optimum value of β  and the value 

obtained from LMS adaptation for two different step sizes ( 0.005βµ =  and 0.001βµ = ) when OFDM signal 

with 512aN =  is used as an input to a a) memoryless amplifier (SSPA with 1000κ = , 10oA = , 1p = ) 

and b) amplifier with Wiener-Hammerstein memory ( 2wb - 3hb ). 
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The IMD spectra for amplifier with and without memory corresponding to those mismatch 

values are plotted in Figure 6-8 a) and b) which are also showing correspondence to the levels 

indicated by the blue curve in Figure 6-6 a) and b). For instance when 5 3eβµ = − , an IMD 

suppression of 6  dB is obtained whereas 17  dB of attenuation is achieved for 1 3eβµ = −  

for both memoryless and memory cases. 
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Figure 6-8. IMD spectrum at the output of amplifier and linearizer that corresponds to 0.005βµ =  and 

0.001βµ =  when OFDM signal with 512aN =  is used as an input to a a) memoryless amplifier (SSPA with 

1000κ = , 10oA = , 1p = ) and b) amplifier with Wiener-Hammerstein memory ( 2wb - 3hb ). 

Now we are also able to observe the spectral re-growth at the output of power amplifier 

and suppression of IMD corresponding to different choice of βµ  from the spectrum plots in 

Figure 6-9 and Figure 6-10. We see that when there is memory, the performance remains 

almost same with the memoryless case in terms of IMD suppression as expected. 

Finally we repeat the simulations with 256aN = . The plots showing the estimated and 

obtained IMD suppression in Figure 6-11 points out that the accuracy of estimation degraded 

compared to 512, 1024aN =  since xɶ  further deviates from being white. 

Similar to the simulations with 512aN = , different steady state values for the mean 

square mismatch in β  are obtained depending on the step size as shown in Figure 6-12 a) and 

b). These values of mean square mismatch then determine the amount of IMD suppression as 

shown in Figure 6-13 a) and b), Figure 6-14 and Figure 6-15. 
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Figure 6-9. The spectra of linearly amplified input, power amplifier output, and linearizer output (for 

0.005βµ =  and 0.001βµ = ) when memoryless amplifier model (SSPA with 1000κ = , 10oA = , 1p = ) 

and OFDM input signal with 512aN =  is used. 
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Figure 6-10. The spectra of linearly amplified input, power amplifier output, and linearizer output (for 

0.005βµ =  and 0.001βµ = ) when amplifier with Wiener-Hammerstein memory ( 2wb - 3hb ) and OFDM input 

signal with 512aN =  is used. 
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Figure 6-11. The estimated and obtained IMD suppression when OFDM input signal with 256aN =  is used as 

an input to a) a memoryless amplifier (SSPA with 1000κ = , 10oA = , 1p = ) b) amplifier with Wiener-

Hammerstein memory ( 2wb - 3hb ) where in both cases the operation point is 3 dB compression point.. 
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Figure 6-12. The expected value of mean-squared mismatch between the optimum value of β  and the value 

obtained from LMS adaptation for two different step sizes ( 0.005βµ = and 0.001βµ = ) when OFDM signal 

with 256aN =  is used as an input to a a) memoryless amplifier (SSPA with 1000κ = , 10oA = , 1p = ) 

and b) amplifier with Wiener-Hammerstein memory ( 2wb - 3hb ). 
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Figure 6-13. IMD spectrum at the output of amplifier and linearizer that corresponds to 0.005βµ =  and 

0.001βµ =  when OFDM signal with 256aN =  is used as an input to a a) memoryless amplifier (SSPA with 

1000κ = , 10oA = , 1p = ) and b) amplifier with Wiener-Hammerstein memory ( 2wb - 3hb ). 
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Figure 6-14. The spectra of linearly amplified input, power amplifier output, and linearizer output (for 

0.005βµ =  and 0.001βµ = ) when memoryless amplifier model (SSPA with 1000κ = , 10oA = , 1p = ) 

and OFDM input signal with 256aN =  is used. 
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Figure 6-15. The spectra of linearly amplified input, power amplifier output, and linearizer output (for 

0.005βµ =  and 0.001βµ = ) when amplifier with Wiener-Hammerstein memory ( 2wb - 3hb ) and OFDM input 

signal with 256aN =  is used. 

 



Chapter 7  

Summary and Conclusion 

This thesis studied the performance of LMS adaptation of feedforward coefficients in terms of 

convergence and achievable IMD suppression. To the author’s knowledge such analysis has 

not presented in literature so far. The extension of the analysis for the case where the main 

amplifier is modeled with Wiener-Hammerstein memory is another novel aspect. 

The analysis in Sections 5.3 and 5.4 showed that the choice of step size to adapt SCL and 

ECL has two important impacts concerning the amount of IMD suppression. The former 

determines how close ECL coefficient converges to the optimum linearizer coefficient in the 

mean sense while the latter determines the variance of the fluctuation after convergence. An 

estimate for the amount of IMD suppression is then derived as the combined effect of these 

two phenomena under the assumption of white amplifier input and small step size for SCL 

coefficient. The average power of amplifier input and the linear gain in Bussgang model is 

also assumed to be known when deriving this estimate. 

The estimate is shown to be matching good with the IMD suppression values obtained 

from simulations as presented in Section 6.2. Furthermore when the condition on white 

amplifier input is relaxed, the accuracy of estimation is still reasonable according to those 

simulations where small step size is used to adapt ECL coefficient. 

The independency of feedforward linearization from memory effects has been discussed 

in literature for fixed coefficients. However, the analysis of possible impacts of memory on 

the adaptive system has been missing. This analysis is carried out in this thesis for Wiener-

Hammerstein modeled memory effects. We have shown that memory effects introduces an 

offset to the mean convergence of SCL coefficient. This offset is shown in Section 5.1.2 to be 

a function of auto-correlation of the amplifier input and the strength of memory. Despite this 

offset in the convergence of SCL coefficient, the convergence of ECL coefficient in the 

presence of Wiener-Hammerstein memory is shown in Section 5.3 to be same/similar to 

memoryless case. Moreover when same/similar step sizes as in memoryless case are used for 
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the adaptation of both coefficients, the performance in terms of IMD reduction is shown to be 

same/similar in memoryless case. These foundations are also supported by the simulations in 

Section 6.2. 

Adaptive feedforward linearization is a powerful alternative among the power amplifier 

linearization methods. In the ideal implementation scenario, it is independent of input signal 

characteristics such as bandwidth and PAPR as well as the nonlinearity experienced by this 

signal. However, there are practical considerations that bring limitations to those parameters 

and the overall linearizer performance. The demands on linearly operating error amplifier and 

synchronization of upper and lower branches of SCL and ECL are important limiting factors 

of basic feedforward operation. In the adaptive case, additional circuitry is needed for down-

conversion and sampling of the necessary signals. Those will bring further restrictions on the 

bandwidth of the amplifier input. Besides, the impairments introduced by the additional 

circuitry to up and down-convert and sample the signals in the feedforward structure is 

another performance limiting factor which is not well studied in literature and is left as a 

future work.  
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Appendix A  

Mean and Mean-Squared Convergence of SCL 

Coefficient  

We will follow similar steps and assumptions as in [20] to carry out the analysis for mean and 

mean squared convergence of SCL coefficient (1 tap filter) under LMS adaptation. We will 

start with the model where main amplifier is a memoryless nonlinearity and then extend the 

analysis for the case where Wiener-Hammerstein model is used for long term memory effects. 

A.1 Memoryless Model 

Starting from (5.13) we first subtract MMSEα  from both sides to yield 

 *
´[ 1] [ ] [ ] [ ]MMSE MMSEn n x n e nαα α α α µ+ − = − + ɶ ɶ  (A.1) 

Now by defining [ ] [ ]MMSE
MMSEn n

α
ε α α= −  ( [ ]MMSE n

α αε ε= −  for memoryless case), we 

get 

 

*

*

[ 1] [ ] [ ] [ ]

[ ] [ ]( [ ] [ ] [ ])

MMSE MMSE

MMSE
c

n n x n e n

n x n L y n n x n

α α

α

α

α

ε ε µ

ε µ α

+ = +

= + −

ɶ

ɶ ɶ ɶ
 (A.2) 

and by modifying the second term of (A.2) in parenthesis as 

[ ] [ ] [ ] [ ] [ ]c MMSE MMSEL y n x n x n n x nα α α− + −ɶ ɶ ɶ ɶ  we obtain 

 * *[ 1] [ ] [ ] [ ] [ ] [ ] [ ]MMSE MMSE MMSE
on n n x n x n x n e n

α α αα αε ε µ ε µ+ = − +ɶ ɶ ɶ  (A.3) 

where [ ] [ ] [ ]o c MMSEe n L y n x nα= −ɶ ɶ  denotes the error signal when the filter is computing its 

output with optimum Wiener coefficients. Note that [ ]oe n  is actually [ ]d nɶ  since it is shown 

that the optimum Wiener coefficient is identical to optimum linearizer coefficient for SCL 

given in (4.3) . Now applying the expectation operation to (A.3) we obtain 
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 * *

0

[ [ 1]] [ [ ]] [ [ ] [ ] [ ]] [ [ ] [ ]]MMSE MMSE MMSE
oE n E n E n x n x n E x n e n

α α αα αε ε µ ε µ+ = − +ɶ ɶ ɶ
�������������  (A.4) 

The last term vanishes since by definition the error is orthogonal to input for the optimum 

Wiener coefficients. The second term can be separated as *[ [ ]] [ [ ] [ ]]MMSEE n E x n x n
α
ε ɶ ɶ  under 

independence assumption ([20], pp. 392) which implies that the input sequence xɶ  to be white. 

In the case where second term is separable, we can simplify (A.4) as 

 

*

1

[ [ 1]] [ [ ]](1 [ [ ] [ ]])

[ [ ]](1 )

[ [0]](1 )
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x
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E P
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α

α

ε ε µ

ε µ

ε µ +

+ = −

= −

= −

ɶ

ɶ

ɶ ɶ

 (A.5) 

where we have assumed that the power of the input can be given *[ [ ] [ ]]xP E x n x n=ɶ ɶ ɶ  under the 

stationary input assumption. The last line of (A.5) tells that for a proper choice of the step-

size, the mismatch between the adapted and optimum Wiener coefficient vanishes 

asymptotically 

 lim [ [ ]] 0 0 2/MMSE
n xE n P

α αε µ→∞ = < < ɶ  (A.6) 

The mean squared error of mismatch can also be obtained under the previous white input 

assumption. The noisy gradient is modeled as a summation of true gradient and a zero mean 

noise ˆ [ ] [ ] 2 [ ]J n J n N nα α α∇ = ∇ +  in [20] which is then plugged-into (A.1) to yield  

 
[ 1] [ ] ( [ ] [ ])

[ ](1 ) [ ]

MMSE MMSE
x

MMSE
x

n n P n N n

n P N n

α α

α

α α α

α α α

ε ε µ ε

ε µ µ

+ = − +

= − −

ɶ

ɶ

 (A.7) 

where the equality * 1 ˆ[ ] [ ] [ ] ( [ ] ) [ ]
2 x x MMSEx n e n J n P n P N nα αα α= − ∇ = − − −ɶ ɶɶ  is utilized. 

Then taking the absolute square and applying expectation to (A.7) yields 

 

2 2 2 *

22

[ [ 1] ] [ [ ] ](1 ) 2 (1 )Re{ [ [ ] [ ]]}

[ [ ] ]

MMSE MMSE MMSE
x xE n E n P P E n N n

E N n

α α α α

α

α α α

α

ε ε µ µ µ ε

µ

+ = − − −

+

ɶ ɶ
(A.8) 

which can be further simplified by assuming that αε  and Nα  are uncorrelated and therefore 

dropping the second term out of the equation. In addition if the steady-state is reached where 

the true gradient is zero and the adaptation is merely noise, i.e, *[ ] [ ] [ ]ox n e n N nα≈ −ɶ , the last 

term in (A.8) becomes 
2 22[ ] [ [ ] ] [ [ ] ]o c IMDa xE N E e n E x n L P Pα ≈ = ɶɶ . However; it is worth 

mentioning that this is actually a crude approximation. It is true that [ ] [ ]oe n d n= ɶ  is 
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uncorrelated with [ ]x nɶ  but this does not guarantee 2
oeɶ  to be uncorrelated with 2xɶ . In fact 

the variance of [ ]d nɶ  directly depends on the variance of [ ]x nɶ  as illustrated in (3.9).   
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(A.9) 

We again consider that the step size is selected properly to make the first term in (A.9) to 

vanish asymptotically. Then the mean square of the mismatch is  
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 (A.10) 

which is well in-line with the general result [20] 2[ ] /(2 )o inE J Pε µ µ= −  where oJ  is the 

value of the cost function with optimum Wiener coefficient and inP  is the input power of 

Wiener filter. 

A.2 Wiener-Hammerstein Memory Model 

When the Wiener-Hammerstein memory model is used for the main amplifier, and the 

adaptation structure is not changed, i.e. the structure in Figure 5-3, the above analysis needs 

only a few modifications. Starting with the mean convergence, (A.3) still holds but now oe is 

not only the IMD term dɶ  but also includes the terms from input and past values of IMD, i.e. 

 
0 1

[ ] [ ] [ ] [ ] [ ] [ ]
M L

mem mem
o o c wh MMSE c h

m l

e n L b m x n m x n L b l d n lα α
= =

= − − + −∑ ∑ ɶɶ ɶ  (A.11) 

where off
αε  is defined in (5.10). However, this does not change anything from mean 

convergence point of view since [ ]mem
oe n  is still orthogonal to [ ]x nɶ  by definition. We can re-

write (A.4) as 

 
, , ,

* *

0

[ [ 1]] [ [ ]] [ [ ] [ ] [ ]] [ [ ] [ ]]
mem mem mem o

MMSE MMSE MMSE memE n E n E n x n x n E x n e n
α α αα αε ε µ ε µ+ = − +ɶ ɶ ɶ

���������������
(A.12)   

where 
,

[ ] [ ]
mem

MMSE mem mem
MMSEn n

α
ε α α= − . Furthermore the white input (or the small step-size) 

assumption will allow the second term of (A.12) to have exactly the same form as (A.5). Then 
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under those conditions we can again state that the SCL coefficient α  this is asymptotically 

convergent in the mean sense, that is 

 
,

lim [ [ ]] 0 0 2/
mem

MMSE
n xE n P

α αε µ→∞ = < < ɶ  (A.13) 

There is a slight change, however, for the mean square analysis due to the term 
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 (A.14) 

 

 instead of 
2[ [ ] ]o c IMDaE e n L P=  of the memoryless case. Therefore the mean square can be 

written as 
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2
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2mem
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oMMSE

n
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E e n
E n

Pα

α

α

µ
ε

µ
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 (A.15) 

However; we can approximate 
2[ [ ] ]mem

oE e n  by c IMDaL P , if the memory is rather weak. Then 

a second order statistic of the mismatch as given in (A.10) is also valid for Wiener-

Hammerstein memory case as well.  

 



Appendix B  

Mean and Mean-Squared Convergence of ECL 

Coefficient 

We will follow a similar analysis as in Appendix A while deriving the mean and mean-

squared convergence of ECL coefficient both for amplifier with and without memory.  

B.1 Memoryless Model 

Starting with the memoryless case, we can re-write the basic update equation given in (5.47) 

 *[ 1] [ ] [ ] [ ]MMSE MMSE en n G z n e nββ β β β µ+ − = − + ɶ ɶ  (B.1) 

and then denoting [ ] [ ]w
MMSEn nβε β β= −   
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 (B.2) 

Writing the second term in parenthesis as [ ] ( [ ] [ ] [ ] [ ])e MMSE MMSEy n G e n e n n e nβ β β+ − + −ɶ ɶ ɶ ɶ ,  

(B.2)  can be re-structured  
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 (B.3) 

where [ ]oz nɶ  is the optimal error signal in Wiener filter structure (or in this case linearizer 

output calculated with optimal Wiener coefficient). Now applying expectation to both sides of 

(B.3) 
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since [ ]oz nɶ  is orthogonal to [ ]e nɶ  by definition. The right hand side of (B.4) is separable under 

independence assumption, which requires the filter input eɶ  to be white. For the memoryless 

case, eɶ  that is given in (5.2), whiteness can be achieved by having white dɶ  with αε  being 

small enough to make dɶ  the dominant signal. As discussed in Section 3.2, xɶ  should be white 

for dɶ  to be white. Since mathematical tractability of β  requires α  to be adjusted first (if αε  

is a random process) to the level that enough suppression of xɶ  is achieved, we will use this 

assumption throughout this work wherever appropriate. Once the expectation in (B.4) is 

separated under these assumptions, then it is easy to see that  

 

*

1

lim [ [ 1]] [ [ ]](1 [ [ ] [ ]])

2
[ [0]](1 ) 0 0

MMSE MMSE
n e
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e e

e e
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G P
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where e c IMDaP L P≈ɶ . Therefore convergence to the optimum Wiener coefficient given in 

(5.24) is achieved in the mean sense under the assumptions stated above and with the proper 

choice of step size indicated in (B.5).  

We will also follow the same procedure as we did in Appendix A for the second order 

characterization of MMSE
βε . We start our derivation by re-writing (B.1) where the product 

*[ ] [ ]eG z n e nɶ ɶ  is replaced with the noisy gradient that is the superposition of true gradient and 

zero-mean gradient noise, 
1 1ˆ ( 2 ) ( [ ] [ ])

2 2
MMSE

e eJ J N G P n N nβ β β β βε
− −
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ɶ  (B.6) 

Then multiplying (B.6) by its complex conjugate and applying expectation, we obtain 
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 (B.7) 

The second term on right hand side of (B.7) will be dropped by assuming that w
βε  and Nβ

ɶ  are 

uncorrelated. After this, when the iteration is propagated till n=0 
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We will also assume that steady-state is reached and the adaptation is merely noise, i.e. 

*[ ] [ ]eG z n e n Nβ≈ ɶɶ ɶ . In that case the mean square of gradient noise can be approximated by 
2 2 2 2[ ] [ [ ] ] [ [ ] ]e o o x e eE N G E z n E e n P PGβ α≈ ≈ ɶ ɶ

ɶ ɶ ɶ . As discussed in Appendix A, the 

approximation is crude due to the dependency of the variance of IMD to variance of amplifier 

input. Finally regarding (B.8) with a properly chosen step size, the mean squared error 

converges asymptotically to  
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which is again of the well known form 2[ ] /(2 )o inE J Pε µ µ= −  as also mentioned in 

Appendix A. Remembering that for the memoryless amplifier model, [ ]e nɶ  is given in (5.2), 

under the assumption of white xɶ , we can alternatively write ePɶ  and thus (B.9) as 
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where 
2

[ ]MMSEE αε  is given in (A.10). In addition even if the estimate of 
2

[ ]MMSEE αε  is 

rather crude due to the reason explained in Appendix A, the dominating term in the 

denominator of (B.10) is 2  with the assumption that both error amplifier input and βµ  are 

small. Then for the mean-square error we can write 
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 (B.11) 

B.2 Wiener-Hammerstein Memory Model 

Now let’s do the derivations starting from mean convergence for the case where there is 

Wiener-Hammerstein type memory. Expression (B.5) stated that β  is convergent to MMSEβ  

in the mean sense when eɶ  is white which requires xɶ  to be white and αε  to be small. 

However, when there is memory such that eɶ  is given in (5.31), small αε  and white xɶ  does 

not suffice for eɶ  to be white since the memory part of xɶ  still remains. In addition, even if dɶ  

is white, the last term of (5.31) which is a filtered version of dɶ  is not whit. However, we can 

assume that the memory is not strong to cause a high frequency selectivity and the memory 

weights of xɶ  at times prior to n are rather small. In that case, the dominant term will be the 
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slightly filtered dɶ  which can still be approximated as white. Under these assumptions in 

addition to the assumption in the memoryless case, we can state that β  is convergent in the 

mean sense to the optimum Wiener coefficient given in (5.37). 

The exact expression for mean square mismatch is rather difficult due to the expression of 

2[ [ ] ]oE z n  when there is memory. However, if 
,

2
[ [ ] ]

mem

MMSEE n
β
ε  is small, i.e. αµ  and βµ  are 

small, so that the dominating term of (5.30) is the first one, then we can use (B.11) for the 

mean square error in Wiener-Hammerstein memory model as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 


