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Abstract

The risk or probability of dying between birth and five years of age expressed per 1000

live births is known as Under-five mortality. The well-being of a child reflects household,

community and national involvement on family health. This will have an immense future

contribution towards the development of a country. Globally, a substantial progress in

improving child survival since 1990 has been made. The decline globally in under-five

mortality from approximately 12.7 million in 1990 to approximately 6.3 million in 2013

had been observed. Notably, all regions except Sub-Saharan Africa, Central Asia, South-

ern Asia and Oceania had reduced the rate by 52% or more in 2013. This study aims to

identify factors that are associated with the under-five mortality in Tanzania. In order

to robustly identify these factors, the study utilized different statistical models that ac-

commodate a response which is dichotomous. Models studied include Logistic Regression

(LR), Survey Logistic Regression (SLR), Generalized Linear Mixed Model (GLMM) and

Generalized Additive Model (GAM). The result revealed that HIV status of the mother

is associated with the under-five mortality. Furthermore, the results revealed that child-

birth order number, breastfeeding and a total number of children alive affects the survival

status of the child. The study shows that there is a need to intensify child health in-

terventions to reduce the under-five mortality rate even more and to be in line with the

millennium development goal 4(MDG4).

Keywords: Survey Logistic Regression, Generalized Linear Mixed Models(GLMMs),

Generalized Additive Models (GAMs) and Cubic spline smoother.
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Chapter 1

Introduction

1.1 Background

Tanzania is a relatively large country in the East African region sharing borders with

Kenya, Uganda, Rwanda, Zambia, Malawi, Mozambique, Burundi and the Democratic

Republic of Congo (DRC). This nation now is considered one of the oldest known (contin-

uously inhabited) areas on the planet. Tanzania is also bordered by the Indian Ocean on

the east. North-East of Tanzania is mountainous with the famous mountains including

Meru and Kilimanjaro, the highest peak in Africa. Mount Kilimanjaro is covered with

snow even though it is so close to the equator thus, its natural beauty attracts thousands

of tourists each year. This mountain stands at 5,895 m tall. The mainland in Tanzania

dominated by a large central plateau, one covered with grasslands, plains, and rolling

hills. Figure 1.1 shows the location of Tanzania in Africa with several tourism attrac-

tions such as Africa’s largest lakes, including Lake Nyasa (Lake Malawi), Lake Victoria

(Africa’s largest lake), and Lake Tanganyika (Africa’s deepest lake)(Dagne, 2011).

The name Tanzania itself derives from the country’s two states, Zanzibar, and Tan-

ganyika. Zanzibar is an archipelago off the coast of Tanzania and a semi-autonomous

part of the country (UNICEF, 2012). With 947,300 square kilometers of land, Tanzania

is the 31th largest country in the world and the 14th largest in Africa. The last official

census recording the population of Tanzania occurred in 2012 and showed that there were

49,639,138 people living in the country. However, currently, there are 50,757,459 living in

Tanzania and of this total population approximately 1.3 million reside on the islands of

Zanzibar (TACAIDS and NBS OCGS, 2013; Agwanda and Amani, 2014). This equates
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(a) Location of Tanzania in Africa (b) Tanzania regions

Figure 1.1: Maps showing Tanzania regions and location in Africa

Source:http://www.worldatlas.com/webimage/countrys/africa/tz.htm

to a population density of about 47.5 people per square kilometer. Figure 1.2 shows the

most populated cities in Tanzania.

Tanzania is one of the country with the highest birth rates in the world and more than

44% of the population is under the age of 15. The total fertility rate is 5.2 children born

per woman. Tanzania has the 18th highest population growth rate in the world and birth

rate and does not show any signs of changing soon. Tanzania’s population growth rate

continues to climb with a current rate of around 3.0% annually. If this trend continues,

it is projected that Tanzania will have a population of 138 million by 2050, making it

the 13th most populated country by then compared to its current rank of 26th. Over the

past decade, studies show that more than 30% of households are headed by females in

Tanzania (Factbook, 2015).

2
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Figure 1.2: Most populated cities in Tanzania

Source of data:http://www.worldatlas.com/webimage/countrys/africa/tz.htm

The 2012 population house census (PHC) showed that in Tanzania 37% of private house-

holds had access to piped water as the main source of drinking water with urban areas

having the majority of household using piped water (TACAIDS and NBS OCGS, 2013).

The low median age of Tanzania is attributed to a generalized human immunodeficiency

virus (HIV) epidemic in the country. It’s estimated that there are over 1.6 million Tan-

zanians currently living with HIV/AIDS and the epidemic has resulted in an estimated

1.3 million orphans. The overall HIV prevalence rate in Tanzania is 5.1% although this

reaches as high as 15.4% among women in some areas. This epidemic may result into;

lower life expectancy, a higher infant mortality rate, under-five mortality rate, higher

death rate, changes in age and sex distribution in the population as well as a lower pop-

ulation growth.

The under-five mortality rate is an important indicator of child well-being, including

health and nutritional status of the child. It can also be an indicator of the coverage of

social and economic development and child survival interventions. Tanzania is one of the

countries in the Sub-Saharan Africa region with high under-five mortality rate (Factbook,

2015). Prior to 2011-2012 Tanzania HIV/AIDS and Malaria Indicator Survey (THMIS)

the under-five mortality rate was 76 per 1000 live births. Furthermore, the same survey

3
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reveals that there was a higher number of deaths among males compared to females and

in rural areas compared to urban areas. It also reveals that Tanzania’s infant mortality

has declined from 115 deaths per 1,000 live births in 1988 to 45 deaths per 1,000 live

births in 2012 (UNICEF, 2012). These statistics suggest that Tanzania could achieve the

Millennium Development Goal 4 (MDG4) which is to reduce under-five mortality rate

by two-thirds by 2015 with intensified child health interventions in both rural and urban

areas (UNICEF, 2012).

1.2 Health Issues and Health Sector Budget

The health of the Tanzanian population is generally poor and the underlying cause of

poor health includes sanitation and under-nutrition. As part of the mitigating strategies,

family planning is required to lower the birth rate and control the population growth

(Kwesigabo et al., 2012). Despite existing control measures, the population has contin-

ued to witness massive growth. The number of deaths of children under-five years is the

results of poor hygiene and about 20 percent of the child mortality are the results of

preventable health issue such as diarrhea. It is known that sanitation has an impact in

reducing diarrhea but access to drinking water and having better toilet facilities is still

a challenge in Tanzania (Kwesigabo et al., 2012). Lack of water supply and sanitation

facilities plays a huge role in contributing to poor school attendance which affects educa-

tional performance than early dropouts.

There is a link between health and agriculture and it’s well known that food security at

the household level is important to good health. Furthermore, agriculture is the source

of livelihood among the poor and could be directly or indirectly linked to poor health

including the incidence of malaria and livestock diseases (Hawkes and Ruel, 2006). The

health of individuals also affects agriculture indirectly since people’s health status affects

efforts for agricultural production. The wealth index has an impact on how people will

4



perform at work which may affect income and production (Hawkes and Ruel, 2006). In

2001, the United Republic of Tanzania signed the Abuja declaration which was to allocate

15% of the government budget to the health sector. However, Tanzania has only managed

to allocate 8.9% of its total budget (Kwesigabo et al., 2012). The budget has to be met

by using domestic resource since donors have shown not to be sustainable. It is also well

known that health is one of the basic services that government has to provide (TACAIDS

and NBS OCGS, 2013).

1.3 Literature Review

The probability per 1000 live births that newborn child will die before reaching age five

is known as under-five mortality rate. Most deaths of children under the age five are

as a result of nutritional conditions which may lead to a weak immune system. These

occur within the first year of life. A child’s risk of dying is higher in the first week of life

thus safe childbirth and effective early nutritional care are essential in order to prevent

such deaths. More than half the number of child death under the age of five is due to

conditions that could be prevented or treated with an access to affordable interventions.

The leading causes of the under-five mortality include malaria, pneumonia, diarrhea and

birth complications (UNICEF, 2012). This section intends to review studies which have

been done and are related to this study.

The world has made a substantial progress towards achieving MDG4 as the under-five

deaths had declined from 12.6 million on average in 1990 to 6.6 million on averages in

2012 worldwide (UNICEF, 2012). All regions in the world except for Sub-Saharan Africa

and Oceania countries had reduced their under-five mortality by more than 49 percent

in 2012. The average annual rate of reduction in under-five mortality had increased from

1.2% a year over 1990-1995 to 3.9% over 2005 to 2012. However, this remains insufficient

to reach MDG4, mainly in Sub-Saharan Africa, Oceania, Central Asia and Southern Asia

(UNICEF, 2012). Sub-Saharan Africa still has the highest rates of child mortality with
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an under-five mortality rate of 98 deaths per 1000 live births which are high compared

to developed regions (Manda, 1999; Susuman, 2012; UNICEF, 2012).

There are many studies which have been done concerning under-five mortality rate, yet

not many have considered HIV/AIDS as one of the risk factors for under-five mortality.

Lemani (2013) considered HIV/AIDS as a risk factor of under-five mortality rate. Lemani

(2013) found that there is a significant relationship between infant and child mortality.

The statistical method mostly used known as logistic regression was adopted in this study

with other modeling techniques such as survival analysis. The assumption made for lo-

gistic regression model is that data was obtained from the finite population using simple

random sampling. However, since that used is from a complex survey with clustering the

method was weighted to account for correlated data. The study noted that HIV/AIDS

status of a mother has an impact on child survival as a result of the child being infected

with HIV. The child whose mother was HIV-positive has an increased risk of death than

a child whose mother was HIV-negative. The study by Lemani (2013) focused on the im-

pact of a mother’s HIV status on the under-five mortality rate in Malawi. The HIV status

of the mother was found to be associated with increased risk of under-five mortality rate

after controlling other factors. The MDG4 in Malawi, that is reducing childhood death

is likely to be achieved. Provided that the development and planning policies consider

improving factors that enhance education, health provision among others (Lemani, 2013).

Coovadia et al. (2007) study had an objective of reviewing the available data related to

child mortality in Africa and its association with the HIV infections status of a mother

and child. In this study, it was shown that survival of the child is indeed influenced by

the HIV epidemic in different ways, such as mother to child breastfeeding. The study

further revealed that child mortality is closely linked to the maternal health status. The

mortality rate of HIV-negative children of HIV-positive mothers was 166 per 1000 live

births, but the mortality rate of HIV-negative children for the HIV-negative mother was

128 per 1000 live births. Nevertheless, there is a need for studies on control strategies.
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This will give improved overall effect of the HIV epidemic on child mortality.

Ettarh and Kimani (2012) investigated the influence of geographical location and mater-

nal factors on the likelihood of mortality. The Multivariate analysis was used to compare

the risk factors in urban and rural areas in Kenya. Kenya is also found in East Africa

within the Sub-Saharan Africa region in which there are still some concerns with re-

gard to achieving the Millennium Development Goal 4. The study was based on the

national cross-sectional demographic and Health survey from 2008-2009. In this study,

deaths among the under-five children were found to be more frequent in rural areas for

mothers age 21 years compared to mothers of the same age in urban areas. One of the

factors found to be significant was wealth index of the household, where in rural areas

household with greater wealth were less likely to experience under-five deaths compared

to the poor household. This study also focused on understanding of the drivers of the

under-five mortality in rural and urban areas. The under-five mortality is associated with

young mothers, poor households, inadequate breastfeeding and is limited to certain spe-

cific geographic areas. Some studies have shown that for developing countries, maternal

education and age of the mother are important determinants of the under-five mortality.

The mortality rates are higher among less educated mothers compared to mothers with

higher education level hence the maternal education is important because it increases a

mother’s knowledge and skills. This leads to effective understanding and using the avail-

able information and resources for the survival of the child (Ettarh and Kimani, 2012).

Among other studies which considered diarrhea as one of the risk factor for under-five

mortality, Sukaina (2009); Walker et al. (2012) studied the incidence in low-income and

middle-income countries between 1990 and 2010. Despite diarrhea showing a slight de-

cline, additional efforts were required to improve both prevention and treatment. This

study suggested that diarrhea is one of the leading causes of mortality among children

under the age of five around in the world. A study by Masanja et al. (2008) also re-

vealed the same findings. The possible causes of diarrhea include; inadequate water, and
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sanitation and nutritional risk factors. Masanja et al. (2008) had an objective of iden-

tifying what might have contributed to the reductions in mortality yearly, and further

investigate prospect for meeting the Millennium Development Goal 4(MDG4) target by

2015. This study used different demographic and health survey (DHS) done in Tanzania

since 1990. The analysis was done for each data set to generate estimates of mortality

in children younger than 5 years old (Masanja et al., 2008). The estimates for trends

in mortality between 1990 and 2004 were fitted using regression models instead of fore-

casting which was done for 2005 to 2015. The main aim of this was to investigate if

Tanzania health system could affect child mortality or not. In 2000-2004, an accelerated

reduction in mortality was observed with point estimates of 141.5 (95% CI: 141.5-141.5)

death rate per 1000 live births. During this period, there was a 40 percent reduction to

reach a point estimates 83.2 (95% CI: 70.1-96.3) death per 1000 live births. During this

period, an improvement in health systems and an increase in child survival interventions,

that is to say, good management of childhood illness and an insecticide-treated net was

observed. There was no change in other determinants of child survival, except for the

slow increase in the HIV/AIDS. Tanzania could well achieve the Millennium Develop-

ment Goal 4 (MDG4) provided such trends of improved child survival are to be sustained

going forward (Masanja et al., 2008). This study aims at identifying factors associated

with the under-five mortality in Tanzania by utilizing different statistical models. The

adopted model in identifying risk factors for under-five child mortality. However, we may

not always assume that data was obtained from a finite population using simple ran-

dom sampling. If data was obtained from the finite population using stratified, in order

to make valid statistical inference we may have to account for survey design features

by considering survey logistic regression. They may also be a problem of correlation

between observation that we need to account for by considering the generalized linear

mixed model. The linearity assumption is made when using generalized linear model and

generalized linear mixed model. The alternative model that can be used is the generalized

additive model that does not make linearity assumption between outcome and predictors.

We first describe the data and outline methods to be used in this study.
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1.4 Data and Methods

1.4.1 Description of the Data

This study uses part of the data from the Tanzania demographic healthy survey of the

period 2011-2012 as part of HIV/AIDS and Malaria Indicator Survey. This was the third

population-based survey of this nature conducted in Tanzania. The objective of 2011-

2012 THMIS was to provide up to date information on key indicators needed to keep

track of progress in Tanzania health program including knowledge, attitude and behaviors

relating to HIV/AIDS, plus other sexual transmitted disease and malaria. THMIS also

provides data on the prevalence of anemia, the prevalence of malaria among children

6-59 months, and prevalence of HIV among the general population for men and women

between the ages 15 to 49 (Commission, 2013; TACAIDS and NBS OCGS, 2013). THMIS

data which was obtained on request on http://www.dhsprogram.com was considered in

this study. THMIS sample was selected using stratified, two-stage cluster design. In stage

1 a total of 563 clusters were selected (clusters consisted of enumeration areas). In stage

2 approximately 18 households were selected from each cluster which yielded a sample

size of 10496.

1.4.2 Methods

To summarize the main characteristics of the data, exploratory data analysis (EDA)

will be carried out. The formalization of relations between the outcome and the other

variables will be done by utilizing modeling techniques in increasing complexity. This

are:

• Logistic regression models without and with design effects,

• Generalized Linear Mixed Models and

• Generalized Additive Models

Statistical Package for the Social Science (SPSS) version 21 and Statistical Analysis

System (SAS) 9.3 are used to fit these statistical models . Thereafter these results are
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discussed and interpreted.

1.5 Problem Statement and Justification of the Study

Tanzania has been undergoing the unpredicted decline in mortality particularly among

children under-five years of age. The decline also includes mortality among old age

groups, notably among adults in the most productive years. With the mortality rate

among children under-five years of age declining, the MDG4 will be achieved given that

the country intensities child health interventions. This unpredicted dramatic mortality

decline could results in accelerated population growth unless birth rate also declines. Ur-

ban areas of Tanzania has shown signs of fertility decline. Nevertheless, it is not the case

with rural areas. The inertia of demographic change will lead to the significant change

in age-structure of the population. When the children reach reproductive age, then the

population will increase further even though fertility declines. An increase in the survival

of adults will result in fast-growing aged population possibly leading to implications of

raising the importance of chronic diseases and demands on the health system. In this

study ordinary logistic regression and other methods are used to achieve the objectives

of the study.

Ordinary Least square regression models and Logistic linear regression models both as-

sumes a linear form of predictor variables to the response. The right-hand side of the

generalized linear models (GLMs) has a linear relationship with left-hand side. It is

known that logistic regression falls under the generalized linear model. It’s possible

to have predictor variables that have a non-linear relationship with the response, so in

this case, logistic regression could give unrealistic results. The alternative to the linear

predictor method is the Generalized Additive Models (GAM). Where the linear form∑n
j=1 βjXj is replaced by the general smooth function

∑n
j=1 Sj(Xj) in which the smooth

functions are unspecified and can be estimated. We can estimate the smooth function

using non-parametric approach such as loess (Hastie and Tibshirani, 1986).
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1.6 Objectives of the Study

The children are the future and economic assets of the world. Their future development

may be affected by the factors associated with the under-five mortality. Furthermore,

child well-being reflects household, community and national involvement in the family

health in Tanzania. This contributes both directly and indirectly in a country’s devel-

opment. The main objective of this study is to use a series of statistical methods to

determine and understand factors that significantly affect under-five mortality in Tan-

zania. The findings from this study can be used to evaluate the progress Tanzania has

made towards achieving the Millennium Development Goal 4 programs and develop new

health strategies based on the findings of this study. The identified factors may be used

to guide policy and decision making to speed up the provision of a better life for all.

1.7 Outline of the Study

This study is organized into six chapters. Chapter 2 consists of exploratory data analysis

carried out using SPSS. A chapter 3 introduces the Generalized Linear Models (GLMs),

describes the logistic regression, and provides the statistical model to be used. Chap-

ter 3 also introduces the Survey logistic regression and the model will be fitted. The

Generalized Linear Mixed Model (GLMM) is discussed and its application using part of

2011-2012 THMIS data in Chapter 4. In Chapter 5 the Generalized Additive Model and

application using part of 2011-2012 THMIS data is introduced. Chapter 6 discusses the

findings, presents recommendations, and conclusion.
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Chapter 2

Exploratory Data Analysis

2.1 Introduction

The purpose of exploratory data analysis (EDA) is to help understand the data in de-

tail before the modeling and inference tasks. In this section, a detailed and extensive

exploratory data analysis is presented. The EDA focuses on the following:

• Assessing assumptions on which inference will be based,

• Determine association between the outcome variable and predictor variables,

• Providing a basis for further data collection through survey.

The simple descriptive statistics such as frequency distributions and percentages are

computed to describe some of the variables and to check the variables that have missing

values. We first describe variables from the data set of interest and then present results

performed.

2.2 Study Variables

2.2.1 Dependent Variable

The response variable in this study is survival status of a child which is a dichotomous

variable showing the status: of a child alive or not. The response variable is coded as “1”
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if the child is not alive and“0” if the child is alive at the time of the survey.

2.2.2 Independent Variables

The survey captured a vast range of variables. However, this study considers only 16

variables including HIV status of the respondent which were selected based on current

literature. The lists of the explanatory or predictor variables in this study are indicated

in Table 2.1:

Table 2.1: Description of predictor variables in the study.
Variables Explanation

Socio-demographic characteristics
1 Sex of child male (1), female(2)
2 Mother’s age <20 years (0), 20-34 years (1), >34 years(2)
3 Birth order number first birth (1), 2-4 births(2), > 4 births (3)
4 Current breastfeeding Yes(1), No(0)
5 Current marital status married(1), not married(0)
6 Age of the household head less than 21 years (0), 21-34 years(1),>34 years(2)
7 Mother’s HIV status HIV negative(0), HIV positive(1)

Socio-economic characteristics
8 Type of place of residence urban(1), rural (2)
9 Wealth index Poor(0), Middle(1), Rich(2)

10 Number of living children <2 children(0),2-4 children(1), >4 children(2)
11 Number of children ever born < 2 children(1), 2-4 children(2), >4 children (3)
12 Number of children 5 years or under less than 2 (1), 2-4 (2), more than 4 (3)
13 Respondent level of education no education(0), primary (1), secondary and higher(2)
14 Mother currently working No(0), Yes(1)

Household environment characteristics
15 Source of drinking water safe water (1) and not safe water (0)
16 Main floor unfinished(0) and finished(1)

2.3 Preliminary Analysis

The purpose of this study is to determine some of the risk factors for under-five child mor-

tality in Tanzania. To perform this analysis, the baseline characteristics of the individuals

need to be further explored, specifically the mother’s working status, birth order num-

ber, age, mother’s education level, type of place of residence, marital status and wealth

index. These variables are categorical variables and we will now look at the analysis of

the frequency tables which were obtained. The results in Table 2.2 show that the sample

consisted of 67.3% (n=7416) of respondents aged from 20-34 years. The respondents
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with age less than 20 and above 34 years accounted for 4.5% and 28.1% of the sample

respectively. Approximately two-thirds of the sample respondents were younger individ-

uals aged 15-34. The result shows that child sex was almost equally distributed with

males accounted for 50.3%, and females accounted for 49.7% of the sample thus the 1:1

sex ratio is closely exhibited in the sample. We also observe that more respondents were

currently breastfeeding and accounted for 55.8% (n=6084) of the sample, and that the

sample had 76% (n=8374) of the respondents that were married. Table 2.2 also shows

that 38.2% respondents had less than two births and 34.6 % had more than 4 births.

About 4.2% of the respondents were HIV-positive while about 4.9% were missing values.

Table 2.2: Socio-demographic characteristics distribution of the respondents.
Covariates Characteristics Frequency Percent (%)
Sex of child Male 5540 50.3

Female 5473 49.7
Respondent age Less than 20 years 498 4.5

20 - 34 years 7416 67.3
Over 34 years 3099 28.1

Birth order Less than 2 births 4203 38.2
2 - 4 births 2994 27.2
Above 4 births 3816 34.6

Current breastfeeding No 4929 44.8
Yes 6084 55.8

Current marital status Never in union 496 4.5
Married 8374 76
Living with partner 1022 9.3
Divorced 624 2.3
Widowed 258 5.7
No longer living with partner 239 2.2

Household head age Less than 20 33 0.3
20-34 years old 3388 30.8
Above 34 years 7592 68.9

Mother’s HIV status HIV negative 10007 90.9
HIV positive 467 4.2
missing 539 4.9

Total 11013 100

Table 2.3 displays Socio-economic characteristic distribution. From this table, we ob-

served that individuals from rural areas were about 84.5%. The urban areas were less

represented with only 15.5% of the sample and there were no missing values for this vari-

able. The percentages in the rich and poor categories were 35.5% and 43.3% respectively.

Most of the respondents were currently working on which they were 88%. There were

64.1% (n=7061) respondents with primary education and those with no education were

25.1% (n=2768). The variable for those currently working had nine missing value. The
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percentage was 71.4% (n=7862) of respondents with less than 2 children under the age

five in a household. Nearly 15.5% of the total sample was made up of individuals from the

urban area. Table 2.4 displays household environment characteristic distribution. From

Table 2.3: Socio-economic characteristic distribution of the respondent in Tanzania.
Covariates Characteristics Frequency Percent (%)
Type of place of residence Urban 1707 15.5

Rural 9306 84.5
Wealth index Poor 4768 43.3

Middle 2336 21.2
Rich 3909 35.5

Number of living children Less than 2 children 1457 12.9
2 - 4 children 5613 51
Above 4 children 3943 36.1

Number of children ever born Below 2 children 3101 28.2
2 - 4 children 3295 29.9
Above 4 children 4617 41.9

Number of children 5 or under Below 2 children 7862 71.4
2 - 4 children 2574 23.1
Above 4 children 577 5.2

Respondent level of education No education 2768 25.1
Primary education 7061 64.1
Secondary or higher 1184 10.8

Mother currently working No 1315 11.9
Yes 9689 88
missing 9 0.1

Total 11013 100

the table, 51.4% of the respondents reported that they had access to safe water. Most

of the respondent 73.9% reported that their houses consisted of unfinished floor. This

variable had three values that were missing.

Table 2.4: Household environment characteristic distribution of the respondents.
Covariates Characteristics Frequency Percent (%)
Source of drinking water Safe water 5665 51.4

Not safe water 5348 48.6
Main floor Unfinished 8133 73.9

Finished 2877 26.1
missing 3 0

Total 11013 100

2.4 Chi-Square Test of Association

It is important to find out if there is an association between the response variable and

the categorical predictor variables with the use of a cross-tabulation techniques. From
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Table 2.5, Table 2.7 and Table 2.6, we deduce that the variables with p-values less than

5% level of significant were significantly associated with the response variable. Table 2.5,

Table 2.7 and Table 2.6 shows the proportion of each category of the covariates and

results of chi-square of association. The proportion 47.29% of child dying is higher for

respondents with first birth compared to the respondents with two or more births. The

proportion 73.2% of children dying was higher for respondents aged from 20 to 34. We

observed that mothers from rural areas had a higher proportion of children dying than

the mother in the urban area. The child from a mother who does not breastfeed had a

higher chance of dying and the child from a mother with less than two children under the

age five in a household had a higher proportion 85.59% of dying. The child from a mother

who was currently working had the higher proportion 85.14% than the child born from

a mother who was not working. In summary we can say that Table 2.5, Table 2.7 and

Table 2.6 shows that birth order, child sex, place of residence, marital status, wealth index,

respondent’s age, number of child ever born, number of children five or less, respondent

education level, HIV status of the mother, age of household head, and number of living

children are all univariately significantly associated with child survival status.
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Table 2.5: Bivariate analysis of associations with under-five mortality scio-demographic
characteristics.

Socio-demographic characteristics
Covariate Sample Size DF proportion Chi-square p-value

Birth order 11013 2 19.426 0.0001
First births 0.4729
2 - 4 births 0.2635
More than 4 births 0.2635
HIV status of the mother 10474 1 23.933 0.0001
HIV negative 0.9071
HIV positive 0.0929
Sex of child 11013 1 2.299 0.129
Male 0.5383
Female 0.4617
Age of House hold head 11013 2 6.685 0.02
Less than 21 years 0.0135
21-34 years 0.3423
More than 34 years 0.6441
Current breast feeding 11013 1 109.247 0.0001
Yes 0.3108
No 0.6892
Current marital status 11013 1 14.547 0.0001
Married 0.6847
Not married 0.3153
Respondents age 11013 2 12.687 0.0001
Less than 20 years 0.0586
20 - 34 years 0.732
35 and older 0.2095
Place of residence 11013 1 8.039 0.005
Rural 0.7973
Urban 0.2027

Table 2.6: Bivariate analysis of associations with under-five mortality Household envi-
ronment characteristics.

Covariate Sample Size DF proportion Chi-square p-value
Household environment characteristics

Main floor 11010 2 0.98 0.322
Unfinished 0.7185
finished 0.2815
Source of drinking water 11013 1 2.005 0.1570
Safe water 0.5473
Not Safe water 0.4527
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Table 2.7: Bivariate analysis of associations with under-five mortality socio-economic
characteristics.

Covariate Sample Size DF proportion Chi-square p-value
Socio-economic characteristics

Wealth index 11013 2 8.285 0.016
Poor 0.4617
Middle 0.1577
Rich 0.3851
Number of Child ever born 11013 2 7.984 0.029
Less than 2 children 0.3018
2 - 4 children 0.3423
More than 4 children 0.3559
Number of children 5 or under 11013 2 45.66 0.0001
Less than 2 children 0.8559
2 - 4 children 0.1171
More than 4 children 0.027
Mother currently working 11013 1 3.735 0.053
No 0.1486
Yes 0.8514
Respondent level of education 11013 2 3.349 0.082
No education 0.2275
Primary education 0.6419
Secondary and higher 0.1306
Number of living children 11013 2 153.251 0.0001
Less than 2 children 0.5812
2 - 4 children 0.2568
More than 4 children 0.1622

2.5 Conclusion

Exploratory data analysis plays an important role to help get a preliminary understanding

of trend and patterns before using model based approaches. According to frequency

tables, it has been observed that most of the respondents were aged from 20 to 34 years

and also by those with primary education. There were slightly more males than female.

The sample had 84.5% of the respondents from rural areas. There were eleven out of

sixteen factors found to be associated with a child survival among them we have: birth

order number, marital status, current breastfeeding, HIV status of a mother, place of

residence, the age of the respondent, number of children 5 or under in a household and

number of a child ever born.
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Chapter 3

Generalized Linear Models

3.1 Introduction

In Chapter 1 we stated that the main objective of this study is to identify factors as-

sociated with the under-five mortality using THMIS data in Tanzania. The outcome is

dichotomous (child alive or child not alive) which can be assumed to follow the Bernoulli

distribution which is a member of the exponential family. In order to make valid sta-

tistical inference all covariates which potentially affect the child survival status will be

assumed to have fixed effects thus the Generalized Linear Model can be fitted to the data

of interest. Firstly, we review the theory of the Generalized Linear Models.

3.2 Review of the Generalized Linear Models

The Generalized Linear Model (GLM) incorporates covariates in order to explain the

dependence of an outcome variable on measured covariates values. The outcome variable

is assumed to come from an exponential family of distribution. The GLM is also used to

accommodate non-normal responses and provide a unified approach to modeling all type

of response variable (Dobson and Barnett, 2008; McCullagh and Nelder, 1989; Olsson,

2002). One can describe the GLM as a unified mathematical way of describing the

relationships between a response variable and a set of covariates. More specifically the
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generalized linear model is an extension of the linear model is given by.

Y = Xβ + ε (3.1)

where, X is the design matrix of covariates, β is the vector of coefficients and ε is the

vector of error terms. Let η = Xβ, here η is the linear predictor part of the model. Since a

generalized linear model extends the general linear model by relaxing the assumption that

dependent variable y is (independent) normally distributed with mean zero and constant

variance, this allows the distribution to be part of the exponential family of distributions

(Olsson, 2002). Instead of modeling the mean directly, the model is specified in term of

some function g(µ), so the model becomes

g(µ) = η = Xβ (3.2)

where, g(.) is the link function. We now look at the key properties of the exponential

family of distributions.

3.2.1 Exponential Family of Distributions

The exponential family is known as a general class of distribution that includes the

well known normal distribution as a special case (Olsson, 2002). One can show that a

distribution belongs to the exponential family of distribution provided the probability

distribution function (pdf) of an observation yi(i = 1, 2, . . . , n) from the distribution can

be expressed as

f(yi, θi, φ) = exp

(
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

)
(3.3)

where, a(φ) and b(θi) are known functions and c(yi, φ) is some function of yi and φ.

The parameter θi is called the canonical parameter, φ is the dispersion parameter. The

mean, µ = E(y) = b
′
(θ), and the variance, var(y) = φb

′′
(θ), can be obtained as shown in

Appendix B. We next study the components of the Generalized Linear Models (GLMs)

and then consider parameter estimation for the model.
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3.2.2 Components of Generalized Linear Models

GLM is comprised of three components namely, random component, link function and

systematic component. The random component refers to the probability distribution

of the response variable Y. The distribution may include the normal distribution and

we say the random component is normally distributed. This leads us to the ordinary

regression model. When the outcome observations have the value “0” and “1” then the

most plausible distribution for a random variable is the Bernoulli distribution. The link

function is the logit link. This component leads to the application of the logistic regression

models. The systematic component: is a function of covariates x1, x2, x3, . . . , xp that leads

to the linear predictor η given by η = α +
∑n

j=1 xjβj.

3.2.3 Parameter Estimation

Maximum Likelihood can be used as a theoretical basis for the parameter estimation in

generalized linear models. The likelihood function is given by

L(y; θ) =
n∏

i=i

exp

(
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

)

= exp

(
n∑

i=1

(
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

))
.

(3.4)

The log-likelihood function is given by

l(y, θ) = log L(y, θ) =
n∑

i=i

(
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

)
. (3.5)

The parameters are obtained by taking the derivatives of the log-likelihood function with

respect to βj(j = 0, 1, 2 . . . , p) and equating to zero then solve the equations simultane-

ously. Here p is the number of parameters. We obtain the score vector function given by

(Uβ1 , Uβ2 , Uβ3 , . . . , Uβp)
′
where Uβj

is given by

Uβj
=

∂l

∂βj

=
n∑

i=1

∂li
∂βj

.
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Using the chain rule we have

∂li
∂βj

=
∂li
∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj

.

The first factor is given by ∂li
∂θi

= yi−b
′
(θi)

ai(φ)
= yi−µi

ai(φ)
since µi = E(yi) = b

′
i(θi). The second

factor is ∂θi

∂µi
= 1

b′′ (θi)
= ai(φ)

var(yi)
. The third factor depends on the link function ∂µi

∂ηi
. The

fourth factor is ∂ηi

∂βj
= xij where xij is the jth element of the covariates vector xi for the

ith observation. Substituting the factors for ∂li
∂θi

, ∂θi

∂µi
,∂µi

∂ηi
and ∂ηi

∂βj
.

∂l

∂βj

=
yi − µi

var(yi)
b

′′
(θi)xij =

yi − µi

ai(φ)
xij.

The system of equations to be solved for β
′
js is given by the following

∂l

∂βj

=
n∑

i=1

(
yi − µi

ai(φ)
xij

)
= 0. (3.6)

The system of equations can be solved iteratively using either Fisher’s scoring (FS) or

Newton-Raphson (NR) algorithms for maximum likelihood estimation (McCullagh and

Nelder, 1989; Olsson, 2002). These algorithms are available in statistical software such as

SAS and STATA. Many packages, including SAS, use Fisher scoring algorithm as a default

iterative technique. Using this FS method is equivalent to using iterative reweighted

least squares (IWLS). Both NR and FS gives similar parameter estimates. However,

estimated covariance matrix parameters could be slightly different. This is due to the

fact that FS is based on the expected information matrix while NR is based on the

observed information matrix. In the case of the logistic regression model, both expected

and observed information matrices yield identical covariance matrices for both models.

The parameter estimates are used to assess the model adequacy and its fit. In the next

section, we consider methods for model selection and diagnostics.
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3.3 Model Selection and Diagnostics

3.3.1 Model Selection

Akaike’s Information Criterion

One way to evaluate a model is to use the Information Criterion (IC). This criterion at-

tempts to quantify how well the model has predicted the data. The Akaike’s Information

Criterion(AIC) is a useful statistic for comparing the relative fit of different models. This

statistic was proposed by Akaike (1974) and is given by

AIC = −2logLikelihood + 2k (3.7)

where, k is the number of parameters in the model. This method penalizes the log-

likelihood for the number of parameters estimated (Akaike, 1974). A model that mini-

mizes the AIC is preferred. The method is particularly useful when comparing non-nested

models.

Schwarz Criterion

An alternative to AIC for also comparing non-nested models is Schwarz Criterion (SC)

also known as Bayesian Information Criterion (BIC) and was proposed by Schwarz et al.

(1978). SC is given by

SC = −2logLikelihood + k log (n). (3.8)

Here, n is the sample size and k is the number of parameters estimated. SC produces more

severe penalization on the likelihood for estimating more parameters (Allison, 2012). The

model chosen is the one which leads to the minimum SC. While doing a model selection,

we can narrow down the options before comparing models. This can be done by building

the regression model step by step using selection procedure of variables that enters the

model. These procedures are; forward, backward and stepwise selection. Forward selec-
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tion starts with the null model and enters one covariate at a time, that is found to be

significant at some level of significance(α) until all significant variables are added to the

model. Backward selection begins with the model that contains all covariates and drops

one at a time, that is, insignificant at some level of significance α. This is done until all

non-significant variables are removed from the model. The stepwise selection works in the

same way as the forward selection procedure. However, the advantage of stepwise over

forward selection is that variables already in the model are considered to be excluded in

the model each time the new covariate is added in the model. In the case where there

are many covariates the stepwise procedure is a preferable since it minimizes the chance

of keeping redundant variables in the model, and leaving out some important ones.

Choice of Measure of Fit

The deviance and Pearson chi-square tests provide large sample tests of the model fit.

These tests are useful depending on the kind of data that is being analyzed. Deviance has

an advantage over Pearson chi-square test since it is a likelihood-based test that is useful

for comparing nested models. AIC is normally used for comparing competing models

without making any inference. The combination of AIC and SC can be used to select the

model.

3.3.2 Model Checking

Goodness-of-fit Test

The deviance and the Pearson Chi-square tests are the statistics that could be used for

assessing the goodness of fit of the model.

Deviance

In the Generalized Linear Models the fit of the model can be assessed through the de-

viance. The deviance can also be used to compare the models that are nested. In order

to define the deviance we let l(µ̂, φ, y) be the log-likelihood of the reduced model at the
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maximum likelihood estimate and also let l(y, φ, y) be the log-likelihood estimate of the

full or saturated model. The deviance is then given by

Deviance = 2(l(y, φ, y)− l(µ̂, φ, y)). (3.9)

For any distribution that has a scale parameter φ the scaled deviance is given by

D∗ =
Deviance

φ
.

The Binomial and Poisson distribution has deviance and scaled deviance that are identical

because φ = 1 in both distributions. Given that the model is true, as the sample size

increase deviance will asymptotically tend towards the chi-square distribution. Suppose

that one model provides a deviance D1 with degree of freedom (df1) and another model

provides a deviance D2 with degree of freedom (df2). In order to compare two models,

we need to compute the differences between deviances D1 − D2 and also the degrees of

freedom df1 − df2. This will results in a chi-square distribution. This kind of test works

in comparing two models given those parameters of the first model corresponding to D1

are a subset of the parameters in the second model corresponding to D2. We now look

at the other statistic that can be used to assess the fit of the model.

The Generalized Pearson Chi-square Statistics

The alternative to deviance for testing and comparing models is the generalized Pearson

chi-square statistic. The Pearson chi-square the statistic is defined as

χ2

Pearson =
n∑

i=1

(yi − µ̂i)
2

v̂ar(µ̂i)
(3.10)

where v̂ar(µ̂i) is the estimated variance function. The deviance is often preferred over

the Pearson chi-square statistic since maximum likelihood estimation in the Generalized

linear Models minimizes the deviance while the Pearson does not have the necessary

additive properties like the deviance for comparing models.
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3.4 Logistic Regression Model

The logistic regression is the most commonly used statistical modeling technique that

describes the relationship of several covariates (X’s) to a dichotomous response variable.

The goal of the logistic regression model with multiple predictors is the same as that of

the ordinary multiple linear regression models; in a way that we attempt to construct a

model to describe the relationship between a response and one or more predictor variables

(David and Mitchel, 1994). In this we study focus on the logistic regression model with

more than one predictor variable known as multiple logistic regressions.

3.4.1 Model

Consider the p explanatory/predictor variables of interest denoted by the vector x =

(x1, x2, x3, . . . , xp) for the ith individual. Let the probability that the event, is present,

be denoted by P (Yi = 1) = πi for the ith individual and let the event being not present

be denoted by P (Yi = 0) = 1 − πi. The logistic analysis does not require assumptions

such as linearity and normality of the dependent variable and residuals. This method is

based on the log transformation of the odds and is given by the

logit(πi) = log

(
πi

1− πi

)
= β0 + β1x1i + · · ·+ βpxpi. (3.11)

Thus alternative formula that refers directly to the probability of the outcome of interest

is as follow

πi =
exp(β0 + β1x1i + · · ·+ βpxpi)

1 + exp(β0 + β1x1i + · · ·+ βpxpi)
. (3.12)

which is the probability of the event occurring, and the probability of the event is given

by 1 − πi. The ratio of the odds of the event occurring in one group to the odds of it

occurring in the other group is known as an odds ratio. The purpose of logistic regression

in this study is to find the parameters β0, β1, . . . , βp that best fit the data relating child

survival to a number of covariates using 2011-2012 Tanzania HIV/AIDS and Malaria

Indicator Survey data. The logistic regression enables researchers to overcome many of
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the linear regression assumptions that are too restrictive. The following assumptions are

relaxed under logistic regression.

• The linear relationship between dependent and independent variables is not as-

sumed.

• The dependent variable do not need to be normally distributed.

• The dependent variables must not have homoscedastic variance (variance do not

have to be the same within categories).

• Also normally distributed error terms are not assumed.

• Response variable is required to be binary.

We now look at how the parameters can be estimated using the maximum likelihood.

3.4.2 Parameter Estimation

In this study child survival status which is the dependent (response) variable Yi(i =

1, 2, . . . , n) is dichotomous and the underlying probability distribution is Bernoulli. This

can be expressed in the form Yi ∼ Benoulli(πi) and the p predictor variables (Czepiel,

2002; Lemeshow and Hosmer, 2000; Wood, 2006). In order to obtain the maximum

likelihood estimates. Let

Yi = yi | x1i, x2i, . . . , xpi ∼ Benoulli(πi), i = 1, 2, . . . , n,

hence probability mass function (PMF) for a Bernoulli distribution is:

P (Yi = yi | x1i, x2i, . . . , xpi) = πyi

i (1− πi)
1−yi , i = 1, 2, . . . , n. (3.13)

The likelihood of observing values of the response variable for all the observations is given

by

L = Pr(y1, y2, y3, y4, . . . , yn).
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Assuming that observations are independent, the likelihood function is given by the prod-

uct of the individual probabilities

L = Pr(y1)Pr(y2) . . . P r(yn) =
n∏

i=1

Pr(yi).

Since we know that the responses y
′
is are from Bernoulli so the likelihood function is

given by

L(β | Y) =
n∏

i=1

πyi

i (1− πi)
1−yi . (3.14)

If we Substitute for π
′
is in terms of covariates then the Likelihood function becomes

L(β | Y) =
n∏

i=1

(
exp(Xiβ

′)

1 + (exp(Xiβ′))

)yi
(

1

1 + (exp(Xiβ′))

)1−yi

(3.15)

where β = (β0, β1, β2 . . . , βp)
′
and Xi is the matrix of covariates with first column contain-

ing ones. It is not easy to differentiate the likelihood function thus one needs to simplify

the likelihood function further by taking its log. Since the logarithm is a monotonic

function, any maximum of the likelihood function will be the maximum of the log likeli-

hood function (Czepiel, 2002). Thus, taking the natural log we obtain the log likelihood

expressed as

l(β | Y ) =
n∑

i=1

yi log(πi) +
n∑

i=1

(1− yi) log(1− πi). (3.16)

In order to obtain the parameter estimates, set the first derivative of log-likelihood with

respect to each β equal to zero, so the maximum likelihood estimate for β can be found

by setting each of the K + 1 equation obtained to zero, and solving for each βk (Czepiel,

2002). Each of such solutions, if any exists, specifies a critical point either a maximum

or minimum. The critical point will be the maximum if the matrix of second derivatives

is negative definite, which means that every element on the diagonal of the matrix is less

than zero. The other useful property of this matrix is that it forms variance-covariance

matrix of the parameter estimates. Differentiating each of the K + 1 equation for the

second time with respect to each elements of β, denoted by βk leads to the variance-

covariance matrix (Czepiel, 2002).
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3.4.3 Newton-Raphson Method

After setting the K + 1 equations from the first derivative of log-likelihood equate these

equations to zero, it results into a system of non-linear equations with each K+1 unknown

variables. The solution to these equations is the vector with elements β̂k. After verifying

that the matrix of second partial derivatives is negative definite and that the solution is

global maximum instead of a local maximum, then it can be concluded that this vector

contains the parameter estimates for which observed data would have the highest proba-

bility of occurrence (Czepiel, 2002). However, solving a system of non-linear equation is

not easy compared to a system of linear equation. The alternative is to numerically esti-

mate the parameters using iterative methods. The popular method for solving non-linear

equation is Newton-Raphson method (Newton’s method). Newton-Raphson begins with

the initial guess of the solution and uses first two terms of Taylor polynomial evaluated at

an initial guess to generate other estimates that are close to the solution. This iterative

method process continues until converges to the actual solution (Czepiel, 2002; Moeti,

2010).

3.5 Logistic Model Selection and Checking

3.5.1 Model Selection

Variable Selection

Before fitting the model one has to check the multicollinearity among variables which oc-

cur when there is a strong relationship among covariates (Allison, 2012). Multicollinearity

does not bias the coefficients but results to unstable coefficients. Good estimates are not

guaranteed if two or more variables are highly correlated and may result in large standard

errors which lead to invalid statistical inference. Since multicollinearity is the property

of predictor variables one can examine it by diagnostic procedure PROC REG with op-

tion such as TOL and VIF (Variance Inflation Factor) for logistic regression. The same

selection criteria stated in the above subsection 3.3.1 still applies.
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Testing Hypothesis About β

The method for testing the significance of the parameter estimates in logistic regression

is similar to the approach used for linear regression, but logistic regression uses likelihood

function for a binary outcome variable. Once the model is fitted one can test for the

significance of each parameter. The distribution of β̂ in Appendix B is β ∼ MVN(β, I−1)

and can be used to test for the significance of β̂j(j = 1, 2, . . . , p) in the model. The Wald

Chi-square is given by

χ2

wald =

(
β̂j√
V̂j

)2

(3.17)

where Vj’s are the diagonal elements of I−1. One can use the chi-square distribution

with 1 degree of freedom and compare it with Wald Chi-square statistic. The hypothesis

being tested here is H0 : β = 0 against the alternative Ha : β 6= 0. If the Wald Chi-

square statistic is greater than the table value of chi-square, H0 is rejected, that means

the parameter is significantly different from zero.

Odds Ratio

Let us consider a dichotomous response variable which denotes the occurrence or non-

occurrence of an event. Suppose there is one covariate with two categories. The odds

ratio is then defined as the ratio of the odds for those with risk factor (X = 1) to the

odds for those without the risk factor (X = 0) (Czepiel, 2002). The log of the odds ratio

is given by

log(ÔR) = log(OR(x = 1, x = 0)) = logit(x = 1)− logit(x = 0),

= (β̂0 + 1× β̂1)− (β̂0 + 0× β̂1),

= β̂1.

(3.18)

The odds ratio can then be computed by exponentiating the difference of the logit between

any two population profile and odds ratio is given by

OR = exp(β̂1). (3.19)
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The parameter β1 associated with X represents the change in the log odds from X = 0 to

X = 1. The odds ratio indicates how the odds of the event changes as X change from 0 to

1. suppose we have a continuous variable called X then we can say that as X increases by

one unit, the odds of risk factor increase by exp(β̂1) . The confidence interval is discussed

in the next subsection.

Confidence Interval for the Odds Ratio

Most of the social science journals often report the point estimates and hypothesis test

for coefficients. However, confidence intervals provide a better picture of the sampling

variability of the estimates (Allison, 2012). Again the confidence interval for slope and

intercept are based on Wald tests. The 100(1− α
2
)% confidence interval for the intercept

is given by

β̂0 ± Z1−α
2

√
V0 (3.20)

where
√

V0 is the standard error of β0. The 100(1− α
2
)% confidence interval for intercept

is given by

β̂j ± Z1−α
2

√
Vj (3.21)

where
√

Vj is the standard error of βj. Here, Z1−α
2

is the upper 100(1− α
2
)% value from

the standard normal distribution. Since these confidence intervals are on the logit scale

they have to be transformed by exponentiation in order to get corresponding 100(1− α
2
)%

exp (β̂j ± Z1−α
2

√
Vj). (3.22)

This is the confidence interval for odds ratio associated with βj where j = 1, 2, 3, . . . , p.

In the next subsection model checking is discussed.

3.5.2 Model Checking

The Hosmer-Lemeshow goodness-of-fit(GOF) statistic χ2
HL is obtained by computing the

Pearson Chi-square statistic from the g × 2 table of observed and estimated expected
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frequencies. Where g is the number of groups. The Hosmer-Lemeshow statistics is given

by

χ2
HL =

g∑
k=1

(Ok − n
′

kπk)
2

n
′
kπk(1− πk)

(3.23)

where,n
′

k is the total number frequency of subjects in the kth group, Ok is the total fre-

quency of the event outcomes in the kth group and πk is the average estimated predicted

probability of an event outcome for kth group. The Hosmer-Lemeshow statistics is com-

pared to the Chi-square distribution with (n− g) degrees of freedom, where in SAS the

value n can be specified using lack of fit option in the model statement. The default value

is n = 2 in SAS. The null hypothesis being tested here is H0 : a model is a good fit against

the alternative Ha : the model is not a good fit. The large value of Hosmer-Lemeshow

statistic (p-value less than 0.05) suggests a lack of fit of the model. Below the statistics

for measuring the predictive power is discussed.

3.5.3 Logistic Regression Diagnostics

Influential Observations

We now focus on detecting potential observations which have a significant impact on the

model. Under the ordinary least square regression, we have different types of residuals

and influence measure which help us understand the behavior of each observation in the

model, such observations turn to be far away from the rest observations. If the observation

has too much leverage on the regression line we can view it as an observation that has a

significant impact on the model (Hosmer and Lemeshow, 2004). The same methods have

been developed for logistic regression.

Leverage of an Observation

This is another measure where the observation with an extreme value on the predictor

variable is known as a point with high leverage (Hosmer and Lemeshow, 2004). The

leverage is defined as a measure of how far an independent variable deviates from its

corresponding mean. The large values suggest covariate patterns far from the average co-
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variate pattern which can have a larger effect on the fitted model even if the corresponding

residuals are small (Hosmer and Lemeshow, 2004).

Standardized Pearson Residual

The Standardized Pearson residual is defined to be the standardized difference between

the observed frequency and predicted frequency. This residuals measures the relative

deviations between observed and fitted values (this applies for logistic regression only)

(Hosmer and Lemeshow, 2004). The standardized Pearson residual is given by

rstudent
i =

(yi − π̂i)√
π̂i(1− π̂i)(1− hi)

(3.24)

where hi is the ith for subject leverage, π̂i is the estimated probability that yi = 1 subject

i.

Deviance Residual

This is another type of residual that measures the disagreement between the maxima of

the observed and fitted log-likelihood functions. The logistic regression uses maximum

likelihood principle, where its objective is to minimize the sum of deviance residuals. This

residual is similar to the raw residual in ordinary least square regression (Lemeshow and

Hosmer, 2000; Hosmer and Lemeshow, 2004). The objective of the ordinary least square

regression is to minimize the sum of square residual. The deviance residual is given by

di =
√

2 | ln(π̂i) |, if yi = 1,

di =
√

2 | ln(1− π̂i) |, if yi = 0

where di is the individual component known as the deviance residual.
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Predictive Accuracy/Ability of the Model

In order to check for the predictive accuracy SAS procedure PROC LOGISTIC produces

other model statistics namely, Somer’s D, Gamma, C, and Tau-a. All these statistic

range between 0 and 1. In all, larger values correspond to a strong association between

predicted and observed values. These measures of association are given by

Tau-a =
C −D

N
,

Gamma =
C −D

C + D
,

Somer’s D =
C −D

C + D + T
,

C = 0.5(1 + Somer’s D).

The C statistic is the proportion of observation pairs with different observed outcomes

for which the model correctly predicts a higher probability for observations with the

event outcome than the probability for non-event observation. A value of one means

that the model assigns the higher probability to all observations with the event outcome

compared to non-event observations. We use concordant and discordant pairs to describe

the relationship between pairs of observations. The pair said to be Concordant (C) if the

subject ranked higher on predictor variable X also ranked higher on response variable Y.

The pair is said to be Discordant if the subject ranking higher on predictor variable X

ranks lower on the response variable Y. The pair is said to be Tied (T) if subjects have

the same classification on predictor and response variable. The total number of pairs is

given by N. The value of C correspond to the receiver operating characteristics (ROC)

curve in the case of the binary response which is defined below (Šimundić, 2008).

Area Under the Receiver Operating Characteristics

The specificity and sensitivity rely on the cutoff point to classify the result as positive

(Lemeshow and Hosmer, 2000). To plot the ROC curve, one needs to plot sensitivity
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versus 1-specificity. Sensitivity measures the proportion of correctly classified positive

outcome or event of interest (death) and specificity measures the proportion of correctly

classified event free outcome (no death). ROC provides a complete description of clas-

sification accuracy and can be used as a graphical display of the prediction accuracy of

the model (Vittinghoff et al., 2011; Šimundić, 2008). The area under the curve (AUC) is

between 0 and 1 as shown in figure 3.1. The ROC gives the measure of model ability to

classify between subjects which have experienced the outcome versus those who did not.

Figure 3.1: Receiver Operating Characteristic (ROC) curve

Source: Šimundić (2008).

The Area under the curve (AUC) is known as the global measure of diagnostic accuracy.

This area measures the prediction accuracy of the model. AUC does not tell us anything

about individual parameters (Šimundić, 2008). If the area under the curve is large, the

better the diagnostic accuracy of the test. Suppose three logistic models were fitted, and

model 1 produced AUC of 0.5, model 2 produced AUC of 0.9 also model 3 produced

an AUC of 0.7. One can classify model 2 as the better model since it has an excellent

diagnostic accuracy thus have a better accuracy. An AUC of 0.5 is not good because the

test cannot discriminate between correctly classified positive outcome and those falsely

classified as positive. One can classify the relationship between the AUC and diagnostic

accuracy as shown in the Table 3.1 below.
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Table 3.1: Relationship between area under the curve and diagnostic accuracy

area diagnostic accuracy
0.9 - 1.0 excellent
0.8 - 0.9 very good
0.7 - 0.8 good
0.6 - 0.7 sufficient
0.5 - 0.6 bad
< 0.5 test not useful

Source:Šimundić (2008).

3.6 Fitting the Logistic Regression Model

The model was fitted using PROC LOGISTIC in SAS; first, univariate models were fitted

to identify potential candidate variables associated with the outcome without considering

the combined effects of covariates on the response. The multiple logistic models were then

fitted with all variables that were identified as significant in the univariate analysis. The

goodness-of-fit was tested using the Hosmer-Lemeshow test and the predictive accuracy of

the model was assessed through the ROC. The coefficient and odds ratios were interpreted

and the limitations of the logistic regression outlined in this section.

3.6.1 Univariate Logistic Regression Model

Table 3.2 displays parameter estimates, Standard errors, p-values and odds ratios for

the univariate models. The results are shown in this table confirm some of the bivariate

results in section 2.4 in Table ??. The variables that were found to be significant had

p-values which were less than 0.05.

The effect of not breastfeeding was found to be positively associated with under-five child

mortality ( p-value=0.0001). The corresponding odds ratio was 1.686 (with 95% CI:

1.5189 ; 1.8723). The odds of death for a child from a mother who does not breastfeed

were 1.686 times the odds of death for a child from a mother who breastfeed. The

effect of a mother being married was found to be negatively associated with under-five

child mortality (p-value=0.0002). The corresponding odds ratio was 0.817 (with 95%

CI: 0.7359 ; 0.9074). The odds of death for a child from a mother that is married were
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Table 3.2: Univariate coefficients, standard errors, p-values and odds ratios.
Effects Estimate Standard Errors P-value Odds Ratio 95% confidence limits

lower Upper
Sex of a child (ref. Male)
Intercept -3.1768 0.0499 0.0001
Female -0.0684 0.0499 0.1709 0.934 -0.1662 1.0298
Age of household head (ref. over 34 years
Intercept -2.9053 0.1462 0.0001
21 to 34 years -0.1297 0.1542 0.4 0.878 0.6503 1.1883
less than 20 years 0.4781 0.286 0.0946 1.613 0.9235 2.8254
Currently breastfeeding (ref. Yes)
Intercept -3.2398 0.0535 0.0001
No 0.5223 0.0535 0.0001 1.686 1.5189 1.8723
Marital status (ref. Unmarried)
Intercept -3.0843 0.0536 0.0001
Married -0.2022 0.0536 0.0002 0.817 0.7359 0.9074
Mother’s HIV status (ref. HIV-Negative)
Intercept -2.8119 0.0876 0.0001
HIV-Positive 0.4163 0.0876 0.0001 1.516 1.2782 1.8004
Birth order number (ref. Less than 2 births)
Intercept -3.2046 0.0517 0.0001
2 to 4 births -0.0169 0.0767 0.8256 0.983 0.8467 1.1427
above 4 births -0.2345 0.0756 0.0019 0.791 0.6825 0.9173
Number of children ever born (ref. less than 2 children)
Intercept -3.1601 0.05 0.0001
2 to 4 children 0.1011 0.0706 0.1523 1.106 0.9641 1.2706
more than 4 children -0.1666 0.069 0.0158 0.847 0.7400 0.9691
Mother’s age (ref. over 34 years)
Intercept -3.1506 0.0797 0.0001
Between 20-34 0.0572 0.0866 0.5088 1.059 0.8943 1.2547
less than 20 years 0.2558 0.1429 0.0735 1.292 0.9774 1.7090
Wealth index (ref. rich
Intercept -3.2302 0.0553 0.0001
middle -0.2571 0.0909 0.0047 0.773 0.6477 0.9241
poor 0.1114 0.0698 0.1104 1.118 0.9756 1.2817
Education Level (ref. higher education)
Intercept -3.1455 0.0612 0.0001
No education -0.1717 0.0868 0.048 0.842 0.7111 0.9984
Primary education -0.0186 0.0708 0.7933 0.982 0.8550 1.1277
Number of children 5 or under (ref. less than 2 children)
Intercept -3.5683 0.11 0.0001
2 to 4 children -0.3309 0.138 0.0165 0.718 0.5488 0.9414
more than 4 children -0.2567 0.2012 0.2021 0.774 0.5225 1.1476
Working status of a mother (ref. Yes)
Intercept -3.0793 0.0705 0.0001
No 0.1292 0.0705 0.0669 1.138 0.9918 1.3065
Number of children living (ref. Less than 2 children)
Intercept -3.3052 0.0562 0.0001
More than 4 children -0.631 0.0888 0.0001 0.532 0.4475 0.6332
2 to 4 children -0.1241 0.0802 0.1218 0.883 0.7554 1.0336
Type of place of residence (ref. Urban)
Intercept -3.0587 0.0623 0.0001
Rural -0.1782 0.0623 0.0042 0.837 0.7411 0.9455
Main floor material (ref. Unfinished)
Intercept -3.1505 0.0556 0.0001
Finished 0.0513 0.0556 0.3559 1.053 0.9445 1.1738
Source of drinking water (ref. unsafe water)
Intercept -3.1727 0.0498 0.0001
Safe water 0.0374 0.0498 0.4528 1.038 0.9420 1.1445
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0.817 times the odds of death for a child from a mother who is not married. The effect

of mothers HIV status (positive) was found to be positively associated with under-five

child mortality (p-value=0.0001). The corresponding odds ratio was 1.516 (with 95%

CI: 1.2782 ; 1.8004). The odds of death for a child from a mother who is HIV-positive

were 1.516 times the odds of death for a child from a mother who is HIV-negative. The

effect of childbirth order number above four was found to be negatively associated with

under-five child mortality (p-value=0.0019). The corresponding odds ratio was 0.791

(with 95% CI: 0.6825 ; 0.9173). The odds of death for a child whose birth order number

is above four were 0.791 times the odds of death for a child whose birth order number

is less than two. The effect of a number of children ever born that is above four was

found to be negatively associated with under-five child mortality (p-value=0.0158). The

corresponding odds ratio was 0.847 (with 95% CI: 0.7400 ; 0.9691). The odds of death for

a child from a mother that gave birth to more the four children were 0.847 times the odds

of death for a child from a mother who gave birth to less than two children. The effect of

a mother with no education was found to be negatively associated with under-five child

mortality (p-value=0.048). The corresponding odds ratio was 0.842 (with 95% CI: 0.7111

; 0.9984). The odds of death for a child from a mother with no education were 0.842

times the odds of death for a child from a mother with higher education level. The effect

of a number of living children that is above four was found to be negatively associated

with under-five child mortality (p-value=0.0001). The corresponding odds ratio was 0.532

(with 95% CI: 0.4475 ;0.6332). The odds of death for a child from a mother with more

than four children alive were 0.0.532 times the odds of death for a child from a mother

who has less than two children alive. The effect of type of place of residence (rural area)

was found to be negatively associated with under-five child mortality (p-value=0.0042).

The corresponding odds ratio was 0.837 (with 95% CI: 0.7411 ; 0.9455).
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3.6.2 Multiple Logistic Regression Model

Model Selection

Stepwise, forward and backward selection procedures were used to select important vari-

ables associated with the outcome variable (survival status) in Tanzania. All three pro-

cedures provided similar variables/factors that were identified to be important. In the

model, two-way interaction effects found to be significant was included. Table 3.3 shows

the model fit statistics that is used in comparing two models.

Table 3.3: Model fit statistics for logit model.

Model fit statistics
AIC 3181.287
BIC 3304.65
DF 17

Model Checking

Multicollinearity was checked for the variables in the model and two variables that are,

number children alive and a number of children ever born were found to have the Tolerance

less than 20% or variance inflation factor above five (see Table presented in Appendix

C). The variables were the number of children ever born and a number of children alive.

This suggests that these variables contain similar information hence one can be dropped

from the model. To test for the goodness of fit of the model one can use the Hosmer-

Lemeshow test using 10 as the number of groups. The goodness-of-fit Chi-square statistics

for Hosmer and Lemeshow is 2.34 with 8 degrees of freedom and the corresponding p-

value is 0.9686 as shown in Table 3.4. This indicates that there is insufficient evidence

to claim that the model does not fit the data adequately thus one can conclude that the

model fitted the data adequately , that is, predicted probabilities are approximately the

same as the observed values.
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Table 3.4: Hosmer and Lemeshow Goodness-of-fit test.

Goodness-of-fit test
Number of observations 11013
Number of groups 10
Hosmer-Lemeshow Chi-Square 2.34
P-value 0.9860

3.6.3 Prediction Accuracy of the Model

It is important to check how much the predicted probability agrees with outcomes. The

main objective is to have a model which maximizes the chance and sensitivity of iden-

tifying individuals that need justified intervention (Moeti, 2010). This means that one

is interested in reducing the proportion of individuals that are classified incorrectly as

having outcome or failure. One can validate the model by checking the prediction ac-

curacy, in which this could be done by checking how often the model predicts correctly

predicts the outcome. Table 3.5 shows the association of predicted probabilities and ob-

served outcomes with the area under the curve being c=0.747 and a concordant rate of

72.5 which tells us how good the model is for separating the 0’s and 1’s with a chosen

model. Figure 3.2 shows the ROC curve of the fitted model and the area under the curve

C=0.747 which implies that 75% of the probabilities are predicted correctly, which is a

good predictive accuracy. The model correctly assigned higher probability to child status

(not alive). The measures Somer’s D, Gamma, and Tau-a are the summaries of the table

of concordant and discordant pairs. These measures are most likely to lie between 0

and 1 where the large values indicate better predictive ability of the model. These can

be viewed as the measures of strength and direction of the relationship between pairs.

The value for Gamma is 0.520 which suggest that there is no perfect association. It is

interpreted as 52% fewer errors are made in prediction by utilizing the estimated proba-

bilities than by a chance alone. One of the problems with this statistic is the tendency to

overstate the strength of association between probabilities and outcome. The value for

Somer’s D is 0.496. This shows that not all pairs are concordant and one may use it to

compare model.
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Figure 3.2: Receiver Operating Characteristic (ROC) curve for logit model.

Table 3.5: Association of predicted probabilities and observed outcome.

Association of predicted probabilities and observed responses
Percent Concordant 72.5 Somers’ D 0.496
Percent Discordant 22.9 Gamma 0.52
Percent Tied 4.7 Tau-a 0.038
Pairs 4217640 c 0.748

Interpretation of the Coefficient of the Model and the Odds Ratio

Table 3.6 shows the estimated coefficients, standard errors, and p-value for the logistic

regression model. The calculated odds ratios and corresponding 95% confidence intervals

are also shown. The effect of not breastfeeding was found to be positively associated

with the under-five mortality (p-value=0.0001). The corresponding odds ratio was 1.973

(with 95% CI:1.6122;2.4142). The odds of death for a child from a mother who does

not breastfeed were 1.973 times the odds of death for a child from a mother who does

breastfeed. The effect of HIV status of a mother who is HIV-positive was found to be

positively associated with the under-five mortality (p-value=0.007). The corresponding

odds ratio was 1.282 (with 95% CI:1.0702;1.5362). The odds of death for a child from

a mother who is HIV positive were 1.282 times the odds of death for a child from a

mother who is HIV negative. The effect childbirth order number above four was found to

be positively associated with under-five mortality (p-value=0.0001). The corresponding

odds ratio was 2.842 (with 95% CI:2.1233;3.8047). The odds of death for a child whose

birth order number is above four were 2.842 times the odds of death for a child whose birth
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order number is less than two. The effect of the number of children alive who are more

than four was found to negatively associated with under-five mortality (p-value=0.0001).

The corresponding odds ratio was 0.251 (with 95% CI:0.1862;0.3396). The odds of death

for a child from a mother with more than four children alive were 0.251 times the odds of

death for a child from a mother with less than two children alive. The effect of childbirth

order number above four depends on not breastfeeding and was found to be positively

associated with under-five mortality (p-value=0.0008). The corresponding odds ratio

was 1.647 (with 95% CI:1.2307;2.2053). The odds of death for a child whose birth order

number is above four and from a mother who does not breastfeed were 1.647 times

the odds of death for a child whose birth order number is less than two and from a

mother who breastfeeds. The effect of mother’s age from 20 to 34 years depends on not

breastfeeding and is found to be negatively associated with under-five (p-value=0.0001).

The corresponding odds ratio was 0.647 (with 95% CI:0.5254;0.7974). The odds of death

for a child from a mother with age between 20 and 34 years who does not breastfeed

were 0.647 times the odds of death for a child from a mother with age over 34 years and

breastfeed. The effect of mother’s age less than 20 years depends on not breastfeeding

and was found to be positively associated with the under-five mortality (p-value=0.0004).

The corresponding odds ratio was 1.888 (with 95% CI:1.3246;2.6919). The odds of death

for a child from a mother with age less than 20 years and does not breastfeed were

1.888 times the odds of death for a child from a mother with age over 34 years and

does breastfeed. The effect of the number of children alive greater than five depends on

not breastfeeding and was found to be negatively associated with under-five mortality

(p-value=0.002). The corresponding odds ratio was 0.625 (with 95% CI:0.4639;0.8427).

The odds of death for a child from a mother with more than four children alive and not

breastfeeding was 0.625 times the odds of death for a child from a mother with less than

two children alive and does breastfeed.
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Table 3.6: Logistic regression model coefficients, standard errors and odds ratios.
Analysis of Maximum Likelihood Estimates 95% confidence interval

Effects Estimate Standard error P-value Odds ratio Lower Upper
Socio-demographic characteristics

Intercept -3.4154 0.1608 0.0001
Breastfeeding(BF)
Yes(reference)
No 0.6795 0.103 0.0001 1.973 1.6122 2.4142
HIV Status(HS)
Negative(reference)
Positive 0.2486 0.0922 0.007 1.282 1.0702 1.5362
Respondent Age(MA)
Over 34 years(reference)
20-34 years 0.0749 0.1064 0.4813 1.078 0.8749 1.3277
Birth Order Number(BON)
Less than 2 births(reference)
2-4 births -0.058 0.1021 0.5702 0.944 0.7725 1.1527
above 4 births 1.0446 0.1488 0.0001 2.842 2.1233 3.8047

Socio-economic characteristics
Children five and under(C5)
Less than 2 children(reference)
2-4 children -0.1155 0.1418 0.4153 0.891 0.6747 1.1764
over 4 children -0.178 0.2049 0.3849 0.837 0.5601 1.2506
Number of children alive(CL)
Less than 2 children(reference)
5 or more children -1.3805 0.1533 0.0001 0.251 0.1862 0.3396
2-4 children -0.1658 0.0991 0.0943 0.847 0.6977 1.0288

Interaction between Socio-demographic and Socio-economic characteristics
Breastfeeding by birth order number
Yes by less than 2(reference)
No by 2-4 0.0318 0.102 0.7553 1.032 0.8453 1.2608
No by above 4 0.4992 0.1488 0.0008 1.647 1.2307 2.2053
Less than 20 years 0.1088 0.1815 0.5489 1.115 0.7812 1.5913
Breastfeeding by Respondent age
Yes by over 34 years(reference)
No by 20-34 years -0.435 0.1064 0.0001 0.647 0.5254 0.7974
No by less than 20 years 0.6357 0.1809 0.0004 1.888 1.3246 2.6919
Breastfeeding by Number of children alive
Yes by less than 2(reference)
No by 5 or more children -0.4696 0.1523 0.002 0.625 0.4639 0.8427
No by 2-4 children -0.068 0.0991 0.4925 0.934 0.7693 1.1345
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3.6.4 Logistic Regression Diagnostics Plots

Different techniques of diagnostics have been discussed in section 3.5.3. We will now

focus on detecting potential observation that has significant impact on the model. The

importance of focusing on this help us to detect if there was any error in data entry

and influential data may badly influence or skew the regression estimation. The residual

and influence measures that help us understand how observations behave in the model

discussed includes Standardized Pearson residuals, Standardized residuals, and Deviance

residuals. Figure 3.3 displays influence diagnostics which were produced by using IN-

FLUENCE option in procedure PROC LOGISTIC to fit a logistic regression model to

the data. The vertical axis on each plot represents the value of the diagnostic, and the

horizontal axis represents case number of the observation. These plots are useful for

identification of extreme values. The observations that are further away from zero are

influential observation. The plots of the Pearson residual and standardized Pearson resid-

uals indicates that case such as 1214, 2993, 4911, 8622 and many other cases are poorly

accounted for by the model.
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Figure 3.3: Logistic regression diagnostics plots from influence option.
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3.7 Limitations of Logistic Regression

In logistic regression, no assumptions are made about distributions of the covariates, but

covariates should not be highly correlated to one another since it may lead to problems

with estimation. A large sample size is required to obtain sufficient numbers in both

categories and response. More covariates require larger sample sizes. The smaller the

sample sizes, the less powerful is the Hosmer-Lemeshow. The other limitation that when

there is non-linear relationship between log odds and covariates one may obtain invalid

results and furthermore ordinary logistic regression does not account for the complex

nature of the survey design which can lead to invalid statistical inference. In the next

Chapter we consider the method which takes into account the survey design features.

3.8 Survey Logistic Regression Model

Many statistical analyses assume that the data being analyzed is drawn from a finite

population by a simple random sampling, where every unit in the population has an

equal chance of being chosen during sample selection. However, in real-life survey data

are collected from finite population, where the population is stratified by variable of in-

terest (e.g. region, type of place of residence). This ensures the balance in the number of

respondent for each category of the variable (An, 2002). Survey logistic regression model

has a similar theory as ordinary logistic regression. However, survey logistic regression

accounts for the complexity of the survey design (Moeti, 2010). We can make a valid

statistical inference by using survey logistic regression which to account for stratification,

clustering, and unequal weighting. In the ordinary logistic regression, a model is fitted

and selected based on the assumption that the data are collected using simple random

sampling. If the complexity of the design is ignored when modeling, the standard er-

rors would be underestimated or overestimated that hence leading to wider or narrow

confidence intervals. Survey logistic regression and ordinary logistic regression would be

identical if the data are collected using simple random sampling. The main advantage

of stratification is that the survey is easier to administer, and parameters could be esti-
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mated for each stratum in which themselves can be important. Dividing the population

into strata could reduce the variance of the estimator of a population total (An, 2002;

Lemeshow and Hosmer, 2000). The methods of parameter estimation for survey logistic

are presented in the section that follows.

3.8.1 Parameter Estimation

In complex survey design, the independent assumption does not hold, when cluster are

drawn they might introduce correlation among observations. We need to appropriately

estimate the standard errors associated with the model coefficients. In order to do such,

we need to account for the complexity of the sample design. The standard error produced

while assuming a simple random sample will probably underestimate the true population

value (Siller and Tompkins, 2006). In the data considered the primary sample units

were sampled in the first stage in each stratum (e.g. Location or region). In the second

stage, the household was sampled. Thus we specify the response variable as yhijk (h =

1, 2, . . . , Hkji; i = 1, 2, . . . , nkj; j = 1, 2, . . . ,mk; k = 1, 2, . . . , K) which is 1 if the event

occurred in hth individual within ith household within jth primary sample units nested

within kth stratum, and 0 otherwise. The total number of observations is given by n =∑K
k=1

∑mk

j=1 nkj and sampling design weight for the kjihth are given in the dataset which

are denoted by wkjih. The weights are based on sampling probability calculated at each

stage. These design weights were obtained by multiplying household design weights by

the inverse of the household response rate, by stratum. Let the probability that the event

occurred in hth individual within ith household within jth primary sample units nested

within kth stratum be πkjih = P (yhijk = 1) and the probability that the event did not

occur in hth individual within ithhousehold within jth primary sample units nested within

kth stratum be 1−πkjih = P (yhijk = 0). The pseudo maximum likelihood is constructed as

the product of individual contributions to the likelihood (Lemeshow and Hosmer, 2000).

The contribution of a single observation using pseudo maximum likelihood is given by

π
wkjihykjih

kjih (1− πkjih)
(1−wkjihykjih).
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Thus the pseudo- likelihood function is given by

L(β; Y ) =
K∏

k=1

mk∏
j=1

nkj∏
i=1

Hkji∏
h=1

π
wkjihykjih

kjih (1− πkjih)
(1−wkjihykjih). (3.25)

The pseudo log-likelihood function is given by

l(β; Y ) =
K∑

k=1

mk∑
j=1

nkj∑
i=1

Hkji∑
h=1

{
wkjihykjihlog

(
πkjih

1− πkjih

)
− log

(
1

1− πkjih

)}
. (3.26)

Differentiating the log-likelihood with respect to unknown regression coefficients we ob-

tain the vector of p + 1 score equations which are compactly written as

X
′
W (y − π) = 0 (3.27)

where X is the n × (p + 1) matrix of covariate values, W is a n × n diagonal ma-

trix containing weights, y is the n × 1 vector of observed outcome values and π =

[π1111, . . . , πkmknkjHkji
]
′

is the n × 1 vector of logistic probabilities. The survey logistic

regression model is given by

logit(πkjih) = log

{
πhjih

1− πkjih

}
= X

′

kjihβ (3.28)

where,Xkjih is the vector that correspond to the characteristics of the hth individual

within ith household within jth primary sample unit nested within kth stratum, and also

β is the vector of unknown model coefficients. In the following section model selection

and checking procedure are discussed.
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3.9 Survey Logistic Model Selection and Checking

3.9.1 Model Selection

Variable Selection Procedures and Model Selection

In the survey logistic procedure in SAS, the variable selection procedures such as backward

selection, forward selection, score and stepwise selection are not implemented. However,

one can manually add or remove one variable in the model at a time by using the type

3 analysis of effects and observe the effect of the remaining variables. Type 3 analysis

of effects are often used when the effect of one explanatory variable is influenced by the

effect of another explanatory variable. One can remove variable the is not significant at a

time and refit the model without that variable. This manual approach can be done until

all remaining variables in the model are significant. The same model fitted in Chapter 3

is fitted using procedure PROC SURVEYLOGISTIC.

Testing Hypothesis about β

The computation of the standard errors of the parameter estimates used to construct

confidence intervals and perform statistical tests is much complicated if data are from a

complex design (Moeti, 2010). The estimate of the covariance matrix of the estimator of

coefficients is given by

V̂ar(β̂) = (X
′
DX)−1S(X

′
DX)−1 (3.29)

where, D = WV is the n× n diagonal matrix with general elements

wkjihπkjih(1− πkjih).

The matrix S is a pooled within-stratum estimator of the covariance matrix in the left

side of equation (3.27). Let us denote the general element of the vector of the score
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equation as Z
′

kjih = wkjihπkjih(1− πkjih). Thus

zkj =

nkj∑
i=1

zkjih. (3.30)

The stratum-specific mean is given by

z̄k =
1

mk

mk∑
j=1

zkj.

The within stratum estimator for the kth stratum variance is given by

Sk =
mk

Mk

mk∑
j=1

(zkj − z̄k)(zkj − z̄k)
′
. (3.31)

The pooled estimator S =
∑K

k=1(1 − fk)Sk. (1 − fk), is the finite population correction

factor and fk = mk

Mk
is the ratio of the number of sampling unit to the total number of

primary sampling unit in the stratum k. Generally if Mk is unknown, one can assume that

Mk is large enough so that fk approaches zero, thus finite population correction factor

will be 1 (Lemeshow and Hosmer, 2000). The Wald statistic for testing all coefficients in

the fitted model are equal to zero is given by

Wald = β̂
′
[v̂ar(β̂)p×p]

−1β̂ (3.32)

where,β̂ is the vector of p slope coefficients and v̂ar(β̂)p×p is the sub-matrix from a

(p + 1)(p + 1) matrix of v̂ar(β̂), and the p-value can be computed using χ2 distribution

with p degrees of freedom, that is to say,

p-value = P (χ2(p) > wald).

The SAS procedure PROC SURVEYLOGISTIC produces the covariance matrix of pa-

rameters through the Taylor expansion approximation procedure (Vittinghoff et al., 2011;

?). This procedure estimates the variance in the variation between clusters and calculates
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the overall variance through pooling the stratum variance together. In this case, t-test

statistics could be used for testing significance of the parameter estimates and constructs

the confidence interval if the sample size is small. However, if the sample size is large,

the sampling distribution of the parameter estimators are almost normally distributed

(Lemeshow and Hosmer, 2000; ?). The Wald statistics will be used to test and construct

the confidence intervals given by

β̂j ± Z1−α
2

√
Vj (3.33)

where α is the level of significant, z1−α
2

is 100(1 − α
2
) percentile of the standard normal

distribution and Vj is the variance obtained from the diagonal of the variance-covariance

matrix. One can take the exponent of the confidence interval since it’s on the logit scale.

A similar hypothesis as that discussed in section 3.5 is tested here. In SAS the proce-

dure PROC SURVEYLOGISTIC uses both Taylor expansion (linearization method) and

maximum likelihood. There are other procedures such as Jackknife Repeated Replica-

tion(JRR) and Balanced Repeated Replication(BRR) can be used to estimate variance

for each parameter. This procedure is used in this study to construct logistic regression

model that account for the complex nature of the survey design. The odds ratio is still

obtained as described earlier.

3.9.2 Model Checking

Model fit Test

The Hosmer-Lemeshow statistic is not produced in PROC SURVEYLOGISTIC. Since

this statistic is not yet available, however can also, use Akaike’s Information Criterion

(AIC) and Schwarz Criterion (SC) to compare the goodness of fit(GOF) of two nested

models (Moeti, 2010). The GOF test for logistic regression that is applied to complex

survey data is obtained in the following manner: once the usual logistic regression model

is fitted, the residuals r̂ji = yji − π̂(xji) can be obtained. The GOF test is based on

the residuals because of the large departures between observed and estimated value that
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indicates lack of fit (Hosmer and Lemeshow, 2004; Shackman, 2001; Archer et al., 2007).

If we use grouping strategy, the observations are sorted into deciles based on their weight

and estimates residuals. The survey estimates of sum of the residual by decile of risk

T̂
′
= (T̂1, T̂2, . . . , T̂10) are obtained such that the T̂g =

∑
j

∑
i w̄r̂ji (g = 1, . . . , 10). The

associated estimated variance-covariance matrix V̂ (T̂ ) is obtained using linearization.

The linearization method can be used to construct an approximation to the functional

form of the estimated population characteristics (two plus). In the first step, the func-

tional form of the estimated population characteristics is approximated by a first order

Taylor series, and the result is an approximation that is linear in the sample observation.

The design based methods are used to estimate its variance. Using this method, the

F-adjusted can be estimated as

Fadjusted =
f − g + 2

fg

T̂
′
V (T̂ )−1T̂ (3.34)

where f is the number of sampled cluster minus the number of strata and g is the number

of groups. We assume that the covariances are zero. The hypothesis being tested here

is as follow H0 : model is a good fit versus Ha : model, not a good fit. We compare the

calculated Fadjusted value with Fcritical. We reject the null hypothesis if the Fadjusted is

greater than the Fcritical and we say a model is not a good fit.

Predictive Accuracy/Ability of the Model

In order to check for the predictive accuracy SAS procedure PROC SUVEYLOGISTIC

produces for other statistics namely, Somer’s D, Gamma, c and Tau-a. All these statistics

ranges between 0 and 1. The larger value corresponds to a strong association between

predicted and observed values. These measure of association are as discussed before.
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3.10 Design Effects

3.10.1 Background

The sample size and sampling design determine the precision of the parameter estimates.

Due to the practical constraints such as cost and manpower, the national survey would

not adopt the simple random sampling (Shackman, 2001).The complex design would be

adopted instead. The problem we face in complex sample design is that sampling errors

for survey estimates can not be easily computed using the formulae found in statistical

texts (Shackman, 2001). The loss of effectiveness in using complex instead of simple

random sampling is known as design effects. The design effect is basically defined as

the ratio of actual variance, under the sampling method actually used, to the variance

computed under the assumption of simple random sampling (Shackman, 2001).The design

effect is a technique that is widely used in survey sampling for planning a sample design in

estimation and analysis (Park and Lee, 2001). One may use DEFF option in the model

statement. PROC SURVEYLOGISTIC calculates the design effect for the regression

coefficients.The design effect is given by

DEFF =
variance under the complex design

variance under simple random sampling
. (3.35)

The denominator of equation(3.35) is computed under the assumption that the design

is simple random sampling where we do not account for clustering, stratification, and

weighting. One may compute the variance under the assumption of simple random sam-

pling. If we consider both sampling weights and population total for the analysis, the

sampling rates (or population total) under the assumption of simple random sampling:

it is given by

fsrs =
n

w

where n is the sample size and w estimates the population size. When the estimated

population size is less than the sample size then fsrs is set to zero.
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3.10.2 Design Effect Interpretation

The design effect (DEFF) may be used to compare variance under the assumption that

data was obtained using simple random sampling and complex design. One can also use

DEFT which is simply the square root of DEFF. The DEFT may be used to reduce

variability since DEFT is less variable than DEFF. The DEFT can be used to estimate

confidence interval directly (Shackman, 2001). The DEFT shows how much the standard

error and confidence intervals increase. Suppose we have a value of DEFT equal to k,

then we say confidence interval has to be k times as large as they would for a simple

random sample.

3.11 Fitting the Survey Logistic Regression Model

Multiple logistic regression was fitted for the 2011-2012 Tanzania HIV/AIDS and Malaria

Indicator Survey (THMIS) data using SAS. PROC SURVEYLOGISTIC was considered

for this study to estimate parameter estimates, standard errors and odds ratios. A similar

model as the one in subsection 3.6.2 was fitted and interpreted.

3.11.1 Model Selection

In PROC SURVEYLOGISTIC the option for variable selection that are associated with

the outcome is not available. Since this option is not available, one has to manually add

or remove one variable at a time in the model based on the results presented in Table 3.7

for type three analysis of effect, and fit the model again without the insignificant variable.

The model which was fitted also involves two-way interaction effects which were found

to be significant at 5% significant level as shown in Table 3.7.

Model Checking

The PROC SURVEYLOGISTIC in SAS does not produce plots and Hosmer-Lemeshow

statistics, so one may use the AIC and SC to check if the model is a good fit or not.

The AIC of the full model (contains intercept and other variables) is smaller compared
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Table 3.7: Type 3 analysis of effects.
Type 3 analysis of effects

Effect Degrees of Freedom Wald Chi-square p-value
Breast feeding 1 32.0664 0.0001
HIV status 1 5.6423 0.0175
Birth order number 2 61.3484 0.0001
Breast feeding by Birth order number 2 14.0087 0.0009
Respondent age 2 0.5012 0.7783
Breast feeding by Respondent age 2 17.6328 0.0001
Children under five years 2 3.9799 0.1367
Children alive in a household 2 112.455 0.0001
Breast feeding by Children alive 2 15.3994 0.0005

to the AIC of the reduced model (contains only the intercept); this indicates that the

fitted model better explains the data.

Table 3.8: Model fit statistics for survey logistic model.

Model Fit Statistics
Criterion Intercept Only Intercept and Covariates

Akaike Information Criterion(AIC) 3.34E+09 2.73E+09
Schwarz Criterion(SC) 3.34E+09 2.73E+09
-2logLikelihood 3.34E+09 2.73E+09

Prediction Accuracy of the Model

In order to check how much the predicted probability agrees with outcome. One can

use the receiver operating characteristics (ROC) curve. However, in PROC SURVEYL-

OGISTIC, the curve is not produced by the procedure but an association of predicted

probabilities and the observed outcome can be produced. The concordance rate was

72.0% as shown in Table 3.9; this value tells us how good the model was in separating 0’s

and 1’s. The value c=0.746 is the area under the ROC curve. The meaning of the area

under curve ROC of 0.746 implies that 74.6 % of probabilities were predicted correctly

by the model and shows that this model has good prediction accuracy. The Gamma

statistic has a value of 0.521 indicates a moderate positive association between variables.

The Somer’s D statistic is 0.493 suggesting that not all pairs are Concordant.

Interpretation of the Coefficient of the Model and the Odds Ratio

Table 3.10 shows the estimated coefficients, standard errors, and p-value for the logistic

regression model. The logit link is used all the time and calculated odds ratios and corre-
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Table 3.9: Association of predicted probabilities and observed responses.

Association of Predicted Probabilities and Observed Responses
Percent Concordant 72.0 Somers’ D 0.493
Percent Discordant 22.7 Gamma 0.521
Percent Tied 5.4 Tau-a 0.038
Pairs 4217640 c 0.746

sponding 95% confidence intervals are also shown. The effect of mother not breastfeeding

was found to be positively associated with the under-five mortality (p-value=0.0001).

The corresponding odds ratio was 2.067 (with 95% CI:1.6166-2.6419). The odds of death

for a child from a mother who does not breastfeed were 2.067 times the odds of death for

a child from a mother who does breastfeed. The effect of HIV status of a mother which

was HIV-positive was found to be positively associated with the under-five mortality

(p-value=0.0083). The corresponding odds ratio was 1.313 (with 95% CI:1.0724-1.6065).

The odds of death for a child from a mother who is HIV-positive were 1.313 times the

odds of death for a child from a mother who is HIV-negative. The effect child birth order

number that is above four was found to be positively associated with under-five mortality

(p-value=0.0001). The corresponding odds ratio was 3.523 (with 95% CI:2.4609-5.0444).

The odds of death for a child whose birth order number is above four were 3.523 times

the odds of death for a child whose birth order number is not more than one. The effect

of the mother with number of children alive which is is more than four was found to

be negatively associated with under-five mortality (p-value=0.0001). The corresponding

odds ratio was 0.191 (with 95% CI:0.1222-0.2991). The odds of death for a child from a

mother with more than four children alive were 0.191 times the odds of death for a child

from a mother with less than two children alive. The effect of childbirth order number

above four depends on not breastfeeding and was found to be positively associated with

under-five mortality (p-value=0.0088). The corresponding odds ratio was 1.613 (with

95% CI:1.1277-2.3080). The odds of death for a child whose birth order number is above

four and from a mother who does not breastfeed were 1.613 times the odds of death for

a child whose birth order number is less than two and from a mother who breastfeed.

The effect of mother’s age from 20 to 34 years depends on not breastfeeding and was
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found to be negatively associated with under-five (p-value=0.0007). The corresponding

odds ratio was 0.624 (with 95% CI:0.4749-0.8208). The odds of death for a child from a

mother with age between 20 and 34 years who does not breastfeed were 0.624 times the

odds of death for a child from a mother with age over 34 years and breastfeed. The effect

of mother’s age less than 20 years depends on not breastfeeding and was found to be

positively associated with the under-five mortality (p-value=0.0001). The corresponding

odds ratio was 2.39 (with 95% CI:1.5337-3.7253). The odds of death for a child from a

mother with age less than 20 years and does not breastfeed were 2.39 times the odds of

death for a child from a mother with age over 34 years and does breastfeed.

Table 3.10: Survey logistic regression model coefficients, standard errors and odds ratios.
Analysis of Maximum Likelihood Estimates 95% confidence interval

Effects Estimate Standard error P-value Odds ratio lower upper
Socio-demographic characteristics

Intercept -3.5209 0.1873 0.0001
Breastfeeding(BF)
Yes(reference)
No 0.7259 0.1253 0.0001 2.067 1.6166 2.6419
HIV Status(HS)
Negative(reference)
Positive 0.272 0.1031 0.0083 1.313 1.0724 1.6065
Birth Order Number(BON)
Less than 2 births(reference)
2-4 births -0.1911 0.1278 0.1347 0.826 0.6430 1.0612
above 4 births 1.2594 0.1831 0.0001 3.523 2.4609 5.0444
Respondent Age(MA)
Over 34 years(reference)
20-34 years 0.0979 0.1372 0.4756 1.103 0.8428 1.4431
Less than 20 years -0.0729 0.2308 0.7521 0.93 0.5914 1.4615

Socio-economic characteristics
Children five and under(C5)
Less than 2 children(reference)
2-4 children 0.043 0.1772 0.8084 1.044 0.7376 1.4774
over 4 children -0.3271 0.2727 0.2303 0.721 0.4225 1.2305
Number of children alive(CL)
Less than 2 children(reference)
5 or more children -1.6547 0.2284 0.0001 0.191 0.1222 0.2991
2-4 children -0.067 0.1341 0.6173 0.935 0.7190 1.2163

Interaction between Socio-demographic and Socio-economic characteristics
Breastfeeding by birth order number
Yes by less than 2(reference)
No by 2-4 0.0744 0.1265 0.5562 1.077 0.8407 1.3804
No by above 4 0.4783 0.1827 0.0088 1.613 1.1277 2.3080
Breastfeeding by Number of children alive
Yes by less than 2(reference)
No by 5 or more children -0.3613 0.2222 0.104 0.697 0.4508 1.0770
No by 2-4 children -0.2137 0.1335 0.1093 0.808 0.6217 1.0491
Breastfeeding by Respondent age
Yes by over 34 years(reference)
No by 20-34 years -0.4711 0.1396 0.0007 0.624 0.4749 0.8208
No by less than 20 years 0.8714 0.2264 0.0001 2.39 1.5337 3.7253
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3.12 Comparison of Logistic and Survey Logistic Re-

gression

Tables 3.6 and 3.10 contains odds ratios and confidence interval for logistic and survey

logistic regression respectively. Since the sample was not from the simple random sample,

the parameter estimates for both models are not the same. However, they are closer to

one another. One of the assumptions for logistic regression is that the observation are

independent, but for complex design this assumption is violated thus a better model may

be the one fitted using PROC SURVEYLOGISTIC since it accounts for the complexity

of the design. The models fitted by both methods produce the areas under the curve

which are between 0.7 and 0.8. This suggests that both models had good prediction

accuracy. Table 3.11 shows the DEFF and DEFT which is the square root of DEFF

for each estimated coefficient. The effect of breastfeeding has the DEFF value of 1.1758

and DEFT value of 1.0843. The standard error and confidence interval are 1.0843 times

as larger as they would be for simple random sampling. The effect of mothers HIV

status which is positively associated with the under-five mortality has DEFF=1.4929

and DEFT=1.2219. The standard error and confidence interval are 1.2219 times as large

as they would be for simple random sampling. The effect of childbirth order number above

four which is positively associated with the under-five mortality has DEFF=1.3977 and

DEFT=1.1822. The standard errors and confidence interval are 1.1822 times large as

they would be for simple random sampling. The effect the number of children alive that

is more than four is negatively associated with under-five mortality has the DEFF=1.342

and DEFT=1.1584. The standard error and confidence interval have to be 1.1584 times

as large as they would be for simple random sampling. The effects for the number of

children alive which is less than two is positively associated with the under-five mortality

has the DEFF=1.4458 and DEFT=1.2021. The standard error and confidence interval

have to be 1.2021 times as large as they would be for simple random sampling. The

effect of birth order number above four depends on whether the mother does breastfeed

with DEFF=1.7086 and DEFT=1.3071. The standard error and confidence interval have
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to be 1.3071 times as large as they would be for simple random sampling. The effect

of mother’s age between 20 to 34 years depends on whether the mother does breastfeed

with DEFF=1.1989 and DEFT=1.0949. The standard errors and confidence interval

have to be 1.0949 times as large as they would be for simple random sampling. The

effect of mother’s age over 34 years depends on whether the mother does breastfeed has

DEFF=1.344 and DEFT=1.1593. The standard error and confidence interval have to be

1.1593 times as large as they would be for simple random sampling. The effect of the

number of children alive less than two depends on whether the mother does breastfeed

with DEFF=1.8466 and DEFT=1.3689. The standard error and confidence interval have

to be 1.3689 times as large as they would be for simple random sampling. We observe

that the design effects values are above one this tell us that variance was under-estimated

while using logistic regression model were smaller compared to those computed while

using complex design. This confirm that standard errors are larger under survey logistic.

This shows that there was an under-estimation of variance while using logistic regression

assuming that data was sampled using SRS. Hence, using the model like survey logistic

regression is good since it takes into account of survey design features.
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Table 3.11: Survey logistic, coefficients, standard errors, p-values, odds ratios, confidence
interval and design effects.

Analysis of Maximum Likelihood Estimates 95% confidence interval Design Effects
Effects Estimate Standard error P-value Odds ratio lower upper DEFF DEFT

Socio-demographic characteristics
Intercept -3.5209 0.1873 0.0001 1.9613 1.4005
Breastfeeding(BF)
No(reference)
Yes -0.7259 0.1253 0.0001 0.484 0.3785 0.6186 1.1758 1.0843
HIV Status(HS)
Negative(reference)
Positive 0.272 0.1031 0.0083 1.313 1.0724 1.6065 1.4929 1.2219
Birth Order Number(BON)
Less than 2 births(reference)
2-4 births -0.1911 0.1278 0.1347 0.826 0.6430 1.0612 1.7569 1.3255
above 4 births 1.2594 0.1831 0.0001 3.523 2.4609 5.0444 1.3977 1.1822
Respondent Age(MA)
less than 20 years(reference)
20-34 years 0.0979 0.1372 0.4756 1.103 0.8428 1.4431 2.0312 1.4252
over 34 years -0.0729 0.2308 0.7521 0.93 0.5914 1.4615 1.6249 1.2747

Socio-economic characteristics
Children five and under(C5)
Less than 2 children(reference)
2-4 children 0.043 0.1772 0.8084 1.044 0.7376 1.4774 1.55 1.245
over 4 children -0.3271 0.2727 0.2303 0.721 0.4225 1.2305 1.5883 1.2603
Number of children alive(CL)
2-4 children(reference)
5 or more children -1.6547 0.2284 0.0001 0.191 0.1222 0.2991 1.342 1.1584
Less than 2 children children 1.7217 0.1709 0.0001 5.594 4.0018 7.8198 1.4458 1.2024

Interaction between Socio-demographic and Socio-economic characteristics
Breastfeeding by Number of children alive
2-4 children(reference)
Yes by 5 or more children 0.3613 0.2222 0.104 1.435 0.9285 2.2185 1.344 1.1593
Yes by less 2 children children -0.575 0.1672 0.0006 0.563 0.4055 0.7809 1.8466 1.3689
Breastfeeding by Respondent age
No by less than 20 years(reference)
Yes by 20-34 years 0.4711 0.1396 0.0007 1.602 1.2183 2.1058 1.1989 1.0949
Yes by over 34 years 0.4003 0.199 0.0442 1.492 1.0103 2.2041 1.344 1.1593
Breastfeeding by birth order number
No by less than 2(reference)
Yes by 2-4 -0.0744 0.1265 0.5562 0.928 0.7245 1.1895 1.4312 1.1964
Yes by above 4 -0.4783 0.1827 0.0088 0.62 0.4333 0.8867 1.7086 1.3071

3.13 Limitations of Survey Logistic Regression

Despite the fact that the survey logistic account for the complexity of the survey design.

It may present some limitations due to unavailability of Hosmer-Lemeshow test. We may

not be able to test if the model is a good fit or not a good fit. The variable selection

procedures are not available thus one is required to select variable manually which can be

time-consuming when many variables are involved, and possible errors may occur while

choosing variables. The model has to be chosen based on the AIC and SC both of which

introduce a penalty to the -2log-likelihood of having many parameters. Since they both

have -2logL term in their formulation, they are used only in the case of ungrouped data

(Lemeshow and Hosmer, 2000).
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Chapter 4

Generalized Linear Mixed Models

4.1 Introduction

The Generalized Linear Models (GLMs) discussed in Chapter 3 might not be appropriate

for the data of interest. In GLMs under which the logistic regression falls, the complexity

of the survey design is ignored in the sense that the random effect on child survival status

is ignored. The inclusion of random effects in the analysis results into generalized linear

mixed models (GLMMs). These models are powerful since they combine features of both

linear mixed models (including both fixed effects and random effects) and generalized lin-

ear models, such that they handle a wide range of response distributions and data with

observations sampled in some group structure instead of completely independent (Molen-

berghs and Verbeke, 2006; Waagepetersen, 2007). GLM allows modeling of different kind

of responses such a binary (McCullagh and Nelder, 1989). The models that incorporate

random effects are known as linear mixed models (LMMs). In order to make a valid

statistical inference, one has to account for subject-specific effects. The subject-specific

effects in the studies with natural occurring groups (i.e. responses collected from mem-

bers same group/family tends to be more similar). In this section, the theory of linear

mixed models is reviewed. The theory of generalized linear mixed model is outlined and

is utilized in modeling the data of interest.
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4.2 Review of Linear Mixed Models

The generalized linear model discussed in Chapter 3 do not account for the random effect.

Instead, it is necessary to expand the model

Y = Xβ + ε (4.1)

to become.

Y = Xβ + ZU + ε (4.2)

Y is the n× 1 vector of responses,

where X is a n× (p + 1) design matrix for fixed effects,

β is a (p + 1)× 1 vector of unknown fixed effects parameters,

Z is a n× q design matrix for random effects,

U is a q × 1 vector of unknown random effects parameters, and

ε is a n× 1 vector of error term which have multivariate normal distribution with mean

vector 0 and variance-covariance matrix R i.e. ε ∼ Nn(0, R). Given the nature random

effect hypothesis, U is treated differently from β. Statistical linear mixed models state

that observed data consist of two parts, that is, random and fixed effects (Littell et al.,

2000). We define fixed effects as the expected value of the observation and random

effects is defined as variance and covariance of the observation. we may assume that

observations on the same unit are correlated. Hence, Linear mixed models address the

issue of covariation between measures on the same unit (Kincaid, 2005; Littell et al.,

2000). Representing variance of the model as V (y) shown in equation (4.3) is known as

Modelling covariance structure. It is modelled as a function of relatively small number of

parameters (Littell et al., 2000). The specification of the covariance structure for mixed

model is done through G and R as.

V (Y ) = ZGZ
′
+ R (4.3)
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where ZGZ
′
represents the between subject portion of the covariance structure and R

represents within subject portion. In linear mixed models with more than one random

effects, the random effects are assumed to come from a multivariate normal distribution

with mean 0 and variance-covariance matrix G. The random effect can be predicted and

not estimated. The variance components are estimated instead. The diagonal elements

of matrix G is the variance component for each random effect while off-diagonal elements

are covariances that exist between different dimensions. Suppose that there is one random

effect in the model, then G will have only one element that is the variance component

of random effects. If they are more than one random effects, G will be a k × k for k

random effect. Suppose k = 3 random, we present five different covariance structures in

the Table 4.1 and discuss them. Table 4.1 shows the list of covariance structures which

Table 4.1: List of simpler covariance structures.

Structure Description Number of parameters i,jth element

AR(1) Autoregressive lag 1 2 σij = σ2ρ|i−j|

CS Compound Symmetry 2 σij = σ1 + σ21(i = j)
UN Unstructured t(t+1)/2 σij = σij

TOEP Toeplitz t σij = σ|i−j|+1

VC Variance Component q σij = σ2
k1(i = j)

can be modeled in SAS using PROC MIXED procedure. We firstly look at covariance

structure known to be simple.

Simple or Variance Component(VC)

The variance component structure is the standard variance components and is the default

structure if the random or repeated statement is not used in SAS.

V C =


σ2

1 0 0

0 σ2
2 0

0 0 σ2
3

 .
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Compound Symmetry(CS)

The Compound Symmetry structure is often required for split-plot design. The variances

are homogenous for this covariance structure. There is a correlation between two mea-

surements and we may assume that the correlation is constant regardless of the distance

between two measurements (Kincaid, 2005; Littell et al., 2000).

CS = σ2


1 ρ ρ

ρ 1 ρ

ρ ρ 1

 .

Autoregressive Lag 1(AR(1)

The covariance structure known as autoregressive has homogenous variances and corre-

lation decline exponentially with distance. This means that two measurements that are

right next to each other in time are considered to be correlated. However, as measure-

ments get further apart they are less correlated (Kincaid, 2005; Littell et al., 2000). This

structure is applicable for evenly spaced time interval for repeated measures.

AR(1) = σ2


1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

 .

Toeplitz(TOEP)

The banded structure, also known as Toeplitz, specifies that covariance depends only on

lag, but not as a mathematical function with smaller number of parameters. Toeplitz

structure is similar to the autoregressive (AR(1)) in that all measurement next to each

other have the same correlation measurements which are two apart have same correlation

different from the first. However, the correlations do not necessarily have the same
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pattern. The AR(1) is basically a special case of Toeplitzitep(Kincaid, 2005).

TOEP =


σ2 σ1 σ2

σ1 σ2 σ1

σ2 σ1 σ2

 .

Unstructured(UN)

The Unstructured covariance structure specifies no pattern in the covariance matrix, and

completely general. The generality of this structure has drawback for having a large

number of parameter to be tested(Kincaid, 2005).

UN =


σ2

1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3

 .

The assumptions made for generalized linear models (GLMs) are retained in GLMMs. It

is possible to have a variable that appears in both X and Z, in this case the fixed effect is

an average across all levels of random effects. In the latter case, the estimate is the amount

of variance in the effect between levels. If X contains a single column of ones, then this

lead to the random intercept model. If X contains an extra column, then this is known

as the random slope model. However, the draw back for this model is that it requires

the responses to be normally distributed. The models which accommodate normal and

non-normal data in which they are a member of exponential family of distributions known

as generalized linear mixed models (GLMMs)(McCullagh and Nelder, 1989). The linear

mixed model can be viewed as a special case of the generalized linear mixed model

(GLMMs).

4.3 Generalized Linear Mixed Models

Generalized linear mixed models are an extension of linear mixed models with a relax-

ation of some of the assumptions of LMMs. GLMMs provides all advantages of a logistic
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regression such as information on a sample size, they are able to do one analysis with all

random effects on it, and they accommodate the binary response variable. Furthermore,

the advantage of GLMMs is its ability to handle unbalanced data due to missing obser-

vations and its ability to account for correlated data(Manning, 2007). The observation

in the data used might be correlated since clusters were drawn. In Chapter 3 the linear

predictor for the generalized linear model is η = Xβ.

4.3.1 Model Formulation

Suppose we now relax the normality assumption of f(Y | θ). It can be assumed that Y

and θ are independent and f(Y | θ) is the member of exponential family of distribution

(McCullagh and Nelder, 1989).

f(Y | θ) = exp{yiθi − b(θi)

ai(φ)
− c(yi, φ)} (4.4)

where φ is the scale parameter. Based on the model the conditional y related to θi is

given by

E(y | θ) =
∂b(θi)

∂θi

.

The model with both random and fixed effects is given by.

g(θi) = X
′

iβ + Z
′

iUi (4.5)

where, ηi = g(θi), g is the link function and Ui is a vector of random effects. In this

study survival status is either 0 (child alive) or a 1(child not alive). Thus we use the

logistic regression where we consider g(.) as the logit link, with Xi and Zi(i = 1, 2, . . . , n)

being p-dimension and q-dimension a vectors of known covariates values, while β is a

p-dimension vector of unknown fixed effects regression coefficient.
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4.4 Maximum Likelihood Estimation

In linear mixed models the marginal distribution of Y could be computed as the multi-

variate normal, meaning f(Y ) is a density function of a multivariate normal distribution.

However, for generalized linear mixed models, it is difficult to evaluate the integral be-

cause of the presence of N q-dimensional integral over the random effects (Vittinghoff

et al., 2011; Bolker et al., 2009). The random effect model could be fitted by maximiza-

tion of marginal likelihood, and that is obtained by integrating out the random effects.

The likelihood is given by

L(β, G, φ) =
N∏

i=1

fi(Yi | β, G, φ)

=
N∏

i=1

∫
fi(Yi | β, G, φ).f(Ui, G)dui

(4.6)

where,fi(Yi | β, G, φ) =
∫ ∏ni

j=1 fij(Yij | β, G, φ).f(Ui, G)dui(Molenberghs and Ver-

beke, 2006). In general, numerical approximations have to be used to evaluate likelihood

of GLMMs.

4.4.1 Estimation: Approximation of the Integrand

The Laplace method is one of the approaches of approximating the integrand and is

one of the natural alternatives when exact the likelihood function is difficult to compute

(Molenberghs and Verbeke, 2006). When the integrands are approximated, the objective

is to obtain traceable integrals such that closed form expressions can be obtained which

make numerical maximization of the approximated likelihood feasible (Molenberghs and

Verbeke, 2006). Suppose we wish to approximate the integral of the form

I =

∫
exp(−q(x)) dx (4.7)

where q(.) is a well behaved function in a way that its minimum value is at x = x̃
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with q
′
(x̃) = 0 and q

′′
(x̃) > 0. we can consider the Taylor expansion about x̃ given by

q(x) ≈ q(x̃) +
1

2
q

′′
(x̃)(x− x̃) + . . . . (4.8)

This gives an approximation to (4.7) as

∫
exp (−q(x))dx ≈

√
2π

q′′(x̃)
exp (−q(x̃)). (4.9)

We may also have the multivariate extension of (4.9), which is often useful. Let q(α) be

a well behaved function with its minimum at α = α̃ with q
′
(α̃) = 0 and q

′′
(α̃) > 0, where

q
′
and q

′′
are the gradient and Hessian of q respectively. We have

∫
exp (−q(x))dx ≈ c | q′′

(x̃) |−
1
2 exp (−q(x̃)) (4.10)

where c is a constant depending on the dimension of the integral and | q
′′
(x̃) | is the

determinant of matrix q
′′
(x̃). In which q

′′
(x̃) > 0 implies matrix q

′′
(x̃) is positive definite.

4.4.2 Estimation: Approximate of Data

There is another class of estimation approach based on a decomposition of the data into

mean and error terms. With the Taylor series expansion of the mean which is a non-

linear function of predictors. The method in this class differs in the order of the Taylor

approximation. The decomposition that is considered is

Yij = µij + εij = h(X
′

ijβ + Z
′

ijU ) + εij (4.11)

where, h(.) is the inverse link function, and error term have an appropriate distribution

with variance equal to var(Yij | Ui) = φV (µij). Here, V (.) is the usual variance function

in the exponential family (Molenberghs and Verbeke, 2006). Consider a binary outcome
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with logit link function. One then has

µij = h(X
′

ijβ + Z
′

ijU ) = Pij =
exp(X

′
ijβ + Z

′
ijU )

1 + exp(X
′
ijβ + Z

′
ijU )

(4.12)

where h(X
′
ijβ + Z

′
ijU ) is the inverse for the logit link function which is the logistic

function. xi and zi are as in the definition of generalized linear mixed model. This is

considered as the special case of GLMM where the exponential the family is Bernoulli

and corresponding link function is g(µ) = logit(µ).

4.4.3 Penalized Quasi-Likelihood

The Penalized Quasi-Likelihood (PQL) is one of the methods that approximates data by

mean plus error term with variance equals to Var(Yij | Ui ). This method uses Taylor

expansion around estimates β̂ and Û of fixed effects and random effects respectively

(Bolker et al., 2009; Moeti, 2010). One then has

Yij = µij + εij = h(X
′

ijβ + Z
′

ijU ) + εij

≈ h(X
′

ijβ̂ + Z
′

ijÛ ) + h(X
′

ijβ̂ + Z
′

ijÛ )X
′

ij(β − β̂) + h(X
′

ijβ̂ + Z
′

ijÛ )Z
′

ij(U − Û ) + εij

= µ̂ijV (µ̂ij)X
′

ij(β − β̂) + V (µ̂ij)Z
′

ij(U − Û ) + εij,

(4.13)

and

Yi = µ̂i + V̂iXi(β − β̂) + V̂iZi((U)− Û ) + εi

where µ̂i contains values of µ̂ij = h(X
′
ijβ̂ + Z

′
ijÛ ), Vi is the diagonal matrix with

elements V (µ̂ij) = h(X
′
ijβ̂ + Z

′
ijÛ ) and Xi and Zi contain the X

′
ij and Z

′
ij respectively.

Re-ordering the above expression and pre-multiply with ˆV −1
i we obtain

Y ∗
i = ˆV −1

i (Yi − µ̂i) + Xiβ̂ + ZiÛ

≈ Xiβ̂ + ZiÛ + ε∗
i .

(4.14)
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For ε∗
i equal to ˆV −1

i εi and has a zero mean. This can be viewed as a linear mixed model

for a pseudo data Y ∗
i with error term ε∗

i . This gives the algorithm for fitting original

generalized linear mixed models.

Algorithm

Step 1: Given starting value for parameter β, φ and G. In the marginal likelihood em-

pirical Bayes estimates are calculated for Ui and pseudo data Y ∗
i are computed.

Step 2: Approximate linear mixed model is fitted, which gives updated estimates for β, φ

and G. then updated estimates are used to update the pseudo data. This whole scheme is

iterated until convergence is reached, and resulting estimates are called penalized quasi-

likelihood estimate. They are obtained from optimizing a quasi-likelihood function that

involves first and second order conditional moments, augmented with a penalty term on

the random effects (Molenberghs and Verbeke, 2006).

4.4.4 Marginal Quasi-Likelihood

Marginal Quasi-Likelihood (MQL) is an approximation method which is similar to PQL

method. However, it is based on a linear Taylor expansion of the mean around current

estimate β̂ for fixed effects, and around U = 0 for random effects (Bolker et al., 2009;

Moeti, 2010). This gives same expansion as shown for PQL, but now the current predictor

is of the form h(X
′
ijβ̂). The pseudo-data are now of the form

Y ∗
i = ˆV −1

i (Yi − µ̂i) + Xiβ̂ (4.15)

and satisfy the approximate linear mixed model

Y ∗
i ≈ Xiβ + ZiU + ε∗

i . (4.16)

The model fitting is also done by iteration between the calculation of the pseudo data

and fitting of approximate linear mixed model for these pseudo data (Molenberghs and

Verbeke, 2006).. The resulting estimates are known as quasi-likelihood estimates (MQL).
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4.4.5 Discussion of MQL and PQL

There is no main difference between penalized quasi-likelihood (PQL) and marginal quasi-

likelihood (MQL); they both do not incorporate the random Ui in the linear predictor

(Bolker et al., 2009). Both of these methods are based on similar ideas and will have

almost similar properties. However, the accuracy of both models depends on the accuracy

of the linear mixed model for pseudo data Y ∗
i . The Laplace method, PQL and MQL

perform poorly in the cases of binary with repeated observations small number of repeated

observations available (Molenberghs and Verbeke, 2006). The MQL completely ignores

the random effects variability in linearization of the mean. The Laplace method is more

accurate than penalized quasi-likelihood. However, Laplace is slower and less flexible

compared to penalized quasi-likelihood (Bolker et al., 2009). The MQL remains biased

while PQL will be consistent with an increased number of measurements.

4.5 Generalized Linear Mixed Models (GLMMs) in

SAS

The Statistical Analysis Software (SAS) procedure PROC GLIMMIX accommodates fea-

tures of GLMMs. This procedure combines both procedures namely PROC GENMOD

and PROC MIXED. The estimation of the parameter estimates utilizing this procedure

follows likelihood based techniques; the default is pseudo-likelihood procedure (Moeti,

2010). The procedure allows one to change estimation method and specify covariance

structures. The construction of the Wald test statistics and confidence intervals for the

estimates depends on Taylor series expansion method. The Wald-type tests together with

the estimate variance-covariance matrix are used for hypothesis test for fixed effects.
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4.6 Interpretation of Generalized Linear Mixed Model

Parameter

Just like in GLMs the model parameter can be interpreted once they are obtained. The

example is given below on how to interpret the result (estimates). Consider the instance

where the binary random variables and logit link is as follows

logit(πij) = β0 + β1X1i + β2X2i + β3X3i + β4X2iX3i.

Let X1i be a continuous predictor variable, X2i be a categorical variable with 2 categories

(i.e. gender) and X3i be categorical variable with 2 categories for place of residence (for

individual i and cluster j). Parameter β1 is the increase in the log odds of event given a 1

unit increase in X1i. Parameter β2 is the increase in the log odds of the event comparing

two individuals with different genders but with the same value of ui. The parameter

β3 is the increase in the log odds of the event comparing two individuals with different

categories (i.e. type of place of residence). The parameter β4 is the increase in log odds

of the event comparing two individuals with different gender by different categories ( a

type of place of residence i.e. rural or urban).

4.7 Application of Generalized Linear Mixed Model

The GLIMMIX procedure fits statistical models to data with correlations or non-constant

variability. In this procedure, the response does not need to be normally distributed and

allows different estimation methods to be specified (i.e. Laplace). The model was fitted

three times, each time specifying different estimation methods discussed earlier. The

random effect were the clusters. Another approach for interpreting the model parame-

ters used in this section is known as pairwise comparisons of least-square means. The

pairwise comparison of the least-square means for interaction effects is performed. The

Diffogram which displays a line for each comparison and axes of the plot represents the

scale of the least-square means (Moeti, 2010). The 45-degree line is the reference line of
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the plot. In the analysis of means with Nelson-Hsu Adjustment, dashed horizontal step

plots represent lower and upper decision limit determined at 95th percentile. If the level

is significantly different from the average, then the corresponding vertical line crosses the

decision limits. The results obtained are presented and interpreted in Table 4.2. The type

Table 4.2: Type 3 tests of fixed effects.
Type 3 Tests of Fixed effects

Effect Num DF Den DF Wald Chi-square p-value
Breast feeding 9866 1 43.13 0.0001
HIV status 9866 1 7.18 0.0074
Birth order number 9866 2 29.51 0.0001
Breast feeding by Birth order number 9866 2 8.27 0.0003
Respondent age 9866 2 0.93 0.3937
Breast feeding by Respondent age 9866 2 9.42 0.0001
Children under five years 9866 2 4.17 0.0155
Children alive in a household 9866 2 60.57 0.0001
Breast feeding by Children alive 9866 2 7.53 0.0005

3 tests of fixed effects for the model fitted using Laplace method in GLMMs is shown

in Table 4.2. The F-statistics which is used for the significant test for the fixed effects

and corresponding p-value shows that all effects are important in the fitted model when

tested at 5% level of significance. Only mother’s age is not significant (p-value=0.3937).

However, due to the hierarchical principal for the model with interaction effects which are

significant, the main effect is retained in the model. The residual log pseudo-likelihood of

the fitted model is given by 67122.62 and generalized chi-square statistics is 9671.98. The

ratio of chi-square statistics to its degree of freedom which is the measure of variability

in the marginal distribution of the data is 0.92. The variance of the random effect is

estimated as σ2
u = 0.06780 given in Table 4.3 if the PQL method is used.
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Table 4.3: Random effect and model information.
Random Effects

Laplace Marginal Penalized
Estimate (S.E) Estimate (S.E) Estimate (S.E)

Variance(Intercept) 0.1063 (0.1028) 0.07419 (0.0855) 0.06780 (0.0815)
Model Information

Number of parameters 11 11 11
-2loglikelihood 3144.74 67680.29 67122.62
AIC 3180.74

Table 4.4, Table 4.5 and Table C.2 in Appendix C2 shows the solution for fixed effects.

Estimated parameters, standard errors and fit statistics obtained from the MQL, PQL

and Laplace in GLMMs for the fitted models are shown respectively in these tables. The

fitted models are the random intercept models; one can observe that standard errors are

smaller than those in the model in section 3.6.2. The parameters estimated for the model

fitted using Laplace, MQL and PQL are almost the same, and parameter are found to

be significant across all three methods shows consistency. The coefficients for fixed ef-

fects are interpreted in the same way as in the ordinary logistic regression model. The

estimates are slightly lower than those in section 3.6.2; this is due to the fact that this

model accounts for the random effects. The conclusion remains the same so the interpre-

tation of the coefficients will also be done explicitly. In this section, we also use another

form of presentation based on least-square means analysis for graphical and tabular then

interpret odds ratios as before. Here the contrast is done on the logit scale.

Figure 4.1 illustrates adjusted comparison of breastfeeding by mother’s age interaction

least-square means for multiplicity. The lines that represent the significant difference

between the least-square means of the level of breastfeeding by mother’s age interaction

effects are the ones centered. The line that crosses the 45-degree line shows that the

under-five mortality is not significant between corresponding categories. The average

of breastfeeding by mother’s age interaction effects on logit scale is -3.5507 as given in

Figure 4.2 below. One can observe that the differences in means of levels with the vertical

lines that crosses 95% decision limits suggest that they are significant. This provides more

insight of what is shown in Figure 4.1. One can refer to Table C.4 in Appendix C.
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Figure 4.1: Diffogram for breastfeeding by mother’s age

Figure 4.2: Analysis of means for breastfeeding by mother’s age interaction effects
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Figure 4.3 illustrates adjusted comparison of breastfeeding by birth order interaction

least-square means for multiplicity. The blue lines represent the significant difference

between the least-square means of level of breastfeeding by birth order interaction effects.

These lines do not cross the 45-degree line. This figure shows that the lines centered at

intersections and denoted by blue lines more than 4 birth order and two to four birth

order represent a significant difference of least-square means of breastfeeding by birth

order interaction effects. The blue line shows that the under-five mortality is significantly

associated with corresponding categories.

Figure 4.3: Diffogram for breastfeeding by birth order of the child.

Figure 4.4 displays the analysis of means for breastfeeding by child birth order. The blue

line that crosses the decision limits shows that the under-five mortality is significantly

associated with corresponding categories. The average of breastfeeding by birth order

interaction effect on a logit scale is -3.63. One can observe that the differences in means

of levels with the vertical lines that cross 95% decision limit suggest that they are signifi-

cant. This figure agrees with Figure 4.3 and Table C.3 in Appendix C shows least square
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means with confidence intervals and standard errors.

Table C.2 in Appendix C2 shows standard errors, odds ratios and corresponding 95%

Figure 4.4: Analysis of means for breastfeeding by child birth order interaction effects.

confidence interval obtained using Laplace method. These odds ratios were obtained us-

ing the procedure PROC GLIMMIX and they were slightly different from those obtained

using PROC LOGISTIC in GLMs. Some variables that were found to be significant in

ordinary logistic are not significant in GLMMs. This can be the result of accounting

for correlation by including random effects in the model. The covariate, breastfeeding,

was not significantly associated with under-five mortality (p-value=0.6355). The corre-

sponding odds ratio was 0,7811 (with 95% CI:0.2812-2.1698). The effects of HIV status

of the mother which is HIV-positive was found to be positively associated with under-

five mortality (p-value=0.0074). The corresponding odds ratio was 1.6551 (with 95%

CI:1.1442-2.3834). The odds of death for a child from HIV-positive mother were 1.6551

times the odds of death for a child from HIV-negative mother. Mother’s age was found

to be insignificant. The effect of childbirth order number that is more than four was

found to be significantly associated with under-five mortality(p-value=0.0223). The cor-

responding odds ratio was 2.6663 (with 95% CI:1.1499-6.1826). The number of children

alive within two to four was found to be positively associated with under-five mortality

(p-value=0.0002) and the number of children alive which is more than four was found
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to be negatively associated with the under-five mortality (p-value=0.0223). The corre-

sponding odds ratios were 3.0114 (with 95% CI:1.6776- 5.4047) and 0.4492 (with 95%

CI:0.2200-0.9170) respectively. The odds of death for a child from a mother with two to

four children alive were 3.0114 times the odds of death for a child from a mother with

less than two children alive. The odds of death for a child from a mother with more than

four children alive were 0.4492 times the odds of death for a child from a mother with less

than 2 children alive. The number of children (five years or under) in a household that

is from two to four was found to be negatively associated with the under-five mortality

(p-value=0.0104). The corresponding odds ratio was 0.6525 (with 95% CI:0.4707-0.9047).

This implies that child is likely to survive especial when child is from a household with

two to four children under five or under compared to a child from a household with less

than two children five or under. The odds of death for a child from a mother who is from

a household with two to four children five years or under were 0.6525 times the odds

of death for a child from a mother who is from a household with less than two children

five and under. The two-way interaction effects for breastfeeding (category “No”) by

mother’s age less than 20 years is positively associated with the under-five mortality (p-

value=0.0082). The corresponding odds ratio was 5.3351 (with 95% CI:1.5419-18.4593).

The odds of death for a child from a mother who does not breastfeed and age less than

20 years were 5.3351 times the odds of death for a child from a mother who breastfeed

and age over 34 years. Two-way interaction effects for breastfeeding (category “No”)

by a number of children alive within two to four was found to be positively associated

with under-five mortality (p-value=0.0012). The corresponding odds ratio was 3.3848

(with 95% CI:1.6199-7.0728). The odds of death for a child from a mother who does not

breastfeed by a number of children alive within two to four were 3.3848 times the odds

of death for a child from a mother who breastfeeds by a number of children alive that is

less than two. Two-way interaction of breastfeeding (category “No”) by child birth order

number that is within two to four and breastfeeding (category “No”) by birth order, more

than four were found to be positively associated with the under-five mortality. The cor-

responding odds ratios were 3.1265 (with 95% CI:1.5221-6.4231) and 7.9129 (with 95%
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CI:2.8173-22,2251) respectively.

Table 4.4: Marginal quasi-likelihood (MQL), coefficients, standard errors, odds ratios,
p-values and confidence intervals.

95% confidence interval
Effects Estimate Odds ratio Standard error P-value Lower limits Upper limits
Intercept -4.5776 0.4294 0.0001

Socio-demographic characteristics
Breast feeding
Yes(ref)
No -0.2316 0.7933 0.5205 0.4939 0.2860 2.2003
HIV status
Negative(ref)
Positive 0.4975 1.6446 0.1859 0.0011 1.1424 2.3676
Birth order number
Less than 2 birth(ref)
2 to 4 birth 0.3548 1.4259 0.3085 0.0632 0.7789 2.6103
More than 4 birth 0.9807 2.6663 0.4291 0.0020 1.1499 6.1826
Respondent age
Over 34 years (ref)
20 to 34 years 0.4941 1.6390 0.3226 0.8244 0.8716 3.0833
Less than 20 years -0.5475 0.5784 0.5375 0.3172 0.2004 1.6484

Socio-economic characteristics
Children alive
Less than 2 children(ref)
2 to 4 children 1.1002 3.0048 0.2985 0.0001 1.6739 5.3939
More than 4 children -0.8032 0.4479 0.3648 0.0010 0.2191 0.9156
Children under-five years
Less than 2 children(ref)
2 to 4 children -0.4206 0.6567 0.1659 0.0210 0.4744 0.9090
More than 4 children -0.4861 0.6150 0.3090 0.5371 0.3356 1.1270

Interaction between Socio-demographic and Socio-economic characteristics
Breast feeding by Birth order
yes versus less than 2 birth(ref)
No Versus 2 to 4 birth 1.1225 3.0725 0.3663 0.0001 1.4986 6.2994
No versus more than 4 birth 2.0446 7.7261 0.5261 0.0001 2.7551 21.6663
Breast feeding by Respondent age
Yes versus Over 34 years(ref)
No versus 20 to 34 years -0.4751 0.6218 0.3751 0.0521 0.2981 1.2971
No versus Less than 20 years 1.6615 5.2672 0.6325 0.0080 1.5247 18.1960
Breast feeding by children alive
Yes versus less than 2 children(ref)
No versus 2 to 4 children 1.2041 3.3338 0.3748 0.0010 1.5992 6.9498
No versus more than 4 children -0.7972 0.4506 0.4349 0.3610 0.1921 1.0568
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Table 4.5: Penalized quasi-likelihood coefficients, standard errors, odds ratios, p-values
and confidence intervals.

95% confidence interval
Effects Estimate Odds ratio Standard error P-value Lower limits Upper limits
Intercept -4.5799 0.4285 0.0001

Socio-demographic characteristics
Breast feeding (BF)
Yes(ref)
No -0.2329 0.7922 0.5202 0.2662 0.2858 2.1961
Mother’s HIV status (HS)
Negative(ref)
Positive 0.4975 1.6446 0.1856 0.008 1.1431 2.3662
Birth order number (BON)
Less than 2 birth(ref)
2 to 4 birth 0.3574 1.4296 0.3078 0.2321 0.7820 2.6135
More than 4 birth 0.9857 2.6797 0.4279 0.001 1.1584 6.1990
Respondent age(MA)
Over 34 years (ref)
20 to 34 years 0.4972 1.6441 0.3220 0.0733 0.8747 3.0905
Less than 20 years -0.5474 0.5785 0.5366 0.0553 0.2021 1.6559

Socio-economic characteristics
Number of children alive (CL)
Less than 2 children(ref)
2 to 4 children 1.1007 3.0063 0.2979 0.001 1.6767 5.3902
More than 4 children -0.8039 0.4476 0.3635 0.001 0.2195 0.9126
Children under-five years (C5)
Less than 2 children(ref)
2 to 4 children -0.4201 0.6570 0.1651 0.0040 0.4754 0.9080
More than 4 children -0.4859 0.6151 0.3069 0.0601 0.3371 1.1226

Interaction between Socio-demographic and Socio-economic characteristics
Breast feeding by Birth order number
yes versus less than 2 birth(ref)
No Versus 2 to 4 birth 1.1232 3.0747 0.3654 0.0010 1.5023 6.2927
No versus more than 4 birth 2.0464 7.7400 0.5245 0.0001 2.7687 21.6373
Breast feeding by Respondent age
Yes versus Over 34 years(ref)
No versus 20 to 34 years -0.4747 0.6221 0.3744 0.0760 0.2986 1.2958
No versus Less than 20 years 1.6623 5.2714 0.6311 0.0010 1.5301 18.1606
Breast feeding by children alive
Yes versus less than 2 children(ref)
No versus 2 to 4 children 1.2041 3.3338 0.3742 0.0090 1.6011 6.9416
No versus more than 4 children -0.7978 0.4503 0.4334 0.0540 0.1926 1.0530
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4.8 Summary of Generalized Linear Mixed Models

GLMMs are the extension of the GLMs. In these models, the linear predictor is the

mixture of random effects and fixed effects. These models also relax the normality as-

sumption made in the case of LMMs. GLMMs could be used to incorporate correlations

in the model and identify sensitive subjects. For GLMMs the modeling is straightfor-

ward, one has to first identify the distribution of data, understand what need to be

modeled then identify random and fixed effects. SAS procedure used to fit such mod-

els is PROC GLIMMIX and estimation method can be specified under the statement

method. The methods that could be specified are Laplace, Penalized Quasi-Likelihood,

and Marginal Quasi-Likelihood. The results obtained using PROC GLIMMIX procedure

and the Laplace method shows that HIV status of the mother, number of children alive,

and child birth order number are associated with under-five mortality. Furthermore,

these results also show the two-way interaction that is associated with the under-five

mortality. These two-way interaction includes breastfeeding by child birth order number,

breastfeeding by a number of children alive and breastfeeding by mother’s age. Other

methods lead us to similar a conclusion as Laplace. The Penalized quasi-likelihood was

the method with small standard errors for each parameter estimates compared to Laplace

and Marginal quasi-likelihood. The GLMMs is attractive for use in modeling. Nonethe-

less, it still makes the assumption about linearity between log odds and predictors which

may not always be true. The alternative is to use generalized additive models.
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Chapter 5

Generalized Additive Models

5.1 Introduction

The statistical models which have been discussed so far assume linearity parametric form

for the covariate effects. However, in some cases, this assumption of linear dependence

of response on covariates may not hold. These parametric regression models discussed

provide a powerful tool for modeling the relationship between response and set of co-

variates. However, these parametric models are not flexible for modeling a complicated

relationship between response and set of covariates. The limitation of the parametric

modeling is that it is restrictive in many cases. This section describes the flexible statis-

tical non-parametric models that can be used to model complicated relationships between

the response and a set of covariates. These models are known as the generalized additive

models (GAMs) and they are non-parametric. They can be applied in the settings that

include standard continuous response regression, count, dichotomous response, survival

data and time series data. GAMs are suitable for exploring the data set and visualiz-

ing the relationship between the dependent variable and the independent variables (Liu,

2008). The parametric and non-parametric regression models should not be viewed as

competing models, but as methods that complement each other (Hastie and Tibshirani,

1986, 1990; Wood, 2006). One can use non-parametric techniques to validate a paramet-

ric model. Using a combination of parametric and non-parametric methods is much more
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powerful than using only one of the two methods (Marx and Eilers, 1998; Wood, 2006).

One of the discussed statistical models is the logistic regression for binary data which

falls under the generalized linear models (with many other models). The logistic regres-

sion models the effect of covariates xj in terms of a linear predictor of the form xjβj,

where βj are the model parameters. The GAMs generalizes the general linear models

and GLMs by replacing β0 +
∑p

j=1 xjβj with S0 +
∑p

j=1 Sj(xj), where Sj is unspecified

(‘non-parametric’) function. This function can be estimated in a flexible manner using

cubic spline smoother, in an iterative method called back-fitting algorithm (Hastie and

Tibshirani, 1990; Liu, 2008). The name cubic spline is from the piecewise polynomial fit,

with the order k=3 (Liu, 2008). We define a smoother as a tool for summarizing the trend

of a dependent variable as a function of one or more independent variables. The smoother

produces estimated known as smooth (Liu, 2008).The main property of smoother is its

non-parametric nature. The estimate of the trend produced is less variable than response

or log odds itself. The strength of GAMs is the ability to deal with highly non-linear

and monotonic relationships between the log odds variable and one or more independent

variables. Generalized additive models rely on the assumption that functions have to be

additive and that the added component needs to be smooth. The GAMs were originally

developed by Hastie and Tibshirani (1986) to match properties of GLM with additive

models. We first begin with the overview of the methodology then discuss the form of

the logistic regression in the generalized additive models setting.

5.2 Univariate Smooth Function

The smoother is the tool for summarizing the trend of response as a function of covariates

(Liu, 2008; Wood, 2006). We first consider the simplest smooth function, where the model

contains one smooth function of one covariate

yi = S(xi) + εi (5.1)
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where yi is the response variable, xi is the covariate, S(.) is the smooth function and εi

are independent identically distributed random variables with mean zero and constant

variance(σ2). In order to approximate the smooth function, suppose we have a scatterplot

of the points (xi, yi) where yi is the response and xi is the covariate value for a point.

We want to fit the smooth curve which describes the relationship between y and x.

The method of curve interpolation to determine the curve that simply minimizes (y −

Xβ)
′
(y −Xβ) will not yield the smooth curve at all (Wood, 2006). However, the cubic

spline smoother does forces smoothness on S(x). The model is then fitted by minimizing

the following penalized least-square function.

n∑
i=1

(yi − S(xi))
2 + λ

∫ b

a

[S
′′
(x)]2dx (5.2)

where λ is fixed constant(smoothing parameter) and a ≤ x1 ≤ . . . ≤ xn ≤ b. We

assume (a,b) includes all possible range. The functions S can be approximated by linear

combination of basis functions bj(x) as S(x) =
∑q

j=1 bj(x)βj and
∫

[S
′′
(x)]2 measure the

”Wiggliness” of the function S. If the
∫

[S
′′
(x)]2 = 0 (indicate a straight line or perfect

curve) then we have a function S that is a linear function. However, a non-linear function

of S will produce values
∫

[S
′′
(x)]2 > 0 (smoother S is highly non-linear). The smoothing

parameter λ > 0 has to be chosen wisely by the analyst since its plays an important role

in estimation. The parameter λ controls the tradeoff between the goodness of fit that

is measured by (yi − S(xi))
2 and the model smoothness (Hastie and Tibshirani, 1990).

The larger the value of λ the smoother S becomes and the penalty term becomes more

important. Furthermore, the small values of λ yield a wiggly curves and penalty become

unimportant (Liu, 2008; Yee and Mitchell, 1991). We now look at additive model by

penalized least-square and general case.
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5.3 Additive Models by Penalized Least-Squares

The function S is the linear combination of the parameters, and one can show that the

penalty from penalized least square can be written as quadratic form of β.

∫
[S

′′
(x)]2dx = β

′
Hβ. (5.3)

Suppose now the model has two smoothers as follow

Yi = S1(xi) + S2(xi) + εi. (5.4)

The smoothers has the form S1(x) =
∑q1

j=1 b1j(xi)βj and S2(x) =
∑q2

j=1 b2j(zi)γj. Where

x and z are two explanatory variables and for simplicity we assume that all xi and zi lie

in [0, 1]. Here b1j(.) and b2j(.) are cubic spline basic functions of S1 and S2 respectively.

When two smoothers are now used in place of one smoother then this the definition of

Y as a function of q, X and β. However, the general form does not (Wood, 2012). The

optimization becomes

n∑
i=1

(yi − S(xi))
2 + λ1β

′
H1β + λ2β

′
H2β (5.5)

where X is a design matrix of covariates, λ1 , λ2 directly control the effective degree

of freedom per smoothing term. The smoothing parameter can also be obtained by

generalized cross validation (Wood and Augustin, 2002). Here H =
∫

d(x)d(x)
′
dx is the

penalty matrix which consists of known coefficients and d(x) is given by

d(x) = [b
′′

1(x), b
′′

2(x), b
′′

3(x), . . . ]
′
.

We then can argue that the penalized regression spline fitting problem is similar to

minimizing

(y −Xβ)
′
(y −Xβ) + λβ

′
Hβ. (5.6)
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This can also be written as

y
′
y − y

′
Xβ −X

′
β

′
y + β

′
(X

′
X + λH)β.

Taking the derivative with respect to β and equating to zero, we obtain

β̂ = (X
′
X + λH)−1X

′
y. (5.7)

The parameter λ can be set by hand or selected automatically and penalized maximum

likelihood could be used to estimate the unknown parameter β (Liu, 2008). The Hat or

Influence matrix, A for this model is given as

A = X(X
′
X + λH)−1X

′
. (5.8)

We first require some method for choosing λ.

5.4 Selection of Smoothing Parameters λ

In order to minimize cubic spline smoother which is being considered, we have to choose a

smoothing parameter, λ, wisely. If λ is much higher then the data will be over smoothed,

but if λ is too low then the data will be under smoothed (Wood, 2006). It is possible

to choose λ that is data driven. The penalized likelihood can be used to estimate model

coefficients given λ. There are other approaches that are useful when the scale parameter

is known instead of attempting to minimize expected mean square error which results into

estimation by Un-Biased Risk Estimation(UBRE). If the scale parameter is unknown then

attempting to minimize prediction error leads to ordinary cross validation or generalized

cross validation (Wood, 2006).
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5.4.1 Average Mean Square and Predictive Square Error

One can focus on the global measure known as Average Mean square Error (AMSE),

instead of minimizing the Mean Square Error (MSE) at each covariate xi (Liu, 2008;

Wood and Augustin, 2002). The average mean square error is given by.

AMSE(λ) =
1

n

n∑
i=1

E[Ŝλ(xi)− S(xi)]
2 (5.9)

where Ŝλ(xi) is an estimator of S(x) and S(xi = Yi − εi). We now consider the Average

Predictive Square Error (PSE) which is given by

PSE(λ) =
1

n

n∑
i=1

[Y ∗
i − Ŝλ(xi)]

2. (5.10)

AMSE and PSE differ by a constant δ, where Y ∗
i is the new observation at xi, Y ∗

i =

S(xi) + ε∗i and ε∗i is independent of ε
′
s. There are other procedures for estimating for

selecting λfor example Cross Validation(CV) and Generalized Cross Validation(GCV).

5.4.2 Cross Validation

CV is a statistical approach for partitioning sample data into two subsets (Liu, 2008;

Wood, 2006). This technique is sufficient when the sample is large. The data is recycled

by switching the role of tests samples and training in CV. Cross-validation could be used

in selecting λ, by minimizing

CV (λ) =
n∑

i=0

[yi − Ŝ−i
λ (xi)]

2 (5.11)

where, Ŝ−i
λ (xi) indicates the fit at xi which is computed by leaving out the ith data point.

This is the approach that is available in SAS and is similar to minimizing PSE(λ).
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5.4.3 Generalized Cross Validation

Another approach for selecting λ is known as GCV which is computationally intensive.

However, there are some shortcuts available for many situations (Liu, 2008; Wood, 2006).

The GCV is approximately the same as Mallow’s Cp statistic and this shown in the study

by Liu (2008). The GCV is given by

Vg =
n ‖ yi −Xβ̂λ ‖
[n− tr(Fλ)]2

(5.12)

where tr(Fλ) is the effective degree of freedom of the model, and β̂λ is the coefficient of

the estimate that is obtained by direct minimization of

‖ y −Xβ ‖2 +
∑

j

λjβ
′
Hjβ.

5.4.4 Degrees of Freedom of a Smoother

The other way of expressing the required smoothness of the function other than in terms

of λ are to use degrees of freedom. In SAS procedure PROC GAM one can select the

value of a smoothing parameter through specifying the degrees of freedom of a smoother

also known as an effective number of parameters. The effective number of parameters

indicates the amount of smoothing. Suppose there is a linear smoother say Fλ, then the

degrees of freedom is given by

df(Smoother) = tr(Fλ).

The more the smoothing the fewer degrees of freedom of the smoother. The degrees of

freedom may be a decimal number (Liu, 2008).

5.5 Back-fitting and General Local Scoring Algorithm

The general idea of the generalized additive model is to plot the value of the response

variable together with single covariate then compute the smooth curve that goes through
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the data. GAMs are designed to take advantage of the ability to fit the logistic regression

and other GLMs. Its main focus is to explore the data set and visualize the relationship

between response and set of covariates (Liu, 2008; Marx and Eilers, 1998). However,

the GLMs focus specifically in estimation and inference. The data is divided into a

number of a section called knots. The scatterplot smoother used in GAMs attempts to

generalize data into a smooth curve by local fitting to the subsection of the data. One

of the advantages of GAMs is that the error term is estimated precisely since curves are

fitted algorithmically. The algorithms used are often iteratively, non-parametric, and do

not show a great deal of complex numerical processing. The GAMs framework is based

on back-fitting with linear smoothers, limitations arise in the difficulty that is presented

by back-fitting in the selection of a model and inference(Marx and Eilers, 1998). There

are different techniques for the formulation and estimation of additive models. The

general algorithm for model formulation and estimation of the additive model is called

back-fitting. Back-fitting can fit an additive model using any regression type fitting

mechanism(Wood, 2006).

5.5.1 Back-fitting Algorithm

Define the partial residual as

Rj = Y − S0 −
∑
k 6=j

Sk(xk)

with E(Rj | Xj) = Sj(xj). This observation provides a way for estimating each smooth

function Sj(.) given the estimate [Ŝ(.), i 6= j] for all others. The resulting iterative

procedure is known as back-fitting.

Step 1. initialize:

S0 = E(Y ), S1
1 = . . . = S1

p , m = 0.
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Step 2. Iterate: m = m + 1 for j = 1 to p do:

Rj = Y − S0 −
j−1∑
k=1

Sm
k (xk)−

p∑
k=j+1

Sm−1
k (xk)

Sm
j = E(Rj | Xj).

Step 3: Calculate

RSS = AV G(Y − S0 −
p∑

j=1

Sm
j (xj))

2

until fails to decrease. Sm
j (.) denotes the estimate of Sj(.) at the mth iteration. RSS do

not increase at any step and thus the algorithm always converges.

5.5.2 General Local Scoring Algorithm

Step1: Initialize:

S0 = E(Y ), S1
1 = . . . = S1

p , m = 0.

Step 2: Update/iterate m = m + 1, from the adjusted dependent variable

zi = ηi + (yi − µi)(
∂ηi

∂µi

),

ηm−1 = S0 +

p∑
j=1

Sm−1
j (xij),

ηm−1 = g(µm−1) so µm−1 = g−1(ηi) construct the weight.

Wi = (
dηm−1

i

dµm−1
i

)2V −1
i ,

where Vi = var(Yi). Fit a weighted additive model to zi using the back-fitting algorithm

with weights W. We obtain estimated functions Sm
i (.) and model ηm.

Step 3: Repeat: continue with step 1 and step 2 until deviance fails to decrease. Suppose

the initial estimate of η is given, then the first order Taylor series expansion and fisher
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scoring method will yield an improved estimate according to Liu (2008).

ηest(x) = ηgiven + δ. (5.13)

Here;

δ =
Score function

Exected Information matrix
,

δ =

∂l
∂η

E(−∂2l
∂η2 | x)

,

= E(η(x)− ∂l

E(−∂2l
∂η2 | x)

| x).

(5.14)

Using chain rule we have that

∂l

∂η
=

∂l

∂µ

∂µ

∂η
,

∂l

∂µi

=
1

µi

− (1− yi)
1

(1− µi)
,

=
yi − µi

(1− µi)µi

.

(5.15)

We know that V ar(Yi) = E(Y 2
i )− (E(Yi))

2,

Var(Yi) = E(Y 2
i )− (E(Yi))

2,

= 12µi + 02(1− µi)(−µi),

= µi(1− µi)

(5.16)

and

V −1
i =

1

µi(1− µi)
.

Thus

∂l

∂η
= (y − µ)V −1 ∂

∂η
,

∂2l

∂η2
= (y − µ)

∂

∂η
(V −1∂µ

∂η
)− (

∂µ

∂η
)2V −1,

and

E(
∂2l

∂η2
| x) = −(

∂µ

∂η
)2V −1,
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ηest(x) = E[η(x) + (Y − µ)
∂η

∂µ
| x]. (5.17)

Replacing the conditional estimation with smoothers we have the improved estimates

ηest(x) = smoother[η(x) + (Y − µ)
∂η

∂µ
| x]. (5.18)

5.6 Estimation of the Parameter Estimate β

If the data is non-normal, one can apply the framework of the GLM. The linear predictor

is modeled as the sum of the B-spline and iterative method (scoring) is used. The

smoothness of the curve will be influenced by the number of B-spline, a value of the

coefficient or amplitudes. If these are almost equal then the curve will be flat. The curve

will show a lot of wiggles if the amplitude varies widely.

5.6.1 B-splines

There are other popular smoothing techniques besides cubic spline such as loess and

kernel smoothers, where the graphical summaries of non-parametric fits are provided in

them. However, despite the fact that non-parametric provides rich exploratory flexibility,

it is not simple to use for future prediction (Wood, 2006; Marx and Eilers, 1998). The

B-spline smooth basis is independent of the response variable but only dependent on:

• Range of the covariate,

• the number and position of knots (equally spaced), and

• the degree of the B-spline(often cubic).

The B-spline of q degree consists of q + 1 polynomial pieces of degree q; these pieces are

joined at q inner knots at which the derivatives up to order q − 1 are continuous. The

B-spline is positive on the domain spanned by q + 2 knots, for a given x q + 1 B-spline is

non-zero. The fit to the data can be expressed as
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S =
N∑

i=1

(yi −
n∑

t=1

bitat)
2 (5.19)

where bit = Bt(Xi), the value of the B-spline t at Xi,
∑n

t=1 bitat is the sum of B-splines.

The solution for the vector a is obtained from regression of y on the matrix B and B is

known as B-spline matrix of dimension N × ni.

5.6.2 P-splines

This is another way of representing the cubic splines by the use of B-spline basis. The

B-spline basis are strictly local so there are more appealing and each basis function is

zero over intervals m + 3 adjacent knots (Wood, 2006). The (m + 1)th order spline can

be expressed as

S(X) =
k∑

i=1

βm
i (X)βi. (5.20)

The B-spline basis function is defined recursively as

βm
i =

X −Xi

Xi+m+1 −Xi

β(X)m−1 +
Xi+m+2 −X

Xi+m+2 −Xi+1

βm−1
i+1 , i = 1, . . . , k (5.21)

β−1
i (X) =


1 if Xi 6 X < Xi+1

0 otherwise.

(5.22)

There are others spline such as cyclic cubic regression spline, cubic regression spline, thin

plate regression spline and thin plate spline (seeWood (2006)).

5.6.3 Penalized Likelihood and Estimation

The penalized likelihood is an alternative way to find regression coefficients for categorical

variable(s). The likelihood is maximized by using iterative method such as Newton-

Raphson algorithm and Scoring method. Newton-Raphson method is a technique used

to find the zero(s) of a function taking real values (Wood, 2006; Marx and Eilers, 1998).
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Penalized Likelihood

The drawback for using B-spline is that one is required to optimize the number and posi-

tion of knots. Given a wiggliness measure for each function, the penalized log-likelihood

can be defined as

log Lp(β) = log L(β)− 1

2

p∑
j=1

λjβ
′
Hjβ,

= log L(β)− 1

2
β

′
Sβ

(5.23)

where S =
∑p

j=1 λjHj, L denotes the usual likelihood function and λj are penalty factors

or smoothing parameters, controlling the tradeoff between goodness of fit of the model

smoothness. Assuming that λj values are known, then the likelihood is maximized in

order to find β̂j

′

s.

Estimation

The penalized log-likelihood in equation (5.23) can be maximized through iterative re-

weighted Least-Squares. Here we assumes that λj is known. To maximize this equation

one needs to take its derivative with respect to βj and equate to zero, that is to say,

∂lp
∂βj

=
∂l

∂βj

− [Sβ]j = φ−1

n∑
i=1

{
yi − µi

V (µi)

}
∂µi

∂βj

− [Sβ]j = 0. (5.24)

The [.]j is the jth row vector. The equation resulted in minimizing the likelihood are the

same as those equations that would have to be solved to obtain β by non-linear weighted

least square, given that weight V (µi) are known in advance and are independent of β

(Wood, 2006). The Least-Square objective would be

Sp =
n∑

i=1

(yi − µi)
2

V ar(Yi)
+ β

′
Sβ (5.25)

where, µi depends non-linearly on β, but the weights V (µi) are treated fixed. The

assumption made here is that the V ar(Yi) terms are known. In order to find the least-
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square estimates, one can take a derivative with respect to βj and equating to zero. This

System of equations will be as in equation (5.24). If var(yi) terms were fixed. The

iterative method is required to solve these equations. It can be shown that in the vicinity

of some coefficient vector estimate β̂|k| (Wood, 2006).

Sp ' ‖
√

w[k](z[k] − xβ)‖2 + β
′
Sβ (5.26)

The pseudo-data is defined as

z
[k]
i = g

′
(µ[k])(yi − µ

[k]
i ) + Xiβ̂

[k] (5.27)

where zk is a vector of pseudo-data with elements z
[k]
i and W [k] is the diagonal weight

matrix with elements w
[k]
i given by

w
[k]
i = [V (µ

[k]
i g

′
(µ

[k]
i )2)]−1 (5.28)

where g is the model link function. Assuming the smoothing parameters are known,

then the maximum penalized likelihood estimates, β̂, are obtained through iterating the

following steps:

Step1: Use current β[k], compute the pseudo-data z[k] and iterative weights W [k].

step 2: Minimize equation (5.26) with respect to β, then obtain β̂[k+1]; and so that

η[k+1] = Xβ[k+1]. Increase value of k by one unit.

The converged β̂ solves equation (5.24).

5.7 Generalized Additive Logistic Regression Model

In Chapter 3 logistic regressions was discussed as one of the popular technique for mod-

eling binary data since we have a dichotomous response variable.

Yi =


1, if child is not alive (with probability π(x))

0, if child is alive (with probability 1− π(x))
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X = (xi1, xi2, . . . , xip) is a vector of covariates, and Yi is the binary response variable.

The ordinary logistic model was discussed in Chapter 3 and is given as

logit(π(x)) = ηL(x) = β0 +

p∑
j=1

βjxij. (5.29)

It can as well be written as

π(x) =
exp(β0 +

∑p
j=1 βjxij)

1 + exp(β0 +
∑p

j=1 βjxij)
.

The basic idea of the GAMs is to replace the linear predictor with an additive predictor.

The assumption for logistic regression still applies except the linearity assumption. The

GAM logistic model is given by

logit(π(x)) = ηA(x) = log(
π(x)

1− π(x)
) = S0 +

p∑
j=1

Sj(xij). (5.30)

Alternatively, it can be written as

π(x) =
exp(β0 +

∑p
j=1 Sj(xij))

1 + exp(S0 +
∑p

j=1 Sj(xij))
.

The functions S1, S2, . . . , Sp are estimated using the procedures described above. One

can also have a semi-parametric generalized additive model. This happens when the

model consists of parametric and non-parametric terms. The interaction effects can also

be incorporated to the generalized additive model. This model with two parametric and

two non-parametric predictors is of the form.

logit(π(x)) = β0 + β1x1 + β2x2 + S1(x3) + S2(x4). (5.31)

In general the semi-parametric logistic model is written as

logit(π(x)) = β0 +

p∑
j=1

βjxij +

q∑
j=p+1

Sj(xij). (5.32)
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Let E(Y | X) = µ so that

η(x) = g(µ) = log

{
π(x)

1− π(x)

}
(5.33)

where η is a function of p variables. Suppose Y = η(x) + ε, given some initial estimate

of η(x), one can construct the adjusted dependent variable

Zi = ηi + (yi − µi)
∂ηi

∂µi

. (5.34)

We fit an additive model to the Z
′
is, where it is treated as a response variable Y in

µ = S0 +
∑p

j=1 Sj(xij). This algorithm is the same as one mentioned earlier namely Local

scoring algorithm. For more details one can see Liu (2008).

5.8 Fitting a Logistic GAM Model using the GAM

Procedure

The GAMs are useful in finding a predictor-response relationship in several kinds of data

without using a specific model. They combine the ability to explore non-parametric re-

lationships together with the distributional flexibility of generalized linear models. The

SAS PROC GAM scales well the increasing dimensionality and yields interpretable mod-

els (Wood, 2006). Carrying out exploratory modeling with PROC GAM could inspire

parsimonious parametric models. In this section, we assume that some of the covariates

have a linear relation with the log odds and in some we assume non-linearity, this yields

the semi-parametric model. Using the SAS procedure PROC GAM, under model option

some variable are included in the keyword spline (in this cases non-linearity assumption

is made for them).
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5.8.1 Observing Correlation Among Predictors

Table 5.1 shows correlation among continuous predictors considered and p-values. The

p-values can be used to test if two variables are correlated or not. Figure 5.1 also shows

the relationship among continuous predictors. Both Figure 5.1 and Table 5.1 suggest

that there is an issue of correlation between variables. There might be an impact of

multicollinearity on parameter estimates which is a concern.

Table 5.1: Pearson correlation matrix for continuous predictors.

Pearson Correlation Coefficients, N = 11013
Prob >| r | under H0: ρ = 0

BN NLC RCA NC5U
Birth order number(BN) 1.0000 0.90499 0.7766 0.09905
P-value 0.0001 0.0001 0.0001
Number of living children(NLC) 0.90499 1.0000 0.74084 0.21446
P-value 0.0001 0.0001 0.0001
Respondent’s current age(RCA) 0.7766 0.74084 1.0000 -0.06454
P-value 0.0001 0.0001 0.0001
Number of children 5 or under(NC5U) 0.09905 0.21446 -0.06454 1.0000
P-value 0.0001 0.0001 0.0001

Figure 5.1: Scatter plot matrix of continuous predictors.
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5.8.2 Fitting the Logistic Additive Model

Consider first part of the output that is obtained using PROC GAM procedure. Table 5.2

shows a summary for the back-fitting and local scoring algorithms. The deviance for the

final estimate is also provided in Table 5.2. This value of deviance for final estimate can

be used in computing the AIC as shown below

AIC = Deviance + 2pf,

= 2749.12 + 2× 15× 1,

= 2779.12

(5.35)

where p is the model degrees od freedom and f is the scale parameter(f = 1 for binomial

and poison). The model degrees of freedom is 1 + 14 = 15. This AIC value can be used

to compare models fitted by PROC GAM. One can not compare models fitted by PROC

GAM and PROC GENMOD using AIC. In PROC GENMOD the AIC value is calculated

as

AIC = −2LL + 2p

where LL is the log likelihood of the fitted model.

Table 5.2: Summary for algorithms used in fitting the model

Iteration Summary and Fit Statistics
Number of local scoring iterations 9
Local scoring convergence criterion 1.26E-09
Final Number of Backfitting Iterations 1
Final Backfitting Criterion 1.67E-09
The Deviance of the Final Estimate 2749.115676
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The critical part of PROC GAM results is the “Analysis of Deviance” shown in Ta-

ble 5.3. For each smoothing effect in the model, this table provides a Chi-Square(χ2) test

comparing the deviance between full model and the one without non-parametric compo-

nent variable. The analysis of deviance results shows that non-parametric effects of all

four continuous predictors are significant at 5% significant level since their corresponding

p-values are less than 0.05.

Table 5.3: Analysis of deviance.

Smoothing Model Analysis
Analysis of Deviance

Source DF Sum of Squares Chi-Square P-value
Spline(BN) 3 37.178636 37.1786 0.0001
Spline(NLC) 3 126.409501 126.4095 0.0001
Spline(RCA) 3 15.08642 15.0864 0.0017
Spline(NC5U) 3 28.194937 28.1949 0.0001

Note: BN: Child birth order number, NLC: Number of children alive
RCA: Mothers Age NC5U: Number of children five or under in a household

Table 5.4 shows the linear portion and parameter estimates for parametric part of the

model, standard errors, t-values, and p-values. This table also shows smoothing pa-

rameters, degrees of freedom, a number of unique observation and value of GCV for

each predictor. The breastfeeding is negatively associated with under-five mortality (p-

value=0.0017). The HIV status of the mother was not significant at 5% significant level

(p-value=0.0917). However, it was significant at 10% significant level. This suggests that

both HIV status of a mother and breastfeeding were associated with the under-five mor-

tality. The predictor mother’s age in linear portion was not significant (p-value=0.9812).

This might have been the result of some part of significance being taken by non-linear

part. Other predictor variables such as Childbirth order, a number of children alive and

a number of children 5 and under in a household are found to be significantly associated

with under-five mortality since their corresponding p-values are less than 0.05. The de-

gree of freedom is an indication of the amount of smoothing. The more the smoothing

means less degree of freedom or higher span. The smoothing parameter was almost equal

to one and the corresponding degree of freedom is 3. Figure 5.2 shows plots of the partial

prediction for each of the continuous predictor considered. These plots can be used to
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Table 5.4: Analytical information about fitted model.

Regression Model Analysis Parameter Estimate
Effects Parameter Est STD error t-value p-value

Intercept -1.2092 0.37268 -3.24 0.0012
HIV status of respondent
negative -0.33153 0.19654 -1.69 0.0917
positive(reference) 1
Breastfeeding
Yes -0.37883 0.12081 -3.14 0.0017
No(reference) 1
Birth order number
Linear(BN) 0.73046 0.05084 14.37 0.0001
Number of children alive
Linear(NLC) -1.1232 0.06117 -18.36 0.0001
Respondent age
Linear(RCA) -0.00031019 0.01318 -0.02 0.9812
Number of children 5 or under
Linear(NC5U) -0.21251 0.04794 -4.43 0.0001

Smoothing Model Analysis
Fit Summary for Smoothing Components

Component Smoothing Parameter DF GCV NUO
Birth order number
Spline(BN) 0.999842 3 153.455 16
Number of children alive
Spline(NLC) 0.999684 3 597.253 15
Respondent age
Spline(RCA) 0.998885 3 0.71918 35
Number of children 5 or under
Spline(NC5U) 0.994058 3 22.8856 12

Note: NUO: number of unique observation, STD: standard and Est:estimate
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Figure 5.2: Partial prediction for each predictor.

investigate as to why PROC GAM and PROC GENMOD provide different results. These

plots are produced by including the option PLOTS = COMPONENT(COMMONAXES)

which gives curve-wise Bayesian confidence band to each smoothing component and plot

share the same vertical axis limits. These confident interval might be wider towards the

end as a result of lack of data. The plots show that the partial predictions corresponding

to child birth order number, a number of children alive have quadratic pattern and a

number of children 5 and under in a household does not have a quadratic pattern. This

suggested that under-five mortality was associated with a quadratic pattern for child

birth order number and a number of children alive. The number of children 5 and under

in a household have 95% confidence limits that contain the zero axes suggesting no effect

of quadratic pattern or non-linear on the survival of the child. The mother’s age have

95% confidence limits containing zero axes and a line was almost straight this means that

mother’s age had no quadratic effect on the child survival status.
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5.9 Summary of the Generalized Additive Model

Logistic regression is often used when the response is dichotomous. However, the as-

sumption about linearity between link function (logit) and predictors need to be made.

This assumption may not hold thus an alternative method is required such as GAMs.

Generalized additive models are the generalization of additive models (AMs) by relaxing

normality assumption. The first step to fitting GAMs is to turn GAMs into penalized

generalized linear model (P-GLMs) with coefficient β and smooth parameter λ. This

can be done by choosing basis and wiggliness measures for the smooth terms. Sec-

ondly is to select smoothing parameters in which one can use either GCV or UBRE.

The parameter estimates β are then obtained by using penalized iteratively re-weighted

least-square(P-IRLS). The confidence interval can be obtained by the use of Bayesian

smoothing model (Wood, 2006). One can test the hypothesis through the use of GLM

methods on un-penalized GAM. With the use of PROC GAM to fit the model; we have

noticed that under-five mortality was associated with a quadratic pattern of childbirth

order, a number of children alive and a number of children five and under in a household.

The under-five mortality was also associated with a linear pattern of mother’s age. It

was also found to be significantly associated with breastfeeding and mother’s HIV status

and linear pattern of mother’s age.
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Chapter 6

Discussion and Conclusion

The objective of this study was to identify risk factors associated with the under-five

mortality in the United Republic of Tanzania. The identified factors can be used to

guide policy makers on speeding up the provision of better life to people and evaluate

progress made towards achieving the MDG4. Generalized linear models, Survey logistic

regression models, generalized linear mixed models, and generalized additive models were

used to identify the risk factors. Firstly, a generalized linear model called logistic regres-

sion model that assumes survey data was obtained through simple random sampling was

used. The interaction effects considered was up to the second order. Due to a large num-

ber of variables, stepwise selection procedure was adopted to eliminate non-significant

variables. When logistic regression was used breastfeeding and interaction terms, breast-

feeding by child birth order number, breastfeeding by mother’s age, breastfeeding by a

number of children alive and HIV status of a mother were significantly associated with

the under-five mortality. However, a number of children alive, mother’s age and birth

order number were not significantly associated with the under-five mortality but due to

the hierarchical principle of the model with interaction terms number of children alive,

mother’s age and birth order number were retained in the model. The Model checking

and goodness of fit using Hosmer-Lemeshow test failed to reject the selected model. The

model was refitted through the survey logistic regression model and generalized linear

mixed models. Both models seem to be the good alternative since they account for the
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complexity of the survey design. The conclusion reached from the survey logistic was

similar to the one reached by generalized linear mixed models. The risk of child death

for a mother who was HIV-positive was higher compared to the incidence of child death

for a mother who was HIV negative. The risk of child death for a mother who did not

breastfeed was higher than the incidence of child death for a mother who did breastfeed.

The incidence of child death was high for a child whose birth order number was more

than one compared to the incidence of death for a child whose birth order number was

less than two. The risk of child death for a mother who did not breastfeed and at middle

age group (20 to 34 years) was higher compared to the incidence of child death for a

mother who did breastfeed and at old age group (over 34 years). The risk of child death

for a mother who did not breastfeed and at young age group (less than 20 years) was

lower compared to the incidence of child death for a mother who did breastfeed and at

old age group (over 34 years). The risk of child death for a mother who did not breastfeed

and child whose birth order number above four was high compared to the risk of child

death for a mother who did breastfeed and with a child whose birth order number less

than two. The risk of child death for a mother with more than four children alive was

found to be lower than the risk of child death for a mother with less than two children

alive. The risk of child death for a mother with 2 to 4 children alive was high compared

to the risk of child death for a mother with less than two children alive. The results from

survey logistic regression and logistic regression were shown in Chapter 4 and 3 respec-

tively. From the results, we observed that standard errors for logistic regression model

are smaller compared to standard errors for survey logistic for each parameter estimate,

suggesting under-estimation of variance. This shows that assumption we made in order

to use logistic regression resulted in an invalid conclusion. We obtained appropriate esti-

mates by taking into account, for the sampling design features. The parameter estimates

and odds ratios for both models are almost the same. However, the confidence intervals

for odds ratios are narrower for logistic regression. This has resulted in underestimation

of the variance. The survey logistic regression and generalized linear mixed model are

useful since they account for the complexity of the survey design.
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Logistic regression, survey logistic regression, and generalized linear mixed models are

often used when the response is dichotomous. However, the assumption about linearity

between log (odds) and independent variables need to be made. If this assumption does

not hold the generalized additive models could be used as an alternative. Using gener-

alized additive models the under-five mortality was found to be significantly associated

with the quadratic pattern of childbirth order number, a number of children alive and

has no quadratic effect of a number of children five or under in a household. Under-five

mortality was also found to be significantly associated with mother’s HIV status and

breastfeeding at 10% level of significant. We also found that under-five mortality has no

quadratic effect of mother’s age

The findings of this study imply that the child survival status is likely to improve in

Tanzania. If breastfeeding is done by mothers it is likely to reduce the risk of death for

a child under five, more especially mothers in younger age group (less than 20 years).

The reduction of mothers who are infected with HIV will also improve the child survival

status. The children will survive if their birth order of the child is two and above, more

especially if the number of children alive not more than four. The improvement could

be achieved by creating an enabling environment for improvement of socio-economic de-

velopment programs, well-controlled number of children each mother should have, the

improvement of awareness campaigns on health issues and an importance of breastfeed-

ing in a growth of the child.

Study by Lemani (2013) found that mother HIV status was significantly associated with

infant mortality. Other factors found to be significantly associated with infant and child

mortality were: mother’s education, wealth index, sex of the child, mother’s age and child

birth order. None of the environmental factors were found to be significantly associated

with both infant and child mortality. The current study also found that none of the en-

vironmental factors were associated with under-five mortality. Factors such as mother’s
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education, wealth index and sex of child were found to be insignificantly associated with

under-five mortality. The study also found that child care variable such as breastfeed-

ing was significantly associated with under-five mortality while in the study by Lemani

(2013) this factor was not included. This child care variable breastfeeding was found

to be significantly associated with child mortality in different settings (Mekonnen, 2011;

Mustafa and Odimegwu, 2008). This study further found that HIV status of a mother

was significantly associated with the under-five mortality.

There are avenues for further work on this study. Future studies could be done is focus

on the major occurrence of the under-five mortality contributing to the community in

Tanzania by considering spatial analysis. We hope to extend this study by considering

the generalized additive mixed model to include random effects in the generalized additive

model and also to account for the missing values than refit the models. The joint modeling

may also be considered, such as considering malnutrition, education and other variables

to be modeled simultaneously with under-five child mortality.
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Appendix A

Different Codes Used

A.1 Logistic Regression SAS Code

The variable used to fit the models are described below in full names.

Wi: Mother’s wealth index, SDW: Source of drinking water, AHSH: Age of household

head, BF: Currently breastfeeding, MS: Current marital status of the mother, HS: HIV

status of a mother, BON: Birth order number of the child, BOC: Number of children

ever born, MA: Mother’s age, MF: Main floor material, EL: Mother’s education level,

C5: Number of children 5 and under in a household, S: sex of the child, CW: Currently

working, CL: Number of children alive and L: Type of place of residence.

The Output Delivery System (ODS) is used to create the output and can be displayed

graphically or in Hypertext Markup Language (HTML ). PROC LOGISTIC fits the lin-

ear logistic regression for binary response assuming data is from a simple random sample

using maximum likelihood. The option DATA=Tanzania specifies the dataset name that

is of interest. The option DESCENDING is used to model 1,s instead of 0’s, and by de-

fault SAS PROC LOGISTIC model 0’s. The statement CLASS informs SAS of variables

with categorical (An, 2002). Under the statement model, the link function is speci-

fied as LOGIT since response is binary and LACKFIT request Hosmer-Lemeshow test

statistics to be produced and @2 request two-way interaction. The statement SELEC-
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TION=STAPWISE allows automatic selection of variable to be included in the model

and another option is to use backward or forward selection. The SAS code is as follow.

ods graphics on; ods HTML; PROC LOGISTIC DATA = data ; CLASS WI AHSH

BF SDW MS HS BON BOC MA MF EL C5 S CW CL L ;MODEL

Y(event=’yes’)=WI|AHSH|BF|SDW|MS|HS|BON|BOC|MA|MF|EL|C5|S|CW|CL|L@2/LINK=LOGIT

SELECTION=STEPWISE LACKFIT expb; RUN; ods HTML close; ods graphics

off;

A.2 Survey Logistic Regression SAS Code

The survey logistic procedure is used as an alternative to logistic regression procedure to

capture survey design. PROC SURVEYLOGISTIC fits linear logistic regression model

for binary response survey data using a method of maximum likelihood. This procedure

incorporates survey design such as stratification, clustering, and unequal weighting. The

option descending is included here to model 1s rather than 0s. All categorical variables

are included in class the class statement. This informs SAS about the variables with

different levels. The link function is LOGIT and EXPB give the odds ratios.

ods graphics on; ods HTML; PROC SURVEYLOGISTIC DATA = data ; ods

output oddsratios=domainors ; STRATUM V023; CLUSTER V021; Weight

V005; CLASS WI AHSH BF SDW MS HS BON BOC MA MF EL C5 S CW CL L ;

MODEL Y(event=’yes’)= BF HS BON BF*BON BOC BF*BOC MA BF*MA C5 CL

BF*CL BON*CL / LINK=LOGIT EXPB; RUN; ods HTML close; ods graphics

off;

A.3 Generalized Linear Mixed Model SAS Code

Generalized linear mixed model can be fitted using GLIMMIX or NLMIXED SAS pro-

cedures. Both of these procedures offer similar syntax. PROC GLMMIX fits a linear

115



logistic model with random and fixed effects. The method is specified under the state-

ment method (METHOD=laplace) and option PLOTS=All produces required plots. The

CLASS statement is also used to specify categorical variables. The distribution is speci-

fied as BINOMIAL and option SOLUTION and ODDS RATIO request SAS to produce

solution for fixed effects and corresponding odds ration. The random statement is used

to specify variables that are considered as random. The code for GLMM is given as.

proc glimmix data=data Method=LAPLACE; Class WI AHSH BF SDW MS HS

BON BOC MA MF EL C5 S CW CL L ; MODEL Y(event=’yes’)= BF HS BON

BF*BON BOC BF*BOC MA BF*MA C5 CL BF*CL BON*CL / LINK=LOGIT

ODDSRATIOS Solution; LSMEANS BF HS BON BF*BON MA BF*MA C5

CL BF*CL / PLOT=DIFFPLOT ADJUST=TURKEY ALPHA=0.05;\\

LSMEANS BF HS BON BF*BON MA BF*MA C5 CL BF*CL / PLOTS=ANOMPLOT

ADJUST=NELSON ALPHA=0.05; RANDOM INT/ SUBJECT=cluster; run;

A.4 Generalized Additive Model SAS Code

The methodology behind GAM procedure relaxes the linearity assumption, this allows

the hidden structure of the relationship between dependent variable and independent

variables to be discovered. PROC GAM fit a logistic additive model with binary response

variable child survival status and other predictors. Each term is fitted using B-spline

smoother with default degrees of freedom which is 3. The class statement is also used

here as before. However, in the model they are in included inside key word PARAM and

continuous predictors are included inside keyword SPLINE. The output statement is used

to obtain estimated functions and confidence intervals. The code for GAM is given as.

ods graphics on; ods html proc gam data=Data desc

plots=components(clm commonaxes); class HS BF; model Y =param(BF)

param(HS) spline(BN) spline(NLC) spline(RCA)

spline(NC5U)/dist=binomial; run; ods html close; ods graphics off;
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Appendix B

Derivation of Some Properties of the

Exponential Family

B.1 Properties of the Exponential Family

It is possible to get the general expression for the mean and the variance of the exponential

distribution in terms of a, b and φ.

f(y, θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ C(y, φ)

}

where f(y, θ, φ) is the density function.

∫
f(y, θ, φ)dy = 1.

Differentiating both side with respect to θ we get
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∂

∂θ

[ ∫
exp

{
yθ − b(θ)

a(φ)
+ C(y, φ)

}
dy

]
= 0,∫

∂

∂θ
exp

{
yθ − b(θ)

a(φ)
+ C(y, φ)

}
dy = 0,∫ [

y − b
′
(θ)

a(φ)

]
f(y, θ, φ)dy = 0,∫

yf(y, θ, φ)

a(φ)
dy −

∫
b

′
(θ)f(y, θ, φ)

a(φ)
dy = 0,∫

yf(y, θ, φ)

a(φ)
dy =

∫
b

′
(θ)f(y, θ, φ)

a(φ)
dy,∫

yf(y, θ, φ)dy =

∫
b

′
f(y, θ, φ)dy,∫

yf(y, θ, φ)dy = b
′
(θ)

∫
f(y, θ, φ)dy,

E(y) = b
′
(θ)× 1, since

∫
f(y, θ, φ)dy = 1,

E(y) = b
′
(θ)is the mean of y.

Taking the second derivative with respect to θ we obtain

∫ [
y − b

′
(θ)

a(φ)

]
f(y, θ, φ)dy = 0,∫ {[

y − b
′
(θ)

a(φ)

]2

f(y, θ, φ)− b
′′
(θ)

a(φ)
f(y, θ, φ)

}
dy = 0,∫ [

y − b
′
(θ)

a(φ)

]2

f(y, θ, φ)dy =
b

′′
(θ)

a(φ)

∫
f(y, θ, φ)dy,

1

a(φ)2

∫
[y − b

′
(θ)]2f(y, θ, φ)dy =

b
′′
(θ)

a(φ)
,

Var(y)

a(φ)2
=

b
′′
(θ)

a(φ)
,

Var(y) = a(φ)b
′′
(θ).
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B.2 Statistical Inference

L(θ, y) =
N∏

i=1

exp

{
ytθi − b(θi)

ai(φ)
+ C(y, φ)

}
. (B.1)

l(θ, y) =
N∑

i=1

{
ytθi − b(θi)

ai(φ)
+ C(y, φ)

}
. (B.2)

Taking partial derivatives with respect to θ, we obtain the score function given by

U =
∂l

∂θ
=

N∑
i=1

yi − b
′
(θi)

ai(φ)
. (B.3)

Taking the expected value of the score function and equate to zero, we have

E(U) =
N∑

i=1

E(yi)− b
′
(θi)

ai(φ)
= 0.

The information which is the variance of the score function is given by

I = Var(U) =
N∑

i=1

Var(yi)

ai(φ)2
= n

a(φ)b
′′
(θ)

a(φ)2
= n

b
′′
(θ)

a(φ)

where the derivative of the score function with respect to θ is given by

U
′
=

∂U

∂θ
= −n

b
′′
(θ)

a(φ)
.

This means that

Var(U) = −U
′
= −∂U

∂θ
.

For generalized linear models (GLMs) yi, i = 1, 2, . . . , n is distributed as

f(yi; θ, φ) = exp

{
yiθi − b(θi)

ai(φ)
+ C(yi, φ)

}
. (B.4)

The score function is given by

U =
∂l

∂β
=

N∑
i=1

(yi − µi)

ai(φ)

∂θi

∂β
=

N∑
i=1

(yi − µi)

ai(φ)

G
′
(ηi)

Var(µi)
Xi
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where, ηi = g(µi) = Xi. The information matrix is obtained by finding the second

derivative and is given by

I = Var(U ) =
N∑

i=1

G
′
(ηi)

Var(µi)
XiX

′

i (B.5)

where score vector can be viewed as U ∼ MVNp(0, I). Thus

Q = UI−1U
′ ∼ χ2(p).

Sampling distribution of the Maximum Likelihood Estimator(MLE)

The Taylor series expansion of the function f(x) about x = a is given by

f(x) = f(a) + (x− a)f
′
(a) +

1

2
(x− a)2f

′′
(a) +

1

3
(x− a)3f

′′′
(a) + . . .

≈ f(a) + (x− a)f
′
(a)

(B.6)

so that the Taylor series expansion of the score vector U(β) about β̂ becomes

U(β) ≈ U(β̂) + (β − β̂)
∂U(β̂)

∂β
= U(β̂) + (β − β̂)U

′
(β̂).

However, U(β̂) = 0 we have that U(β) ≈ (β − β̂)U
′
(β̂). If U

′
is approximated by

E(U
′
) = −Var(U ) = −I then we have that U(β) ≈ (β̂ − β)I which is

I−1U(β) ≈ (β̂ − β). (B.7)

Taking the expected value in equation B.7 we get

E(β̂ − β) = I−1E(U (β)) = 0.
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This implies that E(β) = β, so β is the consistent estimator of β. The variance is thus

given by

Var(β) = E[(β̂ − β)(β̂ − β)
′
],

= E[(I−1U (β))(I−1U (β))
′
],

= I−1E[U (β))(U (β))
′
]I−1,

= I−1Var(U (β))I−1,

= I−1II−1,

= I−1.

(B.8)

So β ∼ MVN(β, I−1) and we can have that

Q = (β̂ − β)(β̂ − β)
′ ∼ χ2(p)

which is known as the Wald statistics.
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Appendix C

Additional Results

C.1 Checking Multicolinearity

Table C.1: Checking the presence of multicolinearity.

Variable Estimate Standard Error p-value Tolerance VIF
Intercept 0.00399 0.01939 0.8371 . 0
WI -0.00361 0.00313 0.2475 0.45917 2.17782
AHSH 0.00102 0.00428 0.8109 0.82673 1.20959
BF -0.03372 0.00397 0.0001 0.90208 1.10855
SDW 0.00144 0.0039 0.7117 0.92567 1.08029
MS -0.00933 0.00451 0.0385 0.94112 1.06256
HS 0.02762 0.0092 0.0027 0.97097 1.02989
BON -0.00985 0.00526 0.061 0.17365 5.75872
BOC 0.10066 0.00641 0.0001 0.12493 8.00429
MA -0.00412 0.00483 0.3935 0.55471 1.80274
MF -0.00318 0.00622 0.6092 0.4714 2.12133
EL 0.00477 0.00356 0.1805 0.81454 1.22768
C5 -0.00952 0.0035 0.0066 0.85816 1.16528
S -0.00406 0.00375 0.2783 0.99808 1.00193
CW -0.00981 0.00598 0.101 0.93317 1.07162
CL -0.0662 0.00363 0.0001 0.1661 6.0204
L -0.00437 0.00609 0.4724 0.72982 1.3702

C.2 Generalized Linear Mixed Model Results
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Table C.2: Laplace, estimated coefficients, odds ratios, standard errors, p-values and
confidence interval.

95% confidence interval
Effects Estimate Odds ratio Standard error P-value Lower limits Upper limits
Intercept

Socio-demographic characteristics
Breast feeding (BF)
Yes(ref)
No -0.2471 0.7811 0.5213 0.4939 0.2812 2.1698
Mother’s HIV status (HS)
Negative(ref)
Positive 0.5016 1.6514 0.1872 0.001 1.1442 2.3834
Birth order number (BON)
Less than 2 birth(ref)
2 to 4 birth 0.3548 1.4259 0.3085 0.0630 0.7789 2.6103
More than 4 birth 0.9807 2.6663 0.4291 0.0010 1.1499 6.1826
Respondent age(MA)
Over 34 years (ref)
20 to 34 years 0.4943 1.6394 0.3223 0.7199 0.8716 3.0833
Less than 20 years -0.5537 0.5748 0.5375 0.4071 0.2004 1.6484

Socio-economic characteristics
Number of children alive (CL)
Less than 2 children(ref)
2 to 4 children 1.1024 3.0114 0.2985 0.0001 1.6776 5.4057
More than 4 children -0.8003 0.4492 0.3641 0.002 0.2200 0.9170
Children under-five years (C5)
Less than 2 children(ref)
2 to 4 children -0.4269 0.6525 0.1667 0.0010 0.4707 0.9047
More than 4 children -0.4948 0.6097 0.3097 0.4071 0.3323 1.1188

Interaction between Socio-demographic and Socio-economic characteristics
Breast feeding by Birth order number
yes versus less than 2 birth(ref)
No Versus 2 to 4 birth 1.1400 3.1268 0.3673 0.0010 1.5221 6.4231
No versus more than 4 birth 2.0685 7.9129 0.5269 0.0001 2.8173 22.2251
Breast feeding by Respondent age
Yes versus Over 34 years(ref)
No versus 20 to 34 years -0.4760 0.6213 0.3754 0.0550 0.2977 1.2966
No versus Less than 20 years 1.6743 5.3351 0.6333 0.0010 1.5419 18.4593
Breast feeding by children alive
Yes versus less than 2 children(ref)
No versus 2 to 4 children 1.2193 3.3848 0.3760 0.0200 1.6199 7.0728
No versus more than 4 children -0.8060 0.4466 0.4246 0.4600 0.1943 1.0266

Table C.3: Breastfeeding by child birth order least square means.

BF*BON Least Squares Means
breastfeeding birth order Estimate Standard Error Lower
No 2-4 births -2.8162 0.2246 -3.2564
No 5 and above births -1.2617 0.2292 -1.711
No First births -4.311 0.2463 -4.7937
Yes 2-4 births -4.2463 0.2966 -4.8276
Yes 5 and above births -3.6203 0.323 -4.2536
Yes First births -4.6011 0.3014 -5.192

123



Table C.4: Breastfeeding by mother’s age least square means.

BF*MA Least Squares Means
Breastfeeding Respondent age Estimate Standard Error Lower Upper
No Between 20-34 -3.1576 0.1774 -3.505 -2.81
No less than 20 years -2.0553 0.315 -2.673 -1.4379
No more than 34 -3.1759 0.2112 -3.59 -2.762
Yes Between 20-34 -3.6418 0.1751 -3.985 -3.2986
Yes less than 20 years -4.6898 0.4572 -5.586 -3.7935
Yes more than 34 -4.1361 0.3163 -4.756 -3.5161

Table C.5: Breastfeeding by number of children alive least square means.

BF*CL Least Squares Means
Breastfeed number of children alive Estimate Standard Error Lower Upper
No 2 to 4 children -0.7131 0.2126 -1.1299 -0.2963
No above 4 -4.641 0.2765 -5.183 -4.0991
No less than 2 children -3.0348 0.2177 -3.4615 -2.608
Yes 2 to 4 children -3.1542 0.3082 -3.7584 -2.5501
Yes above 4 -5.0569 0.3392 -5.7217 -4.392
Yes less than 2 children -4.2566 0.2791 -4.8038 -3.7094
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