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0.1. Introduction

Given a real valued functional I’ on a parameter set O, one of the
main problems of econometrics and statistical inference is to find a
minimizer together with the minimum value:

arg min F(9),

N
The purpose of thesis is to study the dependence of argmingeg F' (0)
and infpee F'(0) on the data in particular perturbations of the objective
function F. It is clear that, if we consider a sequence }F,( of pertur-
bations of F', which converges to F' in a very strong way, i.e., uniform
convergence then, in general, we can prove by elementary arguments
that the minimum values of the functionals }F,,{ converge to the min-
imum value of F'. If, in addition, © is a compact topological space,
and if each function }F,( is lower semicontinuous(lsc) on O, then it is
easy to see that every sequence of arg mingeg F), (f) has a subsequence
which converges to a point of argmingeg F' (#). In particular, if F' has a
unique minimum point, then the whole sequence arg mingeg F), (6) con-
verges to arg mingee F' () in strongly (Newey and McFadden (1994)).

They are not suitable for many applications to Econometrics and
nonparametric statistics, characterized by perturbations of minimum

problems for integral functionals of the form
F @)= [ )6 (@) o (2)| da,
S

where H is an elliptical differential operator, S is a subset of R, )x%
denote an inner product on Euclidean space and ¢ : R oo R is a func-
tion satisfying some properties. Suppose that we have a sequence }F},(
of functionals of this form, corresponding to a sequence of function-
als Yo, (z), Hodn (z)]. If the usual coerciveness and growth conditions
are satisfied uniformly with respect to n, and if for every the sequence
Yon (), Hyp, ()| converges to Yo (z) , Hp (x)| pointwise a.e. on S, then
}F,( converges to F' pointwise, but not uniformly.

In order to make the objective function satisfy the uniform conver-
gence, we have to impose some compactness of the parameter space or

entropy conditions (e.g.,van der Vaart and Wellner (1996) and van der
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Vaart (1998)). These assumptions are rather restrictive for the above
integral functionals with differential operator, fully nonparametric and
non-differentiable convex objective function settings. Although since
the objective function is convex, it seems that we may use the con-
vexity lemma (e.g., Pollard (1991) and Theorem 10.8 of Rockafellar
(1970)) to ensure that point-wise convergence of convex functions im-
plies uniform convergence, however, in the infinite-dimensional case,
this argument for uniform convergence may fail . Let m,, n = 1,2, xxx
be the sequence of projection operators on ¢ onto E, — ¢ where
E, ; Eysn. Consider a quadratic form )m,0,0| for T V # that
is considered as a convex function of #. Then, as n oo €, )m,0,0)|
converges point-wise to )6, 60| but not uniformly.

However, in this case it is still possible to prove that, for any reason-
able choice of the weaker topology, the minimum points and the mini-
mum values of the functionals } F},( converge to the minimum point and
to the minimum value of F'. In this thesis, as a reasonable choice of the
topology we choose the mosco-convergence, that is the "weakest” notion
of convergence for sequences of convex functional which allows to ap-
proach the limit on corresponding minimization problems. On this way,
various limit problems are analyzed: some, such as a functional linear
quantile regression, generalized method of moments estimate of diffu-
sion processes, a kernel density estimate by partial differential equation
method, convergence of invariant measure of computed dynamics with
unbounded shocks and a relation between admissibility of statistical
estimator and recurrence of Markov processes. For all these examples

Mosco-convergence provides a flexible tool and a deep insight.
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0.2. Examples

In this section we present a number of examples, in which we show
how a notion of variational convergence must be sensible. These ex-

amples will be dealt with in detail in the next chapters.

Variational Analysis [« Dlrlchlet Form <:ﬁ Markov Process |
Functional Quantile Admissibility Density by PDE

osco Topology]

0.2.1. Functional Linear Quantile Regression. (Chapter.4).
Let Z = (Y, X)) be a pair of a scalar response variable Y and a square
integrable random function X = }.X (¢)(,cj on a interval [0,1]. Let
Q, (Y[X) be the 7th conditional quantile function of Y given X for
any 7V (0,1) that is away from 0 and 1. The 7th conditional quantile
Q- (Y|IX) can be written as a linear functional of X:

Q. (Y|X) = aT+/01X(t)ﬁT (t)ydt, 7V (0,1),

where X (t) = X (t) E[X (¢)], o, is a scalar constant and j3; (t) is a
scalar function in L? [0, 1]. Hereafter, we consider estimating the slope
function 8. The unknown parameter 6y = («, 5) belongs to { =R x
L?[0,1]. We suppose X (t) satisfies E [fol X (¢)|F dt] < € . We take the
slope function 3, (t) to be an RKHS, { , a subspace of the Hilbert space
of square integrable functions L?[0,1]. We denote the inner product
and the associated norm in { by )Xk and X respectively. Suppose we
observe data (Y;, X; (t)), 1 > i > n consisting of n independent copies
of (Y, X (t)). With them, we may estimate ., 5, via by penalization
method :

(0.2.1)

dﬂn,)\v ﬁT,n,A) = arg aelﬂg}b’n’}{ F‘r n,A (9)

1
24 ae%lgeljfnsz(z o /OXi(t)B(t)dt)Jr)\nJ(ﬁ),
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where p; (u) = {7 1(<o)} u is the check function (Koenker and Bas-
sett Jr (1978)), A, is the smoothing parameter that converges to zero
as n oo € and J(f) is a convex penalty functional on 3. Obviously,
the criterion function p, (3 is not continuously differentiable. When
p = |Hand («, 5) is in an infinite-dimensional space, we have
3up [Frna (0) E[Frna ()]l y

for some constant . The left-hand side of the inequality does not
converge uniformly. The convexity lemma argument to ensure that
point-wise convergence of convex functions implies uniform convergence
may fail. Let m,, n = 1,2, xxxbe the sequence of projection operators
on 7 onto E, — ¢ where E, ; E,~,. Consider a quadratic form
)10, 0| for YV A that is considered as a convex function of . Then,

as n oo € , )m,0, 0| converges point-wise to )6, 0| but not uniformly.

0.2.2. Conditional Moment Estimate of Markov Process.
(Chapter.5). In many economic and finance applications it is com-
mon to start with a stochastic differential equation. The dynamics are
usually described by an Ito-type stochastic differential equation in the

time-homogeneous case reading
dry = p () dt + V% () AW,

where p (3 is a local mean (drift) and X (¥ is a local variance (diffusion
coefficient, or volatility) on the state space S — R?. We study the
problem of estimating the coefficients of a diffusion }X;(,.,; the esti-
mation is based on discrete data } X,a;n = 1,2, V(. The sampling
frequency is constant, and asymptotics are taken as the number N of
observations tends to infinity. We prove that the weak asymptotics of
estimating both the diffusion coefficient (the volatility) and the drift
in a nonparametric setting.

There are well known connections between the coefficients of the
stochastic differential equation and the infinitesimal generator. Hansen
and Scheinkman (1995) studied how to generate moment conditions for
continuous-time Markov processes with discretely sampled data by us-
ing the infinitesimal generator. Hansen and Scheinkman (1995) derived
moment conditions for estimating the parameters of continuous-time

Markov processes using discrete time data. The central thrust of their
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approach can be illustrated through a simple example with one di-
mensional x; V R and constant coefficients pu,o V R. Applying the
infinitesimal generator to any well behaved transformation f (% of X

and by Ito’s Lemma we have:

Ef @] =E| F@uie m+Tf @] =0

which yields an infinite number of moment conditions, one for each
f, related to the marginal distribution of f (z). From these moment
conditions, and under the regularity conditions specified by Hansen and
Scheinkman (1995) GMM estimation may be performed in the usual
way.

These above theorems imply that the drift and diffusion coefficients
of stationary scalar diffusions can be identified up to a common scale
factor. Additional a conditional expectation operator allows one to

identify fully the generator of reversible processes likewise

where \; is the second largest eigenvalue of a conditional expectation
and )\; is the second largest eigenvalue of the estimated infinitesimal
generator #H To estimate the second largest eigenvalue, we must solve
the stochastic optimization problem of the unknown maximum eigen-

value \:

r= [ 6d@=0,|¢|=1 <¢’ Hqé>

which is the stochastic optimization problem including a differential

operator. Therefore, the left-hand side does not converge uniformly.

0.2.3. Adaptive Density Estimate by Partial Differential
Equation Method. (Chapter.6). Consider a Gaussian kernel esti-

mate based on sample data }xq, zo, xxx, zx( with z; V R:

N
Flet =36 Xit), aV R,
=1

where ¢ is the Gaussian kernel function:

1 1 )
X;it) = Ve — X;
Qb(.flf, Zat) 2’7Tt exp( 2t (ZE Z) )
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V_
and ¢t is its bandwidth. Observe that the Gaussian kernel density
estimator is the unique solution to the heat equation(diffusion partial
differential equation (PDE))

0 » 10% .
§f<$’t):§@ (.ZU,t), CCV %,t>0,

Fmn =Y 5@ X)

where ¢ (x  X;) is the Dirac measure at X;. Considering the heat
equation provides an interpretation that the Gaussian kernel is the so-
called Green’ s function for the diffusion PDE. If we treat the band-
width as time, the smoothness of the estimated density will increase as
the time increases. The value of ¢ has the same effect as h in the kernel
estimate, and therefore, the time parameter in heat diffusion resembles
the bandwidth in kernel density estimation. Thus, the Gaussian kernel
density estimator can be obtained by solving the parabolic PDE up to
time ¢.

The advantage of the PDE formulation is the case where the domain
of the data is to be bounded. The most traditional kernel estimators
suffer from boundary value problem. Suppose the data is known to be

in a finite domain [0, 1]. ITmpose the Neumann boundary condition

=0

9 .
= %f(if;t)

z=1
on PDE. The PDE with the initial condition and Neumann boundary
condition has an analytical solution.

For multi-dimensional case, there is, in general, no analytical ex-
pression for the diffusion kernel. Computational approximation is needed.
Let A be an elliptic differential operator which is a non-negative defi-
nite self-adjoint operator on . There is a one to one correspondence
between the family of closed symmetric forms (F, € (F)) and the family
of non-negative definite self-adjoint operators A on 7. The correspon-

dence is determined by

F(t.9) = (A, dg)

G =@(VZ>



0.2. EXAMPLES 9

where), | is a inner product in L? (S;m):

\fodl =/Ef<x>g<x>m<dx>.

This(F, G ) is called Dirichlet form of m-symmetric processes. Define
the resolvent G, f such that

F(Gofv)=)fol, TfYH, "0V E(F)
f(Gaf7U)+O‘>GafaU| :)f,v|.

The above defined }G,( is a strongly continuous resolvent generated
by (F € (F)) and define a Laplace transformation of « (z,y,t):

Go (z,y, )\):/ e YR (x,y,t)ds.
0

From this resolvent }G,(, by the inverse Laplace transform:

£ (2,9,t) xf = lim ey % (BGs)" f, fVH
n=0 :

1 c+i00
— MG fds.

N 2mi €c—100
An approximation solution of the resolvent G f is defined by the vari-
ational form of

GI'f = arg min {.F(v,v)%—i)v f,v f\}

’UGHnl 20&

Since the above optimization problem contains an elliptic differential

operator, uniform convergence of this objective function may fails.

0.2.4. Convergence of Computed Dynamic Markov Model.
(Chapter.7). Most dynamic economic models do not have a closed-
form solution. Model’s policy functions are approximated by numerical
methods. Therefore, the researcher can only evaluate an approximated
invariant measure associated with the approximated transition function
rather than the exact invariant measure implied by the exact transition
function.

The equilibrium law of motion of the state variables can be specified

by a dynamical system of the form

St4+1 ZQO(St,é‘H_l), t:O,l,Q,...
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Here, s; is a vector of state variables that characterize the evolution
of the system. The variable ¢ is an independent and identically dis-
tributed shock. In most case, researcher dose not know the exact form
of transition equations . He only access to numerical approximation
to the transition equations ¢; with index j. The index j indicate the
approximation and imply that as j goes to infinity the approximation
©; converge to their exact values (the metric of convergence is defined
later).

Note that each ¢, defines the associated pair (P;,T;) : Markov
operator associated with ¢; is defined as

T,f (s) 2 / £ (1) Py (s, dt)
_ / £ (@5 (5,2)) Q (s, de)

The adjoint 77" of T} is as
Tfasl = [ [ 752 Qs.de)d (9
(1im) = [ [ e (2D Qsude) diy (9

Moreover there always exists an invariant distribution p; =77 u;. The
purpose is the convergence of invariant measure obtained from numer-
ical simulations to the exact invariant measure.

Santos and Peralta-Alva (2005) have studied the convergence of
computed invariant measure of economic models which cannot be solved
analytically and must be solved numerically or with some other form
of approximation. Fernandez-Villaverde et al. (2006) have studied the
convergence of the likelihood of computed economic models. However,
they assume that the state space is compact and therefore, the support
of the shock of dynamical system is assumed to be bounded. Although
this assumption is standard in the numerical literature, but this as-
sumption excludes from the dynamical model the normal distribution.
To relax the compactness assumption for the convergence of the ap-
proximated invariant measure, we must relax the topology of uniform

convergence.
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0.2.5. Admissibility. (Chapter.8). Consider the problem of es-
timating the mean of a multivariate normal distribution. Consider
squared error as the loss function. We are interested in determining
necessary and sufficient conditions for an estimator, §, to be admissi-
ble. Stein (1956) proved that the mean, 6 (z) = x (the best invariant
estimator), is admissible if the dimension m of the multivariate normal
distribution satisfies m > 2 and is inadmissible if m C 3. There is
another interesting division between dimensions m = 2 and m = 3.
Brownian motion is recurrent in dimensions m = 1,2 and is transient
if m C 3. The mathematical link between the statistical decision prob-
lem and the stochastic process problems is a simple calculus of varia-
tional problem, i.e., Dirichlet form. This Dirichlet form involves the
infinitesimal generator of the above mentioned Brownian motion, more
generally a symmetric Markov processes. And it is known that the
Markov process is recurrent if and only if the corresponding Dirichlet
form has 0 infimum.

At the same time, subject to the regularity conditions mentioned
above, we are able to exploit the mathematical link to the statistical
problem to show that the statistical estimator is admissible also if and
only if this exterior Dirichlet problem is insoluble.

Let X be an m-dimensional normally distributed random variable
with unknown mean 6 = (6, xxx, 6,,)" to be estimated and a variance-
covariance matrix as the identity matrix I . We denote the estimator
of @ = (01, %<, 0,,)" as § = (§;, %0d,,)". Although a natural estimator
is taking mean:0 = ¥, mean is inadmissible when m C 3. Define the
loss function

LO,5=(0 6)'D(@G 0)
where D is a fixed known m# m diagonal matrix with elements (dy, da, xxx, d,,)
with d; 2 dy = xxx= d,,, > 0. The measure for the goodness of esti-
mator ¢ is the risk R defined by

R(6,8) =E[L(6,5)].

It is said that ¢ is admissible if there is no ¢, such that for any unknown
0, R(0,0.) > R(6,0) and for some 0, R (0,6,) < R(0,9). Let G be any

nonnegative Borel measure on R™ and be a finite measure. Define the
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Bayes risk B (G, ¢) by
B(G,0) :/R(Q,é)G(dQ).

Whether or not G is finite measure, the generalized Bayes estima-

tor(Pitmann estimator) is given by

[ o (x) G (d0)
[ 7o () G (d6)

where py () is the normal density with mean 6:

1 1 — )
pg(x)zwexp( 52(:@ 91))

i=1

dc ()

For notational convenience, let 7 (z) be
e () =b¢ () .
Denote the convolution
(@) = [ o (0) G (a8)

by ¢g* = peG. g* is the marginal likelihood. Let F' be a given generalized
prior including improper prior, and define f* = p e F. ~q (x) can be
written by

The fundamental tool for the necessary and sufficient condition for
admissibility due to Stein et al. (1955). According to this, dp is ad-
missible if and only if there is a sequence of nonnegative finite Borel

measures, G;, 1 = 1,2,... satisfying

G; (}0() = 1.
Each G; has compact support and satisfy

Hence, we focus on B (G;,0r) B (Gj,0q,). The important thing
is that some algebra provides the Dirichlet form in the following way;
Write
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where R (6,0¢) can be expressed by
R(0,0q) = / do 0 2pp(x)da
v
Next, we have

—/ log ;*E ; “(x) dx

| Lese r@ swf 1,
fr(x) g; (x)

:/ [ @) gi(x) g (x) f*(x) 2}JC*(?U)(Qd
b/ (@) g; (z)

| )|
B(Gi6r) BI(Gibc) :/ e
and letting J; (z) = 24/ h; (x) provides
jia) = k)
therefore,
B(Gudr) B(Gida) = [ || @] £ (@)

The above equation is the fundamental equation of this study: the close
connection between the statistical problem of admissibility and recur-
rence of diffusion processes on R™. Theses above variational problems
comprise the differential operator. One must be assiduous in the topo-
logical matters. Here is the main mathematical link between the risk

boundedness below and recurrence of transience of Markov processes.
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< Let }Tt<t>0
X 2

L*(S;m) and [ H Ji (x)H f* (z) dz be the associated Dirich-

let space relative to L? (S;m). Then }T;(,., is transient if

be a strongly continuous Markovian semigroup on

and only if there exists a bounded m-integrable strictly posi-

tive function g such that ¢ > 0, m a.e. on S satisfying

[ tigam < [ Gita

<For each Dirichlet form [ H Ji (z H f*(z)dz on L*(S;m),

the following is equivalent:

(z)dz,"j; ¥ G.

(i)} T4 (,~ is recurrent.

(ii) There exists a sequence }j,( satisfying

f*(x)dx = 0.

n—oo

bin( =G, im0 jn = 1 (m-ace.), hm/” 7 (

(iii)In the case where m (F) < € |

x)dr = 0.
[ e
0.3. Plan of this thesis

The rest of this paper is organized as follows. In Chapter 2, we
present the general set-up and main results of a fully abstract model.
We describe the Mosco convergence and introduce the narrow conver-
gence in the Mosco topology. We derive the quadratic approximation
of a convex objective function in an infinite-dimensional Hilbert space.
We also provide the asymptotic distribution of the optimal value.

In Chapter 3, we present the general notion of Dirichlet form and
their relationship with the symmetric Markov process. There is one-
to-one correspondence between the Dirichlet form and semi-group of
the symmetric Markov process. We apply the Mosco convergence to
the perturbed Dirichlet form and describe the Mosco convergence of
the Dirichlet form. We derive the Mosco convergence of the Dirichlet
form implies the narrow convergence of the corresponding symmetric
Markov process and vise versa.

In Chapter 4, we study an asymptotics of functional linear quantile
regression in which the dependent variable is scalar while the covariate
is a function. We apply a roughness regularization approach of a re-

producing kernel Hilbert space framework. In the above circumstance,
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narrow convergence with respect to uniform convergence fails to hold,
because of the strength of its topology. A new approach we propose to
the lack-of-uniform-convergence is based on Mosco-convergence that
is weaker topology than uniform convergence. By applying narrow
convergence with respect to Mosco topology, we develop an infinite-
dimensional version of the convexity argument and provide a proof of
an asymptotic normality of argmin processes. Our new technique also
provides the asymptotic confidence intervals and the generalized like-
lihood ratio hypothesis testing in fully nonparametric circumstance.

In Chapter 5, we adopt the approach of Hansen and Scheinkman
(1995), and provide an asymptotics of this approach. We begin by
considering a Markov process specified in terms of its infinitesimal gen-
erator. Formally, this generator is defined as an operator on a function
space, and, in effect, this operator stipulates the local evolution of the
process. For the fully identification, one must estimate the second
largest eigenvalue of the infinitesimal generator H which involves an
optimization problem including differential operator. That is beyond
an usual asymptotics of empirical process theory. We deal with this
problem by the introduced Mosco topology.

In Chapter 6, We extend Botev et al. (2010)’s adaptive kernel den-
sity estimation method based on the smoothing properties of linear
diffusion processes in two ways. First, we extend their proposed dif-
fusion kernel method to kernel density estimators based on Lévy pro-
cesses, which have the diffusion estimator as a special case. The kernels
constructed via a Lévy process could be tailored for data for which
smoothing with the diffusion estimator is not optimal. Second, we
consider an asymptotics of the estimated diffusion differential operator
that has a random fluctuate due to the estimated pilot density. This
problem induces a variational problem, and in fact can be addressed by
a straightforward application of Mosco convergence of Dirichlet form.

In Chapter 7, we provide the conditions for the convergence of in-
variant measure obtained from numerical simulations to the exact in-
variant measure. Most dynamic economic models do not have a closed-
form solution. Model’s policy functions are approximated by numerical
methods. Therefore, the researcher can only evaluate an approximated

invariant measure associated with the approximated transition function
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rather than the exact invariant measure implied by the exact transi-
tion function. However, previous study assumed that the state space is
compact and therefore, the support of the shock of dynamical system
is assumed to be bounded. We relax the compactness assumption for
the convergence of the approximated invariant measure.

In Chapter 8, we generalize and reformulate Brown (1971) idea
of the admissibility question for more general distributions, for more
general Bayesian decisions and for more general variational form, i.e.,
Dirichlet form. This connection goes far beyond the diffusion processes
case that Brown (1971) consider. The relation between admissibility
of a general Bayesian decision which is based on general distributions
and recurrence of the other symmetric Markov processes is established.
Since general distributions include Lévy type(infinitely divisible) distri-
butions as a special case of a much more general phenomenon, we give
a striking result on a maximum likelihood estimate(MLE) of Cauchy
distribution that MLE of Cauchy distribution with dimension d = 1
is admissible but is inadmissible with d C 2. This phenomenon is
compatible with the transiency of Cauchy processes with the division

between dimensions m = 1 and m = 2.
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