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Abstract

This dissertation consists of five essays on mechanism design and social indices. I study
the problems of designing mechanisms and social indices that satisfy “desirable" properties.

Consider a social planner who wishes to implement a social objective. In order for the
planner to do this, he/she needs to gather information about individuals’ preferences. However,
even if the planner directly asks individuals about their preferences, they might not tell him
the truth. This is because individuals may have incentives to misrepresent their preferences.
Since a proposal based on the misrepresented preferences may fail, designing a mechanism
that brings us to the social objective is important. In Chapters 1, 2 and 3, I deal with this
problem. I particularly search for mechanisms that satisfy “desirable" properties such as
efficiency, individual rationality, and strategy-proofness.

On the other hand, during the stage in which social objectives are decided, an accurate
understanding of social conditions is indispensable. However, social conditions are usually
determined by complex phenomena such as polarization. Using some quantitative indices
is a helpful way to perceive such complex phenomena. However, if we use some“ bad”
indices, we may misperceive the complex phenomena, and also possibly misperceive social
conditions, failing to plan appropriate social objectives. Therefore, designing "desirable"
indices is important. In Chapters 4 and 5 , I deal with this problem. I search for indices that
satisfy “desirable" properties to measure the levels of human development and polarization
in a society.

In Chapter 1, I study famous Clarke’s (1971) pivotal mechanisms. Moulin (1986) char-
acterizes the pivotal mechanisms under the assumption of the full domain of quasi-linear
preferences. In this chapter, I provide properties of restricted domains that are necessary
and sufficient for Moulin’s (1986) characterizations to hold. I also provide simple economic
conditions that imply these properties.

In Chapter 2, I search for a mechanism that overcomes a drawback of the pivotal mech-
anisms: they do not satisfy individual rationality. I consider the problem of designing
mechanisms that mediate disputes. A specific feature of the problem I examine is that each
disputant may have a veto power to the outcomes of mechanisms. Given the specific feature,
I impose individual rationality on mechanisms so that each disputant voluntarily accepts
outcomes of mechanisms. First, I show that on the full domain of disputants’ valuations, a
mechanism that always forces disputants to continue the dispute uniquely satisfies a weaker
version of efficiency, strategy-proofness, individual rationality, and feasibility. Second, I
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show that on mildly restricted domains of disputants’ valuations, there exist well-performed
mechanisms that satisfy all four axioms and Pareto-dominates all mechanisms as such.

In Chapter 3, I suggest how to find a boundary between the possibility and impossibility of
implementing social choice rules. I introduce a new concept of implementation that uses the
planner’s “guess" of individual preferences. Given a family of subsets of possible preference
profiles, the planner guesses a subset to which individuals’ true preference profile belongs. A
social choice rule is said to be G-implementable if it is implemented in dominant strategies
as long as the planner’s guess is correct. I apply this implementability concept to public
decision and auction problems. In a public decision problem, I characterize a class of social
choice rules satisfying efficiency, individual rationality, feasibility, and G-implementability.
In an auction problem with homogeneous goods, I characterize a class of auction rules that
generate more revenue than any other auction rules satisfying efficiency, individual rationality,
and G-implementability. I also show that rules in these two classes only require “minimal
information" for the planner to guess correctly.

In Chapter 4 (co-authored with Yoko Kawada and Shuhei Otani), we provide an axiomatic
foundation of the Human Development Index (HDI). The aggregation formula of HDI was
changed to geometric mean in 2010. In this chapter, we search for a theoretical justification
for employing this new HDI formula. First, we find a maximal class of index functions, what
we call quasi-geometric means, that satisfy symmetry for the characteristics, normalization,
and separability. Second, we show that power means are the only quasi-geometric means
satisfying homogeneity. Finally, the new HDI is the only power mean satisfying two local
complementability axioms, what we call minimal lower boundedness and sensitivity to lowest-
level characteristics.

In Chapter 5 (co-authored with Yoko Kawada and Keita Sunada), we consider a design
problem of polarization measures. Esteban and Ray (1994) formalize an idea of polarization
and develop a theory for its measurement. In their main theorem, they claim that a class of
polarization measures, called the Esteban-Ray measures, is characterized by a set of axioms
that capture an idea of polarization. However, we show that the claim does not hold by
presenting a counterexample. We amend the main theorem by strengthening their Axiom 1.
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Chapter 1

The Uniqueness of Pivotal Mechanisms
on Restricted Domains

1.1 Introduction

In his seminal work, Moulin (1986) provides three characterizations of Clarke’s (1971) pivotal
mechanisms. First, he shows that efficiency, strategy-proofness, and the no free ride axiom
characterize the pivotal mechanisms. Second, he shows that the same characterization holds
if the no free ride axiom is replaced by welfare lower boundedness. Finally, he shows that even
if strategy-proofness is dropped, efficiency, the no free ride axiom, and two mild monotonicity
axioms characterize the pivotal mechanisms. All of Moulin’s (1986) results are shown under
the assumption of the full domain. In this chapter, we provide properties of restricted domains
that are necessary and sufficient for Moulin’s (1986) characterizations to hold. We also provide
simple economic conditions that imply these properties.

Related literature

The pivotal mechanisms belong to the class of Groves mechanisms, which have played
a prominent role in mechanism design theory (Groves 1973). Green and Laffont (1977)
show that if a domain contains all continuous preferences, then Groves mechanisms are
the only efficient and strategy-proof mechanisms. However, Walker (1978) points out that
since Green and Laffont’s (1977) proof depends crucially on the assumption of a large
domain, we cannot directly apply their uniqueness result to some of the important restricted
domains (e.g., a domain which consists of all the concave valuation functions). Given
this criticism, Holmström (1979) provides a general sufficient condition on domains that
ensures the uniqueness of Groves mechanisms. Subsequently, Suijs (1996) and Carbajal
(2010) provide necessary and sufficient conditions on domains for the uniqueness of Groves
mechanisms.

The uniqueness of Groves mechanisms relates to a payoff equivalence of mechanisms.*1

*1For early literature on payoff (revenue) equivalence, see Myerson (1981), Jehiel, Moldovanu, and Stacchetti
(1999), Krishna and Maenner (2001), and Milgrom and Segal (2002).
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Payoff equivalence states that each individual’s payments under two arbitrary incentive com-
patible mechanisms with the same decision function differ at most constants with respect to
his reported preferences. Chung and Olszewski (2007) and Heydenreich, Müller, and Vohra
(2009) provide necessary and sufficient conditions on domains under which strategy-proof
mechanisms satisfy payoff equivalence. The presence of efficiency is the main difference
between the works by Suijs (1996) and Carbajal (2010) and those by Chung and Olszewski
(2007) and Heydenreich, Müller, and Vohra (2009). In contrast to their works, we further
impose Moulin’s (1986) axioms and search for necessary and sufficient domain conditions for
the uniqueness of the pivotal mechanisms.

The remainder of this chapter is organized as follows. Section 1.2 introduces our model.
Section 1.3 offers necessary and sufficient domain conditions for Moulin’s (1986) characteri-
zations to hold. Section 1.4 gives concluding remarks. While some results in Section 1.3 are
stated under the assumption of connectedness of domains, Appendix A deals with the case
that relaxes this assumption. Some proofs are relegated to Appendix B.

1.2 The Model

Let N = {1,2, . . . ,n} be the finite set of individuals, and X = {x1, x2, . . . , xm} the finite set of
alternatives. An outcome is a pair (x, t) ∈ X × Rn, where t = (t1, t2, . . . , tn) ∈ Rn is a vector
of monetary transfers among individuals. Each individual i ∈ N has a valuation function
vi : X → R. Individual i’s quasi-linear utility for an outcome (x, t) ∈ X × Rn is vi(x) + ti.
Let V ≡ RX be the set of valuation functions. A valuation profile is an n-tuple of valuation
functions v = (v1, . . . , vn) ∈ Vn. For each v ∈ Vn and each N′ ⊂ N , vN ′ and v−N ′ denote
{v j} j∈N ′ and {v j} j∈N\N ′, respectively. For each vi ∈ V , let E(vi) ⊂ X be the set of alternatives
that maximize vi; that is,

E(vi) = arg max
y∈X

vi(y).

A domain is a nonempty subset of the set of valuation profiles
∏n

j=1 D j ⊂ Vn. Given a
domain

∏n
j=1 D j , a decision function is a function d :

∏n
j=1 D j → X that maps each valuation

profile v ∈ ∏n
j=1 D j to an alternative d(v) ∈ X . A transfer function is a function t :

∏n
j=1 D j →

Rn that maps each valuation profile v ∈ ∏n
j=1 D j to a vector t(v) =

(
t1(v), . . . , tn(v)

)
∈ Rn.

A mechanism is a pair of decision and transfer functions (d, t). Throughout this chapter, we
focus on efficient and feasible mechanisms: for each v ∈ ∏n

j=1 D j ,

(i) efficiency; d(v) ∈ E
(∑n

j=1 v j

)
,
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(ii) feasibility;
∑n

j=1 t j(v) ≤ 0.

Let M
( ∏n

j=1 D j
)

be the set of efficient and feasible mechanisms on a domain
∏n

j=1 D j .
A mechanism (d, t) ∈ M (∏n

j=1 D j) Pareto-dominates a mechanism (d′, t′) ∈ M (∏n
j=1 D j) if

for each i ∈ N and each v ∈ ∏n
j=1 D j ,

vi
(
d(v)

)
+ ti(v) ≥ vi

(
d′(v)

)
+ t′i (v).

A mechanism (d, t) ∈ M (∏n
j=1 D j) is a Groves mechanism if for each i ∈ N , there exists

a function hi :
∏

j,i D j → R such that

ti(v) =
∑
j,i

v j
(
d(v)

)
− hi(v−i) for all v ∈

n∏
j=1

D j .

A mechanism (d, t) ∈ M (∏n
j=1 D j) is a Pivotal mechanism if for each i ∈ N ,

ti(v) =
∑
j,i

v j
(
d(v)

)
− max

y∈X

∑
j,i

v j(y) for all v ∈
n∏

j=1
D j .

Note that any pivotal mechanism is a Groves mechanism.

1.3 Main Results

1.3.1 Strategy-proofness and no free ride

Throughout Subsections 1.3.1 and 1.3.2, we focus only on connected domains for the sake of
simplicity. In Appendix A, we study the case with non-connected domains.

Definition 1. A domain
∏n

j=1 D j ⊂ Vn is connected if for each i ∈ N , there exists no disjoint
open subsets T,U ⊂ V = RX such that T ∩ Di , ∅, U ∩ Di , ∅, and Di ⊂ T ∪ U.

Strategy-proofness requires that reporting the true valuation function be a weakly dominant
strategy for anyone.

Strategy-proofness. For each i ∈ N , each v ∈ ∏n
j=1 D j , and each v′i ∈ Di,

vi
(
d(vi, v−i)

)
+ ti(vi, v−i) ≥ vi

(
d(v′i , v−i)

)
+ ti(v′i , v−i).

The no free ride axiom requires that no one can gain by withdrawing from a mechanism.

The no free ride axiom. For each i ∈ N and each v ∈ ∏n
j=1 D j ,

vi
(
d(v)

)
+ ti(v) ≥ min

y∈E(∑j,i vj )
vi(y).
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Note that any pivotal mechanism satisfies strategy-proofness and the no free ride axiom.
Moulin (1986) shows that on the full domain Vn, strategy-proofness and the no free ride axiom
characterize the pivotal mechanisms.

Moulin’s Theorem 1 (1986). On the full domain
∏n

j=1 D j = Vn, a mechanism (d, t) ∈ M (Vn)
satisfies strategy-proofness and the no free ride axiom if and only if it is a pivotal mechanism.

We next introduce two properties of domains. Consider any pivotal mechanism (d∗, t∗) ∈
M (∏n

j=1 D j). Then, by feasibility and definition of the pivotal mechanism, for each v ∈∏n
j=1 D j ,

0 ≤ −
n∑

j=1
t∗j (v) =

n∑
j=1

max
y∈X

∑
k, j

vk(y) − (n − 1)max
y∈X

n∑
j=1

v j(y). (1.1)

The next property requires that for each v−i ∈
∏

j,i D j , there exist a valuation function vi ∈ Di

such that a budget surplus −∑n
j=1 t∗j (vi, v−i) of the pivotal mechanism becomes arbitrarily

small.

Property 1. For each i ∈ N , each v−i ∈
∏

j,i D j , and each ε > 0, there exists vi ∈ Di such
that

n∑
j=1

max
y∈X

∑
k, j

vk(y) − (n − 1)max
y∈X

n∑
j=1

v j(y) < ε.

Note that the condition above does not depend on the selection of the pivotal mechanism
(d∗, t∗).

Since a pivotal mechanism (d∗, t∗) ∈ M (∏n
j=1 D j) satisfies the no free ride axiom, for

each v ∈ ∏n
j=1 D j ,

0 ≤ vi (d∗(v)) + t∗i (v) − min
y∈E(∑j,i vj )

vi(y) = max
y∈X

n∑
j=1

v j(y) − max
y∈X

∑
j,i

v j(y) − min
y∈E(∑j,i vj )

vi(y).

The following property requires that for each v−i ∈
∏

j,i D j , there exist a valuation function
vi ∈ Di such that the difference between individual i’s final utility under the pivotal mechanism
and his minimum utility of withdrawing from the mechanism becomes arbitrarily small.

Property 2. For each i ∈ N , each v−i ∈
∏

j,i D j , and each ε > 0, there exists vi ∈ Di such
that

max
y∈X

n∑
j=1

v j(y) − max
y∈X

∑
j,i

v j(y) − min
y∈E(∑j,i vj )

vi(y) < ε.

Theorem 1 states that strategy-proofness and the no free ride axiom characterize the pivotal
mechanisms on a domain

∏n
j=1 D j if and only if the domain satisfies Properties 1 and 2.
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Theorem 1. On any connected domain
∏n

j=1 D j , the following statements are equivalent:

(i) all strategy-proof and no free ride mechanisms on
∏n

j=1 D j are pivotal mechanisms;

(ii)
∏n

j=1 D j satisfies Properties 1 and 2.

Proof. See Appendix B. ■

The following example shows that on an auction domain, there exists a strategy-proof and
no free ride mechanism other than the pivotal mechanisms since it violates Property 1.

Example 1. Consider a single-item auction, that is, X = N and a domain
∏n

j=1 DA
j is such

that vi ∈ DA
i ⊂ V if and only if there exists a real number ai ∈ R+ for which

vi( j) =


ai if j = i,

0 otherwise.

For each v ∈ ∏n
j=1 DA

j , denoted by v[k] and v−i[k] the k-th highest real numbers among
{v j( j)} j∈N and {v j( j)} j,i, respectively. On this auction domain

∏n
j=1 DA

j , any pivotal mech-
anism (d∗, t∗) ∈ M (∏n

j=1 DA
j ) is equivalent to a second price auction because decision and

transfer functions (d∗, t∗) of the pivotal mechanism can be written as

d∗(v) ∈ arg max
j∈N

v j( j),

t∗i (v) =

−v[2] if d∗(v) = i,

0 otherwise.

However, the pivotal mechanisms are not the only mechanisms that satisfy strategy-proofness
and the no free ride axiom on this domain. To see this, let (d̄, t̄) ∈ M (∏n

j=1 DA
j ) be such that

d̄(v) ∈ arg max
j∈N

v j( j),

t̄(v) =

−v[2] + 1

nv−i[2] if d̄(v) = i,
1
nv−i[2] otherwise.

This mechanism gives a subsidy 1
nv−i[2] to each individual in addition to his payment under a

second price auction. Thus, the mechanism (d̄, t̄) differs from the pivotal mechanisms, but it
can be shown that the mechanism (d̄, t̄) satisfies strategy-proofness and the no free ride axiom.
Therefore, the uniqueness of the pivotal mechanisms does not hold on this auction domain.
This is because

∏n
j=1 DA

j violates Property 1.
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One may consider that Properties 1 and 2 are a bit complicated. Therefore, we provide
simple domain conditions that imply these properties. Property 1* requires that given v−i ∈∏

j,i D j , a domain admit a valuation function vi ∈ Di such that for some x ∈ E(∑k,i vk),
vi(x) is large enough to guarantee that the alternative x becomes efficient for each population
N \ { j} of removing an individual j ∈ N . Obviously, the full domain Vn satisfies Property
1*. *2

Property 1*. For each i ∈ N and each v−i ∈
∏

j,i D j , there exist vi ∈ Di and x ∈ E(∑k,i vk)
such that x ∈ E(∑k, j vk) for all j ∈ N .

Lemma 1. If a domain
∏n

j=1 D j satisfies Property 1*, then it also satisfies Property 1.

Proof. See Appendix B. ■

Property 2* requires that a domain admit a constant valuation function for each individual.
Obviously, the full domain Vn satisfies Property 2*.

Property 2*. For each i ∈ N , there exist vi ∈ Di and a constant C ∈ R such that vi(x) = C for
all x ∈ X .

Lemma 2. If a domain
∏n

j=1 D j satisfies Property 2*, then it also satisfies Property 2.

Proof. See Appendix B. ■

The following corollary gives a sufficient domain condition for the uniqueness of pivotal
mechanisms among all strategy-proof and no free ride mechanisms.

Corollary 1. Suppose that a domain
∏n

j=1 D j is connected. If
∏n

j=1 D j satisfies Properties
1* and 2*, then any strategy-proof and no free ride mechanism (d, t) ∈ M (∏n

j=1 D j) must be
a pivotal mechanism.

Proof. Immediately follows from Theorem 1 and Lemmas 1 and 2. ■

1.3.2 Strategy-proofness and welfare lower boundedness

Welfare lower boundedness requires that each individual’s final utility under a mechanism not
be lower than that under his least preferred alternative with zero-transfer.

*2Moulin (1986) invokes this to deduce the uniqueness of pivotal mechanisms among all no free ride Groves
mechanisms on the full domain.
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Welfare lower boundedness. For each i ∈ N and each v ∈ ∏n
j=1 D j ,

vi
(
d(v)

)
+ ti(v) ≥ min

y∈X
vi(y).

Any pivotal mechanism satisfies welfare lower boundedness. Moulin (1986) shows that
on the full domain Vn, strategy-proofness and welfare lower boundedness characterize the
pivotal mechanisms.

Moulin’s Theorem 3 (1986). On the full domain
∏n

j=1 D j = Vn, a mechanism (d, t) ∈ M (Vn)
satisfies strategy-proofness and welfare lower boundedness if and only if it is a pivotal
mechanism.

Consider any pivotal mechanism (d∗, t∗) ∈ M (∏n
j=1 D j). Since the pivotal mechanism

(d∗, t∗) satisfies welfare lower boundedness, for each v ∈ ∏n
j=1 D j ,

0 ≤ vi
(
d∗(v)

)
+ t∗i (v) − min

y∈X
vi(y) = max

y∈X

n∑
j=1

v j(y) − max
y∈X

∑
j,i

v j(y) − min
y∈X

vi(y).

The next property requires that for each i ∈ N and each v−i ∈
∏

j,i D j , there exist a valuation
function vi ∈ Di such that the difference between individual i’s final utility under the pivotal
mechanism and that under his least preferred alternative with zero-transfer becomes arbitrarily
small.

Property 3. For each i ∈ N , each v−i ∈
∏

j,i D j , and each ε > 0, there exists vi ∈ Di such
that

max
y∈X

n∑
j=1

v j(y) − max
y∈X

∑
j,i

v j(y) − min
y∈X

vi(y) < ε.

Property 3 is similar to Property 2 in the sense that the term −miny∈E(∑j,i vj ) vi(y) in
Property 2 is replaced by −miny∈X vi(y) in Property 3. In fact, if a domain satisfies Property
3, then it also satisfies Property 2.

Theorem 2 states that strategy-proofness and welfare lower boundedness characterize the
pivotal mechanisms on a domain

∏n
j=1 D j if and only if the domain satisfies Properties 1 and

3.*3

Theorem 2. On any connected domain
∏n

j=1 D j , the following statements are equivalent:

*3Note that the mechanism (d̄, t̄) in Example 1 (Subection 1.3.1) also satisfies welfare lower boundedness.
Therefore, the uniqueness result by Moulin (1986; Theorem 3) no longer holds on the auction domain

∏n
j=1 DA

j .
This is because the auction domain violates Property 1.
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(i) all strategy-proof and welfare lower bounded mechanisms on
∏n

j=1 D j are pivotal
mechanisms;

(ii)
∏n

j=1 D j satisfies Properties 1 and 3.

Proof. See Appendix B. ■

By a similar argument to Lemma 2, we obtain the following lemma.

Lemma 3. If a domain
∏n

j=1 D j satisfies Property 2*, then it also satisfies Property 3.

Corollary 2 gives simple sufficient conditions on domains under which Moulin’s charac-
terization in his Theorem 3 holds.

Corollary 2. Suppose that a domain
∏n

j=1 D j is connected. If
∏n

j=1 D j satisfies Properties 1*
and 2*, then any strategy-proof and welfare lower bounded mechanism (d, t) ∈ M (∏n

j=1 D j)
must be a pivotal mechanism.

Proof. Immediately follows from Theorem 2, and Lemmas 1 and 3. ■

1.3.3 No free ride, no disposal of utility and distribution

We introduce two mild monotonicity axioms. No disposal of utility requires that if individual
i’s valuation weakly increases for all alternatives, then his final utility also increases weakly.

No disposal of utility. For each i ∈ N , each v ∈ ∏n
j=1 D j , and each v′i ∈ Di, if v′i (x) ≥ vi(x)

for all x ∈ X , then

v′i
(
d(v′i , v−i)

)
+ ti(v′i , v−i) ≥ vi

(
d(vi, v−i)

)
+ ti(vi, v−i).

Distribution requires that given a valuation profile, if individual i’s valuation increases for a
unique efficient alternative, then no other individuals suffer from this change.

Distribution. For each i ∈ N , each v ∈ ∏n
j=1 D j , and each v′i ∈ Di, if E(∑n

j=1 v j) = {z} and

v′i (z) > vi(z), v′i (x) = vi(x) for all x , z,

then
v j

(
d(v′i , v−i)

)
+ t j(v′i , v−i) ≥ v j

(
d(vi, v−i)

)
+ t j(vi, v−i) for all j , i.

Moulin (1986) shows that on the full domain Vn, the no free ride axiom, no disposal of
utility and distribution characterize the pivotal mechanisms.
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Moulin’s Theorem 4 (1986). Suppose |N | ≥ 3. On the full domain
∏n

j=1 D j = Vn, any pivotal
mechanism (d∗, t∗) ∈ M (Vn) Pareto-dominates all mechanisms (d, t) ∈ M (Vn) satisfying the
no free ride axiom, no disposal of utility and distribution.

To introduce Property 4, we employ additional notation. For each i ∈ N and each
v, v′ ∈ ∏n

j=1 D j , we say that v′ is a monotonic transformation of v with respect to i ∈ N and
write v →

i v′ if there exists a finite sequence v(0), v(1), . . . , v(h) ∈ ∏n
j=1 D j for which v(0) = v,

v(h) = v′, and for each ℓ ∈ {1, . . . , h}, one of the following two conditions holds:

(i) v
(ℓ)
i ≥ v

(ℓ−1)
i and v

(ℓ)
j = v

(ℓ−1)
j for all j , i,

(ii) E(∑n
j=1 v

(ℓ−1)
j ) = {z} for some z ∈ X and there exists j , i such that

v
(ℓ)
j (z) > v

(ℓ−1)
j (z), v

(ℓ)
j (x) = v

(ℓ−1)
j (x) for all x , z,

v
(ℓ)
k = v

(ℓ−1)
k for all k , j .

Note that if a mechanism satisfies no disposal of utility and distribution, then v →
i v′

implies that
v′i

(
d(v′)

)
+ ti(v′) ≥ vi

(
d(v)

)
+ ti(v).

Consider any individual i ∈ N and any valuation profiles v, v′ ∈ ∏n
j=1 D j with v →

i v′. Let
(d, t) ∈ M (∏n

j=1 D j) be a mechanism that satisfies the no free ride axiom. Then, since (d, t)
satisfies the no free ride axiom,

v′j
(
d(v′)

)
+ t j(v′) ≥ min

y∈E(∑k,j v
′
k
)
v′j(y) for all j , i.

Moreover, by feasibility of (d, t), we have

v′i
(
d(v′)

)
+ ti(v′) ≤ max

x∈X

n∑
j=1

v′j(x) −
∑
j,i

{
v′j(d(v′)) + t j(v′)

}
.

Therefore, by combining these two inequalities,

v′i
(
d(v′)

)
+ ti(v′) ≤ max

y∈X

n∑
j=1

v′j(y) −
∑
j,i

min
y∈E(∑k,j v

′
k
)
v′j(y), (1.2)

that is, individual i’s final utility at v′ under the mechanism (d, t) is at most the right hand side
of equation (1.2). On the other hand, individual i’s final utility at v under a pivotal mechanism
is

max
y∈X

n∑
j=1

v j(y) − max
y∈X

∑
j,i

v j(y). (1.3)
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The following property requires that for each i ∈ N and each v ∈ ∏n
j=1 D j , there exist

v′ ∈ ∏n
j=1 D j with v →

i v′ such that the difference between the right hand side of equation
(1.2) and equation (1.3) becomes arbitrarily small.

Property 4. For each i ∈ N , each v ∈ ∏n
j=1 D j , and each ε > 0, there exists v′ ∈ ∏n

j=1 D j

with v →
i v′ such that{
max
y∈X

n∑
j=1

v′j(y) −
∑
j,i

min
y∈E(∑k,j v

′
k
)
v′j(y)

}
−

{
max
y∈X

n∑
j=1

v j(y) − max
y∈X

∑
j,i

v j(y)
}
< ε.

Theorem 3 states that the no free ride axiom, no disposal of utility and distribution
characterize the pivotal mechanisms on a domain

∏n
j=1 D j if and only if the domain satisfies

Property 4. Note that in Theorem 3, connectedness is not imposed.

Theorem 3. Suppose |N | ≥ 3. The following statements are equivalent:

(i) any pivotal mechanism (d∗, t∗) ∈ M (∏n
j=1 D j)Pareto-dominates all mechanisms (d, t) ∈

M (∏n
j=1 D j) satisfying the no free ride axiom, no disposal of utility, and distribution;

(ii)
∏n

j=1 D j satisfies Property 4.

Proof. See Appendix B. ■

The following is an example of domains that violate Property 4.

Example 2. Consider a domain that is bounded from above by some valuation function ū ∈ V ;
for each i ∈ N , let

Dū
i ≡

{
vi ∈ V ; vi ≤ ū

}
.

Then, the domain
∏n

j=1 Dū
j does not satisfy Property 4. To see this, consider a simple case

where N = {1,2,3}, X = {a, b, c}, and ū ∈ V is as illustrated in Table 1. There, ū(a) is 100 and
ū(b) is 95, for example. Let v1 = ū, and v2 and v3 be as in Table 1. Then, E

( ∑3
j=1 v j

)
= {a, b}.

Therefore, by definition of a monotonic transformation →
i , there exists no v′ ∈ ∏3

j=1 Dū
j with

v′ , v such that v →
1 v′. Moreover,

max
y∈X

3∑
j=1

v j(y) − min
y∈E(∑j,2 vj )

v2(y) − min
y∈E(∑j,3 vj )

v3(y) = 120 − 10 − 10 = 100,

max
y∈X

3∑
j=1

v j(y) − max
y∈X

∑
j,1

v j(y) = 120 − 25 = 95.
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a b c

ū = v1 100 95 25
v2 10 10 20
v3 10 15 5

v1 + v2 110 105 45
v1 + v3 110 110 30
v2 + v3 20 25 25

v1 + v2 + v3 120 120 50

Table 1: Individuals’ valuation profile

Thus, the domain Dū violates Property 4. Then, by Theorem 3, we know that there exists a
mechanism that satisfies the no free ride axiom, no disposal of utility and distribution, but
that is not Pareto-dominated by a pivotal mechanism. *4

Next, we introduce a simple sufficient condition for Property 4. Property 4* requires
that if a domain admits a valuation function vi, i.e., vi ∈ Di, then it also admit all valuation
functions greater than vi with respect to the vector inequalities.

Property 4*. For each i ∈ N , each vi ∈ Di, and each v′i ∈ V , if vi ≤ v′i , then v′i ∈ Di.

Lemma 4. Suppose |N | ≥ 3. If a domain
∏n

j=1 D j satisfies Property 4*, then it also satisfies
Property 4.

Proof. See Appendix B. ■

Corollary 3 states that Property 4* is sufficient for the uniqueness of pivotal mechanisms
among all mechanisms satisfying the no free ride and two monotonicity axioms.

Corollary 3. Suppose |N | ≥ 3. If a domain
∏n

j=1 D j satisfies Property 4*, then any pivotal
mechanism (d∗, t∗) ∈ M (∏n

j=1 D j) Pareto-dominates all mechanisms (d, t) ∈ M (∏n
j=1 D j)

satisfying the no free ride axiom, no disposal of utility, and distribution.

Proof. Immediately follows from Theorem 3 and Lemma 4. ■

*4For the construction of such a mechanism, see equation (2) in Appendix B; Proof of Theorem 3.
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1.4 Conclusion

We introduced properties of restricted domains and showed that these properties are necessary
and sufficient for Moulin’s (1986) characterizations to hold. First, we showed that any strategy-
proof and no free ride mechanism is a pivotal mechanism if and only if its domain satisfies
Properties 1 and 2. Second, we confirmed that any strategy-proof and welfare lower bounded
mechanism is a pivotal mechanism if and only if its domain satisfies Properties 1 and 3.
Finally, we showed that any pivotal mechanism Pareto-dominates all mechanisms satisfying
the no free ride axiom, no disposal of utility and distribution if and only if its domain satisfies
Property 4. These results generalize the usefulness of Moulin’s (1986) characterizations.
Finding necessary and sufficient conditions without connectedness when there are infinitely
many alternatives is left to future research.

Appendix A: Domain characterization without connectedness

We provide a necessary and sufficient condition for the uniqueness of pivotal mechanisms
without assuming connectedness of domains. To simplify our discussion here, we focus only
on Moulin’s characterization imposing strategy-proofness and welfare lower boundedness.
However, the result below can be easily extended to the case of with the no free ride axiom
(just replace miny∈X vi(y) with miny∈E(∑j,i vj ) vi(y) in the subsequent arguement).

Given ε > 0, given v−i ∈
∏

j,i D j , and given disjoint subsets Y, Z ⊂ X , let

Ai(ε, v−i) =
vi ∈ V : (n − 1)max

x∈X

n∑
j=1

v j(x) −
n∑

i=1
max
x∈X

∑
j,i

v j(x) < −ε
 , (1.4)

Bi(ε, v−i) =
vi ∈ V : max

x∈X

n∑
j=1

v j(x) − max
x∈X

∑
j,i

v j(x) > min
x∈X

vi(x) + ε
 , (1.5)

Si(ε, v−i,Y, Z) =
∪
y∈Y

vi ∈ V : ∀z ∈ Z
n∑

j=1
v j(y) >

n∑
j=1

v j(z) + ε
 , (1.6)

Wi(v−i,Y, Z) =
∪
z∈Z

vi ∈ V : ∀y ∈ Y
n∑

j=1
v j(z) ≥

n∑
j=1

v j(y)
 . (1.7)

Ai(ε, v−i) is the set of individual i’s valuation functions at which the total transfer under a
pivotal mechanism becomes strictly less than −ε (see equation 1.1). Bi(ε, v−i) is the set of
individual i’s valuation functions at which his final utility under a pivotal mechanism becomes
strictly greater than that under his worst alternative with the positive transfer ε. Si(ε, v−i,Y, Z)
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is the set of individual i’s valuation functions at which for some alternative y ∈ Y , the total
valuation becomes strictly greater than that for any alternative z ∈ Z added by ε. Wi(v−i,Y, Z)
is the set of individual i’s valuation functions at which for some alternative z ∈ Z , the total
valuation becomes weakly greater than that for any alternative y ∈ Y . To avoid notational
complexity, denote Ai ≡ Ai(ε, v−i), Bi ≡ Bi(ε, v−i), Si ≡ Si(ε, v−i,Y, Z) and Wi ≡ Wi(v−i,Y, Z)
when ε > 0, v−i ∈

∏
j,i D j , and disjoint subsets Y, Z ⊂ X are identified.

Property 5 is a slightly weaker condition than connectedness of domains. It states that
each Di cannot be divided into a union of two disjoint, non-empty sets of a particular form.
A similar condition to Property 5 is considered by Chung and Olszewski (2007; Theorem 4)
to provide a necessary and sufficient condition for payoff (revenue) equivalence.

Property 5. For each i ∈ N , each ε > 0, each v−i ∈ ∏
j,i D j , and each disjoint subsets

Y, Z ⊂ X such that (Y ∪ Z) ∩ E(∑n
j=1 v j) , ∅ for all vi ∈ Di, neither of the following two

conditions hold:

(i) Si ∩ Di , ∅, (Wi ∩ Ai) ∩ Di , ∅, and Di ⊂ Si ∪ (Wi ∩ Ai).

(ii) (Si ∩ Bi) ∩ Di , ∅, Wi ∩ Di , ∅, and Di ⊂ (Si ∩ Bi) ∪ Wi.

Lemma 5 states that Property 5 is actually weaker than connectedness.

Lemma 5. If a domain
∏n

j=1 D j is connected, then it satisfies Property 5.

Proof. See Appendix B. ■

Theorem 2* states that even if we do not impose connectedness of domains, strategy-
proofness and welfare lower boundedness characterize the pivotal mechanisms on a domain∏n

j=1 D j if and only if the domain satisfies Properties 1, 3 and 5.

Theorem 2*. On any domain
∏n

j=1 D j , the following statements are equivalent:

(i) all strategy-proof and welfare lower bounded mechanisms are pivotal mechanisms;

(ii)
∏n

j=1 D j satisfies Properties 1, 3, and 5.

Proof. See Appendix B. ■
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Appendix B: Proofs of theorems and Lemmas

Proof of Theorem 1: (i) ⇒ (ii). We show that if
∏n

j=1 D j violates Property 1 or 2, then there
exists a non-pivotal mechanism that satisfies strategy-proofness and the no free ride axiom.

Case 1. Consider the case where
∏n

j=1 D j violates Property 1. Then, there exist i ∈ N

and v−i ∈
∏

j,i D j such that

a ≡ inf
vi∈Di

{ n∑
j=1

max
x∈X

∑
k, j

vk(x) − (n − 1)max
x∈X

n∑
j=1

v j(x)
}
> 0.

Define a mechanism (d, t) ∈ M (∏n
j=1 D j) to satisfy that for each u ∈ ∏n

j=1 D j ,

d(u) ∈ E
( n∑

j=1
u j

)
,

ti(u) =


t∗i (u) + a if u−i = v−i,

t∗i (u) otherwise,

t j(u) = t∗j (u) for all j , i,

where for each j ∈ N , t∗j is a transfer function of a pivotal mechanism;

t∗j (u) =
∑
k, j

uk
(
d(u)

)
− max

x∈X

∑
k, j

uk(x).

One can easily check that (d, t) satisfies efficiency, strategy-proofness and the no free ride
axiom. Moreover, (d, t) is not a pivotal mechanism.

Let us confirm that (d, t) is feasible. Take any u ∈ ∏n
j=1 D j . If u−i , v−i, then

∑n
j=1 t j(u) =∑n

j=1 t∗j (u) ≤ 0. Suppose that u−i = v−i. Then,

n∑
j=1

t j(u) =
n∑

j=1

{∑
k, j

uk
(
d(u)

)
− max

x∈X

∑
k, j

uk(x)
}
+ a

= a −
n∑

j=1

{
max
x∈X

∑
k, j

uk(x) −
∑
k, j

uk(d(u))
}

= a −
n∑

j=1
max
x∈X

∑
k, j

uk(x) −
n∑

j=1

∑
k, j

uk(d(u))

= a −
n∑

j=1
max
x∈X

∑
k, j

uk(x) − (n − 1)max
x∈X

n∑
j=1

u j(x) ≤ 0,
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where the last inequality follows from u−i = v−i and definition of a.

Case 2. Consider the case where
∏n

j=1 D j violates Property 2. Then, there exist i ∈ N

and v−i ∈
∏

j,i D j such that

a ≡ inf
vi∈D

{
max
x∈X

n∑
j=1

v j(x) − max
x∈X

∑
j,i

v j(x) − min
x∈E(∑j,i vj )

vi(x)
}
> 0.

Define a mechanism (d, t) ∈ M (∏n
j=1 D j) to satisfy that for each u ∈ ∏n

j=1 D j ,

d(u) ∈ E
( n∑

j=1
u j

)
,

ti(u) =


t∗i (u) − a if u−i = v−i,

t∗i (u) otherwise,

t j(u) = t∗j (u) for all j , i,

where for each j ∈ N , t∗j is a transfer function of a pivotal mechanism;

t∗j (u) =
∑
k, j

uk
(
d(u)

)
− max

x∈X

∑
k, j

uk(x).

One can easily check that (d, t) satisfies efficiency, strategy-proofness, and feasibility. Obvi-
ously, (d, t) is not a pivotal mechanism.

Let us show that (d, t) satisfies the no free ride axiom. Take any u ∈ ∏n
j=1 D j . If u−i , v−i,

then,
ui

(
d(u)

)
+ ti(u) = ui

(
d(u)

)
+ t∗i (u) ≥ min

x∈E(∑j,i u j )
ui(x).

Suppose that u−i = v−i. Then, by definitions of ti and a,

ui
(
d(ui, v−i)

)
+ ti(ui, v−i) − min

x∈E(∑j,i vj )
ui(x)

=ui
(
d(ui, v−i)

)
+

∑
j,i

v j
(
d(ui, v−i)

)
− max

x∈X

∑
j,i

v j(x) − a − min
x∈E(∑j,i vj )

ui(x).

=

{
max
x∈X

(
ui(x) +

∑
j,i

v j(x)
)
− max

x∈X

∑
j,i

v j(x) − min
x∈E(∑j,i vj )

ui(x)
}
− a ≥ 0.

Hence (d, t) satisfies the no free ride axiom.

(ii) ⇒ (i). Suppose that Statement (ii) holds. Take any strategy-pfroof and no free ride
mechanism (d, t) ∈ M (∏n

j=1 D j). Since a domain
∏

j=1 D j is connected, from Suijs (1996;
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Theorem 3.2 and Proposition 3.3), we know that (d, t) must be a Groves mechanism, that is,
for each i ∈ N , there exists a function hi :

∏
j,i D j → R such that

ti(v) =
∑
j,i

v j
(
d(v)

)
− hi(v−i) for all v ∈

n∏
j=1

D j .

It suffices to show that for each i ∈ N and each v−i ∈
∏

j,i D j , hi(v−i) = maxx∈X
∑

j,i v j(x).

Step 1: ∀i ∈ N , ∀v−i ∈
∏

j,i D j , hi(v−i) ≤ maxx∈X
∑

j,i v j(x). Suppose, by contra-
diction, that there exist i ∈ N and v−i ∈

∏
j,i D j such that

hi(v−i) > max
x∈X

∑
j,i

v j(x).

Since
∏n

j=1 D j satisfies Property 2, there exists vi ∈ Di such that

max
x∈X

n∑
j=1

v j(x) − max
x∈X

∑
j,i

v j(x) − min
x∈E(∑j,i vj )

vi(x) < hi(v−i) − max
x∈X

∑
j,i

v j(x).

Then,

vi
(
d(v)

)
+ ti(v) − min

x∈E(∑j,i vj )
vi(x)

= vi
(
d(v)

)
+

∑
j,i

v j
(
d(v)

)
− hi(v−i) − min

x∈E(∑j,i vj )
vi(x)

= max
x∈X

n∑
j=1

v j(x) − max
x∈X

∑
j,i

v j(x) − min
x∈E(∑j,i vj )

vi(x) − hi(v−i) +max
x∈X

∑
j,i

v j(x)

< 0,

a contradiction to the assumption that (d, t) satisfies the no free ride axiom.

Step 2: ∀i ∈ N , ∀v−i ∈
∏

j,i D j , hi(v−i) = maxx∈X
∑

j,i v j(x). Suppose, by contra-
diction, that there exist i ∈ N and v−i ∈

∏
j,i D j such that hi(v−i) , maxx∈X

∑
j,i v j(x). Then,

by Step 1,
hi(v−i) < max

x∈X

∑
j,i

v j(x). (1.8)

By feasibility of (d, t), for any vi ∈ Di,

0 ≥
n∑

j=1
t j(v) =

n∑
j=1

(∑
k, j

vk
(
d(v)

)
− h j(v− j)

)
,
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and hence ∑
j,i

h j(v− j) −
n∑

j=1

∑
k, j

vk
(
d(v)

)
≥ −hi(v−i). (1.9)

Then, by Step 1 and equations (1.9) and (1.8), for any vi ∈ Di,
n∑

j=1
max
x∈X

∑
k, j

vk(x) − (n − 1)max
x∈X

n∑
j=1

v j(x)

=

n∑
j=1

max
x∈X

∑
k, j

vk(x) −
n∑

j=1

∑
k, j

vk
(
d(v)

)
= max

x∈X

∑
k,i

vk(x) +
∑
j,i

max
x∈X

∑
k, j

vk(x) −
n∑

j=1

∑
k, j

vk
(
d(v)

)
≥ max

x∈X

∑
k,i

vk(x) +
∑
j,i

h j(v− j) −
n∑

j=1

∑
k, j

vk
(
d(v)

)
≥ max

x∈X

∑
j,i

v j(x) − hi(v−i) > 0,

a contradiction to the assumption that
∏

j=1 D j satisfies Property 1.
□

Proof of Lemma 1: Suppose that a domain
∏n

j=1 D j satisfies Property 1*. Take any
i ∈ N and any v−i ∈

∏
j,i D j . Since

∏n
j=1 D j satisfies Property 1*, there exist vi ∈ Di and

x ∈ E(∑ j,i v j) such that x ∈ E
(∑

k, j vk

)
for all j ∈ N . Then, obviously x ∈ E(∑n

j=1 v j).
Therefore,

n∑
j=1

max
y∈X

∑
k, j

vk(y) − (n − 1)max
y∈X

n∑
j=1

v j(y) =
n∑

j=1

∑
k, j

vk(x) − (n − 1)
n∑

j=1
v j(x)

= (n − 1)
n∑

j=1
v j(x) − (n − 1)

n∑
j=1

v j(x) = 0.

Hence
∏n

j=1 D j satisfies Property 1. □

Proof of Lemma 2: Suppose that a domain
∏n

j=1 D j satisfies Property 2*. Take any
i ∈ N and any v−i ∈ ∏

j,i D j . Since a domain
∏n

j=1 D j satisfies Property 2*, there exists
vi ∈ Di such that vi(x) = C for all x ∈ X . Then,

max
y∈X

n∑
j=1

v j(y) −max
y∈X

∑
j,i

v j(y) − min
y∈E(∑j,i vj )

vi(y) = max
y∈X

∑
j,i

v j(y)+C −max
y∈X

∑
j,i

v j(y) −C = 0.
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Therefore,
∏n

j=1 D j satisfies Property 2.
□

Proof of Theorem 2: The proof is similar to that of Theorem 1.
(i) ⇒ (ii). We show that if a domain

∏n
j=1 D j violates Property 1 or 3, then there exists

a non-pivotal mechanism that satisfies strategy-proofness and welfare lower boundedness. If∏n
j=1 D j violates Property 1, then such a mechanism can be defined by the same way as that

of Proof of Theorem 1 (Case 1 of “(i) ⇒ (ii) part”).
Let us consider the case where

∏n
j=1 D j violates Property 3. Then, there exist i ∈ N and

v−i ∈
∏

j,i D j such that

a ≡ inf
vi∈V

{
max
x∈X

n∑
j=1

v j(x) − max
x∈X

∑
j,i

v j(x) − min
x∈X

vi(x)
}
> 0.

Define a mechanism (d, t) ∈ M (∏n
j=1 D j) to satisfy that for each u ∈ ∏n

j=1 D j ,

d(u) ∈ E
( n∑

j=1
u j

)
,

ti(u) =


t∗i (u) − a if u−i = v−i,

t∗i (u) otherwise,

t j(u) = t∗j (u) for all j , i,

where for each j ∈ N , t∗j (u) =
∑

k, j uk
(
d(u)

)
− maxx∈X

∑
k, j uk(x). Then, (d, t) is not a

pivotal mechanism and satisfies efficiency, strategy-proofness and feasibility.
Let us show that (d, t) also satisfies welfare lower boundedness. Take any u ∈ ∏n

j=1 D j .
If u−i , v−i, then

ui
(
d(u)

)
+ ti(u) = ui

(
d(u)

)
+ t∗i (u) ≥ min

x∈X
ui(x).

Suppose that u−i = v−i. Then, by definitions of ti and a,

ui
(
d(ui, v−i)

)
+ ti(ui, v−i) − min

x∈X
ui(x)

=ui
(
d(ui, v−i)

)
+

∑
j,i

v j
(
d(ui, v−i)

)
− max

x∈X

∑
j,i

v j(x) − a − min
x∈X

ui(x).

=

{
max
x∈X

(
ui(x) +

∑
j,i

v j(x)
)
− max

x∈X

∑
j,i

v j(x) − min
x∈X

ui(x)
}
− a ≥ 0.

Therefore, (d, t) satisfies welfare lower boundedness.

18



(ii) ⇒ (i). Take any mechanism (d, t) ∈ M (∏n
j=1 D j) that satisfies strategy-proofness

and welfare lower boundedness. Since a domain
∏

j=1 D j is connected, from Suijs (1996;
Theorem 3.2 and Proposition 3.3) we know that (d, t) must be a Groves mechanism, that is,
for each i ∈ N , there exists a function hi :

∏
j,i D j → R such that

ti(v) =
∑
j,i

v j
(
d(v)

)
− hi(v−i) for all v ∈

n∏
j=1

D j .

Let us show that for each i ∈ N and each v−i ∈ ∏
j,i D j , hi(v−i) ≥ maxx∈X

∑
j,i v j(x).

Suppose, by contradiction, that there exist i ∈ N and v−i ∈
∏

j,i D j such that

max
x∈X

∑
j,i

v j(x) < hi(v−i).

Since
∏n

j=1 D j satisfies Property 3, there exists vi ∈ Di such that

max
x∈X

n∑
j=1

v j(x) − max
x∈X

∑
j,i

v j(x) − min
x∈X

vi(x) < hi(v−i) − max
x∈X

∑
j,i

v j(x). (1.10)

Then, by equation (1.10),

vi
(
d(v)

)
+ ti(v) − min

x∈X
vi(x)

= vi
(
d(v)

)
+

∑
j,i

v j
(
d(v)

)
− hi(v−i) − min

x∈X
vi(x)

=

n∑
j=1

v j
(
d(v)

)
− max

x∈X

∑
j,i

v j(x) − min
x∈X

vi(x) − hi(v−i) +max
x∈X

∑
j,i

v j(x)

=


n∑

j=1
v j

(
d(v)

)
− max

x∈X

∑
j,i

v j(x) − min
x∈X

vi(x)
 −

{
hi(v−i) − max

x∈X

∑
j,i

v j(x)
}

< 0,

a contradiction to the assumption that (d, t) satisfies welfare lower boundedness.
Then, by the same argument as Step 2 of “(ii) ⇒ (i) part” in Proof of Theorem 1, for each

i ∈ N and each v−i ∈
∏

j,i D j , hi(v−i) = maxx∈X
∑

j,i v j(x).
□

Proof of Theorem 3: (i) ⇒ (ii). Let us show that if a domain
∏n

j=1 D j violates Property
4, then there exists a mechanism that satisfies the three axioms and is not Pareto-dominated by
a pivotal mechanism. Suppose that

∏n
j=1 D j violates Property 4. Let (d∗, t∗) ∈ M (∏n

j=1 D j)
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be a pivotal mechanism. Since
∏n

j=1 D j violates Property 4, there exist i ∈ N , v ∈ ∏n
j=1 D j

and ε > 0 such that for any v′ ∈ ∏n
j=1 D j with v →

i v′,

max
x∈X

n∑
j=1

v′j(x) −
∑
j,i

min
x∈E(∑k,j v

′
k
)
v′j(x) −

(
vi

(
d∗(v)

)
+ t∗i (v)

)
≥ ε. (1.11)

Let (d, t) ∈ M (∏n
j=1 D j) be such that for each u ∈ ∏n

j=1 D j ,

d(u) ∈ E
( n∑

j=1
u j

)
, (1.12)

ti(u) = −ui
(
d(u)

)
+max

{
ui

(
d∗(u)

)
+ t∗i (u),

inf
u →

i v′

{
max
x∈X

n∑
j=1

v′j(x) −
∑
j,i

min
x∈E(∑k,j v

′
k
)
v′j(x)

}}
,

t j(u) = −u j
(
d(u)

)
+ min

x∈E(∑k,j uk )
u j(x) ∀ j , i.

For each j ∈ N and each u ∈ ∏n
j=1 D j , let Sj(u) ≡ u j

(
d(u)

)
+ t j(u) and S∗

j (u) ≡ u j
(
d∗(u)

)
+

t∗j (u). Note that by equation (1.11), Si(v) ≥ S∗
i (v) + ε > S∗

i (v). Therefore, (d, t) is not Pareto
dominated by a pivotal mechanism. In addition, we can easily check that (d, t) satisfies the
no free ride axiom. Let us show that (d, t) satisfies feasibility, no disposal of utility, and
distribution.

Feasibility. Take any u ∈ ∏n
j=1 D j . We consider two cases. First, consider the case with

Si(u) = S∗
i (u). Then,

n∑
j=1

Sj(u) ≤
n∑

j=1
S∗

j (u) ≤ max
x∈X

n∑
j=1

u j(x).

This inequality implies that
∑n

j=1 t j(u) ≤ 0. Second, consider the case with

Si(u) = inf
u →

i v′

{
max
x∈X

n∑
j=1

v′j(x) −
∑
j,i

min
x∈E(∑k,j v

′
k
)
v′j(x)

}
.

Then, since u →
i u,

max
x∈X

n∑
j=1

u j(x) −
n∑

j=1
Sj(u)

=
{

max
x∈X

n∑
j=1

u j(x) −
∑
j,i

min
x∈E(∑k,j uk )

u j(x)
}
− inf

u →
i v′

{
max
x∈X

n∑
j=1

v′j(x) −
∑
j,i

min
x∈E(∑k,j v

′
k
)
v′j(x)

}
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≥ 0.

Therefore,
∑n

j=1 t j(u) ≤ 0.

No disposal of utility. Take any j , i, any u ∈ ∏n
j=1 D j and any u′j ∈ D j with u j ≤ u′j .

Then,
Sj(u j,u− j) = min

x∈E(∑k,j uk )
u j(x) ≤ min

x∈E(∑k,j uk )
u′j(x) = Sj(u′j,u− j).

Next, take any u ∈ ∏n
j=1 D j and any u′i ∈ Di with ui ≤ u′i . Then,

S∗
i (ui,u−i) ≤ S∗

i (u′i,u−i),

and since (ui,u−i) →i (u′i,u−i),

inf
(ui,u−i) →i v′

{
max
x∈X

n∑
j=1

v′j(x) −
∑
j,i

min
x∈E(∑k,j v

′
k
)
v′j(x)

}
≤ inf

(u′
i,u−i)

→
i v′

{
max
x∈X

n∑
j=1

v′j(x) −
∑
j,i

min
x∈E(∑k,j v

′
k
)
v′j(x)

}
.

Therefore,
Si(ui,u−i) ≤ Si(u′i,u−i).

Distribution. It suffices to show that for any distinct k, ℓ ∈ N , any u ∈ ∏n
j=1 D j with

{z} = E(∑n
j=1 u j), and any u′k ∈ Dk such that

u′k(z) > uk(z) and u′k(x) = uk(x) for all x ∈ X \ {z},

we have
Sℓ(u′k,u−k) ≥ Sℓ(uk,u−k).

Take any distinct k, ℓ ∈ N .
Let us consider the case with ℓ , i. Take any u ∈ ∏n

j=1 D j such that for some z ∈ X ,
{z} = E(∑n

j=1 u j). Let us first show that

min
x∈E(∑j,ℓ u j )

uℓ(x) ≤ uℓ(z). (1.13)

Suppose, by contradiction, that

min
x∈E(∑j,ℓ u j )

uℓ(x) > uℓ(z).
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Then,

min
x∈E(∑j,ℓ u j )

uℓ(x) +max
x∈X

∑
j,ℓ

u j(x) >
n∑

j=1
u j(z),

a contradiction to {z} = E(∑n
j=1 u j). Therefore, equation (1.13) holds. Now, take any u′k ∈ Dk

such that u′k(z) > uk(z) and u′k(x) = uk(x) for all x ∈ X \ {z}. Then,

E(u′k +
∑
j,k,ℓ

u j) ⊂ E(
∑
j,ℓ

u j) ∪ {z}. (1.14)

Therefore, by ℓ , i and equations (1.14) and (1.13),

Sℓ(u′k,u−k) = min
x∈E(u′

k
+
∑

j,k ,ℓ u j )
uℓ(x) ≥ min

x∈E(∑j,ℓ u j )∪{z}
uℓ(x)

= min
x∈E(∑j,ℓ u j )

uℓ(x) = Sℓ(uk,u−k).

Next, consider the case with ℓ = i. Take any u ∈ ∏n
j=1 D j with {z} = E(∑n

j=1 u j) and any
u′k ∈ Dk such that u′k(z) > uk(z) and u′k(x) = uk(x) for all x ∈ X \ {z}. Then,

S∗
i (u′k,u−k) ≥ S∗

i (uk,u−k),

and since (uk,u−k) →i (u′k,u−k),

inf
(uk,u−k ) →i v′

{
max
x∈X

n∑
j=1

v′j(x) −
∑
j,i

min
x∈E(∑j ′,j v

′
j ′)
v′j(x)

}
≤ inf

(u′
k
,u−k ) →i v′

{
max
x∈X

n∑
j=1

v′j(x) −
∑
j,i

min
x∈E(∑j ′,j v

′
j ′)
v′j(x)

}
.

Therefore,
Si(u′k,u−k) ≥ Si(uk,u−k).

(ii) ⇒ (i). Suppose that a domain
∏n

j=1 D j satisfies Property 4. Take any mechanism
(d, t) ∈ M (∏n

j=1 D j) that satisfies the no free ride axiom, no disposal of utility and distribution.
Let (d∗, t∗) ∈ M (∏n

j=1 D j) be a pivotal mechanism. Let us show that for each i ∈ N and each
v ∈ ∏n

j=1 D j ,
vi

(
d(v)

)
+ ti(v) ≤ vi

(
d∗(v)

)
+ t∗i (v).

Take any i ∈ N , any v ∈ ∏n
j=1 D j , and any ε > 0. Since

∏n
j=1 D j satisfies Property 4, there

exists v′ ∈ ∏n
j=1 D j with v →

i v′ such that

max
x∈X

n∑
j=1

v′j(x) −
∑
j,i

min
x∈E(∑k,j v

′
k
)
v′j(x) −

(
vi

(
d∗(v)

)
+ t∗i (v)

)
< ε. (1.15)
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On the other hand, by feasibility of (d, t),
n∑

j=1

(
v′j

(
d(v′)

)
+ t j(v′)

)
≤ max

x∈X

n∑
j=1

v′j(x).

Therefore,

v′i
(
d(v′)

)
+ ti(v′) ≤ max

x∈X

n∑
j=1

v′j(x) −
∑
j,i

(
v′j

(
d(v′)

)
+ t j(v′)

)
. (1.16)

Moreover, since (d, t) satisfies the no free ride axiom,

max
x∈X

n∑
j=1

v′j(x) −
∑
j,i

(
v′j

(
d(v′)

)
+ t j(v′)

)
≤ max

x∈X

n∑
j=1

v′j(x) −
∑
j,i

min
x∈E(∑k,j v

′
k
)
v′j(x). (1.17)

Then, by combining equations (1.16), (1.17), and (1.15), we have

v′i
(
d(v′)

)
+ ti(v′) ≤ max

x∈X

n∑
j=1

v′j(x) −
∑
j,i

min
x∈E(∑j,i v

′
j )
v′j(x) < vi

(
d∗(v)

)
+ t∗i (v) + ε.

Since v →
i v′, no disposal of utility and distribution of (d, t) implies that

vi
(
d(v)

)
+ ti(v) ≤ v′i

(
d(v′)

)
+ ti(v′) < vi

(
d∗(v)

)
+ t∗i (v) + ε

Since ε was taken arbitrarily,

vi
(
d(v)

)
+ ti(v) ≤ vi

(
d∗(v)

)
+ t∗i (v).

□

Proof of Lemma 4: Suppose that a domain
∏n

j=1 D j satisfies Property 4*. Take any
i ∈ N , any v ∈ ∏n

j=1 D j , and any ε > 0. Fix some z ∈ E(∑ j,i v j). Let v′i ∈ V be such that for
each x ∈ X ,

v′i (x) =


maxy∈X
∑n

j=1 v j(y) −
∑

j,i v j(z) + 1
2ε if x = z,

vi(x) otherwise.

Then, v′i ≥ vi, and hence v →
i (v′i , v−i). Moreover, E(v′i +

∑
j,i v j) = {z}.

For each k ∈ N \ {i}, Let v′k be such that for each x ∈ X ,

v′k(x) =

vk(z) + δ if x = z,

vk(x) otherwise,
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where δ > 0 is large enough to guarantee that E(∑k, j v
′
k) = {z} for all j ∈ N . Note that since

|N | ≥ 3, such δ exists. Then, v →
i v′ and E(∑n

j=1 v
′
j) = {z}. Therefore, by definition of v′i

and by z ∈ E(∑ j,i v j),

max
y∈X

n∑
j=1

v′j(y) −
∑
j,i

min
y∈E(∑k,j v

′
k
)
v′j(y) = v′i (z) +

∑
j,i

v′j(z) −
∑
j,i

v′j(z)

= v′i (z)

= max
y∈X

n∑
j=1

v j(y) −
∑
j,i

v j(z) +
1
2
ε

= max
y∈X

n∑
j=1

v j(y) − max
y∈X

∑
j,i

v j(y) +
1
2
ε.

Thus,{
max
y∈X

n∑
j=1

v′j(y) −
∑
j,i

min
y∈E(∑k,j v

′
k
)
v′j(y)

}
−

{
max
y∈X

n∑
j=1

v j(y) − max
y∈X

∑
j,i

v j(y)
}
=

1
2
ε < ε,

and hence the domain
∏n

j=1 D j satisfies Property 4. □

Proof of Lemma 5: Let us show that if a domain
∏n

j=1 D j violates Property 5, then∏n
j=1 D j is not connected. Since

∏n
j=1 D j violates Property 5, there exist i ∈ N , ε > 0,

v−i ∈
∏

j,i D j , and disjoint sets Y, Z ⊂ X such that for each vi ∈ Di, (Y ∪ Z)∩E(∑n
j=1 v j) , ∅

and one of the two conditions in statement of Property 5 holds. Consider the case where
condition (i) holds. Then,

Di ⊂ Si ∪
(
Wi ∩ Ai

)
.

Let

W′
i =

∪
z∈Z

vi ∈ V : ∀y ∈ Y
n∑

j=1
v j(z) + ε >

n∑
j=1

v j(y)
 .

Then, Wi ⊂ W′
i . Therefore,

Di ⊂ Si ∪
(
W′

i ∩ Ai
)
.

In addition, Si and W′
i are disjoint, and Si, W′

i and Ai are open. Thus,
∏n

j=1 D j is not connected.
A similar argument to above shows the case where condition (ii) of statement in Property 5
holds. □

Proof of Theorem 2*: Our proof is based on that by Chung and Olszewski (2007;
Theorem 4).
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(i) ⇒ (ii). Let us show that if a domain
∏n

j=1 D j violates property 5, then there exists
a strategy-proof and welfare lower bounded mechanism other than the pivotal mechanisms.
Suppose that

∏n
j=1 D j violates property 5. Then, there exist i ∈ N , ε > 0, v−i ∈

∏
j,i D j , and

disjoint sets Y, Z ⊂ X such that for each vi ∈ Di,
(
Y ∪ Z

)
∩ E(∑n

j=1 v j) , ∅ and one of the
two conditions in statement of Property 5 is satisfied.

Case 1. Consider the case where condition (ii) of statement in Property 5 holds;

Si ∩ Di , ∅, (Wi ∩ Ai) ∩ Di , ∅, and Di ⊂ Si ∪ (Wi ∩ Ai) . (1.18)

Let (d, t) ∈ M (∏n
j=1 D j) be such that for each i ∈ N and each u ∈ ∏n

j=1 D j ,

d(u) ∈


Z ∩ E(∑n

j=1 u j) if u−i = v−i and Z ∩ E(∑n
j=1 u j) , ∅,

Y ∩ E(∑n
j=1 u j) if u−i = v−i and Z ∩ E(∑n

j=1 u j) = ∅,

E(∑n
j=1 u j) otherwise,

ti(u) =


t∗i (u) + ε if u−i = v−i and ui ∈ Wi ∩ Ai,

t∗i (u) otherwise,

t j(u) = t∗j (u),

where for each j ∈ N , t∗j (u) =
∑

k, j uk
(
d(u)

)
− maxx∈X

∑
k, j uk(x). We can easily check that

(d, t) satisfies efficiency and welfare lower boundedness. Let us show that (d, t) also satisfies
strategy-proofness and feasibility.

Strategy-proofness. Take any u ∈ ∏n
j=1 D j and any u′i ∈ Di. If u−i = v−i and ui ∈ Wi∩Ai,

then by definition of (d, t),

ui
(
d(ui, v−i)

)
+ ti(ui, v−i) = ui

(
d(ui, v−i)

)
+ t∗i (ui, v−i) + ε

≥ ui
(
d(u′i, v−i)

)
+ t∗i (u′i, v−i) + ε ≥ ui

(
d(u′i, v−i)

)
+ ti(u′i, v−i).

Moreover, if u−i , v−i, then

ui
(
d(ui,u−i)

)
+ ti(ui,u−i) = ui

(
d(ui,u−i)

)
+ t∗i (ui,u−i)

≥ ui
(
d(u′i,u−i)

)
+ t∗i (u′i,u−i) = ui

(
d(u′i,u−i)

)
+ ti(u′i,u−i).

Therefore, it suffices to consider the case with u−i = v−i and ui < Wi ∩ Ai. Note that in this
case ui ∈ Si by the assumption (1.18).

If u′i < Wi ∩ Ai, then

ui
(
d(ui, v−i)

)
+ ti(ui, v−i) = ui

(
d(ui, v−i)

)
+ t∗i (ui, v−i)
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≥ ui
(
d(u′i, v−i)

)
+ t∗i (u′i, v−i) = ui

(
d(u′i, v−i)

)
+ ti(u′i, v−i).

Suppose that u′i ∈ Wi ∩ Ai. Then, by definition of Wi, there exists z ∈ Z such that

u′i(z) +
∑
j,i

v j(z) ≥ u′i(y) +
∑
j,i

v j(y) for all y ∈ Y .

Hence by the assumption that
(
Y ∪ Z

)
∩ E(∑n

j=1 v j) , ∅ for all vi ∈ Di,

Z ∩ E(u′i +
∑
j,i

v j) , ∅.

Then, by definition of d, d(u′i, v−i) ∈ Z . On the other hand, since ui ∈ Si, by definition of Si,
there exists y ∈ Y such that

ui(y) +
∑
j,i

v j(y) > ui(z) +
∑
j,i

v j(z) + ε for all z ∈ Z . (1.19)

Therefore, Z ∩ E(ui +
∑

j,i v j) = ∅. Then, by definition of d, d(ui, v−i) ∈ Y .
Let y∗ ≡ d(ui, v−i) ∈ Yand z∗ ≡ d(u′i, v−i) ∈ Z . Note that by (1.19),

ui(y∗) +
∑
j,i

v j(y∗) > ui(z∗) +
∑
j,i

v j(z∗) + ε. (1.20)

Hence by equation (1.20),

ui
(
d(ui, v−i)

)
+ ti(ui, v−i) = ui

(
d(ui, v−i)

)
+ t∗i (ui, v−i)

= ui(y∗) +
∑
j,i

v j(y∗) − max
x∈X

∑
j,i

v j(x)

> ui(z∗) +
∑
j,i

v j(z∗) + ε − max
x∈X

∑
j,i

v j(x)

= ui
(
d(u′i, v−i)

)
+ t∗i (u′i, v−i) + ε = ui

(
d(u′i, v−i)

)
+ ti(u′i, v−i).

Therefore, (d, t) satisfies strategy-proofness.

Feasibility. Take any u ∈ ∏n
j=1 D j . If u−i , v−i or ui < Wi ∩ Ai, then

n∑
j=1

t j(u) =
n∑

j=1
t∗j (u) ≤ 0.

Suppose that u−i = v−i and ui ∈ Wi ∩ Ai. Then, by definition of Ai,
n∑

j=1
t∗j (ui, v−i) < −ε.
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Therefore,
n∑

j=1
t j(ui, v−i) =

n∑
j=1

t∗j (ui, v−i) + ε < −ε + ε = 0.

Thus, (d, t) satisfies feasibility.

Case 2. Consider the case where condition (ii) of statement in Property 5 holds;

(Si ∩ Bi) ∩ Di , ∅, Wi ∩ Di , ∅, and Di ⊂ (Si ∩ Bi) ∪ Wi . (1.21)

Let (d, t) ∈ M (∏n
j=1 D j) be such that for each i ∈ N and each u ∈ ∏n

j=1 D j ,

d(u) ∈


Z ∩ E(∑n

j=1 u j) if u−i = v−i and Z ∩ E(∑n
j=1 u j) , ∅,

Y ∩ E(∑n
j=1 u j) if u−i = v−i and Z ∩ E(∑n

j=1 u j) = ∅,

E(∑n
j=1 u j) otherwise,

ti(u) =


t∗i (u) − ε if u−i = v−i and ui ∈ Si ∩ Bi,

t∗i (u) otherwise,

t j(u) = t∗j (u),

where for each j ∈ N , t∗j (u) =
∑

k, j uk
(
d(u)

)
− maxx∈X

∑
k, j uk(x). One can easily check

that (d, t) satisfies efficiency and feasibility. Let us confirm that (d, t) also satisfies strategy-
proofness and welfare lower boundedness.

Strategy-proofness. Take any u ∈ ∏n
j=1 D j and any u′i ∈ Di. If u−i , v−i or ui < Si ∩ Bi,

then

ui
(
d(ui,u−i)

)
+ ti(ui,u−i) = ui

(
d(ui,u−i)

)
+ t∗i (ui,u−i)

≥ ui
(
d(u′i,u−i)

)
+ t∗i (u′i,u−i) ≥ ui

(
d(u′i,u−i)

)
+ ti(u′i,u−i).

Consider the case with u−i = v−i and ui ∈ Si ∩ Bi. If u′i ∈ Si ∩ Bi, then

ui
(
d(ui, v−i)

)
+ ti(ui, v−i) = ui

(
d(ui, v−i)

)
+ t∗i (ui, v−i) − ε

≥ ui
(
d(u′i, v−i)

)
+ t∗i (u′i, v−i) − ε = ui

(
d(u′i, v−i)

)
+ ti(u′i, v−i).

Suppose that u′i < Si ∩ Bi, and hence u′i ∈ Wi by the assumption (1.21). Then, by definition of
Wi, there exists z ∈ Z such that

u′i(z) +
∑
j,i

v j(z) ≥ u′i(y) +
∑
j,i

v j(y) for all y ∈ Y .
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Thus, by the assumption that
(
Y ∪ Z

)
∩ E(∑n

j=1 v j) , ∅ for all vi ∈ Di,

Z ∩ E(u′i +
∑
j,i

v j) , ∅.

Therefore, by definition of d, d(u′i, v−i) ∈ Z . On the other hand, since ui ∈ Si, by definition of
Si, there exists y ∈ Y such that

ui(y) +
∑
j,i

v j(y) > ui(z) +
∑
j,i

v j(z) + ε for all z ∈ Z . (1.22)

Hence Z ∩ E(ui +
∑

j,i v j) = ∅. Then, by definition of d, d(ui, v−i) ∈ Y .
Let y∗ ≡ d(ui, v−i) ∈ Y and z∗ ≡ d(u′i, v−i) ∈ Z . Note that by equation (1.22) and

y∗ ∈ E(u′i +
∑

j,i v j),

ui(y∗) +
∑
j,i

v j(y∗) > ui(z∗) +
∑
j,i

v j(z∗) + ε. (1.23)

Hence by equation (1.23),

ui
(
d(ui, v−i)

)
+ ti(ui, v−i) = ui

(
d(ui, v−i)

)
+ t∗i (ui, v−i) − ε

= ui(y∗) +
∑
j,i

v j(y∗) − max
x∈X

∑
j,i

v j(x) − ε

> ui(z∗) +
∑
j,i

v j(z∗) + ε − max
x∈X

∑
j,i

v j(x) − ε

= ui
(
d(u′i, v−i)

)
+ t∗i (u′i, v−i) = ui

(
d(u′i, v−i)

)
+ ti(u′i, v−i).

Therefore, (d, t) satisfies strategy-proofness.

Welfare lower boundedness. Let us show that for each u ∈ ∏n
j=1 D j ,

ui
(
d(ui, v−i)

)
+ ti(ui, v−i) ≥ min

x∈X
ui(x).

Take any u ∈ ∏n
j=1 D j . If u−i , v−i or ui < Si ∩ Bi, then

ui
(
d(ui, v−i)

)
+ ti(ui, v−i) = ui

(
d(ui, v−i)

)
+ t∗i (ui, v−i) ≥ min

x∈X
vi(x).

Suppose that u−i = v−i and ui ∈ Si ∩ Bi. Then, by definition of Bi,

max
x∈X

(
ui(x) +

∑
j,i

v j(x)
)
− max

x∈X

∑
j,i

v j(x) − ε > min
x∈X

ui(x).

Therefore,

ui
(
d(ui, v−i)

)
+ ti(ui, v−i) = ui

(
d(ui, v−i)

)
+ t∗i (ui, v−i) − ε
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= max
x∈X

(
ui(x) +

∑
j,i

v j(x)
)
− max

x∈X

∑
j,i

v j(x) − ε > min
x∈X

ui(x).

(ii) ⇒ (i). In Proof of Theorem 2, we showed that if a domain satisfies Properties 1 and 3,
then any Groves mechanism must be a pivotal mechanism. Therefore, it suffices to show that
if a domain satisfies Properties 1, 3 and 5, then any strategy-proof and welfare lower bounded
mechanism must be a Groves mechanism. Suppose that a domain

∏n
j=1 D j satisfies Properties

1, 3 and 5. Take any mechanism (d, t) ∈ M (∏n
j=1 D j) that satisfies strategy-proofness and

welfare lower boundedness. Let (d∗, t∗) ∈ M (∏n
j=1 D j) be a pivotal mechanism such that

d∗ = d. To show that (d, t) is a Groves mechanism, it suffices to show that for each i ∈ N and
each v−i ∈

∏
j,i D j ,

ti(vi, v−i) − t∗i (vi, v−i) = ti(v′i , v−i) − t∗i (v′i , v−i) for all vi, v
′
i ∈ Di .

Step 1. Let us show that for each i ∈ N , each v−i ∈ ∏
j,i D j and each vi, v

′
i ∈ Di, if

d(vi, v−i) = d(v′i , v−i), then

ti(vi, v−i) − t∗i (vi, v−i) = ti(v′i , v−i) − t∗i (v′i , v−i). (1.24)

Take any i ∈ N , any v−i ∈ ∏
j,i D j , and any vi, v

′
i ∈ Di with d(vi, v−i) = d(v′i , v−i). Let

x ≡ d(vi, v−i) = d(v′i , v−i). Then, by strategy-proofness of (d, t),

ti(vi, v−i) = vi
(
d(vi, v−i)

)
+ ti(vi, v−i) − vi(x)

≥ vi
(
d(v′i , v−i)

)
+ ti(v′i , v−i) − vi(x) = ti(v′i , v−i),

and

ti(v′i , v−i) = v′i
(
d(v′i , v−i)

)
+ ti(v′i , v−i) − vi(x)

≥ v′i
(
d(vi, v−i)

)
+ ti(vi, v−i) − vi(x) = ti(vi, v−i).

Therefore, ti(vi, v−i) = ti(v′i , v−i). Similarly, we can show that t∗i (vi, v−i) = t∗i (v′i , v−i). Therefore,
equation (1.24) holds.

Step 2. Let us show that for each i ∈ N and each v−i ∈
∏

j,i D j ,

t∗i (vi, v−i) ≤ ti(vi, v−i) for all vi ∈ Di . (1.25)

Take any i ∈ N and any v−i ∈
∏

j,i D j . We consider two cases.
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Case 2-1. Consider the case with

ti(ui, v−i) − t∗i (ui, v−i) = ti(u′i, v−i) − t∗i (u′i, v−i) for all ui,u′i ∈ Di .

Then, there exists hi(v−i) ∈ R such that for each vi ∈ Di, ti(vi, v−i) =
∑

j,i v j
(
d(vi, v−i)

)
−

hi(v−i). Hence by the same argument as Step 1 of Proof of Theorem 2, it follows that
t∗i (vi, v−i) ≤ ti(vi, v−i) for all vi ∈ Di.

Case 2-2. Consider the case with

ti(ui, v−i) − t∗i (ui, v−i) , ti(u′i, v−i) − t∗i (u′i, v−i) for some ui,u′i ∈ Di .

Then, by Step 1 and finiteness of X , ti( · , v−i) − t∗i ( · , v−i) takes at least two and only a
finite number of values. Suppose, by contradiction, that there exists wi ∈ Di such that
ti(wi, v−i) < t∗i (wi, v−i). Then, by ti(wi, v−i) − t∗i (wi, v−i) < 0, there exists ε > 0 such that the
values of ti( · , v−i) − t∗i ( · , v−i) belong to the union of two intervals (−∞,−2ε) and (−ε,∞), and
each interval contains at least one value.

Let Y, Z ⊂ X be such that

Y ≡
{

x ∈ X : ∃vi ∈ Di, d(vi, v−i) = x and ti(vi, v−i) − t∗i (vi, v−i) < −2ε
}
,

Z ≡
{

x ∈ X : ∃vi ∈ Di, d(vi, v−i) = x and − ε < ti(vi, v−i) − t∗i (vi, v−i)
}
.

By Step 1, Y and Z are disjoint, and (Y ∪ Z) ∩ E(∑n
j=1 v j) , ∅ for all vi ∈ Di. Then, we

can define Ai, Bi, Si and Wi as in equations (1.4) to (1.7) in Appendix A. Let us show that
condition (ii) of statement in Property 5 holds, and hence Property 5 is violated. Note that for
each vi ∈ Di, d(vi, v−i) ∈ Y or d(vi, v−i) ∈ Z .

Substep 2-2-1. Let us show that for each vi ∈ Di, if d(vi, v−i) ∈ Y , then vi ∈ Si. Take
any vi ∈ Di with d(vi, v−i) ∈ Y . Consider any z ∈ Z . We shall show that

∑n
j=1 v j

(
d(v)

)
>∑n

j=1 v j(z) + ε. By d(vi, v−i) ∈ Y , there exists v′i ∈ Di such that d(vi, v−i) = d(v′i , v−i) and
ti(v′i , v−i) − t∗i (v′i , v−i) < −2ε. Hence by Step 1,

ti(vi, v−i) − t∗i (vi, v−i) < −2ε. (1.26)

Since z ∈ Z , there exists v′′i ∈ Di such that d(v′′i , v−i) = z and

−ε < ti(v′′i , v−i) − t∗i (v′′i , v−i).

Therefore, by combining these two inequalities,

t∗i (v′′i , v−i) − t∗i (vi, v−i) + ε < ti(v′′i , v−i) − ti(vi, v−i). (1.27)
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On the other hand, by strategy-proofness of (d, t),

vi
(
d(vi, v−i)

)
+ ti(vi, v−i) ≥ vi

(
d(v′′i , v−i)

)
+ ti(v′′i , v−i),

or
vi

(
d(vi, v−i)

)
− vi

(
d(v′′i , v−i)

)
≥ ti(v′′i , v−i) − ti(vi, v−i). (1.28)

Then, by equations (1.27) and (1.28),

vi
(
d(vi, v−i)

)
− vi

(
d(v′′i , v−i)

)
> t∗i (v′′i , v−i) − t∗i (vi, v−i) + ε,

and hence
vi

(
d(vi, v−i)

)
+ t∗i (vi, v−i) > vi

(
d(v′′i , v−i)

)
+ t∗i (v′′i , v−i) + ε.

Therefore,
∑n

j=1 v j
(
d(v)

)
>

∑n
j=1 v j(z)+ε by definition of t∗i and d(v′′i , v−i) = z. Thus, vi ∈ Si.

Substep 2-2-2. Let us show that for each vi ∈ Di, if d(vi, v−i) ∈ Y , then vi ∈ Bi. Take any
vi ∈ Di with d(vi, v−i) ∈ Y . Since d(vi, v−i) ∈ Y , by the same argument as equation (1.26),

ti(vi, v−i) − t∗i (vi, v−i) < −2ε.

Then, by welfare lower boundedness of (d, t),

max
x∈X

n∑
j=1

v j(x) − max
x∈X

∑
j,i

v j(x) = vi
(
d(vi, v−i)

)
+ t∗i (vi, v−i)

> vi
(
d(vi, v−i)

)
+ ti(vi, v−i) + 2ε > min

x∈X
vi(x) + ε.

Therefore, vi ∈ Bi.

Substep 2-2-3. Let us show that for each vi ∈ Di, if d(vi, v−i) ∈ Z , then vi ∈ Wi. Take any
vi ∈ Di with d(vi, v−i) ∈ Z . Since (d, t) is efficient, for each y ∈ Y ,

n∑
j=1

v j
(
d(v)

)
≥

n∑
j=1

v j(y).

Therefore, vi ∈ Wi.

Then, by Substeps 2-2-1 to 2-2-3, Di ⊂ (Si ∩ Bi) ∪ Wi. Moreover, by constructions of
Y and Z , (Si ∩ Bi) ∩ Di , ∅ , Wi ∩ Di. Thus, a domain

∏n
j=1 D j violates Property 5, a

contradiction to the assumption that
∏n

j=1 D j satisfies Property 5.

Step 3. Let us show that for each i ∈ N and each v−i ∈
∏

j,i D j ,

ti(vi, v−i) − t∗i (vi, v−i) = ti(v′i , v−i) − t∗i (v′i , v−i) for all vi, v
′
i ∈ Di .
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Take any i ∈ N and any v−i ∈
∏

j,i D j . Suppose, by contradiction, that

ti(ui, v−i) − t∗i (ui, v−i) , ti(u′i, v−i) − t∗i (u′i, v−i) for some ui,u′i ∈ Di .

Then, by Step 1 and finiteness of X , ti( · , v−i) − t∗i ( · , v−i) takes at least two and only a finite
number of values. Moreover, by Step 2, t∗i (vi, v−i) ≤ ti(vi, v−i) for all vi ∈ Di. Therefore, there
exists ε > 0 such that the values of ti( · , v−i) − t∗i ( · , v−i) belong to the union of two intervals
(−∞, ε) and (2ε,∞), and each interval contains at least one value.

Let Y, Z ⊂ X be such that

Y ≡
{

x ∈ X : ∃vi ∈ Di, d(vi, v−i) = x and ti(vi, v−i) − t∗i (vi, v−i) < ε
}
,

Z ≡
{

x ∈ X : ∃vi ∈ Di, d(vi, v−i) = x and 2ε < ti(vi, v−i) − t∗i (vi, v−i)
}
.

By Step 1, Y and Z are disjoint, and (Y ∪ Z) ∩ E(∑n
j=1 v j) , ∅ for all vi ∈ Di. Let us show

that condition (i) of statement in Property 5 holds. Note that for each vi ∈ Di, d(vi, v−i) ∈ Y

or d(vi, v−i) ∈ Z .

Substep 3-1. Let us show that for each vi ∈ Di, if d(vi, v−i) ∈ Y , then vi ∈ Si. Take any vi ∈
Di with d(vi, v−i) ∈ Y and any z ∈ Z . It suffices to show that

∑n
j=1 v j

(
d(v)

)
>

∑n
j=1 v j(z) + ε.

Since d(vi, v−i) ∈ Y , by Step 1 and definition of Y , we have

ti(vi, v−i) − t∗i (vi, v−i) < ε.

Moreover, by z ∈ Z , there exists v′i ∈ Di such that d(v′i , v−i) = z and

2ε < ti(v′i , v−i) − t∗i (v′i , v−i).

Therefore, by combining these two inequalities, we have

t∗i (v′i , v−i) − t∗i (vi, v−i) + ε < ti(v′i , v−i) − ti(vi, v−i). (1.29)

On the other hand, by strategy-proofness of (d, t),

vi
(
d(vi, v−i)

)
+ ti(vi, v−i) ≥ vi

(
d(v′i , v−i)

)
+ ti(v′i , v−i),

or
vi

(
d(vi, v−i)

)
− vi

(
d(v′i , v−i)

)
≥ ti(v′i , v−i) − ti(vi, v−i). (1.30)

Then, by equations (1.29) and (1.30),

vi
(
d(vi, v−i)

)
− vi

(
d(v′i , v−i)

)
> t∗i (v′i , v−i) − t∗i (vi, v−i) + ε,
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and hence
vi

(
d(vi, v−i)

)
+ t∗i (vi, v−i) > vi

(
d(v′i , v−i)

)
+ t∗i (v′i , v−i) + ε.

Therefore,
∑n

j=1 v j
(
d(v)

)
>

∑n
j=1 v j(z)+ ε by definition of t∗i and d(v′i , v−i) = z. Thus, vi ∈ Si.

Substep 3-2. Let us show that for each vi ∈ Di, if d(vi, v−i) ∈ Z , then vi ∈ Wi. Take any
vi ∈ Di with d(vi, v−i) ∈ Z . Since the decision function d chooses an efficient alternative, for
each y ∈ Y ,

n∑
j=1

v j
(
d(v)

)
≥

n∑
j=1

v j(y).

Therefore, vi ∈ Wi.

Substep 3-3. Let us show that for each vi ∈ Di, if d(vi, v−i) ∈ Z , then vi ∈ Ai. Take any
vi ∈ Di with d(vi, v−i) ∈ Z . Since d(vi, v−i) ∈ Z , by Step 1 and definition of Z ,

2ε < ti(vi, v−i) − t∗i (vi, v−i).

Remember that by Step 2, t∗j (vi, v−i) ≤ t j(vi, v−i) for all j , i. Then, by feasibility of (d, t),

(n − 1)max
x∈X

n∑
j=1

v j(x) −
n∑

j=1
max
x∈X

∑
k, j

vk(x) = t∗i (vi, v−i) +
∑
j,i

t∗j (vi, v−i)

< ti(vi, v−i) − 2ε +
∑
j,i

t∗j (vi, v−i)

≤ ti(vi, v−i) − 2ε +
∑
j,i

t j(vi, v−i) ≤ −2ε < −ε.

Therefore, vi ∈ Ai.

Then, by Substeps 3-1 to 3-3, Di ⊂ Si ∪ (Wi ∩ Ai). Moreover, by constructions of Y and
Z , Si ∩Di , ∅ , (Wi ∩ Ai)∩Di. Thus, a domain

∏n
j=1 D j violates Property 5, a contradiction

to the assumption that
∏n

j=1 D j satisfies Property 5.
□
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Chapter 2

Dispute Mediation Mechanisms

2.1 Introduction

We consider the problem of designing mechanisms that mediate disputes, such as border
disputes, commercial disputes, or civil disputes. Since disputes arise from differences in
disputants’ preferred social states, finding a compromise that benefits for all disputant is im-
portant when we think of the resolution of the dispute. However, even if such a compromise
exists, individuals often misrepresent their preferences, and proposals based on the misrepre-
sented preferences may fail. We interpret this as an incentive problem for mechanisms that
aggregate disputants’ preferences.

A specific feature of the problem we examine is that each disputant may have a veto
power to the outcomes of mechanisms. This feature is embedded in real-world disputes in
which each disputant can reject an agreement by continuing the dispute. In fact, in many
dispute resolution processes outside courts (e.g., the mediationin alternative dispute resolution
processes), disputants have the right to reject an agreement (Muthoo 1999). Since we allow
the veto power, we search for mechanisms that satisfy individual rationality so that each
disputant voluntarily accepts the outcomes of mechanisms.

We consider an environment in which all disputants have quasi-linear preferences over
finitely many social states and money. The set of social states includes the status quo in which
the unresolved dispute continues. Each mechanism chooses a social state and determines
monetary transfers among disputants. Since the seminal work by Groves (1973), it has been
well-known that Groves mechanisms are the only mechanisms that satisfy efficiency and
strategy-proofness (Green and Laffont 1977, Holmström, 1979, Carbajal, 2010). However, it
is also known that no Groves mechanism satisfies both individual rationality and feasibility
(Subsection 3.9; Jackson 2003). In other words, there exists no mechanism that satisfies
efficiency, strategy-proofness, individual rationality, and feasibility. Given the negative result
about the existence of “desirable" mechanisms, we need to give up at least one of the four
properties. Since strategy-proofness and individual rationality are central to our analysis, we
relax efficiency. In particular, we introduce weak efficiency, which requires that a mechanism
choose an efficient social state whenever it chooses a social state other than the status quo.
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First, we consider the full valuation domain. On this domain, the status quo mechanism is
the unique mechanism that satisfies weak efficiency, strategy-proofness, individual rationality,
and feasibility (Theorem 1). The status quo mechanism is a mechanism that always chooses
the status quo without monetary transfers among disputants. This result is negative because
the unresolved dispute always persists under the status quo mechanism.

Second, given the negative result, we consider a situation where the planner (or mediator)
can restrict the valuation domain by estimating an upper bound of each disputant’s valuations.
For example, if the mediator knows that each disputant’s valuation of obtaining some disputed
item is less than $10,000, then he can restrict a valuation domain by using such an information.
This admits us to focus on a mildly restricted domain in which each disputant’s valuations
are bounded from above. We show that on this mildly restricted domain, the mediation
mechanisms satisfy weak efficiency, strategy-proofness, individual rationality, and feasibility
(Theorem 2 (i)). A mediation mechanism chooses an efficient alternative whenever the maxi-
mal social surplus among disputants exceeds an endogenous amount, and otherwise it chooses
the status quo. We also show that mediation mechanisms Pareto-dominate all mechanisms
satisfying weak efficiency, strategy-proofness, individual rationality, and feasibility (Theorem
2 (ii)). These results imply that the mediation mechanisms exhibit fairly good performances
in our dispute resolution problem whenever the valuation domain can be restricted by finding
upper bounds of disputants’ valuations.*5 We also observe that performances of the media-
tion mechanisms increases as the mediator selects the lower upper bound of each disputant’s
valuations when he restrict the valuation domain.

Our theorems parallel those of Roberts (1979), Mishra and Sen (2012), and Carbajal,
McLennan, and Tourky (2013). Among them, Roberts (1979) shows that any strategy-proof
mechanism that may not be efficient belongs to a class of mechanisms that are called affine
maximizers. Mediation mechanisms are in fact a subclass of affine maximizers. Subsequently,
Mishra and Sen (2012) and Carbajal, McLennan, and Tourky (2013) generalize Roberts’
theorem to some of restricted valuation domains. In the proof of Theorem 1, we can apply
Roberts’ theorem because there we consider the full valuation domain. On the other hand, in
the proof of Theorem 2, none of their results can be directly applicable since our restricted

*5Although our model covers a wide range of public decision problems, the mediation mechanisms seem to
mostly applicable to dispute resolution problems. This is because the mediation mechanisms exhibit relatively
good performances when the number of individuals involved in a problem is only a few, consistently with the
situations of the most of dispute resolution problems. We discuss this in Subsection 2.4.1. For the literature on
mechanism design specifically focusing on dispute resolution problems, see for example Fey and Ramsay (2007;
2009), Hörner, Morelli, and Squintani (2015), and Miljkovic and Gomez (2013).
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domains are outside the valuation domains they analyze. Therefore, we present a proof that
directly characterizes weak efficient and strategy-proof mechanisms.

The rest of this chapter is organized as follows. Section 2.2 introduces our model. Section
2.3 offers our main results. Section 2.4 discusses performances of mediation mechanisms,
and Section 2.5 gives concluding remarks. All the proofs are relegated to Appendix.

2.2 The Model

Let N = {1,2, . . . ,n} be the finite set of disputants, and X = {ϕ, x1, . . . , xm} the finite set of
social states, where ϕ denotes the status quo in which the unresolved dispute continues. Each
individual i ∈ N has a valuation function vi : X → R. Let V be the set of valuation functions.
For future convenience, we normalize each vi as vi(ϕ) = 0.*6 A valuation profile is an n-tuple
of valuation functions v = (v1, . . . , vn) ∈ Vn. For each v ∈ Vn and N′ ⊂ N , vN ′ and v−N ′

denote {v j} j∈N ′ and {v j} j∈N\N ′, respectively. Given any vi ∈ V , its associated utility function
U

(
·, · ; vi

)
: X × R→ R is defined by

U
(
x, ti; vi

)
= vi(x) + ti,

where ti ∈ R denotes the amount of money disputant i receives.
We consider two types of valuation domains. In Subsection 2.3.1, we consider the full

valuation domain Vn. On the other hand, in Subsection 2.3.2, we consider a situation where
the mediator can estimate an upper bound of each disputant’s valuations. In other words, we
focus on a mildly restricted domain in which each disputants’ valuations are bounded from
above. For each positive number ri ∈ R++, let

Vri ≡ {vi ∈ V : vi(x) < ri for all x ∈ X}.

The subset Vri ⊂ V is the set of valuation functions that are bounded from above by a positive
number ri ∈ R++. Then, a restricted domain we focus on in Subsection 2.3.2 is of the form∏n

j=1 Vrj .*7 Throughout this section and Section 2.3, we fix an arbitrary n-dimensional vector
r = (r1,r2, . . . ,rn) ∈ Rn

++. We interpret this fixed r as the mediator’s estimations of upper

*6All of our results hold without this assumption.
*7Since each Vri is bounded from above, our valuation domain

∏n
j=1 Vrj is outside the domains analyzed by

Carbajal, McLennan, and Tourky (2013). In addition, since we normalize each vi(ϕ) as zero, each Vri is not
a finite dimensional open interval domain. Therefore, our valuation domain

∏n
j=1 Vrj is outside the domains

analyzed by Mishra and Sen (2012).
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bounds of disputants’ valuations. When the valuation domain is not specified, we generally
denote it by

∏n
j=1 D j ⊂

{ ∏n
j=1 Vrj , Vn

}
.

A decision function is a function d :
∏n

j=1 D j → X that maps each valuation profile
v ∈ ∏n

j=1 D j to a social state d(v) ∈ X . A transfer function is a function t :
∏n

j=1 D j → Rn

that maps each valuation profile v ∈ ∏n
j=1 D j to a vector of monetary transfers t(v) =

(t1(v), . . . , tn(v)) ∈ Rn. A mechanism is a pair of decision and transfer functions (d, t). Let
M

( ∏n
j=1 D j

)
be the set of mechanisms on

∏n
j=1 D j .

We introduce four axioms on mechanisms. Efficiency requires that a mechanism choose a
social state that maximizes the disputants’ social surplus.

Axiom 1 (Efficiency). A mechanism (d, t) ∈ M
( ∏n

j=1 D j
)

satisfies efficiency if for each
v ∈ ∏n

j=1 D j ,

d(v) ∈ arg max
x∈X∪{ϕ}

{ n∑
j=1

v j(x)
}
.

Strategy-proofness requires that revealing the true valuation function be a weakly-dominant
strategy for each disputant.

Axiom 2 (Strategy-proofness ). A mechanism (d, t) ∈ M
( ∏n

j=1 D j
)

satisfies strategy-
proofness if for each i ∈ N , each v ∈ ∏n

j=1 D j and each v′i ∈ Di,

U
(
d(vi, v−i), ti(vi, v−i); vi

)
≥ U

(
d(v′i , v−i), ti(v′i , v−i); vi

)
.

Individual rationality requires that no disputant’s final utility become worse than that at
the status quo.

Axiom 3 (Individual rationality ). A mechanism (d, t) ∈ M
( ∏n

j=1 D j
)

satisfies individual
rationality if for each i ∈ N and each v ∈ ∏n

j=1 D j ,

U
(
d(vi, v−i), ti(vi, v−i); vi

)
≥ U

(
ϕ, 0; vi

)
.

Feasibility requires that net transfer be non-positive. Note that money may flaw out from
disputants.*8

Axiom 4 (Feasibility ). A mechanism (d, t) ∈ M
( ∏n

j=1 D j
)

satisfies feasibility if for each
v ∈ ∏n

j=1 D j ,

n∑
j=1

t j(v) ≤ 0

*8In our setting, no strategy-proof mechanism can be budget balanced even in the restricted domains.
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Although these four axioms seem to be “desirable”, no mechanism satisfies all of them.
Therefore, we must relax at least one of the four axioms.

Impossibility Result (Green and Laffont 1977; Holmström 1979). For each
∏n

j=1 D j ⊂{∏n
j=1 Vrj , Vn

}
, no mechanism (d, t) ∈ M

( ∏n
j=1 D j

)
satisfies efficiency, strategy-proofness,

individual rationality, and feasibility.

In Appendix A, we show that the above impossibility result holds true even on the restricted
domain

∏n
j=1 Vrj .

2.3 Main Results

Given the impossibility result, we relax efficiency and design mechanisms that satisfy a weaker
version of efficiency and the other three axioms. Weak efficiency requires that a mechanism
choose an efficient outcome whenver it chooses a social state other than the status quo. Sakai
(2013) established a similar axiom to characterize second price auctions with reserve prices.
Obviously, weak efficiency is implied by efficiency.

Axiom 5 (Weak Efficiency). A mechanism (d, t) ∈ M
( ∏n

j=1 D j
)

satisfies weak efficiency if
for each v ∈ ∏n

j=1 D j ,

d(v) ∈ arg max
x∈X


n∑

j=1
v j(x)

 ,
whenever d(v) , ϕ.

If a mechanism satisfies weak efficiency and chooses a non-status quo social state, then
the grand coalition I does not has an incentive to change the social state after the decision
by the mechanism; that is, for each v ∈ ∏n

j=1 D j , if d(v) , ϕ, then there exists no outcome
(x, p1, . . . , pn) ∈ X × Rn such that

∑n
j=1 p j =

∑n
j=1 t j(v) and

U
(
x, pi; vi

)
≥ U

(
d(v), ti(v); vi

)
for all i ∈ I,

strict inequality holding for some j ∈ I.

2.3.1 Full valuation domain

On the full valuation domain, a mechanism that always chooses the status quo uniquely satisfies
weak efficiency, strategy-proofness, individual rationality, and feasibility. A mechanism
(d, t) ∈ M (∏n

j=1 D j) is the status quo mechanism if for each v ∈ ∏n
j=1 D j and each i ∈ N ,

d(v) = ∅ and ti(v) = 0.
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Theorem 1. Suppose |X | ≥ 3 and
∏n

j=1 D j = Vn. Then, the status quo mechanism is the
unique mechanism that satisfies weak efficiency, strategy-proofness, individual rationality,
and feasibility.

Proof. See Appendix C. ■

Theorem 1 implies that when the valuation domain cannot be restricted, no mechanism
satisfies the four axioms resolving the dispute, i.e., choosing a non-status quo social state.
When there are only two social states, i.e., |X | = 2, a mechanism conducting the unanimous
voting without monetary transfers satisfies all the four axioms.

2.3.2 Restricted valuation domain

In this subsection, we focus on the restricted valuation domain
∏n

j=1 D j =
∏n

j=1 Vrj , where
upper bounds of disputants’ valuations are estimated by the mediator. We now introduce a
class of mechanisms important to this study. Let 1ϕ : X → {0,1} be an indicator function of
ϕ. That is, for each x ∈ X , 1ϕ(x) = 1 if and only if x = ϕ.

Definition 1. A mechanism (dm, tm) ∈ M
( ∏n

j=1 Vrj
)

is a mediation mechanism if for each
v ∈ ∏n

i=1 Vrj and each i ∈ N ,

(i) dm(v) ∈ arg max
x∈X

{∑n
j=1 v j(x) + (n−1)

n
∑n

j=1 r j · 1ϕ(x)
}
,

(ii) tm
i (v) =

∑
j,i v j(d(v)) + (n−1)

n
∑n

j=1 r j · 1ϕ(d(v)) − (n−1)
n

∑n
j=1 r j ,

(iii)
[
∃x ∈ X \ {ϕ}, x ∈ arg max

x∈X

{∑n
j=1 v j(x) + (n−1)

n
∑n

j=1 r j · 1ϕ(x)
}]
=⇒ d(v) , ϕ.

Remember that n is the number of disputants. Any mediation mechanism chooses a non-
status quo social state that maximize the social surplus if the maximal social surplus is greater
than (n−1)

n
∑n

j=1 r j . Otherwise, the mediation mechanism chooses the status quo. To break
ties, the mediation mechanism always chooses a social state other than the status quo. All
mediation mechanisms are welfare equivalent. Therefore, in welfare terms, we can consider
that there is essentially only one mediation mechanism. This class of mechanisms belongs to
the class of affine maximizers (Roberts 1979), but not to the class of Vickrey-Clarke-Groves
mechanisms.

We give a numerical example of mediation mechanisms.
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x y z ϕ

v1 −40 20 25 0
v2 15 10 −40 0

v1 + v2 −25 35 −10 0

Table 1: Valuation profile of two individuals

Example 1. Consider a situation in which there are two disputants and four social states
including the status quo. Each disputant i ∈ {1,2} has a valuation function vi as illustrated
in Table 1. There, disputant 1’s valuation of x is −40, for example. Then, the social surplus
of v1 + v2 is maximized at y, and hence, it is the efficient social state. Now, suppose that
r = (30,20) ∈ R2

++. Then, v ∈ V30 ×V20. In addition, since v1(y)+ v2(y) = 35 > 1
2
(
r1 + r2

)
=

1
2
(
30 + 20

)
= 25, a mediation mechanism assigns y to this valuation profile. Disputant 1

receives v2(y) − 1
2
(
r1 + r2

)
= −15 and Disputant 2 receives v1(y) − 1

2
(
r1 + r2

)
= −5. Overall,

disputant 1’s final utility is 20 − 15 = 5 and that of disputant 2 is 10 − 5 = 5. Therefore, both
disputants end up with the higher utilities than the status quo.

We say that a mechanism (d, t) ∈ M
( ∏n

j=1 Vrj
)

Pareto-dominates another mechanism
(d′, t′) ∈ M

( ∏n
j=1 Vrj

)
if for each v ∈ ∏n

j=1 Vrj and each i ∈ N ,

U
(
d(v), ti(v); vi

)
≥ U

(
d′(v), t′i (v); vi

)
.

Theorem 2 is our main result and gives rationalizes on the desirability of the mediation
mechanisms.

Theorem 2. Suppose |X | ≥ 3 and
∏n

j=1 D j =
∏n

j=1 Vrj . Then, for each mediation mechanism
(dm, tm) ∈ M

( ∏n
j=1 Vrj

)
,

(i) (dm, tm) satisfies weak efficiency, strategy-proofness, individual rationality, and feasi-
bility,

(ii) (dm, tm) Pareto dominates all mechanisms (d, t) ∈ M
( ∏n

j=1 Vrj
)

satisfying weak effi-
ciency, strategy-proofness, individual rationality, and feasibility.

Proof. See Appendix D. ■

In Appendix E, we give an example that shows the existence of a mechanism that is not a
mediation mechanism satisfying all four axioms.
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Corollary 1 states that the mediation mechanisms have an additional property of maxi-
mizing the opportunity for dispute resolution; that is, they choose an non-status quo social
state more frequently than any other mechanisms satisfying the four axioms.

Corollary 1. Suppose |X | ≥ 3 and
∏n

j=1 D j =
∏n

j=1 Vrj . For any mediation mechanism
(dm, tm) ∈ M

( ∏n
j=1 Vrj

)
and any mechanism (d, t) ∈ M

( ∏n
j=1 Vrj

)
that is not a mediation

mechanism, if (d, t) satisfies weak efficiency, strategy-proofness, individual rationality and
feasibility, then

(i) d(v) , ϕ =⇒ dm(v) , ϕ for all v ∈ ∏n
i=1 Vri ,

(ii) there exists v ∈ ∏n
i=1 Vri such that d(v) = ϕ and dm(v) , ϕ.

Proof. Immediately follows from Lemma 7 and Step 3 of Proof of Theorem 2(ii) in Appendix
D (pp. 72 and pp. 74). ■

2.4 Discussions on Mediation Mechanisms

2.4.1 Other Properties

We explain two other properties of mediation mechanisms. First, under a mediation mecha-
nism, disputants’ final utilities are equivalent. That is, for each i, j ∈ N and each v ∈ ∏

j=1 Vrj ,

U
(
dm(v), tm

i (v); vi
)
= U

(
dm(v), tm

j (v); v j
)
.

This is because for each i, j ∈ N and each v ∈ ∏
j=1 Vrj , by definition of mediation mechanism,

U
(
dm(v), tm

i (v); vi
)
= max

x∈X

{ n∑
j=1

v j(x) +
(n − 1)

n

n∑
j=1

r j · 1ϕ(x)
}
− (n − 1)

n

n∑
j=1

r j

= U
(
dm(v), tm

j (v); v j
)
.

Therefore, the mediation mechanisms are fair in a sense that all disputants have identical final
utilities.*9

Second, the mediation mechanisms exhibit relatively good performances when only a few
disputants are involved. To see this, we compare two cases where n = 2 and n = 10, for
example. Recall that for each v ∈ ∏n

j=1 Vrj ,

dm(v) ∈ arg max
x∈X

{ n∑
j=1

v j(x) +
(n − 1)

n

n∑
j=1

r j · 1ϕ(x)
}
.

*9For instance, the mediation mechanisms satisfy equal treatment of equals.
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Then, a mediation mechanism chooses an efficient social state if and only if

(n − 1)
n

n∑
j=1

r j ≤ max
x∈X

n∑
j=1

v j(x).

In addition, for each v ∈ ∏n
j=1 Vrj , by definitions of Vr1, . . . ,Vrn ,

max
x∈X

n∑
j=1

v j(x) <
n∑

j=1
r j .

Therefore, when n = 2, a mediation mechanism chooses an efficient social state if and only if

1
2

n∑
j=1

r j ≤ max
x∈X

n∑
j=1

v j(x) <
n∑

j=1
r j .

On the other hand, when n = 10, a mediation mechanism chooses an efficient social state if
and only if

9
10

n∑
j=1

r j ≤ max
x∈X

n∑
j=1

v j(x) <
n∑

j=1
r j .

Hence the mediation mechanisms seem to more often choose an efficient social state when
n = 2 rather than when n = 10.*10

2.4.2 Importance of selecting upper valuation bounds r ∈ Rn
++

To apply the mediation mechanisms realistically, we must select upper bounds r ∈ Rn
++ of

disputants’ valuations. Note that for each upper bound r ∈ Rn, we can define the mediation
mechanisms with upper bounds r ∈ Rn

++. However, for a given valuation profile, selection
of r directly affects the outcome. Consider the same situation as Example 1 in Subsection
2.3.2. First, consider a mediation mechanism with upper bounds r = (30,20) ∈ R2

++. Then,
by the same argument as that in Example 1, this mediation mechanism chooses a social state
y. Next, consider a mediation mechanism with upper bounds r = (40,40) ∈ R2

++. Note that
v ∈ V40 × V40 still holds. Then, since v1(y) + v2(y) = 35 < 1

2
(
r1 + r2

)
= 1

2
(
40 + 40

)
= 40,

this mediation mechanism chooses the status quo ϕ. Remembering that y is the efficient
outcome, the former mechanism yields a more efficient outcome. More generally, a mediation
mechanism with lower r ∈ Rn

++ yields a more efficient outcome for a given valuation profile.*11

*10For a precise discussion, we need to define a measure on
∏n

j=1 Vrj .
*11Note that for a given valuation profile v ∈ Vn, mechanism designers need to select upper bounds r ∈ Rn++ so

as to v ∈ ∏n
j=1 Vrj . Otherwise, the analysis in Subsection 2.3.2 cannot be applied, and the mediation mechanisms

may violate feasibility.
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This argument shows the importance of the selection of the valuation upper bounds r ∈ Rn
++

in the real-use situation of our mechanisms.

2.5 Conclusion

We have considered the problem of designing mechanisms to mediate disputes. First, we
showed that on the full valuation domain, the status quo mechanism uniquely satisfies weak
efficiency, strategy-proofness, individual rationality and feasibility. Second, we showed that
on a mildly restricted valuation domain, the mediation mechanisms satisfy all four axioms
and Pareto-dominate all mechanisms satisfying the set of axioms. These results theoretically
justify the use of the mediation mechanisms when the mediator can restrict the valuation
domain by finding upper bounds of disputants’ maximal valuations. Finding alternate way to
relax efficiency is left to the future research.

Appendix A: Proof of the impossibility result

Proof. Let us consider the case with
∏n

j=1 D j =
∏n

j=1 Vrj . Suppose, by contradiction, that
there exists a mechanism (d, t) ∈ M (∏n

j=1 Vrj ) that satisfies efficiency, strategy-proofness,
individual rationality, and feasibility. Since

∏n
j=1 Vrj is a convex domain, by Holmström

(1979; Theorem 1), for each i ∈ N , there exists hi :
∏

j,i Vrj → R such that for each
v ∈ ∏n

j=1 Vrj ,

d(v) ∈ arg max
y∈X

n∑
j=1

v j(y), (2.31)

and
ti(v) =

∑
i, j

v j(d(v)) + hi(v−i). (2.32)

Step 1. Let us show that for each i ∈ N and each v−i ∈
∏

j,i Vrj , hi
(
v−i

)
≥ 0. Take any

i ∈ N and any v−i ∈
∏

j,i Vrj . Suppose, by contradiction, that hi
(
v−i

)
< 0. Let vi ∈ Vri be

such that

vi(y) =


0 if y = ϕ,

min
{
ri, hi(v−i) −

∑
j,i v j(y)

}
− 1 if y ∈ X \ {ϕ}.

Then, for each x ∈ X \ {ϕ},
n∑

j=1
v j(x) ≤ hi(v−i) − 1 < hi(v−i) < 0.
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Hence d(v) = ϕ. However,

vi
(
d(v)

)
+ ti(v) =

n∑
j=1

v j(ϕ) + hi(v−i) = hi(v−i) < 0.

This is a contradiction to individual rationality.

Step 2 (Derive a contradiction). Let us show that there exist v ∈ ∏n
j=1 Vrj such that∑n

j=1 t j(v) > 0. Take some x ∈ X \ {ϕ}. For each i ∈ N , let vi ∈ Vri be such that

vi(y) =


ri − 1
n

( n−1
n

∑
j=1 r j

)
if y = x,

0 otherwise.

Then,
n∑

j=1
v j(x) =

n∑
j=1

(
r j −

1
n
(n − 1

n

∑
k=1

rk
) )
=

n∑
j=1

r j −
n − 1

n

∑
j=1

r j =
1
n

n∑
j=1

r j > 0. (2.33)

Therefore, d(v) = x , ϕ. Then, by Step 1 and equation (2.33),

n∑
j=1

t j(v) =
n∑

j=1

©«
∑
k, j

vk(x) + h j(v−i)
ª®¬ = (n − 1)

n∑
j=1

v j(x) +
n∑

j=1
h j(v− j)

≥ (n − 1)
n∑

j=1
v j(x) =

(n − 1)
n

n∑
j=1

r j > 0.

This is a contradiction to feasibility. Therefore, no mechanism satisfies efficiency, strategy-
proofness, individual rationality, and feasibility. ■

Appendix B: Preparation for Proofs of Theorems 1 and 2

In this Appendix, we prepare a lemma used in Proofs of Theorems 1 and 2.

Lemma 1. Consider any strategy-proof mechanism (d, t) ∈ M (∏n
j=1 D j) such that there

exists α ∈ R for which

d(v) ∈ arg max
y∈X


n∑

j=1
v j(y) + α1ϕ(y)

 for all v ∈
n∏

j=1
D j .

Then, for each i ∈ N , there exists hi :
∏

j,i Vrj → R such that

ti(v) =
∑
j,i

v j
(
d(v)

)
+ α1ϕ

(
d(v)

)
+ hi

(
v−i

)
for all v ∈

n∏
j=1

D j .
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Proof. It suffices to consider the case with
∏n

j=1 D j =
∏n

j=1 Vrj . The proof parallels to that
of Holmström (1979; Theorem 1). For each i ∈ N , let hi :

∏n
j=1 Vrj → R be such that for

each v ∈ ∏n
j=1 Vrj ,

ti(v) =
∑
j,i

v j
(
d(v)

)
+ α1ϕ

(
d(v)

)
+ hi

(
v
)
.

Take any i ∈ N , any v ∈ ∏n
j=1 Vrj and any v′i ∈ Vri . Let us show that hi(vi, v−i) = hi(v′i , v−i).

Step 1. Let us show that there exists a sequence of valuation functions {vi( · ; s)}s∈[0,1] ⊂ Vri

such that for each x ∈ X ,

(i) vi(x; 0) = vi(x),

(ii) vi(x; 1) = v′i (x),

(iii) ∂vi(x;s)
∂s exists for all s ∈ [0,1],

and, moreover, for each x ∈
{
y ∈ X : y = d

(
vi( · ; t), v−i

)
∃t ∈ [0,1]

}
and each s ∈ [0,1],

(iv)
��� ∂vi(x;s)
∂s

��� ≤ C for some 0 < C < ∞.

For each x ∈ X and each s ∈ [0,1], let

vi(x; s) = (1 − s) · vi(x) + s · v′i (x).

Then, for each x ∈ X and each s ∈ [0,1], vi(x; s) ∈ Vri . Moreover, {vi(·; s)}s∈[0,1] obviously
satisfies (i), (ii) and (iii). In fact, ∂vi(x;s)

∂s = v′i (x) − vi(x) for all x ∈ X and all s ∈ [0,1]. Then,
(iv) is followed from finiteness of X .

Step 2. For each t ∈ [0,1], let

d̄(t) = d
(
vi( · ; t), v−i)

)
,

h̄i(t) = hi
(
vi( · ; t), v−i)

)
.

Then, by definition of d and strategy-proofness, it follows that for each s ∈ [0,1],

s ∈ arg max
t∈[0,1]

∑
j,i

v j
(
d̄(t)

)
+ vi

(
d̄(t); s

)
+ α1ϕ(d̄(t)),

s ∈ arg max
t∈[0,1]

∑
j,i

v j
(
d̄(t)

)
+ vi

(
d̄(t); s

)
+ α1ϕ(d̄(t)) + h̄i(t).

Therefore, by the lemma of Holmström (1979; Appendix), h̄i(0) = h̄i(1). Hence hi(vi, v−i) =
hi(v′i , v−i) using the definitions of h̄i and vi( · ; s). ■
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Appendix C: Proof of Theorem 1

Since “if" part is obvious, we show “only if" part. Take any mechanism (d, t) ∈ M (Vn) that
satisfies weak efficiency, strategy-proofness, individual rationality, and feasibility. Since (d, t)
satisfies strategy-proofness, by Carbajal, McLennan and Tourky (2013; Theorem 1), one of
the following three cases occurs*12:

Case 1. there exist σ ∈ Rn
+ with σ1 + · · · + σn = 1 and q : X → R such that for

each v ∈ Vn,

d(v) ∈ arg max
y∈X

n∑
j=1
σjv j(y) + q(y),

Case 2. there exist distinct x, y ∈ X with d(Vn) = {x, y} such that for each i ∈ N

and each v−i ∈ Vn−1, there exists δi(v−i) ∈ R ∪ {−∞,+∞} for which for each
vi ∈ V ,

(a) vi(x) − vi(y) > δi(v−i) =⇒ d(v) = x,

(b) vi(x) − vi(y) < δi(v−i) =⇒ d(v) = y,

Case 3. d is a constant function.

Let us show that cases 1 and 2 lead to contradictions.

Case 1. Suppose that the statement in Case 1 holds.

Step 1-1. Let us show that q(x) = q(y) for all x, y ∈ X \ {ϕ}. Suppose, by contradiction,
that there exist x, y ∈ X \ {ϕ} such that q(x) , q(y). Without loss of generality, suppose that
q(x) > q(y). For each i ∈ N , let vi ∈ V be such that

vi(z) =


1
n

(
q(ϕ) − 1

2
(
q(x) + q(y)

) )
if z = x,

1
n

(
q(ϕ) − q(z)

)
otherwise.

Then, by σ1 + · · · + σn = 1,

n∑
j=1
σjv j(x) + q(x) = q(ϕ) + 1

2
(
q(x) − q(y)

)
,

*12Case 1 is followed from the fact that any lexicographic affine maximizer is also an affine maximizer.
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and for each z ∈ X \ {x},
n∑

j=1
σjv j(z) + q(z) = q(ϕ).

Therefore, since q(x) > q(y), d(v) = x. However,
n∑

j=1
v j(x) = q(ϕ) − q(y) − 1

2
(
q(x) − q(y)

)
< q(ϕ) − q(y) =

n∑
j=1

v j(y),

a contradiction to weak efficiency. Hence q(x) = q(y) for all x, y ∈ X \ {ϕ}.

Step 1-2. Let us show that σi = σj for all i, j ∈ N . Suppose, by contradiction, that there
exist i, j ∈ N such that σi , σj . Without loss of generality, suppose that σi > σj . Take some
x, y ∈ X \ {ϕ}. Let vi, v j ∈ V be such that

vi(z) =

σj + 1 + 1

n

(
q(ϕ) − q(x)

)
if z = x,

1
n

(
q(ϕ) − q(z)

)
otherwise,

v j(z) =

σi + 1 + 1

n

(
q(ϕ) − q(y)

)
if z = y,

1
n

(
q(ϕ) − q(z)

)
otherwise.

For each k ∈ N \ {i, j}, let vk ∈ V be such that vk(z) = 1
n

(
q(ϕ) − q(z)

)
for all z ∈ X . Then, by

σ1 + · · · + σn = 1,
n∑

j=1
σjv j(x) + q(x) = σiσj + σi + q(ϕ),

n∑
j=1
σjv j(y) + q(y) = σiσj + σj + q(ϕ),

n∑
j=1
σjv j(z) + q(z) = q(ϕ) for all z ∈ X \ {x, y}.

Therefore, since σi > σj , d(v) = x. However, by Step 1 and σi > σj ,
n∑

j=1
v j(x) = σj + 1 + q(ϕ) − q(x) < σi + 1 + q(ϕ) − q(y) =

n∑
j=1

v j(y).

This is a contradiction to weak efficiency. Hence σi = σj for all i, j ∈ N .

Step 1-3. By Steps 1-1 and 1-2, there exists α ∈ R such that for each v ∈ Vn,

d(v) ∈ arg max
y∈X

n∑
j=1

v j(y) + α · 1ϕ(y). (2.34)
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Then, by Lemma 1 in Appendix B, for each v ∈ Vn,

ti(v) =
∑
i, j

v j(d(v)) + α1ϕ(d(v)) + hi(d(v−i)). (2.35)

Step 1-4. Let us show that for each i ∈ N and each v−i ∈ Vn−1,

hi
(
v−i

)
≥ −α. (2.36)

Take any i ∈ N and any v−i ∈ Vn−1. Suppose, by contradiction, that hi
(
v−i

)
< −α. Let vi ∈ V

be such that

vi(y) =


0 if y = ϕ,

α − ∑
j,i v j(y) − 1 if y ∈ X \ {ϕ}.

Then, for each x ∈ X \ {ϕ},
n∑

j=1
v j(x) = α − 1 < α.

Hence by Step 1-3, d(v) = ϕ. However,

vi
(
d(v)

)
+ ti(v) =

n∑
j=1

v j(ϕ) + α + hi(v−i) = α + hi(v−i) < 0.

This is a contradiction to individual rationality. Therefore, equation (2.36) holds.

Step 1-5. Let us show that there exists v ∈ Vn such that
∑n

j=1 t j(v) > 0. Take some
x ∈ X \ {ϕ}. For each i ∈ N , let v j ∈ V be such that

vi(y) =


0 if y = ϕ,

1
n−1

(
α + 1

)
if y = x,

α
n−1 otherwise.

Then, by Step 1-4, d(v) = x , ϕ. Therefore, by Steps 1-4 and 1-5,

n∑
j=1

t j(v) = (n − 1)
n∑

j=1
v j(x) +

n∑
j=1

h j(v− j) ≥ (n − 1)
n∑

j=1
v j(x) − nα

= (n − 1)
n∑

j=1

( 1
n − 1

(
α + 1

) )
− nα = n(α + 1) − nα = n > 0.

This is a contradiction to feasibility.
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Case 2. Suppose that the statement in Case 1 holds. Note that x , ϕ or y , ϕ. Without
loss of generality, suppose that x , ϕ . Take any i ∈ N . Then，since d(Vn) = {x, y}, there
exists v−i ∈ Vn−1 such that δi(v−i) < ∞. We consider three subcases.

Subcase 2-1. Let us consider the case with δi(v−i) = −∞. Let vi ∈ V be such that

vi(z) =

−∑

j,i v j(x) − 1 if z = x,

0 otherwise,

Then,
vi(x) − vi(y) > −∞ = δ(v−i).

Therefore, d(v) = x. Moreover, by feasibility,

n∑
j=1

(
v j(d(v)) + t j(v)

)
=

n∑
j=1

(
v j(x) + t j(v)

)
≤ −1 < 0.

Thus, there exists j ∈ N such that

v j(d(v)) + t j(v) < 0,

a contradiction to individual rationality.

Subcase 2-2. Let us consider the case with δi(v−i) , −∞ and y , ϕ. Let vi ∈ V be such
that

vi(z) =


−∑

j,i v j(x) − 1 if z = x,

−∑
j,i v j(x) − δi(v−i) − 2 if z = y,

0 otherwise,

Then,
vi(x) − vi(y) = δi(v−i) + 1 > δi(v−i).

Therefore, d(v) = x. Moreover, by feasibility,

n∑
j=1

(
v j(d(v)) + t j(v)

)
=

n∑
j=1

(
v j(x) + t j(v)

)
≤ −1 < 0.

Thus, similarly to Subcase 2-1, there exists j ∈ N such that

v j(d(v)) + t j(v) = v j(x) + t j(v) < 0,

contradicting to individual rationality.
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Subcase 2-3. Let us consider the case with δi(v−i) , −∞ and y = ϕ. Let vi ∈ V be such
that

vi(z) =


0 if z = ϕ,

δi(v−i) + 1 if z = x,

δi(v−i) + 2 +
∑

j,i v j(x) −
∑

j,i v j(z) otherwise.

Then,
vi(x) − vi(y) = vi(x) − vi(ϕ) = δi(v−i) + 1 > δi(v−i).

Therefore, d(v) = x. However, for each z ∈ X \ {x},
n∑

j=1
v j(z) = δi(v−i) + 2 +

∑
j,i

v j(x) > δi(v−i) + 1 +
∑
j,i

v j(x) =
n∑

j=1
v j(x).

This is a contradiction to weak efficiency.

Therefore, Case 3 must be hold, and hence d is a constant function. In addition, by weak
efficiency, we have d(v) = ϕ for all v ∈ Vn. Then, by individual rationality and feasibility,
ti(v) = 0 for all i ∈ N and all v ∈ Vn. □

Appendix D: Proof of Theorem 2

Since Proof of Statement (i) is straightforward, we only show Statement (ii).

Lemma 2. Suppose that a mechanism (d, t) ∈ M satisfies weak efficiency and strategy-
proofness. For each i ∈ N , each v ∈ ∏n

j=1 Vrj with d(v) = ϕ, and each v′i ∈ Vri , if
v′i (x) < vi(x) for all x ∈ arg max

y∈X\{ϕ}

{
v′i (y) +

∑
j,i v j(y)

}
, then d(v′i , v−i) = ϕ.

Proof. Take any i ∈ N , any v ∈ ∏n
j=1 Vrj with d(v) = ϕ, and any v′i ∈ Vri . Suppose that

v′i (x) < vi(x) for all x ∈ arg max
y∈X\{ϕ}

{
v′i (y) +

∑
j,i

v j(y)
}
. (2.37)

Suppose, by contradiction, that d(v′i , v−i) , ϕ. By strategy-proofness,

v′i (d(v′i , v−i)) + ti(v′i , v−i) ≥ v′i (d(vi, v−i)) + ti(vi, v−i)
= v′i (ϕ) + ti(vi, v−i) = ti(vi, v−i).
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Then,
ti(v′i , v−i) ≥ −v′i (d(v′i , v−i)) + ti(vi, v−i). (2.38)

By weak efficiency,

d(v′i , v−i) ∈ arg max
y∈X\{ϕ}

{
v′i (y) +

∑
j,i

v j(y)
}
.

Then, by (2.37)
−v′i (d(v′i , v−i)) > −vi(d(v′i , v−i)).

Hence by (2.38),
ti(v′i , v−i) > −vi(d(v′i , v−i)) + ti(vi, v−i).

Therefore,

vi(d(v′i , v−i)) + ti(v′i , v−i) > ti(vi, v−i) = vi(d(vi, v−i)) + ti(vi, v−i),

a contradiction to strategy proofness. ■

Define a function s :
∏n

j=1 Vrj → R by

s(v) = max
y∈X\{ϕ}

n∑
j=1

v j(y).

Lemma 3. Suppose that a mechanism (d, t) ∈ M satisfies weak efficiency and strategy-
proofness. For each i ∈ N , each v ∈ ∏n

j=1 Vrj with d(ϕ) = ϕ, and each v′i ∈ Vri , if
s(v′i , v−i) < s(vi, v−i), then d(v′i , v−i) = ϕ.

Proof. Take any i ∈ N , any v ∈ ∏n
j=1 Vrj with d(ϕ) = ϕ, and any v′i ∈ Vri . Suppose that

s(v′i , v−i) < s(vi, v−i). Let v′′i ∈ Vri be such that for each x ∈ X \ {ϕ},

(i) If x ∈ arg max
y∈X\{ϕ}

{v′i (y) +
∑

j,i v j(y)} and x < arg max
y∈X\{ϕ}

∑n
j=1 v j(y), then

v′′i (x) = min
 max
y∈X\{ϕ}

n∑
j=1

v j(y) −
∑
j,i

v j(x) − ε, ri − ε
 .

(ii) Otherwise, v′′i (x) = vi(x) − 1
2ε,
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where ε > 0 is such that

ε < min
{
ri − v′i (x), s(vi, v−i) − s(v′i , v−i)

}
. (2.39)

Note that for each x ∈ X \ {ϕ}, v′′i (x) < ri, i.e., v′′i is well-defined.

Step 1. Let us show that d(v′′i , v−i) = ϕ. We first show that for each x ∈ arg max
y∈X\{ϕ}

{v′′i (y) +∑
j,i v j(y)}, v′′i (x) < vi(x). Take any x ∈ arg max

y∈X\{ϕ}
{v′′i (y) +

∑
j,i v j(y)}. We shall show

v′′i (x) = vi(x) − 1
2ε. Suppose, by contradiction, that v′′i (x) , vi(x) − 1

2ε. Then,

v′′i (x) = min
 max
y∈X\{ϕ}

n∑
j=1

v j(y) −
∑
j,i

v j(x) − ε, ri − ε
 .

Take some z ∈ arg max
y∈X\{ϕ}

∑n
j=1 v j(y). Then,

v′′i (x) +
∑
j,i

v j(x) ≤ max
y∈X\{ϕ}

n∑
j=1

v j(y) −
∑
j,i

v j(x) − ε +
∑
j,i

v j(x) = max
y∈X\{ϕ}

n∑
j=1

v j(y) − ε

=

n∑
j=1

v j(z) − ε < vi(z) +
∑
j,i

v j(z) −
1
2
ε = v′′i (z) +

∑
j,i

v j(z),

a contradiction to x ∈ arg max
y∈X\{ϕ}

{v′′i (y) +
∑

j,i v j(y)}. Therefore, v′′i (x) = vi(x) − 1
2ε. Then,

v′′i (x) = vi(x) −
1
2
ε < vi(x).

Hence by Lemma 2, d(v′′i , v−i) = ϕ.

Step 2. Let us show that d(v′i , v−i) = ϕ. By Lemma 2 and Step 1, it suffices to show
that for each x ∈ arg max

y∈X\{ϕ}
{v′i (y) +

∑
j,i v j(y)}, v′i (x) < v′′i (x). Take any x ∈ arg max

y∈X\{ϕ}
{v′i (y) +∑

j,i v j(y)}. We consider three cases.

Case 1. Consider the case with v′′i (x) = ri − ε. Then, by (2.39)

v′i (x) < ri − ε = v′′i (x).

Case 2. Consider the case with v′′i (x) = maxy∈X\{ϕ}{
∑n

j=1 v j(y)} −
∑

j,i v j(x) − ε. Then,
it follows that

v′′i (x) = max
y∈X\{ϕ}

n∑
j=1

v j(y) −
∑
j,i

v j(x) − ε = s(vi, v−i) − ε −
∑
j,i

v j(x) > s(v′i , v−i) −
∑
j,i

v j(x)

52



= max
y∈X\{ϕ}

{
v′i (y) +

∑
j,i

v j(y)
}
−

∑
j,i

v j(x) = v′i (x) +
∑
j,i

v j(x) −
∑
j,i

v j(x) = v′i (x),

where the third inequality follows from (2.39).

Case 3. Consider the case with v′′i (x) = vi(x) − 1
2ε. By Cases 1 and 2, and x ∈

arg max
y∈X\{ϕ}

{v′i (y) +
∑

j,i v j(y)}, it suffices to consider the case with x ∈ arg max
y∈X\{ϕ}

∑n
j=1 v j(y).

Then,

v′′i (x) = vi(x) −
1
2
ε =

n∑
j=1

v j(x) −
1
2
ε −

∑
j,i

v j(x) = s(vi, v−i) −
1
2
ε −

∑
j,i

v j(x)

> s(v′i , v−i) −
∑
j,i

v j(x) = max
y∈X\{ϕ}

{
v′i (y) +

∑
j,i

v j(y)
}
−

∑
j,i

v j(x)

=

{
v′i (x) +

∑
j,i

v j(x)
}
−

∑
j,i

v j(x) = v′i (x),

where the forth inequality follows from (2.39) and s(vi, v−i) > s(v′i , v−i). ■

Lemma 4. Suppose that a mechanism (d, t) ∈ M satisfies weak efficiency and strategy-
proofness. For each K ⊂ {1,2, . . . ,n}, each v ∈ ∏n

j=1 Vrj with d(ϕ) = ϕ, and each v′ ∈∏n
j=1 Vrj , if the following two conditions are satisfied, then d(v′K, v−K) = ϕ:

(i) s(v′K, v−K) < s(vK, v−K),

(ii) there exists no w ∈ X \ {ϕ} such that

w ∈ arg max
y∈X\{ϕ}

{∑
j∈K

v′j(y) +
∑
j<K

v j(y)
}

∩ arg max
y∈X\{ϕ}

n∑
j=1

v j(y).

Proof. We show this by induction. Consider any k ≥ 2. Suppose that for any L ⊂ {1,2, . . . ,n}
with |L | = k − 1, the statement in Lemma 4 holds. Take any K ⊂ {1,2, . . . ,n} with |K | = k,
any v ∈ ∏n

j=1 Vrj with d(v) = ϕ, and any v′ ∈ ∏n
j=1 Vrj . Without loss of generality, suppose

that K = {1,2, . . . , k}. Suppose also that conditions (i) and (ii) hold.
First, we show that for each x ∈ arg max

y∈X\{ϕ}

∑n
j=1 v j(y),∑

j∈K

v′j(x) <
∑
j∈K

v j(x). (2.40)
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Take any x ∈ arg max
y∈X\{ϕ}

∑n
j=1 v j(y). Suppose, by contradiction, that

∑
j∈K v′j(x) ≥

∑
j∈K v j(x).

Then,

s(v′K, v−K) ≥
∑
j∈K

v′j(x) +
∑
j<K

v j(x) ≥
n∑

j=1
v j(x) = s(vK, v−K),

a contradiction to s(v′K, v−K) < s(vK, v−K). Thus, (2.40) holds.
Second, we show that for each x ∈ arg max

y∈X\{ϕ}

∑n
j=1 v j(y), there exists L ⊂ K with |L | = k−1

such that ∑
j∈L

v′j(x) <
∑
j∈L

v j(x). (2.41)

Take any x ∈ arg max
y∈X\{ϕ}

∑n
j=1 v j(y). Suppose, by contradiction, that for each L ⊂ K with

|L | = k − 1,
∑

j∈L v
′
j(x) ≥

∑
j∈L v j(x). Then,

(k − 1)
∑
j∈K

v′j(x) =
∑
L⊂K

|L |=k−1

∑
j∈L

v′j(x) ≥
∑
L⊂K

|L |=k−1

∑
j∈L

v j(x)

= (k − 1)
∑
j∈K

v j(x),

a contradiction to (2.40). Thus, (2.41) holds. Without loss of generality, suppose that
L = {1,2, . . . , k − 1}.

Take any x ∈ arg max
y∈X\{ϕ}

∑n
j=1 v j(y) and any z ∈ X \ {ϕ, x} with z ∈ arg max

y∈X\{ϕ}
{∑ j∈K v′j(y) +∑

j<K v j(y)}. Condition (ii) of our assumption implies that such z exists. We now consider
two cases.

Case 1. Consider the case with
∑k−1

j=1 v j(z) ≤
∑k−1

j=1 v
′
j(z). Let ε > 0 be such that

ε < min
1

2
(
s(vK, v−K) − s(v′K, v−K)

)
,

1
2

k−1∑
j=1

(
v j(x) − v′j(x)

)
, rk − v′k(z)

 . (2.42)

Define v′′k ∈ Vrk by

v′′k (y) =



0 if y = ϕ,

vk(x) + s(v′K, v−K) − s(vK, v−K) + 2ε if y = x,

v′k(z) + ε if y = z,

−δ otherwise,

where −δ is a sufficiently small number under which

arg max
y∈X\{ϕ}

v′′k (y) +
∑
j,k

v j(y)
 ⊂

{
x, z

}
,
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and

arg max
y∈X\{ϕ}


k−1∑
j=1

v′j(y) + v′′k (y) +
n∑

j=k+1
v j(y)

 ⊂
{

x, z
}
.

Note that v′′k is well-defined by definition of ε.

Step 1-1. Let us show that d(v′′k , v−k) = ϕ. Since x ∈ arg max
y∈X\{ϕ}

∑n
j=1 v j(y) and z ∈

arg max
y∈X\{ϕ}

{∑ j∈K v′j(y) +
∑

j<K v j(y)}, it follows that

v′′k (x) +
∑
j,k

v j(x) = vk(x) + s(v′K, v−K) − s(vK, v−K) + 2ε +
∑
j,k

v j(x)

= s(v′K, v−K) + 2ε > s(v′K, v−K) + ε = v′k(z) + ε +
k−1∑
j=1

v′j(z) +
n∑

j=k+1
v j(z)

≥ v′k(z) + ε +
k−1∑
j=1

v j(z) +
n∑

j=k+1
v j(z) = v′′k (z) +

∑
j,k

v j(z),

where the fifth inequality follows from the assumption of Case 1. Therefore,

s(v′′k , v−k) = v′′k (x) +
∑
j,k

v j(x). (2.43)

Then, by definitions of v′′k and ε,

s(v′′k , v−k) = v′′k (x) +
∑
j,k

v j(x) = s(v′K, v−K) + 2ε < s(vK, v−K). (2.44)

Hence by Lemma 3, d(v′′k , v−k) = ϕ.

Step 1-2. Let us show that d(v′L, v′′k , v−K) = ϕ. Note that by definitions of ε and v′′k ,

k−1∑
j=1

v′j(x) + v′′k (x) +
n∑

j=k+1
v j(x) <

k−1∑
j=1

v j(x) + v′′k (x) +
n∑

j=k+1
v j(x) − 2ε = s(v′K, v−K)

< s(v′K, v−K) + ε =
k−1∑
j=1

v′j(z) + v′′k (z) +
n∑

j=k+1
v j(z).

Thus, we have shown that

arg max
y∈X\{ϕ}


k−1∑
j=1

v′j(y) + v′′i (y) +
n∑

j=k+1
v j(y)

 = {z}.
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On the other hand, by (2.43),

arg max
y∈X\{ϕ}


∑
j,k

v j(y) + v′′k (y)
 = {x}.

In addition, by definition of v′′k and the first two equations of (2.44),

s(v′L, v′′k , v−K) =
k−1∑
j=1

v′j(z) + v′′k (z) +
n∑

j=k+1
v j(z) = s(v′K, v−K) + ε

< s(v′K, v−K) + 2ε = s(v′′k , v−k) = s(vL, v
′′
k , v−K).

Therefore, by the assumption of the mathematical induction, d(v′L, v′′i , v−K) = ϕ.

Step 1-3. Let us show that d(v′K, v−K) = ϕ. Note that by definition of v′′k ,

s(v′L, v′k, v−K) =
k∑

j=1
v′j(z) +

n∑
j=k+1

v j(z) <
k−1∑
j=1

v′j(z) + v′k(z) + ε +
n∑

j=k+1
v j(z)

=

k−1∑
j=1

v′j(z) + v′′k (z) +
n∑

j=k+1
v j(z) = s(v′L, v′′k , v−K).

Then, by Lemma 3, d(v′K, v−K) = ϕ.

Case 2. We next consider the case with
∑k−1

j=1 v j(z) >
∑k−1

j=1 v
′
j(z). Let ε > 0 be such that

ε < min
 1

2(k − 2)

n∑
j=1

(
v j(x) − v j(z)

)
,

1
2k − 1

(
s(vK, v−K) − s(v′K, v−K)

)
, min

j∈K
{r j − v′j(z)}

 .
(2.45)

Note that by assumption (ii) of the mathematical induction
∑n

j=1 v j(x) −
∑n

j=1 v j(z) > 0. For
each j ∈ L, let v′′j ∈ Vr be such that

v′′j (y) =



0 if y = ϕ,

v j(x) − ε if y = x,

v′j(z) + ε if y = z,

−δ otherwise,

where −δ is a sufficiently small number under which

arg max
y∈X\{ϕ}

v′′k (y) +
∑
j,k

v j(y)
 ⊂

{
x, z

}
,
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and

arg max
y∈X\{ϕ}


k−1∑
j=1

v′j(y) + v′′k (y) +
n∑

j=k+1
v j(y)

 ⊂
{

x, z
}
.

Note that each v′′j is well-defined.

Step 2-1. Let M ⊂ L be such that M ≡ { j ∈ L : v′j(z) ≤ v j(z)}. Let us show that
d(v′′M, v−M) = ϕ.

Substep 2-1-1. Take any j1 ∈ M . Let us show that d(v′′j1, v− j1) = ϕ. By j1 ∈ M and
(2.45),

v′′j1(z) +
∑
j, j1

v j(z) = v′j1(z) +
∑
j, j1

v j(z) + ε ≤ v j1(z) +
∑
j, j1

v j(z) + ε

< v j1(x) +
∑
j, j1

v j(x) − ε = v′′j1(x) +
∑
j, j1

v j(x).

Hence
s(v′′j1, v− j1) = v′′j1(x) +

∑
j, j1

v j(x). (2.46)

In addition,

s(v′′j1, v− j1) = v′′j1(x) +
∑
j, j1

v j(x) = v j1(x) − ε +
∑
j, j1

v j(x)

< v j1(x) +
∑
j, j1

v j(x) = s(v j1, v− j1).

Then, by Lemma 3, d(v′′j1, v− j1) = ϕ.

Substep 2-1-2. Take any j2 ∈ M \ { j1}. Note that if such j2 exists, then k ≥ 3. Let us
show that d(v′′j1, v

′′
j2
, v− j1∪ j2) = ϕ. We first confirm that

s(v′′j1∪ j2, v− j1∪ j2) = v′′j1(x) + v
′′
j2(x) +

∑
j, j1,j2

v j(x). (2.47)

By j1, j2 ∈ M and (2.45),

v′′j1(z) + v
′′
j2(z) +

∑
j, j1,j2

v j(z) = v′j1(z) + v
′
j2(z) +

∑
j, j1,j2

v j(z) + 2ε

≤ v j1(z) + v j2(z) +
∑

j, j1,j2

v j(z) + 2ε < v j1(x) + v j2(x) +
∑

j, j1,j2

v j(x) − 2ε

= v′′j1(x) + v
′′
j2(x) +

∑
j, j1,j2

v j(x).
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Hence (2.47) holds. Then, similarly to Substep 2-1-1,

s(v′′j1, v
′′
j2, v− j1∪ j2) = v′′j1(x) + v

′′
j2(x) +

∑
j, j1,j2

v j(x) = v j1(x) + v j2(x) +
∑

j, j1,j2

v j(x) − 2ε

< v j1(x) +
∑
j, j1

v j(x) − ε = v′′j1(x) +
∑
j, j1

v j(x) = s(v′′j1, v− j1).

Then, by Lemma 3, d(v′′j1, v
′′
j2
, v− j1∪ j2) = ϕ.

Substep 2-1-3. Repeating the similar arguments to Substep 2-1-2 show that d(v′′M, v−M) =
ϕ. This is the end of Step 2-1

Step 2-2. Let us show that d(v′′L, v−L) = ϕ.

Substep 2-2-1. Take any j1 ∈ L \ M . We shall show that

s(v′′M, v′′j1, v−M∪{ j1}) =
∑
j∈M

v′′j (x) + v′′j1(x) +
∑

j<M∪{ j1}
v j(x). (2.48)

To show this, we confirm that∑
j∈M

v′j(z) + v′j1(z) <
∑
j∈M

v j(z) + v j1(z). (2.49)

Suppose, by contradiction, that∑
j∈M

v′j(z) + v′j1(z) ≥
∑
j∈M

v j(z) + v j1(z).

Then, by definition of M ,∑
j∈M

v′j(z) + v′j1(z) +
∑

j∈L\(M∪{ j1})
v′j(z) ≥

∑
j∈M

v j(z) + v j1(z) +
∑

j∈L\(M∪{ j1})
v′j(z)

≥
∑
j∈M

v j(z) + v j1(z) +
∑

j∈L\(M∪{ j1})
v j(z),

a contradiction to the assumption of Case 2. Hence (2.49) holds.
Then, by (2.49), (2.45), and definition of ε,∑

j∈M

v′′j (z) + v′′j1(z) +
∑

j<M∪{ j1}
v j(z) =

∑
j∈M

(v′j(z) + ε) + v′j1(z) + ε +
∑

j<M∪{ j1}
v j(z)

<
∑
j∈M

v j(z) + v j1(z) +
∑

j<M∪{ j1}
v j(z) + (|M | + 1)ε

<
∑
j∈M

v j(x) + v j1(x) +
∑

j<M∪{ j1}
v j(x) − (|M | + 1)ε =

∑
j∈M

v′′j (x) + v′′j1(x) +
∑

j<M∪{ j1}
v j(x).
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Hence (2.48) holds. Then,

s(v′′M, v′′j1, v−M∪ j1) =
∑
j∈M

v′′j (x) + v′′j1(x) +
∑

j<M∪{ j1}
v j(x)

=
∑
j∈M

v j(x) + v j1(x) +
∑

j<M∪{ j1}
v j(x) − (|M | + 1)ε

<
∑
j∈M

v j(x) + v j1(x) +
∑

j<M∪{ j1}
v j(x) − |M |ε = s(v′′M, v−M).

Therefore, by Lemma 3, d(v′′M, v′′j1, v−M∪ j1) = ϕ.

Substep 2-2-2. Repeating the similar arguments to Substep 2-2-1 show that d(v′′L, v−L) =
ϕ. This is the end of Step 2-2.

Let v′′k ∈ Vr be such that

v′′k (y) =


0 if y = ϕ,

v′k(z) + ε if y = z,

−δ otherwise,

where ε is defined by (2.45) and −δ is a sufficiently small number under which all s(v′′k , · ) in
the subsequent argument take the values at z.

Step 2-3. Let us show that d(v′′L, v′′k , v−K) = ϕ. Note that by definition of ε,

s(v′′L, v′′k , v−K) =
k−1∑
j=1

v′′j (z) + v′′k (z) +
n∑

j=k+1
v j(z) =

k−1∑
j=1

(v′j(z) + ε) + v′k(z) + ε +
n∑

j=k+1
v j(z)

= s(v′K, v−K) + kε < s(vK, v−K) − (k − 1)ε =
k−1∑
j=1

(v j(x) − ε) +
n∑

j=k

v j(x)

= s(v′′L, v−L).

Then, by Lemma 3, d(v′′L, v′′k , v−K) = ϕ.

Step 2-4. Let us show that d(v′L, v′′k , v−K) = ϕ.

Substep 2-4-1. Let us show that d(v′1, v′′K\{1}v−K) = ϕ. It follows that

s(v′1, v′′K\{1}, v−K) = v′1(z) +
k∑

j=2
v′′j (z) +

n∑
j=k+1

v j(z) < v′1(z) + ε +
k∑

j=2
v′′j (z) +

n∑
j=k+1

v j(z)
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=

k∑
j=1

v′′j (z) +
n∑

j=k+1
v j(z) = s(v′′K, v−K).

Hence by Lemma 3, d(v′1, v′′K\{1}v−K) = ϕ.

Substep 2-4-2. Let us show that if k ≥ 3, then d(v′1, v′2, v′′K\{1}\{2}, v−K) = ϕ. Similarly to
Substep 2-4-1, it follows that

s(v′1, v′2, v′′K\{1}\{2}, v−K) = v′1(z) + v′2(z) +
k∑

j=3
v′′j (z) +

n∑
j=k+1

v j(z)

< v′1(z) + v′2(z) + ε +
k∑

j=3
v′′j (z) +

n∑
j=k+1

v j(z)

= v′1(z) +
k∑

j=2
v′′j (z) +

n∑
j=k+1

v j(z) = s(v′1, v′′K\{1}, v−K).

Hence, by Lemma 3, d(v′1, v′2, v′′K\{1}\{2}, v−K) = ϕ.

Substep 2-4-3. Repeating the similar arguments to Substep 2-4-2 yields that d(v′L, v′′k , v−K) =
ϕ. This is the end of Step 2-4.

Step 2-5. Let us show that d(v′K, v−K) = ϕ. It follows that

s(v′K, v−K) =
k∑

j=1
v′j(z) +

n∑
j=k+1

v j(z) <
k−1∑
j=1

v′j(z) + v′k(z) + ε +
n∑

j=k+1
v j(z)

=

k−1∑
j=1

v′j(z) + v′′k (z) +
n∑

j=k+1
v j(z) = s(v′L, v′′k , v−N ).

Therefore, by Lemma 3, d(v′K, v−K) = ϕ. ■

Lemma 5. Suppose that a mechanism (d, t) ∈ M satisfies weak efficiency and strategy-
proofness. For each K ⊂ {1,2, . . . ,n}, each v ∈ ∏n

j=1 Vrj with d(ϕ) = ϕ, and each v′ ∈∏n
j=1 Vrj , if the following two conditions are satisfied, then d(v′K, v−K) = ϕ:

(i) s(v′K, v−K) < s(vK, v−K),

(ii) there exists x ∈ X \ {ϕ} such that

x ∈ arg max
y∈X\{ϕ}

{∑
j∈K

v′j(y) +
∑
j<K

v j(y)
}

∩ ∈ arg max
y∈X\{ϕ}

n∑
j=1

v j(y).
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Proof. Let us show by induction. Consider any k ≥ 2. Suppose that for each L ⊂ {1,2, . . . ,n}
with |L | = k − 1, the statement in Lemma 5 holds. Take any K ⊂ {1,2, . . . ,n} with |K | = k,
any v ∈ ∏n

j=1 Vrj with d(v) = ϕ, and any v′ ∈ ∏n
j=1 Vrj . Without loss of generality, we write

K = {1,2, . . . , k}. Suppose that conditions (i) and (ii) holds.
Since s(v′K, v−K) < s(vK, v−K), by condition (ii),

k∑
j=1

v′j(x) +
n∑

j=k+1
v j(x) = s(v′K, v−K) < s(vK, v−K) =

n∑
j=1

v j(x).

Therefore,
k∑

j=1
v′j(x) <

k∑
j=1

v j(x). (2.50)

Step 1. Let us show that there exists L ⊂ K with |L | = k − 1 such that∑
j∈L

v′j(x) <
∑
j∈L

v j(x). (2.51)

Suppose, by contradiction, that for each L ⊂ K with |L | = k − 1,∑
j∈L

v′j(x) ≥
∑
j∈L

v j(x).

Then,

(k − 1)
∑
j∈K

v′j(x) =
∑
L⊂K

|L |=k−1

∑
j∈L

v′j(x) ≥
∑
L⊂K

|L |=k−1

∑
j∈L

v j(x)

= (k − 1)
∑
j∈K

v j(x),

a contradiction to (2.50). Thus, (2.51) holds. Without loss of generality, suppose that
L = {1,2, . . . , k − 1}.

Step 2. We define v′′−K ∈ ∏n
j=k+1 Vrj as follows. Take some z ∈ X \ {ϕ} \ {x}. Let ε > 0

be such that

ε < min
{

min
j∈K

{r j − v′j(x)}, min
j∈N\K

{r j − v j(z)},
1

n + k
(
rk − vk(z)

)
,

k−1∑
j=1

(
v j(x) − v′j(x)

)
,

1
2n

(
rk − v′k(x)

)
,

1
n + 2k

k∑
j=1

(
v j(x) − v′j(x)

)}
. (2.52)
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Define v′′k+1 ∈ Vrk+1 to satisfy that if

vk+1(z) ≥
∑

j,k+1
(v j(x) − v j(z)) + vk+1(x) − ε,

then
v′′k+1(y) = vk+1(y) for all y ∈ X \ {ϕ},

and otherwise,

v′′k+1(y) =



0 if y = ϕ,

vk+1(x) − ε if y = x,

min
{
rk+1 − ε,

∑
j,k+1(v j(x) − v j(z)) + vk+1(x) − ε

}
if y = z,

−δk+1 otherwise,

where −δk+1 is a sufficiently small number under which

arg max
y∈X\{ϕ}

v′′k+1(y) +
∑

j,k+1
v j(y)

 ⊂ {x, z}.

For each i ∈ {k + 1, . . . ,n}, let Ji ⊂ N be such that Ji = {k + 1, k + 2, . . . , i}, and let Jk = ∅.
For each i ∈ {k + 1, . . . ,n}, define v′′i ∈ Vri recursively to satisfy that if

vi(z) ≥
∑
j<Ji

(v j(x) − v j(z)) + vi(x) +
∑

j∈Ji−1

(v′′j (x) − v′′j (z)) − ε,

then
v′′i (y) = vi(y) for all y ∈ X \ {ϕ},

and otherwise,

v′′i (y) =



0 if y = ϕ,

vi(x) − ε if y = x,

min
{
ri − ε,

∑
j<Ji

(
v j(x) − v j(z)

)
+ vi(x) +

∑
j∈Ji−1

(
v′′j (x) − v′′j (z)

)
− ε

}
if y = z,

−δi otherwise,

where −δi is a sufficiently small number under which

arg max
y∈X\{ϕ}

{∑
j∈Ji

v′′j (y) +
∑
j<Ji

v j(y)
}
⊂ {x, z}.
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Step 3. Let us show that d(vK, v
′′
−K) = ϕ. We shall confirm that for each i ∈ {k + 1, . . . ,n}

with v′′i , vi,
s(v′′Ji, v−Ji ) =

∑
j∈Ji

v′′j (x) +
∑
j<Ji

v j(x). (2.53)

Take any i ∈ {k + 1, . . . ,n} with v′′i , vi. Then,∑
j∈Ji

v′′j (z) +
∑
j<Ji

v j(z) = v′′i (z) +
∑

j∈Ji−1

v′′j (z) +
∑
j<Ji

v j(z)

≤
∑
j<Ji

(v j(x) − v j(z)) + vi(x) +
∑

j∈Ji−1

(v′′j (x) − v′′j (z)) − ε +
∑

j∈Ji−1

v′′j (z) +
∑
j<Ji

v j(z)

=
∑
j<Ji

v j(x) + vi(x) − ε +
∑

j∈Ji−1

v′′j (x) =
∑
j∈Ji

v′′j (x) +
∑
j<Ji

v j(x).

Hence (2.53) holds.
Let us show, by induction, that for each i ∈ {k + 1, . . . ,n}, d(v′′Ji, v−Ji ) = ϕ. Suppose that

d(v′′Ji−1
, v−Ji−1) = ϕ. If v′′i = vi, then obviously d(v′′Ji, v−Ji ) = ϕ. Suppose that v′′i , vi. Then,

by (2.53) and condition (ii),

s(v′′Ji, v−Ji ) =
∑
j∈Ji

v′′j (x) +
∑
j<Ji

v j(x) =
∑

j∈Ji−1

(v′′j (x)) + vi(x) − ε +
∑
j<Ji

v j(x)

<
∑

j∈Ji−1

(v′′j (x)) + vi(x) +
∑
j<Ji

v j(x) = s(v′′Ji−1
, vi, v−Ji ).

Hence by Lemma 3, d(v′′Ji, v−Ji ) = ϕ. Therefore, d(vK, v
′′
−K) = ϕ.

Step 4. Let v′′k ∈ Vrk be such that

v′′k (y) =



0 if y = ϕ,

vk(x) − ε if y = x,∑n
j=1 v j(x) −

∑k−1
j=1 r j −

∑n
j=k+1 v

′′
j (z) − nε if y = z,

−δk otherwise,

where −δk is a sufficiently small number under which

arg max
y∈X\{ϕ}


k−1∑
j=1

v j(y) + v′′k (y) +
n∑

j=k+1
v′′j (y)

 ⊂ {x, z}.

Let us show that v′′k is well-defined. It suffices to show that v′′k (z) < rk .

Substep 4-1. Let us show that for each i ∈ {k + 1, . . . ,n}, if

v′′i (z) ≥
∑
j<Ji

(v j(x) − v j(z)) + vi(x) +
∑

j∈Ji−1

(v′′j (x) − v′′j (z)) − ε, (2.54)
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then
v′′i+1(z) ≥

∑
j<Ji+1

(v j(x) − v j(z)) + vi+1(x) +
∑
j∈Ji

(v′′j (x) − v′′j (z)) − ε. (2.55)

Take any i ∈ {k + 1, . . . ,n}. Suppose that (2.54) holds. Then,∑
j<Ji+1

(v j(x) − v j(z)) + vi+1(x) +
∑
j∈Ji

(v′′j (x) − v′′j (z)) − ε

=
∑

j<Ji+1

(v j(x) − v j(z)) + vi+1(x) + v′′i (x) − v′′i (z) +
∑

j∈Ji−1

(v′′j (x) − v′′j (z)) − ε

≤
∑

j<Ji+1

(v j(x) − v j(z)) + vi+1(x) −
∑
j<Ji

(v j(x) − v j(z))

−
∑

j∈Ji−1

(v′′j (x) − v′′j (z)) + ε +
∑

j∈Ji−1

(v′′j (x) − v′′j (z)) − ε

=
∑

j<Ji+1

(v j(x) − v j(z)) + vi+1(x) −
∑
j<Ji

(v j(x) − v j(z))

=
∑

j<Ji+1

(v j(x) − v j(z)) + vi+1(x) − (vi+1(x) − vi+1(z)) −
∑

j<Ji+1

(v j(x) − v j(z))

= vi+1(x) − (vi+1(x) − vi+1(z)) = vi+1(z).

Then, by definition of v′′i+1, it follows that v′′i+1 = vi+1. Therefore, by v′′i+1(z) = vi+1(z) and by
the above inequality, (2.55) holds.

Substep 4-2. Let us show that if

v′′n (z) <
∑
j<Jn

(v j(x) − v j(z)) + vn(x) +
∑

j∈Jn−1

(v′′j (x) − v′′j (z)) − ε, (2.56)

then v′′k (z) < rk . Suppose that (2.56) holds. Then, by taking the contraposition of the claim
in Substep 4-1 (equations 2.54 and 2.55), for each i ∈ {k + 1, . . . ,n},

v′′i (z) <
∑
j<Ji

(v j(x) − v j(z)) + vi(x) +
∑

j∈Ji−1

(v′′j (x) − v′′j (z)) − ε.

Therefore by definition of v′′i , it follows that for each i ∈ {k + 1, . . . ,n}, v′′i (z) = ri − ε. Thus,

v′′k (z) =
n∑

j=1
v j(x) −

k−1∑
j=1

r j −
n∑

j=k+1
v′′j (z) − nε =

n∑
j=1

v j(x) −
k−1∑
j=1

r j −
n∑

j=k+1
(r j − ε) − nε

=

n∑
j=1

v j(x) −
∑
j,k

r j − kε <
n∑

j=1
v j(x) −

∑
j,k

r j ≤ vk(x) < rk .
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Substep 4-3. Let us show that if

v′′n (z) ≥
∑
j<Jn

(v j(x) − v j(z)) + vn(x) +
∑

j∈Jn−1

(v′′j (x) − v′′j (z)) − ε, (2.57)

then v′′k (z) < rk . Suppose that (2.57) holds. Then,

v′′k (z) =
n∑

j=1
v j(x) −

k−1∑
j=1

r j −
n∑

j=k+1
v′′j (z) − nε

=

n∑
j=1

v j(x) −
k−1∑
j=1

r j −
n−1∑

j=k+1
v′′j (z) − v′′n (z) − nε

≤
n∑

j=1
v j(x) −

k−1∑
j=1

r j −
n−1∑

j=k+1
v′′j (z) −

k∑
j=1

(v j(x) − v j(z))

− vn(x) −
n−1∑

j=k+1
(v′′j (x) − v′′j (z)) + ε − nε

=

n∑
j=1

v j(x) −
k−1∑
j=1

r j −
k∑

j=1
(v j(x) − v j(z)) − vn(x) −

n−1∑
j=k+1

v′′j (x) − (n − 1)ε

=

n∑
j=1

v j(x) −
k−1∑
j=1

r j −
k∑

j=1
(v j(x) − v j(z)) −

n∑
j=k+1

v j(x) − kε

≤
n∑

j=1
v j(x) −

k−1∑
j=1

r j −
k∑

j=1
(v j(x) − v j(z)) −

n∑
j=k+1

v j(x)

=

k∑
j=1

v j(z) −
k−1∑
j=1

r j = vk(z) +
k−1∑
j=1

(
v j(z) − r j

)
< vk(z) < rk .

Then, by Substeps 4-2 and 4-3, v′′k is well-defined.

Step 5. Let us show that d(vL, v
′′
k , v

′′
−K) = ϕ. Note that since v j(z) < r j for all j ∈ N ,

k−1∑
j=1

v j(z) + v′′k (z) +
n∑

j=k+1
v′′j (z)

=

k−1∑
j=1

v j(z) +
n∑

j=1
v j(x) −

k−1∑
j=1

r j −
n∑

j=k+1
v′′j (z) − nε +

n∑
j=k+1

v′′j (z)

=

k−1∑
j=1

v j(z) −
k−1∑
j=1

r j +

n∑
j=1

v j(x) − nε <
n∑

j=1
v j(x) − (n − k + 1)ε
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=

k−1∑
j=1

v j(x) + vk(x) − ε +
n∑

j=k+1
(v j(x) − ε) ≤

k−1∑
j=1

v j(x) + v′′k (x) +
n∑

j=k+1
v′′j (x).

Therefore,

s(vL, v
′′
k , v

′′
−K) =

k−1∑
j=1

v j(x) + v′′k (x) +
n∑

j=k+1
v′′j (x). (2.58)

Then,

s(vL, v
′′
k , v

′′
−K) =

k−1∑
j=1

v j(x) + v′′k (x) +
n∑

j=k+1
v′′j (x) =

k−1∑
j=1

v j(x) + vk(x) − ε +
n∑

j=k+1
v′′j (x)

<

k−1∑
j=1

v j(x) + vk(x) +
n∑

j=k+1
v′′j (x) =

k−1∑
j=1

v j(x) + vk(x) +
n∑

j=k+1
v′′j (x)

= s(vL, vk, v
′′
−K).

Thus, by Lemma 3, d(vL, v
′′
k , v

′′
−K) = ϕ.

Step 6. For each i ∈ L, let v′′i ∈ Vri be such that

v′′i (y) =



0 if y = ϕ,

v′i (x) + ε if y = x,

r j − ε if y = z,

−δ j otherwise,

where −δ j is a sufficiently small number under which

s(v′′L, v′′k , v
′′
−K) =

k−1∑
j=1

v′′j (x) + v′′k (x) +
n∑

j=k+1
v′′j (x), (2.59)

or

s(v′′L, v′′k , v
′′
−K) =

k−1∑
j=1

v′′j (z) + v′′k (z) +
n∑

j=k+1
v′′j (z). (2.60)

Then, by definition of ε (pp. 61), v′′i is well-defined. Let us show that d(v′′L, v′′k , v
′′
−K) = ϕ.

Case 6-1. Consider the case with (2.59). Then, by definition of ε,

s(v′′L, v′′k , v
′′
−K) =

k−1∑
j=1

v′′j (x) + v′′k (x) +
n∑

j=k+1
v′′j (x) =

k−1∑
j=1

(v′j(x) + ε) + v′′k (x) +
n∑

j=k+1
v′′j (x)

<

k−1∑
j=1

v j(x) + v′′k (x) +
n∑

j=k+1
v′′j (x) = s(vL, v

′′
k , v

′′
−K).
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Then, by the assumption of the mathematical induction, d(v′′L, v′′k , v
′′
−K) = ϕ.

Case 6-2. Consider the case where only (2.60) holds. Then,

s(v′′L, v′′k , v
′′
−K) =

k−1∑
j=1

v′′j (z) + v′′k (z) +
n∑

j=k+1
v′′j (z)

=

k−1∑
j=1

(r j − ε) +
n∑

j=1
v j(x) −

k−1∑
j=1

r j −
n∑

j=k+1
v′′j (z) − nε +

n∑
j=k+1

v′′j (z)

=

k−1∑
j=1

r j − (k − 1)ε +
n∑

j=1
v j(x) −

k−1∑
j=1

r j − nε =
n∑

j=1
v j(x) − (n + k − 1)ε

<

n∑
j=1

v j(x) − (n − k + 1)ε =
k−1∑
j=1

v j(x) + v′′k (x) +
n∑

j=k+1
v′′j (x)

= s(vL, v
′′
k , v

′′
−K). (2.61)

Moreover, in Step 5, we showed that arg max
y∈X\{ϕ}

{∑k−1
j=1 v j(y) + v′′k (y) +

∑n
j=k+1 v

′′
j (y)} = {x}.

Hence, by Lemma 4, d(v′′L, v′′k , v
′′
−K) = ϕ.

Step 7. Let ℓ =
���{ j < K; v′′j , v j

}��� and ε′ = min
{

1
2
∑n

j=k+1
(
v′′j (z) − v j(z)

)
, ε

}
. Note that

by definition of ε (pp. 61), for each j ∈ {k + 1, . . . ,n}, v j(z) < r j − ε. Thus, by definition
of v′′j , v j(z) ≤ v′′j (z) for all j ∈ {k + 1, . . . ,n}. Therefore, ε′ ≥ 0. In addition, if there exists
j ∈ {k + 1, . . . ,n} such that v′′j , v j , then v′′j (z) > v j(z). Therefore, in such a case, ε′ > 0.

Let v(3)k ∈ Vrk be such that

v
(3)
k (y) =



0 if y = ϕ,

v′k(x) + ε if y = x,

v′k(x) +
∑

j,k(v′′j (x) − v′′j (z)) + (ℓ + 1)ε + ε′ if y = z

−δ′k otherwise,

where −δ′k is a sufficiently small number under which

arg max
y∈X\{ϕ}


k−1∑
j=1

v′′j (y) + v
(3)
i (y) +

n∑
j=k+1

v j(y)
 ⊂ {x, z}.

Let us show that v(3)k is well-defined. By definition of ε, it suffices to show that v(3)k (z) < rk .

Case 7-1. Consider the case with

v′′n (z) ≥
k∑

j=1
(v j(x) − v j(z)) + vn(x) +

n−1∑
j=k+1

(v′′j (x) − v′′j (z)) − ε.
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Then,
n∑

j=k+1
(v′′j (x) − v′′j (z)) =

n∑
j=k+1

v′′j (x) −
n−1∑

j=k+1
v′′j (z) − v′′n (z)

≤
n∑

j=k+1
v′′j (x) −

n−1∑
j=k+1

v′′j (z) −
k∑

j=1
(v j(x) − v j(z)) − vn(x) −

n−1∑
j=k+1

(v′′j (x) − v′′j (z)) + ε

=

n∑
j=k+1

v′′j (x) −
k∑

j=1
(v j(x) − v j(z)) − vn(x) −

n−1∑
j=k+1

v′′j (x) + ε = −
k∑

j=1
(v j(x) − v j(z)). (2.62)

Thus, by (2.62), (2.50) (in pp. 61), 2k + ℓ ≤ n + k, and by definitions of ε and ε′,

v
(3)
k (z) = v′k(x) +

∑
j,k

(v′′j (x) − v′′j (z)) + (ℓ + 1)ε + ε′

=

k−1∑
j=1

(v′j(x) − r j + 2ε) + v′k(x) +
n∑

j=k+1
(v′′j (x) − v′′j (z)) + (ℓ + 1)ε + ε′

≤
k−1∑
j=1

(v′j(x) − r j + 2ε) + v′k(x) −
k∑

j=1
(v j(x) − v j(z)) + (ℓ + 2)ε

=

k∑
j=1

v′j(x) −
k∑

j=1
v j(x) + vk(z) +

k−1∑
j=1

v j(z) −
k−1∑
j=1

rk + (2k + ℓ)ε

< vk(z) + (2k + ℓ)ε < rk .

Case 7-2. Consider the case with

v′′n (z) <
k∑

j=1
(v j(x) − v j(z)) + vn(x) +

n−1∑
j=k+1

(v′′j (x) − v′′j (z)) − ε.

Then, by Substep 4-1, for each i ∈ {k + 1, . . . ,n}, v′′i (z) = ri − ε. Thus, by definitions of v′′j
and Vrj ,

v
(3)
k (z) = v′k(x) +

∑
j,k

(v′′j (x) − v′′j (z)) + (ℓ + 1)ε + ε′

≤
k−1∑
j=1

(v′j(x) − r j + 2ε) + v′k(x) +
n∑

j=k+1
(v′′j (x) − r j + ε) + (ℓ + 2)ε

< v′k(x) + (n + k + ℓ)ε < rk,

where the last inequality follows from n + K + ℓ ≤ 2n and from definition of ε. Hence v
(3)
k is

well-defined.

68



Step 8. Let us show that d(v′′L, v
(3)
k , v

′′
−K) = ϕ. It follows that

k−1∑
j=1

v′′j (z) + v
(3)
k (z) +

n∑
j=k+1

v′′j (z)

=

k−1∑
j=1

v′′j (z) + v′k(x) +
∑
j,k

(v′′j (x) − v′′j (z)) + (ℓ + 1)ε + ε′ +
n∑

j=k+1
v′′j (z)

=

k−1∑
j=1

v′′j (x) + v′k(x) + (ℓ + 1)ε + ε′ +
n∑

j=k+1
v′′j (x) ≥

k−1∑
j=1

v′′j (x) + v′k(x) + ε +
n∑

j=k+1
v′′j (x)

=

k−1∑
j=1

v′′j (x) + v
(3)
k (x) +

n∑
j=k+1

v′′j (x). (2.63)

Therefore,

s(v′′L, v
(3)
k , v

′′
−K) =

k−1∑
j=1

v′′j (z) + v
(3)
k (z) +

n∑
j=k+1

v′′j (z).

Then, by definitions of ℓ and ε, and by the second, third, and fourth equations in (2.61),

s(v′′L, v
(3)
k , v

′′
−K) =

k−1∑
j=1

v′′j (z) + v
(3)
k (z) +

n∑
j=k+1

v′′j (z)

=

k−1∑
j=1

v′′j (x) + v′k(x) + (ℓ + 1)ε + ε′ +
n∑

j=k+1
v′′j (x)

≤
k−1∑
j=1

(v′j(x) + ε) + v′k(x) + ε + ε
′ +

n∑
j=k+1

v j(x)

≤
k∑

j=1
v′j(x) + (k + 1)ε +

n∑
j=k+1

v j(x) <
n∑

j=1
v j(x) − (n + k − 1)ε

=

k−1∑
j=1

v′′j (z) + v′′k (z) +
n∑

j=k+1
v′′j (z) ≤ s(v′′L, v′′k , v

′′
−K).

Hence by Lemma 3, d(v′′L, v
(3)
k , v

′′
−K) = ϕ.

Step 9. Let us show that d(v′′L, v
(3)
k , v−K) = ϕ. If for each j ∈ {k + 1, . . . ,n}, v′′j = v j , then

clearly d(v′′L, v
(3)
k , v−K) = ϕ. Suppose that there exists i ∈ {k + 1, . . . ,n} such that v′′i , vi.

Then, by definition of ϵ′, ϵ′ > 0, In addition, by definitions of ε′ and ℓ,

k−1∑
j=1

v′′j (z) + v
(3)
k (z) +

n∑
j=k+1

v j(z) <
k−1∑
j=1

v′′j (z) + v
(3)
k (z) +

n∑
j=k+1

v′′j (z) − 2ε′
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<

k−1∑
j=1

v′′j (z) + v
(3)
k (z) +

n∑
j=k+1

v′′j (z) − ε′

=

k−1∑
j=1

v′′j (z) + v′k(x) +
∑
j,k

(v′′j (x) − v′′j (z)) + (ℓ + 1)ε + ε′ +
n∑

j=k+1
v′′j (z) − ε′

=

k−1∑
j=1

v′′j (x) + v′k(x) + ε +
n∑

j=k+1
v j(x) =

k−1∑
j=1

v′′j (x) + v
(3)
k (x) +

n∑
j=k+1

v j(x). (2.64)

Hence

s(v′′L, v
(3)
k , v−K) =

k−1∑
j=1

v′′j (x) + v
(3)
k (x) +

n∑
j=k+1

v j(x).

Moreover, by (2.64),

s(v′′L, v
(3)
k , v−K) =

k−1∑
j=1

v′′j (x) + v
(3)
k (x) +

n∑
j=k+1

v j(x) =
k−1∑
j=1

v′′j (z) + v
(3)
k (z) +

n∑
j=k+1

v′′j (z) − ε′

<

k−1∑
j=1

v′′j (z) + v
(3)
k (z) +

n∑
j=k+1

v′′j (z) ≤ s(v′′L, v
(3)
k , v

′′
−K).

Note that by (2.63) and ε′ > 0, there exists no w ∈ X \ {ϕ} such that

w ∈ arg max
y∈X\{ϕ}


k−1∑
j=1

v′′j (y) + v
(3)
k (y) +

n∑
j=k+1

v′′j (y)
 = {z},

and

w ∈ arg max
y∈X\{ϕ}


k−1∑
j=1

v′′j (y) + v
(3)
k (y) +

n∑
j=k+1

v j(y)
 = {x}.

Hence by Lemma 4, d(v′′L, v
(3)
k , v−K) = ϕ.

Step 10. Let v(4)k ∈ Vr be such that

v
(4)
k (y) =


0 if y = ϕ,

v′k(x) +
1
2ε if y = x,

−δ′′k otherwise,

where −δ′′k is a sufficiently small number under which the following two conditions are
satisfied:

(a) arg max
y∈X\{ϕ}

{∑k−1
j=1 v

′′
j (y) + v

(4)
k (y) +∑n

j=k+1 v j(y)
}
= {x},
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(b) arg max
y∈X\{ϕ}

{∑k−1
j=1 v

′
j(y) + v

(4)
k (y) +∑n

j=k+1 v j(y)
}
= {x}.

Then, by condition (a),

s(v′′L, v
(4)
k , v−K) =

k−1∑
j=1

v′′j (x) + v
(4)
k (x) +

n∑
j=k+1

v j(x) =
k−1∑
j=1

v′′j (x) + v′k(x) +
1
2
ε +

n∑
j=k+1

v j(x)

<

k−1∑
j=1

v′′j (x) + v′k(x) + ε +
n∑

j=k+1
v j(x) =

k−1∑
j=1

v′′j (x) + v
(3)
k (x) +

n∑
j=k+1

v j(x)

= s(v′′L, v
(3)
k , v−K)

Hence by Lemma 3, d(v′′L, v
(4)
k , v−K) = ϕ.

Step 11. Let us show that d(v′L, v
(4)
k , v−K) = ϕ. Note that by condition (b)

s(v′L, v
(4)
k , v−K) =

k−1∑
j=1

v′j(x) + v
(4)
k (x) +

n∑
j=k+1

v j(x) <
k−1∑
j=1

(v′j(x) + ε) + v
(4)
k (x) +

n∑
j=k+1

v j(x)

=

k−1∑
j=1

v′′j (x) + v
(4)
k (x) +

n∑
j=k+1

v j(x) = s(v′′L, v
(4)
k , v−K).

Then, by conditions (a) and (b) of the definition of v(4)k and by the assumption of the mathe-
matical induction, it follows that d(v′L, v

(4)
k , v−K) = ϕ.

Step 12. Finally, let us show that d(v′L, v′k, v−K) = ϕ. Note that by the assumption (ii),

s(v′L, v′k, v−K) =
k−1∑
j=1

v′j(x) + v′k(x) +
n∑

j=k+1
v j(x) <

k−1∑
j=1

v′j(x) + v′k(x) +
1
2
ε +

n∑
j=k+1

v j(x)

=

k−1∑
j=1

v′j(x) + v
(4)
k (x) +

n∑
j=k+1

v j(x) = s(v′L, v
(4)
k , v−K).

Then, by Lemma 3, d(v′L, v′k, v−K) = ϕ. This completes the proof of Lemma 5. ■

Lemma 6. Suppose that a mechanism (d, t) ∈ M satisfies weak efficiency and strategy-
proofness. For each v ∈ ∏n

j=1 Vrj with d(v) = ϕ and each v′ ∈ ∏n
j=1 Vrj , if s(v′) < s(v), then

d(v′) = ϕ.

Proof. Immediately follows from Lemmas 4 and 5. ■

71



Lemma 7. If a mechanism (d, t) ∈ M satisfies weak efficiency and strategy-proofness, then
one of the following two conditions holds:

(i) there exists α ∈ R such that for each v ∈ ∏n
j=1 Vrj ,

d(v) ∈ arg max
y∈X

{ n∑
j=1

v j(y) + α1ϕ(y)
}
,

(ii) for each v ∈ ∏n
j=1 Vrj , d(v) = ϕ.

Proof. Consider the case with sup
{
s(v) ∈ R : v ∈ ∏n

j=1 Vrj , d(v) = ϕ
}
= ∞. Let us show that

Condition (ii) holds. Take any v ∈ ∏n
j=1 Vrj . Then, since s(v) ∈ R, there exists v′ ∈ ∏n

j=1 Vrj

with d(v′) = ϕ such that s(v) < s(v′). Therefore, by Lemma 6, d(v) = ϕ.
We next consider the case with sup

{
s(v) ∈ R : v ∈ ∏n

j=1 Vrj , s(v) = ϕ
}
< ∞. Let

α = sup
{
s(v) ∈ R : v ∈

n∏
j=1

Vrj , d(v) = ϕ
}
, (2.65)

and take any v ∈ ∏n
j=1 Vrj . Let us show that d(v) ∈ arg max

y∈X

{∑n
j=1 v j(y) + α1ϕ(y)

}
.

First, we consider the case with ϕ < arg max
y∈X

{∑n
j=1 v j(y) + α1ϕ(y)

}
. Then, s(v) > α. We

shall show that d(v) , ϕ. If d(v) = ϕ, then d(v) = ϕ and s(v) > α, a contradiction to (2.65).
Therefore, d(v) , ϕ. Then, by weak efficiency and s(v) > α,

d(v) ∈ arg max
y∈X\{ϕ}

{ n∑
j=1

v j(y)
}
= arg max

y∈X

{ n∑
j=1

v j(y) + α1ϕ(y)
}
.

Second, we consider the case with {ϕ} = arg max
y∈X

{∑n
j=1 v j(y) + α1ϕ(y)

}
. Then,

α =

n∑
j=1

v j(ϕ) + α > s(v).

Therefore, by (2.65), there exists v′ ∈ ∏n
j=1 Vrj such that s(v′) = ϕ and s(v′) > s(v). Thus, by

Lemma 6,

d(v) = ϕ ∈ arg max
y∈X

{ n∑
j=1

v j(y) + α1ϕ(y)
}
.

Finally, we consider the case where ϕ ∈ arg max
y∈X

{∑n
j=1 v j(y) + α1ϕ(y)

}
and {ϕ} ,

arg max
y∈X

{∑n
j=1 v j(y) + α1ϕ(y)

}
. If d(v) = ϕ, then the desired condition holds. Suppose
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that d(v) , ϕ. Then, s(v) > α. Otherwise, there exists v′ ∈ ∏n
j=1 Vrj such that s(v′) = ϕ and

s(v′) > s(v), and hence d(v) = ϕ, a contradiction. Thus, by weak efficiency,

d(v) ∈ arg max
y∈X\{ϕ}

{ n∑
j=1

v j(y)
}
⊂ arg max

y∈X

{ n∑
j=1

v j(y) + α1ϕ(y)
}
.

■

Proof of Statement (ii): Take any mediation mechanism (dm, tm) ∈ M and any mechanism
(d, t) ∈ M that satisfies weak efficiency, strategy-proofness, individual rationality and feasi-
bility. Then, one of the two conditions in Lemma 7 holds for (d, t). Let us show that for each
i ∈ N and each v ∈ ∏n

j=1 Vrj ,

vi
(
dm(v)

)
+ tm

i (v) ≥ vi
(
d(v)

)
+ ti(v). (2.66)

Consider the case with d(v) = ϕ for all v ∈ ∏n
j=1 Vrj . Then by individual rationality,

feasibility, ti(v) = 0 for all i ∈ N and all v ∈ ∏n
j=1 Vrj . Thus, (2.66) holds from the fact that

(dm, tm) satisfies individual rationality.
Next, consider the case where there exists α ∈ R such that for each v ∈ ∏n

j=1 Vrj ,

d(v) ∈ arg max
y∈X

{ n∑
j=1

v j(y) + α1ϕ(y)
}
. (2.67)

Then, by Lemma 1 in Appendix B, for each i ∈ N , there exists hi :
∏

j,i Vrj → R such that

ti(v) =
∑
j,i

v j
(
d(v)

)
+ α1ϕ

(
d(v)

)
+ hi

(
v−i

)
for all v ∈

n∏
j=1

Vrj . (2.68)

Step 1. Let us show that for each i ∈ N and each v−i ∈
∏

j,i Vrj , hi
(
v−i

)
≥ −α. Take any

i ∈ N and any v−i ∈
∏

j,i Vrj . Suppose, by contradiction, that

hi
(
v−i

)
< −α.

Let vi ∈ Vri be such that

vi(y) =


0 if y = ϕ,

min
{
ri, α −

∑
j,i v j(y)

}
− 1 if y ∈ X \ {ϕ}.
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Then, for each x ∈ X \ {ϕ},
n∑

j=1
v j(x) ≤ α − 1 < α.

Hence by (2.67), d(v) = ϕ. However, by (2.68),

vi
(
d(v)

)
+ ti(v) =

n∑
j=1

v j(ϕ) + α + hi(v−i) = α + hi(v−i) < 0.

This is a contradiction to individual rationality.

Step 2. Let us show that for each i ∈ N and each v−i ∈
∏

j,i Vrj , hi
(
v−i

)
= −α. Take any

i ∈ N and any v−i ∈
∏

j,i Vrj . Note that by Step 1, hi
(
v−i

)
≥ −α. Suppose, by contradiction,

that
hi

(
v−i

)
> −α.

Let vi ∈ Vri be such that

vi(y) =


0 if y = ϕ,

min
{
ri, α −

∑
j,i v j(y)

}
− 1 if x ∈ X \ {ϕ}.

Then, for each x ∈ X \ {ϕ},
n∑

j=1
v j(x) < α.

Hence by (2.67), d(v) = ϕ. Then, by (2.68) and Step 1,

n∑
j=1

t j(v) = α + hi(v−i) +
∑
j,i

(
α + h j(v− j)

)
≥ α + hi(v−i) > 0,

a contradiction to feasibility.

Step 3. Let us show that α ≥ (n−1)
n

∑n
j=1 r j . Suppose, by contradiction, that α <

(n−1)
n

∑n
j=1 r j . Take some x ∈ X \ {ϕ}. For each i ∈ N , let vi ∈ Vri be such that

vi(y) =


0 if y = ϕ,

ri − 1
n

( n−1
n

∑
j=1 r j − α

)
otherwise.

Then, for each x ∈ X \ {ϕ},
n∑

j=1
v j(x) =

n∑
j=1

(
r j −

1
n
(n − 1

n

∑
k=1

rk − α
) )
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=

n∑
j=1

r j −
n − 1

n

n∑
j=1

r j + α =
1
n

n∑
j=1

r j + α > α. (2.69)

Therefore, by (2.67), d(vi, v−i) , ϕ. Then, by Step 2, (2.68), (2.69), and by α < (n−1)
n

∑n
j=1 r j ,

n∑
j=1

t j(v) = (n − 1)
n∑

j=1
v j(d(v)) +

n∑
j=1

h j(v− j) = (n − 1)
n∑

j=1
v j(d(v)) − nα

=
(n − 1)

n

n∑
j=1

r j + (n − 1)α − nα =
(n − 1)

n

n∑
j=1

r j − α > 0,

a contradiction to feasibility.

Step 4. Let us show that for each i ∈ N and each v ∈ ∏n
j=1 Vrj , vi

(
dm(v)

)
+ tm

i (v) ≥
vi

(
d(v)

)
+ ti(v). Note that for each α ≥ (n−1)

n
∑n

j=1 r j ,

max
y∈X


n∑

j=1
v j(y) +

(n − 1)
n

n∑
j=1

r j · 1ϕ(y)
 − (n − 1)

n

n∑
j=1

r j ≥ max
y∈X


n∑

j=1
v j(y) + α1ϕ(y)

 − α.

Then, by (2.67), (2.68), Steps 2 and 3, and by definition of the mediation mechanisms, for
each i ∈ N and each v ∈ ∏n

j=1 Vrj ,

vi
(
dm(v)

)
+ tm

i (v) = max
y∈X


n∑

j=1
v j(y) +

(n − 1)
n

n∑
j=1

r j · 1ϕ(y)
 − (n − 1)

n

n∑
j=1

r j

≥ max
y∈X


n∑

j=1
v j(y) + α1ϕ(y)

 − α = vi
(
d(v)

)
+ ti(v).

□

Appendix E: Example of a mechanism satisfying the four axioms

Let (d′, t′) ∈ M
( ∏n

j=1 Vrj
)

be such that for each v ∈ ∏n
j=1 Vri and each i ∈ N ,

(i) d′(v) ∈ arg max
x∈X

{∑n
j=1 v j(x) + (2n−1)

2n
∑n

j=1 r j · 1ϕ(x)
}
,

(ii) t′i (v) =
∑

j,i
(
v j(d′(v)) − v j(ϕ)

)
+

(2n−1)
2n

∑n
j=1 r j · 1ϕ(d′(v)) − (2n−1)

2n
∑n

j=1 r j ,

with an arbitrary tie-breaking rule. Then, (d′, t′) satisfies weak efficiency, strategy-proofness,
individual rationality and feasibility. The form of (d′, t′) resembles those of the mediation
mechanisms because (d′, t′) belongs to a class of mechanisms characterized in Lemma 7 of
Appendix C by using weak efficiency and strategy-proofness.
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Chapter 3

Mechanism Design with a Guess

3.1 Introduction

Even after social objectives are embedded in a social choice rule, there still remains a problem
of how to implement that rule. If the social planner fully knows individual preferences, then
any social choice rule is trivially implemented because the planner also knows the rule’s
outcome. However, in many real-life situations, the planner does not have full information
about individual preferences. On the other hand, if the planner does not know individual
preferences at all, then the problem of implementation arises. Mechanism design theory has
focused on this problem and succeeded in designing mechanisms that implement “attractive"
social choice rules (e.g., Maskin 1999, Groves and Ledyard 1977, Hurwicz 1979, Schmeidler
1980, Vickrey 1961, Clarke 1971, Groves 1973). However, plenty of impossibility results
about the implementability of social choice rules have also been recognized since the seminal
works by Hurwicz (1972), Gibbard (1973), Satterthwaite (1975), and Muller and Satterthwaite
(1977). Therefore, without information about individual preferences, the planner may face
difficulty. This fact motivates us to consider a “middle" situation in which the planner
“partially" knows individual preferences.

Any study of mechanism design theory associates a player with a preference space.
For example, in exchange economies, a player’s preferences are restricted to be monotone,
convex, continuous, etc. This means that in a model, the planner is assumed to know certain
information about individual preferences without verification. Alternatively, we can consider
that the planner has some guesses of the individual preference types. In this chapter, we make
this point explicit and analyze the possibility of using the planner’s guess for implementation.
In particular, we introduce a new idea of implementation using the planner’s “guess” of
individual preferences and apply this concept to two quasi-linear mechanism design problems:
a public decision problem and an auction problem with homogeneous goods.

We consider the following process of implementation of social choice rules, illustrated
by Figure 1. First, the planner is equipped with a family {Gλ}λ∈Λ consisting of subsets of
possible preference profiles RI ≡ R1 × · · · × Rn such that

∪
λ∈ΛGλ = RI . Second, the

planner selects a subset Gλ ∈ {Gλ}λ∈Λ before running a mechanism. The planner does not
know which preference profile ≿= (≿1, . . . ,≿n) ∈ RI is true, but he selects Gλ hoping that the
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(ii) Guess (select a subset )

(iii)  Running a mechanism to implement 
a SCR restricted to the selected subset

The set of 
preference profiles

(i) Divided into subsets

Dominant strategy eq.

The set of strategy profiles

An outcome function

The set of outcomes
A SCR restricted to 

Figure 1: Mechanism design with a guess

true profile belongs to it, i.e., ≿∈ Gλ. In other words, the planner “guesses" Gλ ∈ {Gλ}λ∈Λ to
which the true preference profile belongs. In this sense, each element Gλ ∈ {Gλ}λ∈Λ is called
a guess under {Gλ}λ∈Λ, and the family {Gλ}λ∈Λ is called a list of guesses. Since the planner
does not know which profile is true, the true profile may or may not belong to the planner’s
particular guess Gλ. A guess Gλ is correct if the true profile belongs to it. Otherwise it is
incorrect.*13 Finally, the planner announces a mechanism Mλ (depending on the guess), and
individuals play a game form determined by the announced mechanism. A social choice rule
is G-implementable with respect to a list of guesses {Gλ}λ∈Λ if for each Gλ ∈ {Gλ}λ∈Λ, there
exists a mechanism Mλ that dominant strategy implements the social choice rule restricted to
Gλ. If a social choice rule is G-implementable, then its outcome can be a dominant strategy
outcome as long as the planner’s guess is correct.

A simple example of a list of guesses is the family,
{
{≿}

}
≿∈RI

, consisting of all singletons
of the set of preference profiles. This list of guesses is called the finest list. Under the finest
list, the planner needs full information about individual preferences for his guess to be correct.
Obviously, any social choice rule is G-implementable with respect to the finest list. Another
simple example of a list of guesses is the family, {RI}, consisting of only the set of preference
profiles itself. This list of guesses is called the trivial list. Under the trivial list, the planner
does not need to know anything about the true profile for his guess to be correct. Since

*13We can also interpret each {Gλ}λ∈Λ as the planner’s “structure of knowledge" about individual preferences
rather than a “list of guesses." That is, we can also consider a situation where given {Gλ}λ∈Λ, the planner always
knows Gλ ∈ {Gλ}λ∈Λ to which the true preference profile belongs. Nevertheless, we use the terminology “list
of guesses" because one of our purposes is to design {Gλ}λ∈Λ, which requires “minimal information" about
individual preferences of the planner. It is uncommon to say that we design the planner’s structure of knowledge.
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RI is the unique element of the trivial list, G-implementability with respect to the trivial list
is equivalent to the standard dominant strategy implementability. Therefore, whenever we
face an impossibility of implementation of social choice rule in dominant strategies, we must
consider a non-trivial list to G-implement that rule. In each design problem, we search for a list
of guesses that requires “minimal" information about individual preferences for the planner
to guess correctly. A boundary between the possibility and impossibility of implementing
social choice rules can be found by identifying such a “minimal" list of guesses.

Our purpose in the public decision problem is to overcome the following well-known
impossibility (Subsection 3.9; Jackson 2003): there exists no social choice rule that satis-
fies efficiency, individual rationality, feasibility, and dominant strategy implementability, or
equivalently G-implementability with respect to the trivial list.*14 This impossibility forces
us to consider a list of guesses other than the trivial list. In this chapter, we consider a list of
guesses dividing the set of preference profiles into intervals of the maximal social surplus –
the maximum of the total valuation gain from the status-quo. Under our list of guesses, the
planner only needs to guess an interval to which the maximal social surplus in the true state
belongs. Thus, our list of guesses requires much less information than the trivial list. Our
first main theorem states that (i) a social choice rule is efficient, individually rational, feasible,
and G-implementable with respect to our list if and only if it is a mediation rule, and that (ii)
our list of guesses requires minimal information about individual preferences among a class
of lists of guesses such that some G-implementable social choice rule satisfying the set of
properties exists. A mediation rule is defined with our interval-based list of guesses and is a
kind of patchwork consisting of Vickrey-Clarke-Groves rules defined on different intervals.

Our purpose in the auction problem is to design a revenue maximizing auction rule.
From the seminal work by Myerson (1981), it is well-known that, in the single-object case,
second price auctions with a suitable reserve price maximize the revenue. However, there
are at least two obstacles to apply Myerson’s result to real-life auctions: (1) the revenue-
maximizing auction rules require knowledge of prior distributions of bidders’ valuations;
(2) generalizing his result to the multiple-objects case is difficult because of complicated
prior-based maximizations (Armstrong 1996, 2000). In contrast to Myerson’s approach,

*14The logic behind this impossibility is as follows: Green and Laffont (1977) and Holmström (1979) show
that Groves mechanisms (Groves 1973) are the only mechanisms that satisfy efficiency and dominant strategy
implementability. Subsequently, Moulin (1986) shows that Clarke’s (1971) pivotal mechanisms are the only
Groves mechanisms that satisfy feasibility and welfare lower boundedness, which is a weaker condition than
individual rationality. However, since the pivotal mechanisms do not satisfy individual rationality, the above
impossibility holds.
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our approach does not require any knowledge of the prior, but does require the planner’s
(or auctioneer’s) guess be correct in an ex-post sense. In addition, to avoid complicated
prior-based maximizations, we impose the following three axioms on auction rules*15: (i)
efficiency, (ii) (ex-post) individual rationality, and (iii) G-implementability. We design an
ex-post revenue maximizing auction rule among the class of auction rules satisfying these
three axioms.*16

Since the seminal work by Vickrey (1961), it has been recognized that Vickrey auctions
generate higher revenue than all auction rules satisfying efficiency, individual rationality, and
dominant strategy implementability (Holmström 1979). However, as pointed out by Ausubel
and Cramton (2004) and by even Vickrey himself, Vickrey auctions may yield low revenues
if competition is weak and the bidders are asymmetric. An effective way to avoid such low
revenues is to focus on G-implementability with respect to a non-trivial list.

In the single-object case, we consider a list of guesses consisting of only two types of
guesses. One includes all valuation profiles such that the highest valuation among all bidders
exceeds a given positive number r ∈ R++. The other includes profiles where the highest
valuation is below r . Under this list of guesses, the auctioneer only needs to guess whether
the highest valuation in the true state is above the given positive number r or not. This
situation seems to be often observed in many real-life auctions. In fact, in a real-life auction
with a reserve price, the true highest valuation would be believed as above the reserve price.
Otherwise, no object would be sold, and the auctioneer only suffers from the cost for holding
the auction.

In the multiple (L ≥ 2) objects case, we consider a list of guesses generalizing an idea of
the single-object case. Given an L-dimensional vector r = (r1,r2, . . . ,rL) ∈ RL

+, the auctioneer
guesses whether it is the case that each k-th highest valuation in the true state is above the k-th
coordinate rk of the given vector r or not. Our second main theorem states that (i) Vickrey
auctions with a cutoff reserve price are ex-post revenue maximizing among all auction rules
satisfying G-implementability with respect to our list and the other two axioms, and that (ii)
our lists of guesses require minimal information about bidders’ valuations among a class of
lists of guesses such that some auction rule satisfying the three properties generates at least

*15Kazumura, Mishra, and Serizawa (2017) takes a similar approach without the assumption of quasi-linearity.
*16One may consider that imposing efficiency is unsuitable for our purpose of finding a revenue-maximizing

auction rule. Nevertheless, Ausubel and Cramton (1999) show that when the seller cannot prevent resale among
bidders after the auction, and the seller cannot commit to not sell the withheld objects after the auction, it
is optimal to assign objects efficiently. Therefore, efficiency seems to be an appropriate requirement in many
real-life auction problems.
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the same revenue as our auction rules. A Vickrey auction with a cutoff reserve price imposes
a reserve price if each k-th highest valuation in the true state is above the k-th coordinate rk

of the given vector r . Otherwise it chooses the same outcome as a Vickrey auction. Our
result justifies the use of reserve pricing when the auctioneer can correctly guess the first L-th
highest valuations.

Finally, we note that our approach of using the planner’s guesses differs from usual domain
restriction approaches (e.g., Black 1948, Suijs 1996, Mitra 2001, Pápai 2003, Ohseto 2004).
In a usual domain restriction approach, social choice rules are defined on a restricted domain,
and the implementability of these rules is analyzed. Therefore, if the true preference profile
is outside the restricted domain, then the result in this approach says nothing. However, in
our “guess approach", social choice rules are defined on the full domain. Thus, our results
about G-implementability of social choice rules are meaningful whatever the true preference
profile is.

The rest of this chapter is organized as follows. Section 3.2 introduces our model. Section
3.3 states our main result about the public decision problem, and Section 3.4 states that about
the auction problem. Section 3.5 offers some discussion, and Section 3.6 gives concluding
remarks. Omitted proofs are relegated to Appendix.

3.2 The model

3.2.1 Preliminaries

Let I = {1,2, . . . ,n} (n ≥ 2) be the finite set of individuals, and A the finite set of alternatives.
An outcome is a pair (a, p) ∈ A × Rn, where p ∈ Rn is a vector of monetary transfers. A
valuation function is a function vi : A → R. Individual i’s quasi-linear utility is u(a, p; vi) =
vi(a)− pi. Let Vi be the set of possible valuation functions for individual i. A valuation profile
is an n-tuple of valuation functions v = (v1, . . . , vn) ∈ VI , where VI ≡ V1 × · · · × Vn is the set
of valuation profiles. For each v ∈ VI and each I′ ⊂ I, let vI ′ ≡ {v j} j∈I ′ and v−I ′ ≡ {v j} j∈I\I ′.

We consider two classes of design problems. In a public decision problem, the set of
alternatives contains the status quo ϕ ∈ A . The set of possible valuation functions Vi consists
of all the valuation functions on A. When we consider this public decision problem, we write
VP instead of Vi for each i ∈ I. For simplicity, we normalize each vi ∈ VP as vi(ϕ) = 0.*17

In an auction with L homogeneous goods, the set of alternatives A consists of all the
assignment vectors; a ≡ (a1,a2, . . . ,an) ∈ {0,1, . . . , L}n such that

∑n
j=1 a j ≤ L, where ai is

*17All of our results hold without this assumption.
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the number of objects individual i obtains. A marginal valuation vector is an L-dimensional
vector (vi1, vi2, . . . , viL) ∈ RL

+ such that

vi1 ≥ vi2 ≥ · · · ≥ viL .

The set of possible valuation functions Vi consists of all the valuation functions vi : A → R
such that there exists a marginal valuation vector (vi1, vi2, . . . , viL) for which

vi(a) =
ai∑
ℓ=1

viℓ for all a ∈ A. (3.70)

When we consider this auction problem, we write VA instead of Vi for all i ∈ I. Since each
valuation function in VA is identified with a marginal valuation vector, we regard VA as the set
of marginal valuation vectors with a typical element vi = (vi1, vi2, . . . , viL) ∈ VA. Let

0L ≡ (0,0, . . . ,0︸     ︷︷     ︸
L times

) ∈ VA,

0 ≡ (0L,0L, . . . ,0L︸          ︷︷          ︸
n times

) ∈ Vn
A .

For each v ∈ Vn
A , denote by v[k] and v−i[k] the k-th highest real numbers among v and v−i,

respectively.
A social choice rule is a function f : VI → A×Rn that maps each valuation profile v ∈ VI

to an outcome f (v) ≡ (a(v), p1(v), . . . , pn(v)) ∈ A × Rn. We introduce three axioms on social
choice rules.

Efficiency. For each v ∈ VI , a(v) ∈ arg max
b∈A

{∑n
j=1 v j(b)

}
.

Individual Rationality. For each i ∈ I and each v ∈ VI , u
(
f (v); vi

)
≥ 0.

Feasibility. For each v ∈ VI ,
∑n

j=1 p j(v) ≥ 0.

For each i ∈ I, let Si be the strategy space of individual i, and let SI ≡ S1 × · · · × Sn. A
strategy profile is an n-tuple of strategies s = (s1, . . . , sn) ∈ SI . A type-strategy si(·) assigns a
strategy si(vi) ∈ Si to each valuation function (type) vi ∈ Vi of individual i.*18 A type-strategy
profile is an n-tuple of type-strategies s = (s1, . . . , sn).

*18Type-strategies are employed to preserve the analogy with the famous revelation principle for strategy-proof
social choice rules (Dasgupta, Hammond, and Maskin 1979) in our definition of G-implementability. See
Definition 2 in Subsection 3.2.2 and Appendix B.
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An outcome function is a function g : SI → A × Rn that maps each strategy profile s ∈ SI

to an outcome g(s) ∈ A × Rn. A mechanism is a pair M = (SI,g) of strategy spaces and an
outcome function. A mechanism M = (SI,g) is a revelation mechanism if SI = VI . Under
a revelation mechanism (VI,g), each individual only needs to report a valuation function
possible for him. Given a mechanism M = (SI,g) and given a valuation function vi ∈ Vi, a
strategy si ∈ Si is a dominant strategy at (M, vi) if for each s−i ∈

∏
j,i Sj and each s′i ∈ Si,

u (g(si, s−i); vi) ≥ u
(
g(s′i, s−i); vi

)
.

The following definition summaries the standard notion of dominant strategy imple-
mentability.

Definition 1. A mechanism and a type-strategy profile (M, s) implements f in dominant
strategies if for each v ∈ VI ,

(i) si(vi) is a dominant strategy at (M, vi) for all i ∈ I,

(ii) f (v) = g
(
(si(vi))i∈I

)
.

A social choice rule f is dominant strategy implementable if there exists (M, s) that
implements f in dominant strategies.

3.2.2 Mechanism Design with a Guess

We introduce a concept of implementation that uses the planner’s “guess" of individual
valuations. A family {Gλ}λ∈Λ of subsets of VI is a list of guesses if

∪
λ∈ΛGλ = VI . Given

a list of guesses {Gλ}λ∈Λ, the planner “guesses" to which Gλ ∈ {Gλ}λ∈Λ the true valuation
profile belongs. In this sense, we call each Gλ ∈ {Gλ}λ∈Λ a guess under a list {Gλ}λ∈Λ. A
guess Gλ ∈ {Gλ}λ∈Λ is correct for a valuation profile v ∈ VI if v ∈ Gλ, otherwise, the guess
Gλ is incorrect for v.

Example 1. The followings are examples of lists of guesses.

• {VI} is a list of guesses, and called the trivial list. Under the trivial list, the planner
needs no information about individual valuations for his guess to be correct.

• {{v}}v∈VI is a list of guesses, and called the finest list. Under the finest list, the planner
needs the full information about individual valuations for his guess to be correct.
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• Consider the auction problem VI = Vn
A . Let G = {v ∈ Vn

A : v[1] ≥ 100} and
G = {v ∈ Vn

A : v[1] < 100}. Then, {G,G} is a list of guesses. Under {G,G}, the
planner only needs to know whether the highest valuation v[1] is greater than 100 or
not.

Given a list of guesses Gλ, our process proceeds as follows: First, the planner determines
his guess Gλ from a given list of guesses {Gλ}λ∈Λ. The guess Gλ may or may not be correct
for the true valuation profile, but the planner tries to do so. Second, the planner announces
a mechanism (depending on his guess), and individuals play a game form determined by the
mechanism. We say that a social choice rule is G-implementable if its outcome becomes a
dominant strategy outcome of a mechanism whenever the planner’s guess is correct.*19

Definition 2. Given a list of guesses {Gλ}λ∈Λ, a set of mechanisms and type-strategy profiles{(
Mλ, sλ

)}
λ∈Λ G-implements f with respect to a list of guesses {Gλ}λ∈Λ if for each λ ∈ Λ

and each v ∈ Gλ,

(i) sλ(vi) is a dominant strategy at
(
Mλ, vi

)
for all i ∈ I,

(ii) f (v) = gλ
( (

sλi (vi)
)
i∈I

)
.

A set of mechanisms
{

Mλ
}
λ∈ΛG-implements f with respect to a list of guesses {Gλ}λ∈Λ if

there exists
{
sλ

}
λ∈Λ such that

{(
Mλ, sλ

)}
λ∈Λ G-implements f with respect to a list of guesses

{Gλ}λ∈Λ. A social choice rule f is G-implementable with respect to {Gλ}λ∈Λ if there exists{
Mλ

}
λ∈Λ that G-implements f with respect to {Gλ}λ∈Λ.*20

To understand the meaning of G-implementation, consider the case where the true valua-
tion profile is v ∈ VI . Suppose that

{(
Mλ, sλ

)}
λ∈Λ G-implements f with respect to {Gλ}λ∈Λ,

and that a guess Gλ ∈ {Gλ}λ∈Λ is correct for v, i.e., v ∈ Gλ. Then, using a mechanism
Mλ ∈

{
Mλ

}
λ∈Λ, whose index is the same as that of Gλ, the equilibrium outcome of

(
Mλ, sλ

)
at v becomes f (v) by definition of G-implementation. Therefore, whenever the planner’s
guess is correct, the outcome of the social choice rule f can be an equilibrium outcome
by using a corresponding mechanism to the correct guess. This is the precise meaning of
G-implementation. Once the planner knows that

{(
Mλ, sλ

)}
λ∈Λ G-implements f with respect

*19Since each Gλ ∈ {Gλ}λ∈Λ may not be a Cartesian product of subsets of Vi , we need to consider indirect
mechanisms. In fact, we cannot define strategy-proofness for social choice rules restricted to Gλ.

*20Note that our interest is in the weak implementation. Nevertheless, all the results in Section 3.3 holds even
if we focus on the full implementation.
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to {Gλ}λ∈Λ, he is only required to determine his guess Gλ and announce a mechanism with
an index the same as Gλ.

The following two facts are the starting point of this study.

Fact 1. For each social choice rule f , the following statements are equivalent:

(i) f is dominant strategy implementable,

(ii) f is G-implementable with respect to the trivial list {VI}.

Fact 2. Any social choice rule f is G-implementable with respect to the finest list {{v}}v∈VI .

In Sections 3.3 and 3.4, we introduce two impossibility results about dominant strategy
implementability of social choice rules. If we face such impossibilities, Fact 1 forces us to
consider a list of guesses other than the trivial list. On the other hand, from Fact 2, we know
that any social choice rule f is G-implementable with respect to the finest list {{v}}v∈VI .
However, under the finest list, the planner needs full information about individual valuations,
which is quite difficult to obtain in many real-life situations. Therefore, we search for a
non-trivial list that requiring less information than the finest list.

Given two lists of guesses {Hκ}κ∈K and {Gλ}λ∈Λ, we denote {Hκ}κ∈K ⊂ {Gλ}λ∈Λ if for
each κ ∈ K , there exists λ(κ) ∈ Λ such that Hκ ⊂ Gλ(κ), and denote {Hκ}κ∈K ⊊ {Gλ}λ∈Λ if
Hκ′ ⊊ Gλ(κ′) holds for some κ′ ∈ K . If {Hκ}κ∈K ⊊ {Gλ}λ∈Λ, then the planner’s guess is easier
under {Gλ}λ∈Λ rather than under {Hκ}κ∈K . This is because given a valuation profile v ∈ VI ,
if the planner knows that v ∈ Hκ, then he automatically knows that v ∈ Gλ(κ). However,
even if the planner knows that v ∈ Gλ(κ), it may not follow that v ∈ Hκ. Hence he may not
know which guess is correct under {Hκ}κ∈K . Therefore, a guess under {Gλ}λ∈Λ requires less
information than {Hκ}κ∈K about individual valuations when {Hκ}κ∈K ⊊ {Gλ}λ∈Λ. One of our
purposes in Sections 3.3 and 3.4 is to find a list of guesses requiring minimal information
about individual valuations among a class of lists of guesses.

Definition 3. A list of guesses {Gλ}λ∈Λ requires minimal information about individual valu-
ations among a class of lists of guesses if there exits no list of guesses {Hκ}κ∈K in this class
such that {Gλ}λ∈Λ ⊊ {Hκ}κ∈K .

We have admitted a list of guesses that is not a partition of VI , but instead covers it. This
is because there would be a case where a non-partitioned list of guesses requires minimal
information about individual valuations among a class of list of guesses. In fact, in Sections
3.3 and 3.4, we provide non-partitioned lists of guesses requiring minimal informations about
individual valuations.
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Figure 2: Intervals of the maximal social surplus (n = 2)

3.3 Public Decision Problem

In this section, we consider the public decision problem where VI = Vn
P . The purpose of this

section is to overcome the following impossibility.

Impossibility Result (Green and Laffont 1977). There exists no social choice rule that is
efficient, individually rational, feasible, and dominant strategy implementable.

We introduce an important class of lists of guesses that divide Vn
P into intervals of the

maximal social surplus. Given a valuation profile v ∈ Vn
P , the maximal social surplus at v is

defined by maxb∈A
∑n

j=1
(
v j(b) − v j(ϕ)

)
. Since we have normalized each vi ∈ Vn

P as vi(ϕ) = 0,
we can rewrite this by maxb∈A

∑n
j=1 v j(b). Note that by the same reason, the maximal social

surplus is always non-negative since ϕ ∈ A. For each positive number r ∈ R++ and each
integer ℓ ∈ Z, let

Gr
ℓ =

v ∈ Vn
P : max

b∈A

n∑
j=1

v j(b) = 0 or r
( n
n − 1

)ℓ−1
< max

b∈A

n∑
j=1

v j(b) ≤ r
( n
n − 1

)ℓ .
Remember that n denotes the number of individuals. For each r ∈ R++ and each ℓ ∈ Z,
Gr
ℓ

is the set of valuation profiles whose maximal social surpluses are zero or in the half-
open interval

(
r( n

n−1 )ℓ−1,r( n
n−1 )ℓ

]
. Figure 2 illustrates such intervals when there are only

two individuals, i.e., n = 2. One can easily check that for each positive number r ∈ R++,
{Gr
ℓ
}ℓ∈Z is a list of guesses, i.e.,

∪
ℓ∈ZGr

ℓ
= Vn

P . Under a list of guesses {Gr
ℓ
}ℓ∈Z, the planner

only needs to know to which half-open interval the maximal social surplus belongs. In this
sense, under {Gr

ℓ
}ℓ∈Z, the planner is required much “less" information than that under the

finest list
{
{v}

}
v∈Vn

P
. Note that the lengths of the intervals of {Gr

ℓ
}ℓ∈Z increase as the number

of individuals decreases, and hence the planner’s guess becomes “easiest" when n = 2. In
Section 3.6, we discuss that a lot of dispute resolution problems are compatible with such a
situation.
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We now define a social choice rule that is efficient, individually rational, feasible, and
G-implementable with respect to our list of guesses {Gr

ℓ
}ℓ∈Z. Let 1ϕ : A → {0,1} be an

indicator function of ϕ ∈ A, that is, 1ϕ(ϕ) = 1, and 1ϕ(b) = 0 for all b ∈ A \ {ϕ}.

Definition 4. A social choice rule f r = (ar, pr
1, . . . , p

r
n) is a mediation rule with a basis

r ∈ R++ if for each v ∈ Vn
P and each i ∈ N ,

(i) ar(v) ∈ arg max
b∈A

n∑
j=1

v j(b),

(ii) pr
i (v) = −

∑
j,i

v j
(
ar(v)

)
− r

( n
n − 1

)ℓ−1
· 1ϕ

(
ar(v)

)
+ r

( n
n − 1

)ℓ−1
if v ∈ Gr

ℓ,

(iii)
[

max
b∈A

n∑
j=1

v j(b) = 0
]
=⇒ ar(v) = ϕ.

Each mediation rule chooses an alternative that maximizes the social surplus. The payment
rule of a mediation rule is equivalent to those of different VCG rules for different intervals
of {Gr

ℓ
}ℓ∈Z. Note that condition (iii) determines the way to break ties especially when the

maximal social surplus is zero. All mediation rules with the same basis are welfare equivalent.
Under a mediation rule f r(v), each individual’s final utility u

(
f r(v); vi

)
becomes a function

of the only maximal social surplus, and it is illustrated by Figure 3.
Theorem 1 states that (i) mediation rules are the only social choice rules that are efficient,

individually rational, feasible, and G-implementable with respect to our list {Gr
ℓ
}ℓ∈Z, and that

(ii) a list of guesses {Gr
ℓ
}ℓ∈Z requires minimal information about individual valuations among

a class of lists of guesses such that some G-implementable social choice rule satisfying the
three properties exists.

Theorem 1. For each positive number r ∈ R++,

(i) a social choice rule f is efficient, individually rational, feasible, and G-implementable
with respect to {Gr

ℓ
}ℓ∈Z if and only if f is a mediation rule with the basis r ,

(ii) if {Gr
ℓ
}ℓ∈Z ⊊ {Gλ}λ∈Λ, then no social choice rule is efficient, individually rational,

feasible, and G-implementable with respect to {Gλ}λ∈Λ.

Proof. See Appendix C. ■

A mediation rule f r is G-implemented by a set of revelation mechanisms under which
reporting the true valuation function is the unique dominant strategy for each individual. In
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Figure 3: Individual i’s final utility under a mediation rule when n = 2

Appendix A, we define such a set of mechanisms, and observe what happens if the planner’s
guess is incorrect.

Let us sketch the proof of Statement (ii) by focusing on the case with n = 2. Without loss
of generality, suppose that there exists Gλ ∈ {Gλ}λ∈Λ such that Gr

0 ⊊ Gλ, that is, Gλ is a super
set of valuation profiles whose social surplusrs are zero or in the interval (1

2r,r]. Then, for
each social choice rule f that is efficient, individually rational, feasible, and G-implementable
with respect to {Gλ}λ∈Λ, we can show that all individual final utilities at v ∈ Gλ are the same
and obtained by Line A of Figure 4 (see Lemma 3; Appendix B). In addition, a social choice
rule f is feasible if and only if each individual’s final utility is below Line B.*21 Then, if there
exists v ∈ Gλ whose maximal social surplus is q, each individual’s final utility becomes less
than zero, contradicting to the aussumption that f is individually rational. On the other hand,
if there exists v ∈ Gλ whose social surplus is q′, then each individual’s final utility is above

*21This is because by efficiency of f , it follows that

n∑
j=1

(
vj(a(v)) + pj(v)

)
= max

b∈A

n∑
j=1

vj(b) +
n∑
j=1

pj(v).

Then, since individual final utilities are symmetric, a social choice rule f is feasible if and only if each individual’s
final utility is below 1

n maxb∈A
∑n

j=1 vj(b).
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Figure 4: Sketch of the proof when n = 2

Line (b), contradicting to the assumption that f is feasible.
For each ℓ ∈ Z, let Gr

ℓ
be the closure of Gr

ℓ
, that is,

Gr
ℓ
=

v ∈ Vn
P : max

b∈A

n∑
j=1

v j(b) = 0 or r
( n
n − 1

)ℓ−1
≤ max

b∈A

n∑
j=1

v j(b) ≤ r
( n
n − 1

)ℓ .
Corollary 1 states that each Gr

ℓ
∈ {Gr

ℓ
}ℓ∈Z is large enough to guarantee that no list of guesses

can include superset of Gr
ℓ

in order to G-implement a social choice rule that is efficient,
individually rational, and feasible.

Corollary 1. For each positive number r ∈ R++ and each list of guesses {Gλ}λ∈Λ, if there
exists Gλ ∈ {Gλ}λ∈Λ such that Gr

ℓ
⊊ Gλ for some ℓ ∈ Z, then no social choice rule is efficient,

individually rational, feasible, and G-implementable with respect to {Gλ}λ∈Λ.

Proof. Immediately follows from Proof of Statement (ii) of Theorem 1 in Appendix C. ■

Corollary 2 shows the reason we consider the half-open intervals of the maximal social
surplus in our list of guesses {Gr

ℓ
}ℓ∈Z. It states that if we add the left-hand endpoint of the

half-open interval
(
r( n

n−1 )ℓ−1,r( n
n−1 )ℓ

]
to Gr

ℓ
, then each individual’s final utility must decrease.
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Corollary 2. For each positive number r ∈ R++ and each list of guesses {Gλ}λ∈Λ, if there
exists Gλ ∈ {Gλ}λ∈Λ such that Gr

ℓ
⊊ Gλ ⊂ Gr

ℓ
for some ℓ ∈ Z, then for each mediation rule

f r and each social choice rule f satisfying efficiency, individual rationality, feasibility, and
G-implementability with respect to {Gλ}λ∈Λ, the following statement holds: for each i ∈ I

and each v ∈ Gλ,
u
(
f r(v); vi

)
≥ u

(
f (v); vi

)
,

strict inequality holding for all v′ ∈ Gλ \ Gr
ℓ
.

Proof. Immediately follows from Lemma 3 in Appendix C. ■

Theorem 1 and Corollaries 1 and 2 have both positive and negative implications. On the
one hand, these three results imply that if the planner can obtain enough information about
the maximal social surplus, then mediation rules can be implemented in dominant strategies.
On the other hand, these results also imply that if the planner cannot obtain such information,
then he cannot implement social choice rules with the set of desirable properties. Therefore,
our results determine the boundary between the possibility and impossibility of implementing
social choice rules.

3.4 Auction Problem with Homogeneous Goods

In this section, we consider the auction problem where VI = Vn
A . To begin with, we introduce

some definitions.

Definition 5. A social choice rule f = (a, p) generates a higher revenue than another social
choice rule f ′ = (a′, p′) if

n∑
j=1

p j(v) ≥
n∑

j=1
p′j(v) for all v ∈ Vn

A,

strict inequality holding for at least one v′ ∈ Vn
A , and a lower revenue if the opposite holds.

Definition 6. A social choice rule f = (a, p) is a Vickrey auction if

(i) for each v ∈ Vn
A and each i ∈ I, ai(v) > 0 implies that viai(v) ≥ v[L],

(ii) for each v ∈ Vn
A and each ℓ ≤ L, v[ℓ] > 0 implies that

∑n
j=1 a j(v) ≥ ℓ,

(iii) for each v ∈ Vn
A and each i ∈ I,

pi(v) =
L∑

ℓ=L−ai(v)+1
v−i[ℓ].
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Note that all Vickrey auctions generate the same revenue. The purpose of this section is
to find a social choice rule that generates higher revenue than those of Vickrey auctions. In
other words, our purpose is to overcome the following impossibility, which we reinterpret
results by Vickrey (1961) and Holmström (1978).

Impossibility Result (Vickrey 1961, Holmström 1978). All auction rules satsfying efficiency,
individual rationality, and dominant strategy implementability generate lower revenue than
those of Vickrey auctions.

For each L-dimensional vector r = (r1, . . . ,rL) ∈ VA, let

Gr
0 ≡

{
v ∈ Vn

A : v[1] ≥ r1, v[2] ≥ r2, . . . , v[L] ≥ rL
}
,

Gr
1 ≡ Vn

A \ Gr
0 .

Here, Gr
0 is the set of valuation profiles whose first L-th highest valuations are grater than

those of a given vector r , and Gr
1 is the complement of it. Then,

{
Gr

0,G
r
1
}

is a list of guesses.
Under

{
Gr

0,G
r
1
}
, the planner (or auctioneer) only needs to guess whether each k-th highest

valuation v[k] exceeds the k-th coordinate rk of the given vector r .
We next introduce an important class of social choice rules, called Vickrey auctions with

cutoff reserve prices. For each reserve price r = (r1, . . . ,rL) ∈ VA and each v−i ∈ Vn−1
A , we say

that v−i[1] blocks the k-th coordinate rk of r if rk is the first coordinate such that v−i[1] ≥ rk ,
and v−i[2] blocks the k-th coordinate rk if rk is the first coordinate not blocked by v−i[1] such
that v−i[2] ≥ rk . More generally, we say that v−i[ℓ] blocks the k-th coordinate rk if rk is the
first coordinate not blocked by any v−i[ℓ′] with ℓ′ < ℓ such that v−i[ℓ] ≥ rk . Each coordinate
rk ∈ {r1, . . . ,rL} is said to be effective at v−i ∈ Vn−1

A if rk is not blocked by any v−i[ℓ] with
ℓ ≤ L. Let E r (v−i) ⊂ {r1, . . . ,rL} be the set of effective coordinates of r ∈ VA at v−i ∈ Vn−1

A .
For example, if L = 3 and r1 > v−i[1] > v−i[2] = v−i[3] > r2 > r3, then v−i[1] blocks r2,
v−i[2] blocks r3, v−i[3] blocks nothing, and hence E r (v−i) = {r1}. Let E r (v−i)[k] be the k-th
highest element among E r (v−i).

Definition 7. A social choice rule f = (a, p) is a Vickrey auction with a cutoff reserve price
r ∈ VA if

(i) for each v ∈ Vn
A and each i ∈ I, ai(v) > 0 implies that viai(v) ≥ v[L],

(ii) for each v ∈ Vn
A and each ℓ ≤ L, v[ℓ] > 0 implies that

∑n
j=1 a j(v) ≥ ℓ,
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vi1 vi2 vi3 vi4 vi5

i = 1 200 150 90 50 20
i = 2 140 100 60 30 10
i = 3 100 60 30 20 10

Table 1: Marginal valuation vectors of the three bidders

(iii) for each v ∈ Vn
A and each i ∈ I,

pi(v) =

∑L−|Er (v−i)|
ℓ=L−ai(v)+1 v−i[ℓ] +

∑
rℓ∈Er (v−i) rℓ if v ∈ Gr

0,∑L
ℓ=L−ai(v)+1 v−i[ℓ] if v ∈ Gr

1 .

A Vickrey auction with a cutoff reserve price imposes a reserve price to a valuation profile
if the valuation profile belongs to Gr

0, and otherwise it is equivalent to a Vickrey auction.
The next example shows that Vickrey auctions with cutoff reserve prices may generate

much higher revenues than those of Vickrey auctions.

Example 2. Consider a situation in which there are three bidders and five objects to be
allocated. Each bidder i ∈ {1,2,3} has a marginal valuation vector vi = (vi1, . . . , vi5) as
illustrated in Table 1. For example, bidder 1’s marginal valuation for the first object is
v11 = 200, and that for the second object is v12 = 150. Then, under an efficient social
choice rule, bidders 1 and 2 obtain two objects, and bidder 3 obtains one object. For this
valuation profile, a Vickrey auction f = (a, p) generates a revenue p1(v) + p2(v) + p3(v) =
120 + 150 + 90 = 360. Now, let us compute the revenue of a Vickrey auction f r = (ar, pr )
with a cutoff reserve price r = (170,130,120,80,80).*22 Since v−1[1] = 140, v−1[2] = 100
and v−1[3] = 100 block r2 = 130, r4 = 80 and r5 = 80, respectively, and the others block
nothing, the set of effective coordinates of r at v−1 is E r (v−1) = {r1,r3} = {170,120}. In
addition, since v[k] ≥ rk for all k ≤ L, v = (v1, v2, v3) ∈ Gr

0. Thus, bidder 1’s payment
under f r is pr

1(v) = r1 + r3 = 170 + 120 = 290. By a similar argument, we can check that
E r (v−2) = {r3} = {120}, E r (v−3) = ∅, and hence pr

2(v) = r3 + v−2[4] = 120 + 90 = 210,
pr

3(v) = v−3[5] = 90. Therefore, the Vickrey auction f r with the cutoff reserve price r

generates a revenue pr
1(v) + pr

2(v) + pr
3(v) = 590. This revenue is much higher than those of

Vickrey auctions.

The following Lemma is a preliminary result to our second main theorem.
*22In Section 3.5, we discuss how to choose a cutoff reserve price.
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Lemma 1. For each Vickrey auction f r with a cutoff reserve price r ∈ VA,

(i) f r is efficient, individually rational, and G-implementable with respect to
{
Gr

0,G
r
1
}
,

(ii) f r generates a higher revenue than any other social choice rule satisfying efficiency,
individual rationality, and G-implementability with respect to

{
Gr

0,G
r
1
}
.

Proof. See Appendix. ■

Consider any Vickrey auction f r with a cutoff reserve price r ∈ VA. Then, by Lemma
1, f r is G-implementable with respect to

{
Gr

0,G
r
1
}
. However, when L ≥ 2, there still exists

a list of guesses under which the planner is required the less information than
{
Gr

0,G
r
1
}

to
G-implement f r . Let T r

i ⊂ Vn
A be such that v ∈ T r

i if and only if v ∈ Gr
0 and for each v′i ∈ VA

with (v′i , v−i) ∈ Gr
1,

u ( f r (vi, v−i); vi) ≥ u
(
f r (v′i , v−i); vi

)
.

If L = 1, T r
i is empty, otherwise it is non-empty. Let T r ≡ ∩n

i=1 T r
i , Ĝr

0 ≡ Gr
0 ∪ {0},

and Ĝr
1 ≡ Gr

1 ∪ T r .*23 Then, {Ĝr
0, Ĝ

r
1} is a list of guesses. Note that since T r ⊂ Ĝr

0 and
T r ⊂ Ĝr

1, if the true profile v is in T r , the planner’s guess is always correct under {Ĝr
0, Ĝ

r
1}.

Theorem 2 states that a list of guesses {Ĝr
0, Ĝ

r
1} requires minimal information about individual

valuations among a class of lists of guesses such that some social choice rule satisfying the
three properties generates at least the same revenue as that of f r .

Theorem 2. For each Vickrey auction f r with a cutoff reserve price r ∈ VA,

(i) f r is efficient, individually rational, G-implementable with respect to {Ĝr
0, Ĝ

r
1},

(ii) f r generates a higher revenue than any other social choice rule satisfying efficiency,
individual rationality, and G-implementability with respect to {Ĝr

0, Ĝ
r
1},

(iii) if {Ĝr
0, Ĝ

r
1} ⊊ {Gλ}λ∈Λ, then f r is no longer G-implementable with respect to {Gλ}λ∈Λ.

Proof. See Appendix. ■

A Vickrey auction with a cutoff reserve price is G-implemented by a set of revelation
mechanisms under which reporting the true valuation function is a dominant strategy for each
individual. In Appendix A, we define such a set of mechanisms.

*23Definitions of Tr
i and Tr are independent of the selection of Vickrey auction f r with a cutoff reserve price

r ∈ VA. In other words, we can explicitly define Tr
i and Tr without using f r . Here, we adopt the above implicit

definition to avoid complexity.
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3.5 Discussion

3.5.1 How to Choose a Basis r ∈ R++ in Public Decision Problem

In Section 3.3, we showed that for each basis r ∈ R++, mediation rules with the basis r are the
only social choice rules that are efficient, individually rational, feasible, and G-implementable
with respect to our list {Gr

ℓ
}ℓ∈Z. However, in a real-use situation of such social choice rules,

the planner needs to determine a basis r ∈ R++ of those rules. In this subsection, we introduce
a practical way to choose such r ∈ R++. Consider a situation in which the true valuation
profile is v ∈ Vn

P . We focus on a case where the maximal social surplus at v is positive, i.e.,
maxb∈A

∑n
j=1 v j(b) > 0, since the choice of r ∈ R++ is irrelevant to the outcomes of mediation

rules when the maximal social surplus is 0. First, we note that a simple way for the planner
to choose a positive number r ∈ R++ would be trying to choose r ∈ R++ so that the following
inequality holds:

n − 1
n

r < max
b∈A

n∑
j=1

v j(b) ≤ r . (3.71)

This is because if the planner chooses such r ∈ R++ successfully, then the guess Gr
0 ∈ {Gr

ℓ
}ℓ∈Z

becomes correct one. Therefore, in such a case, the planner’s guess can be automatically
correct by selecting Gr

0 as his guess.*24 In other words, we can replace the planner’s “guess
problem” with the choice problem of r ∈ R++ satisfyiung equation (3.71).

Next, we compare performances of mediation rules with different bases satisfying equation
(3.71). Consider a basis r ∈ R++ satisfying equation (3.71), and let f r be a mediation rule
with the basis r . Then, by definition of f r , each individual’s final utility under f r at the true
valuation profile v is

max
b∈A

n∑
j=1

v j(b) −
n − 1

n
r .

Therefore, within a class of bases satisfying equation (3.71), everyone’s final utility increases
as the basis r gets smaller and is maximized at r = maxb∈A

∑n
j=1 v j(b). This argument implies

that even if the planner does not know the true valuation profile v, he should try to choose
a basis r ∈ VA as close as possible to the maximal social surplus maxb∈A

∑n
j=1 v j(b), while

guaranteeing equation (3.71).

*24Note that for each basis r ∈ R++, there exists a basis r ′ ∈ R++ such that equation (3.71) holds and mediation
rules with the basis r are equivalent to those with r ′. Similarly, any list of guesses {Gr

ℓ }ℓ∈Z is equivalent to some
{Gr′

ℓ }ℓ∈Z with a basis r ′ ∈ R++ satisfying equation (3.71) (see Figure 2).
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3.5.2 How to Choose a Reserve Price r ∈ VA in Auction Problem

In Section 3.4, we showed that for each reserve price r ∈ VA, a Vickrey auction f r with the
cutoff reserve price r generates the highest revenue among a class of social choice rules that
are G-implementable with respect to {Ĝr

0, Ĝ
r
1}. Now, let us compare performances of Vickrey

auctions with different reserve prices. Suppose that v ∈ Vn
A is the true valuation profile. First,

consider the case where the planner chooses a reserve price r ∈ VA such that v[k] ≥ rk for all
k ≤ L. Then, by definition of a Vickrey auction f r with the cutoff reserve price r , its revenue
at v becomes weakly higher than that of Vickrey auctions. Next, consider the case where the
auctioneer chooses a reserve price r ∈ VA such that v[k] < rk for some k ≤ L. Then, the
revenue of Vickrey auctions with the cutoff reserve price r at the true valuation profile v is the
same as those of Vickrey auctions. Overall, we can conclude that the revenue at the former
case is higher than that at the latter case. In addition, focusing on the former case, the revenue
of a Vickrey auction with a cutoff reserve price at v increases as its reserve price increases,
and the revenue is maximized when the reserve price is r = (v[1], v[2], . . . , v[L]). Therefore,
even if the auctioneer does not know the true valuation profile v, he is required to choose a
reserve price r ∈ VA as high as possible, while guaranteeing that v[k] ≥ rk for all k ≤ L.

3.6 Conclusion

We have considered the problem of implementing social choice rules by using the planner’s
“guess" of individual preferences. We introduced the concept of G-implementability and ap-
plied it to public decision and auction problems. For both problems, we characterized social
choice rules satisfying some desirable properties, and found lists of guesses requiring minimal
information about individual preferences. Our result about the public decision problem (The-
orem 1) characterizes a class of social choice rules satisfying efficiency, individual rationality,
feasibility, and G-implementability. This result seems mostly applicable to dispute resolu-
tions, such as border disputes, commercial disputes or civil disputes. There are essentially
two reasons for this. The first reason is related to the importance of individual rationality.
Individual rationality would be less important if the planner could force individuals to follow
his decision and not need to consider any participation constraint. However, in many dispute
resolution processes outside the courts (e.g., the mediation in alternative dispute resolution
processes), disputants often have the right to reject an agreement. Therefore, individual ra-
tionality is rather important so that everyone voluntarily accepts the outcomes of the social
choice rule. The second reason is related to the number of individuals included in the public
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decision problem. In the case of dispute resolution problems, it is natural to consider that the
number of individuals is small. Then, the planner’s guess becomes relatively “easy” under
our interval-based list of guesses because each of our list’s interval length increases as the
number of individuals decreases. Our result about the auction problem (Theorem 1) provides
the ex-post revenue maximizing auction rules that are efficient, individually rational, and
G-implementable. This result is applicable to many real-life auctions (e.g., treasury bills or
radio spectrum). Studying an environment other than ours remains an area for future research.

Appendix A: Mechanisms that G-implement Our Social Choice Rules

Even if a social choice rule is G-implementable, one may wonder what kind of mechanisms
G-implement that rule. If the strategy space SI of a mechanism M = (SI,g) has some
undesirable feature, such as infinite-dimensionality, then it is difficult to justify the use of such
a mechanism (Dutta, Sen, and Vohra 1995, Saijo, Tatamitani and Yamato 1996). In addition,
it is also important in our model to confirm what outcome is chosen when the planner’s guess
is incorrect. Therefore, in this Appendix we introduce revelation mechanisms; SI = VI , with
which dominant strategy outcomes become not so “bad” even when the planner’s guess is
incorrect.

Public Decision Problem

First, we introduce a set of revelation mechanisms that G-implements a mediation rule f r =

(ar, pr
1, . . . , p

r
n). For each ℓ ∈ Z, let Mℓ = (Vn

P ,g
ℓ) be a revelation mechanism such that for

each v ∈ Vn
P and each i ∈ N , the outcome function gℓ = (dℓ, tℓ1, . . . , t

ℓ
n) takes the form of

dℓ(v) ∈ arg max
b∈{ar (v),ϕ}

{ n∑
j=1

v j(b) + r
( n
n − 1

)ℓ−1 · 1ϕ(b)
}
,

tℓi (v) = −
∑
j,i

v j
(
dℓ(v)

)
− r

( n
n − 1

)ℓ−1 · 1ϕ
(
dℓ(v)

)
+ r

( n
n − 1

)ℓ−1
. (3.72)

Note that under a revelation mechanism (Vn
P ,g
ℓ), each individual can report any valuation

function vi ∈ VP. An outcome function gℓ chooses the alternative ar(v) if the social surplus
at ar(v) exceeds r

( n
n−1

)ℓ−1.*25 A way to breaking ties is determined arbitrarily. In Proof of
Theorem 1, we show that a set of revelation mechanisms {Mℓ}ℓ∈ZG-implements the mediation
rule f r with respect to {Gr

ℓ
}ℓ∈Z.

*25Remember that we normalize each vi(ϕ) as zero.
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Next, we observe what alternative is chosen when the planner’s guesses is incorrect.
Consider a situation in which the true valuation profile is v ∈ Vn

P , and the planner’s guess is
Gr
ℓ
∈ {Gr

ℓ
}ℓ∈Z. Under the revelation mechanism Mℓ, reporting the true valuation function is

always the unique dominant strategy for each individual regardless of whether the guess is
correct or incorrect. Now suppose that the planner’s guess is incorrect, i.e., v < Gr

ℓ
. Then,

there are two cases. First case is that the true maximal social surplus is less than r
(

n
n−1

)ℓ−1
,

that is,

0 < max
b∈A

n∑
j=1

v j(b) ≤ r
( n
n − 1

)ℓ−1
.

Then, the mechanism Mℓ may assign the status quo ϕ, which is inefficient to v, but its outcome
is always individually rational and feasible one. Second case is that the true maximal social

surplus exceeds r
(

n
n−1

)ℓ
, that is,

r
( n
n − 1

)ℓ
< max

b∈A

n∑
j=1

v j(b).

Then, the mechanism Mℓ assigns an individually rational and efficient, but infeasible outcome
to v.

Auction Problem

We define a set of revelation mechanisms that G-implements a Vickrey auction f r =

(ar, pr
1, . . . , p

r
n) with a reserve price r ∈ VA.

For each v ∈ Vn
A , each pi ∈ R, and each k ≤ L, let

û (k, pi; vi) ≡
k∑
ℓ=1

viℓ − pi .

Here, û (k, pi; vi) denotes individual i’s utility of obtaining k objects with the payment pi. Let
g0 = (d0, t0

1, . . . , t
0
n) be an outcome function g0 : Vn

A → A × Rn such that for each i ∈ I and
each v ∈ Vn

A ,

(i)
∑n

j=1 d0
j (v) ≤ L,

(ii) if v ∈ Ĝr
0, then d0

i (v) = ar
i (v),

(iii) if v ∈ Ĝr
1, then d0

i (v) ∈ min
{
arg max

k≤L
û
(
k, t̂0

i (k, v−i); vi

)}
,
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vi1 vi2 vi3

i = 1 60 50 25
i = 2 40 35 15

Table 2: Marginal valuation vectors of two bidders

(iv) t0
i (v) = t̂0

i

(
d0

i (v), v−i
)
,

where

t̂0
i (k, v−i) ≡


∑|Er (v−i)|
ℓ=|Er (v−i)|−k+1 E r (v−i)[ℓ] if k ≤ |E r (v−i)|,∑L−|Er (v−i)|
ℓ=L−k+1 v−i[ℓ] +

∑
rℓ∈Er (v−i) rℓ if |E r (v−i)| < k .

In the above definition, t̂0
i (k, v−i) denotes individual i’s payment under g0 when he obtains k

objects. If v ∈ Ĝr
0, then the outcome function g0 chooses the same outcome as that of f r .

If v ∈ Ĝr
1, then the outcome function g0 assigns to each individual a number of objects that

maximizes his utility given a payment rule t̂0
i . In Proof of Theorem 2, we show that g0 is a

well-defined outcome function.*26

Example 3. Consider a situation in which there are two bidders and three objects to be
allocated. Each bidder i ∈ {1,2} has a marginal valuation vector vi = (vi1, vi2, vi3) as illustrated
in Table 2. Suppose that r = (70,30,10). Then, E r (v−1) = E r (v−2) = {70} and v ∈ Ĝr

1. Let us
compute Bidder 1’s assignment under g0. We can confirm that t̂0

i (0, v−1) = 0, t̂0
i (1, v−1) = 70,

t̂0
i (2, v−1) = 35 + 70 = 105, and t̂0

i (3, v−1) = 40 + 35 + 70 = 145. Thus, û
(
0, t̂0

i (0, v−1); vi
)
=

0, û
(
1, t̂0

i (1, v−1); vi
)
= 60 − 70 = −10, û

(
2, t̂0

i (2, v−1); vi
)
= 60 + 50 − 105 = 5, and

û
(
3, t̂0

i (3, v−1); vi
)
= 60 + 50 + 25 − 145 = −10. Among them, û is maximized when

Bidder 1 obtains two objects. Therefore, he obtains two objects and pays t̂0
i (2, v−1) = 105.

Bidder 2’s assignment under g0 can be similarly computed; since û
(
0, t̂0

i (0, v−2); vi
)
= 0,

û
(
1, t̂0

i (1, v−2); vi
)
= 40 − 70 = −30, û

(
2, t̂0

i (2, v−2); vi
)
= 40 + 35 − 120 = −45, and

û
(
3, t̂0

i (3, v−1); vi
)
= 40 + 35 + 25 − 180 = −80, Bidder 2 obtains nothing.

Let g1 = (d1, t1
1, . . . , t

1
n) be an outcome function g1 : Vn

A → A×Rn such that for each i ∈ I

and each v ∈ Vn
A ,

(i) d1
i (v) =


ar

i (v) if v ∈ Gr
1 ∪ T r

i ,

min
{
ar

i (v),max{ar
i (v′i , v−i) : (v′i , v−i) ∈ Gr

1}
}

otherwise,

*26To show this, it suffices to confirm that Conditions (i), (ii), and (iii) are compatible. We also show that g0

has a property such that for each individual i ∈ I with d0
i (v) > 0, vid0

i (v)
≥ v[L].
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(ii) t1
i (v) =


pr

i (v) if v ∈ Gr
1 ∪ T r

i∑L
ℓ=L−d1

i (v)+1 v−i[ℓ] otherwise,

By definition of T r
i , if v < T r

i , then E r (v−i) , ϕ, and hence there exists v′i ∈ VA such that
(v′i , v−i) ∈ Gr

1. Therefore, the function d1
i is well-defined. Since T r ⊂ T r

i , if v ∈ Ĝr
1, then

the outcome function g1 chooses the same outcome as that of f r . Otherwise, g1 assigns to
each individual a number of objects so that she does not have an incentive to misrepresenting
her valuation as v′i ∈ VA with (v′i , v−i) ∈ Gr

1. In Proof of Theorem 2, we show that a set of
revelation mechanisms

{
(Vn

L ,g
0), (Vn

L ,g
1)
}

G-implements f r with respect to {Ĝr
0, Ĝ

r
1}.

Example 4. Consider the situation of Example 3. Suppose that r = (40,35,35). Then,
E r (v−1) = E r (v−2) = {35} and v ∈ Gr

0. Let us compute Bidder 1’s assignment under g1.
First, let us confirm that v < T r

1 . Suppose that Bidder 1 misreports his valuation as v′1 ∈ VA

such that 35 > v′11 > 15. Then, by definition of Gr
1, (v′1, v2) ∈ Gr

1. In addition, by efficiecy
of f r , ar

i (v′1, v2) = 1. Since (v′1, v2) ∈ Gr
1, pr

i (v′1, v2) becomes the Vickrey payment 15.
Thus, Bidder 1’s final utility at f r (v′1, v2) becomes 60 − 15 = 45. On the other hand, under
truth telling, Bidder 1’s final utility at f r (v1, v2) is 60 + 50 − (35 + 35) = 40. Therefore,
f r (v′1, v2) > f r (v1, v2), and hence v < T r

1 . Next, consider any v′1 ∈ VA such that (v′1, v2) ∈ Gr
1.

Then, by definition of Gr
1, 35 > v′11. Furthermore, since f r is efficient, ar

i (v′i , v−i) is maximized
to be 1 when v′11 > 15. Therefore, under g1, Bidder 1 obtains only one object and pays 15.
Similarly, we can confirm that under g1, Bidder 2 obtains one object and pays 25.

Let us observe what outcome is chosen when the planner’s guesses is incorrect. Consider a
situation where the true valuation profile is v ∈ Vn

A , and the planner’s guess is Ĝr
h ∈ {Ĝr

0, Ĝ
r
1}.

Then, it can be shown that under the revelation mechanism (Vn
L ,g

h), reporting the true
valuation function is a dominant strategy for each individual regardless of whether the guess
is correct or not. In addition, even when the planner’s guess is incorrect, i.e., v < Ĝr

h, the
dominant strategy outcome under (Vn

L ,g
h) becomes individually rational one. In this sense,

even when the planner’s guess is incorrect, the dominant strategy outcomes of above revelation
mechanisms

{
(Vn

L ,g
0), (Vn

L ,g
1)
}

are not so bad.

Appendix B: Revelation Principle for G-implementable Social Choice
Rules

Here, we develop an analogous result to the revelation principle for strategy-proof social
choice rules.
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Lemma 2. If a social choice rule f : VI → A × Rn is G-implementable with respect to a
list of guesses {Gλ}λ∈Λ, then for any i ∈ N , any λ ∈ Λ, any v ∈ Gλ, and any v′i ∈ VI with
(v′i , v−i) ∈ Gλ,

u ( f (vi, v−i); vi) ≥ u
(
f (v′i , v−i); vi

)
.

Proof. Suppose that f = (a, p) : VI → A × Rn is G-implementable with respect to {Gλ}λ∈Λ.
Then, there exists

{(
Mλ, sλ

)}
λ∈Λ that G-implements f with respect to {Gλ}λ∈Λ. Take any

i ∈ N , any λ ∈ Λ, any v ∈ Gλ, and any v′i ∈ VI with (v′i , v−i) ∈ Gλ. Note that by definition of
G-implementation, sλi (vi) is a dominant strategy at (Mλ, vi). Then,

u ( f (vi, v−i); vi) = u
(
g

(
sλi (vi), (sλj (v j)) j,i

)
; vi

)
≥ u

(
g

(
sλi (v′i ), (sλj (v j)) j,i

)
; vi

)
= u

(
f (v′i , v−i); vi

)
.

■

Appendix C: Proof of Theorem 1

Let

H0 =
v ∈ Vn

P : max
b∈A

n∑
j=1

v j(b) = 0
 .

Before starting, we prepare the following lemma.

Lemma 3. Consider a list of guesseses {Gλ}λ∈Λ such that {Gr
ℓ
}ℓ∈Z ⊂ {Gλ}λ∈Λ. If a social

choice rule f = (a, p) is efficient, individually rational, feasible, and G-implementable with
respect to {Gλ}λ∈Λ, then for each Gλ(ℓ) ∈ {Gλ}λ∈Λ such that Gr

ℓ
⊂ Gλ(ℓ) for some ℓ ∈ Z,

pi(v) = −
∑
j,i

v j
(
a(v))

)
+ r

( n
n − 1

)ℓ−1 for all i ∈ I and v ∈ Gλ(ℓ) \ H0.

Proof. Suppose that a social choice rule f = (a, p) is efficient, individually rational, feasible,
and G-implementable with respect to {Gλ}λ∈Λ such that {Gr

ℓ
}ℓ∈Z ⊂ {Gλ}λ∈Λ. Take any

Gλ(ℓ) ∈ {Gλ}λ∈Λ such that Gr
ℓ
⊂ Gλ(ℓ) for some ℓ ∈ Z.

Step 1: Let us show that for any i ∈ N , any v ∈ Gλ(ℓ), and any v′i ∈ VP with (v′i , v−i) ∈
Gλ(ℓ), if a(vi, v−i) = a(v′i , v−i), then pi(vi, v−i) = pi(v′i , v−i). Take any i ∈ N . Suppose,
by contradiction, that there exists v ∈ Gλ(ℓ) and v′i ∈ VP with (v′i , v−i) ∈ Gλ(ℓ) such that
a(vi, v−i) = a(v′i , v−i) and pi(vi, v−i) , pi(v′i , v−i). Without loss of generality, we consider the
case with pi(vi, v−i) > pi(v′i , v−i). Then,

u ( f (vi, v−i); vi) = vi
(
a(vi, v−i)

)
− pi(vi, v−i) < vi

(
a(v′i , v−i)

)
− pi(v′i , v−i) = u

(
f (v′i , v−i); vi

)
,
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a contradiction to Lemma 2.

Step 2. Let us show that for any i ∈ N and any v ∈ Gλ(ℓ) \ H0,

pi(v) ≤ −
∑
j,i

v j
(
a(v)

)
+ r

( n
n − 1

)ℓ−1
.

Take any i ∈ N . For each v ∈ Gλ(ℓ) \ H0, let

hi(v) ≡ −pi(v) −
∑
j,i

v j
(
a(v)

)
+ r

( n
n − 1

)ℓ−1
.

It suffices to show that for any v ∈ Gλ(ℓ) \ H0,

hi(v) ≥ 0.

Suppose, by contradiction, that there exists v ∈ Gλ(ℓ) \ H0 such that

hi(v) < 0.

Since v < H0, by efficiency of f , a(v) , ϕ. Let ϵ > 0 be such that

ϵ = min
{
− 1

2
hi(v),r

( n
n − 1

)ℓ − r
( n
n − 1

)ℓ−1
}
.

Let v′i ∈ VP be such that

v′i (b) =


0 if b = ϕ,

−∑
j,i v j

(
a(v)

)
+ r

( n
n−1

)ℓ−1
+ ϵ if b = a(v),

−∑
j,i v j(b) otherwise.

Then,

v′i (b) +
∑
j,i

v j(b) =


r
( n

n−1
)ℓ−1
+ ϵ if b = a(v),

0 if b , a(v).

Note that by definition ϵ , (v′i , v−i) ∈ Gr
ℓ
\ H0 ⊂ Gλ(ℓ) \ H0. Moreover, by efficiency of f ,

a(v′i , v−i) = a(v).

Therefore, by Step 1, pi(v′i , v−i) = pi(vi, v−i), and hence

hi(v′i , v−i) = hi(vi, v−i) < 0.
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Then,

v′i
(
a(v′i , v−i)

)
− pi(v′i , v−i) = v′i

(
a(v′i , v−i)

)
+

∑
j,i

v j
(
a(v′i , v−i)

)
− r

( n
n − 1

)ℓ−1
+ hi(v′i , v−i)

= r
( n
n − 1

)ℓ−1 − r
( n
n − 1

)ℓ−1
+ hi(v′i , v−i) + ϵ

= hi(v′i , v−i) + ϵ

≤ hi(v′i , v−i) −
1
2

hi(vi, v−i) =
1
2

hi(vi, v−i) < 0,

a contradiction to individual rationality of f .

Step 3. Let us show that for any i ∈ N and any v ∈ Gλ(ℓ) \ H0,

pi(v) = −
∑
j,i

v j
(
a(v)

)
+ r

( n
n − 1

)ℓ−1
.

Take any i ∈ N . It suffices to show that for any v ∈ Gλ(ℓ),

hi(v) = 0.

Suppose, by contradiction, that there exists v ∈ Gλ(ℓ) \ H0 such that

hi(v) , 0.

Then, by Step 2, hi(v) > 0.
Since v < H0, by efficiency of f , a(v) , ϕ. Let v′i ∈ V be such that

v′i (b) =


0 if b = ϕ,

−∑n
j,i v j

(
a(v)

)
+ r

( n
n−1

)ℓ if b = a(v),

−∑n
j,i v j(b) otherwise.

Then, by definition of v′i , (v′i , v−i) ∈ Gr
ℓ
\ H0 ⊂ Gλ(ℓ) \ H0. Moreover, by efficiency of f ,

a(v′i , v−i) = a(v).

Therefore, by Step 1, pi(v′i , v−i) = pi(vi, v−i), and hence

hi(v′i , v−i) = hi(vi, v−i) > 0.

Noting that, from Step 2, h j(v′i , v−i) ≥ 0 for all j ∈ N ,
n∑

j=1
p j(v′i , v−i)
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= −(n − 1)
(
v′i

(
a(v′i , v−i)

)
+

n∑
j,i

v j
(
a(v′i , v−i)

) )
+ nr

( n
n − 1

)ℓ−1 − hi(v′i , v−i) −
∑
j,i

h j(v′i , v−i)

≤ −(n − 1)
(
v′i

(
a(v′i , v−i)

)
+

n∑
j,i

v j
(
a(v′i , v−i)

) )
+ nr

( n
n − 1

)ℓ−1 − hi(v′i , v−i)

= −(n − 1)
(
v′i

(
a(vi, v−i)

)
+

n∑
j,i

v j
(
a(vi, v−i)

) )
+ nr

( n
n − 1

)ℓ−1 − hi(v′i , v−i)

< −(n − 1)r
( n
n − 1

)ℓ
+ nr

( n
n − 1

)ℓ−1 − hi(v′i , v−i)

= −hi(v′i , v−i) < 0,

a contradiction to feasibility of f . ■

Proof of Statement (i) of Theorem 1:
“If" part. Let f r = (ar, pr) be a VCG rule with a basis r ∈ R++. Obviously, f r satisfies

efficiency. Let us show that f r satisfies individual rationality, feasibility, G-implementability
with respect to {Gr

ℓ
}ℓ∈Z.

Individual rationality. Take any v ∈ Vn
P . Then, there exists ℓ ∈ Z such that v ∈ Gr

ℓ
, that

is,

max
b∈A

n∑
j=1

v j(b) = 0 or r
( n
n − 1

)ℓ−1
< max

b∈A

n∑
j=1

v j(b) ≤ r
( n
n − 1

)ℓ
.

Consider the case with maxb∈A
∑n

j=1 v j(b) = 0. Then, by definition of f r , ar(v) = ϕ, and
hence

u( f r(v); vi) = vi
(
ar(v)

)
− pr

i (v) =
n∑

j=1
v j

(
ar(v)

)
+ r

( n
n − 1

)ℓ−1
· 1ϕ

(
ar(v)

)
− r

( n
n − 1

)ℓ−1

= max
b∈A

n∑
j=1

v j(b) + r
( n
n − 1

)ℓ−1
− r

( n
n − 1

)ℓ−1
= 0.

Next, consider the case with r
( n

n−1
)ℓ−1
< maxb∈A

∑n
j=1 v j(b) ≤ r

( n
n−1

)ℓ. Then, by effi-
ciency of f r , ar(v) , ϕ, and hence

u( f r(v); vi) = vi
(
ar(v)

)
− pr

i (v) =
n∑

j=1
v j

(
ar(v)

)
+ r

( n
n − 1

)ℓ−1
· 1ϕ

(
ar(v)

)
− r

( n
n − 1

)ℓ−1

= max
b∈A

n∑
j=1

v j(b) − r
( n
n − 1

)ℓ−1
> 0.
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Feasibility. Take any v ∈ Vn
P . Then, there exists ℓ ∈ Z such that v ∈ Gr

ℓ
. Consider the

case with maxb∈A
∑n

j=1 v j(b) = 0. Then, by definition of f r , ar(v) = ϕ, and hence

n∑
j=1

p j
(
ar(v)

)
=

n∑
j=1

©«−
∑
k, j

vk
(
ar(v)

)
− r

( n
n − 1

)ℓ−1
· 1ϕ

(
ar(v)

)
+ r

( n
n − 1

)ℓ−1ª®¬
= −(n − 1)max

b∈A

n∑
j=1

v j(b) +
n∑

j=1

(
−r

( n
n − 1

)ℓ−1
+ r

( n
n − 1

)ℓ−1
)
= 0.

Next, consider the case with r
( n

n−1
)ℓ−1
< maxb∈A

∑n
j=1 v j(b) ≤ r

( n
n−1

)ℓ. Then, by effi-
ciency of f r , ar(v) , ϕ, and hence

n∑
j=1

p j
(
ar(v)

)
=

n∑
j=1

©«−
∑
k, j

vk
(
ar(v)

)
− r

( n
n − 1

)ℓ−1
· 1ϕ

(
ar(v)

)
+ r

( n
n − 1

)ℓ−1ª®¬
= −(n − 1)max

b∈A

n∑
j=1

v j(b) + nr
( n
n − 1

)ℓ−1

= (n − 1) ©«−max
b∈A

n∑
j=1

v j(b) + r
( n
n − 1

)ℓª®¬ ≥ 0.

G-implementability. For each ℓ ∈ Z, let gℓ = (dℓ, tℓ) be an outcome function defined in
Appendix A; for each v ∈ Vn

P and each i ∈ N ,

dℓ(v) ∈ arg max
b∈{ar (v),ϕ}

{ n∑
j=1

v j(b) + r
( n
n − 1

)ℓ−1 · 1ϕ(b)
}
,

tℓi (v) = −
∑
j,i

v j
(
dℓ(v)

)
− r

( n
n − 1

)ℓ−1 · 1ϕ
(
dℓ(v)

)
+ r

( n
n − 1

)ℓ−1
.

Let us show that a set of mechanisms {Mℓ}ℓ∈Z ≡ {(Vn
P ,g
ℓ)}ℓ∈Z G-implements f r with respect

to a list of guesses {Gr
ℓ
}ℓ∈Z.

Step 1. For each i ∈ I, let s∗i (·) be a type-strategy such that s∗i (vi) = vi. Let us show that
for each ℓ ∈ Z and each v ∈ Gr

ℓ
, s∗i (vi) is a dominant strategy at (Mℓ, vi). Take any ℓ ∈ Z. It

suffices to show that for each i ∈ I , each v ∈ Vn
P , and each v′i ∈ VP.

u
(
gℓ(vi, v−i); vi

)
≥ u

(
gℓ(v′i , v−i); vi

)
. (3.73)

By definitions of dℓ and ar ,

vi
(
dℓ(vi, v−i)

)
− tℓi (vi, v−i)
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= max
{
r
( n
n − 1

)ℓ−1
, vi

(
ar(vi, v−i)

)
+

∑
j,i

v j
(
ar(vi, v−i)

)
− r

( n
n − 1

)ℓ−1
}

= max
{
r
( n
n − 1

)ℓ−1
, max

b∈A

n∑
j=1

v j(b) − r
( n
n − 1

)ℓ−1
}
.

On the other hand,

vi
(
dℓ(v′i , v−i)

)
− tℓi (v′i , v−i) = max

{
r
( n
n − 1

)ℓ−1
,

n∑
j=1

v j
(
ar(v′i , v−i)

)
− r

( n
n − 1

)ℓ−1
}
.

Moreover,

max
b∈A

n∑
j=1

v j(b) ≥
n∑

j=1
v j

(
ar(v′i , v−i)

)
.

Then,
vi

(
dℓ(vi, v−i)

)
− tℓi (vi, v−i) ≥ vi

(
dℓ(v′i , v−i)

)
− tℓi (v′i , v−i),

and hence equation (3.73) holds.

Step 2. Let us show that for any ℓ ∈ Z, gℓ(v) = f r(v) for all v ∈ Gr
ℓ
. Take any v ∈ Gr

ℓ
.

Since v ∈ Gr
ℓ
,

max
b∈A

n∑
j=1

v j(b) = 0, (3.74)

or

r
( n
n − 1

)ℓ−1
< max

b∈A

n∑
j=1

v j(b) ≤ r
( n
n − 1

)ℓ
. (3.75)

Suppose that equation (3.74) holds. Then, by definition of dℓ, dℓ(v) = ϕ = ar(v). Moreover,
tℓi (v) = 0 = p∗i (v) for all i ∈ N . Hence gℓ(v) = f r(v).

Next, suppose that equation (3.75) holds. Then, by definition of ar ,
n∑

j=1
v j

(
ar(v)

)
= max

b∈A

n∑
j=1

v j(b).

Hence by equation (3.75),

r
( n
n − 1

)ℓ−1
<

n∑
j=1

v j
(
ar(v)

)
.

Thus, by definition of dℓ, dℓ(v) = ar(v). Moreover, since v ∈ Gr
ℓ
, for any i ∈ N ,

tℓi (v) = −
∑
j,i

v j
(
dℓ(v)

)
− r

( n
n − 1

)ℓ−1 · 1ϕ
(
dℓ(v)

)
+ r

( n
n − 1

)ℓ−1
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= −
∑
j,i

v j
(
ar(v)

)
− r

( n
n − 1

)ℓ−1 · 1ϕ
(
ar(v)

)
+ r

( n
n − 1

)ℓ−1

= pr
i (v).

Therefore, gℓ(v) = f r(v).

Then, by Steps 1 and 2, {Mℓ}ℓ∈Z G-implements f r with respect to {Gr
ℓ
}ℓ∈Z. □

“Only if" part. Take any social choice rule f = (a, p) that is efficient, individually
rational, feasible, and G-implementable with respect to {Gr

ℓ
}ℓ∈Z. Since f is efficient, a(v) ∈

arg max
b∈A

∑n
j=1 v j(b). Let us show that conditions (ii) and (iii) in Definition 4 holds.

Step 1. Let us show that for any i ∈ N and any v ∈ H0, pi(v) = −∑
j,i v j

(
a(v)

)
. First, we

shall show that
pi(v) ≤ −

∑
j,i

v j
(
a(v)

)
for all i ∈ N and v ∈ H0. (3.76)

Suppose, by contradiction, that there exists i ∈ N and v ∈ H0 such that pi(v) > −∑
j,i v j

(
a(v)

)
.

Since v ∈ H0, it follows that maxb∈A
∑n

j=1 v j(b) = 0. Therefore, by pi(v) > −∑
j,i v j

(
a(v)

)
and efficiency of f ,

vi
(
a(v)

)
− pi(v) < vi

(
a(v)

)
+

∑
j,i

v j
(
a(v)

)
=

n∑
j=1

v j
(
a(v)

)
= max

b∈A

n∑
j=1

v j(b) = 0,

a contradiction to individual rationality of f .
Next, let us how that for any i ∈ N and any v ∈ H0, pi(v) ≥

∑
j,i v j

(
a(v)

)
. Suppose, by

contradiction, that there exists i ∈ N and v ∈ H0 such that pi(v) < −∑
j,i v j

(
a(v)

)
. Then, by

equation (3.76),

n∑
j=1

p j(v) < −
n∑

j=1


∑
k, j

vk
(
a(v)

) = −(n − 1)
n∑

j=1
v j

(
a(v)

)
= −(n − 1)max

b∈A

n∑
j=1

v j(b) = 0,

a contradiction to feasibility of f .

Step 2. Let us show that for any v ∈ H0, a(v) = ϕ. Fix any i ∈ N .

Substep 2-1. We shall show that for any v′i ∈ VP with a(v′i , v−i) = a(v),

pi(v′i , v−i) ≤ −
∑
j,i

v j
(
a(v)

)
.
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Take any v′i ∈ VP with a(v′i , v−i) = a(v). Since {Gr
ℓ
}ℓ∈Z is a list of guesses, there exists ℓ ∈ Z

such that (v′i , v−i) ∈ Gr
ℓ
. Then, by v ∈ H0 ⊂ Gr

ℓ
and Lemma 2,

v′i
(
a(v′i , v−i)

)
− pi(v′i , v−i) = u

(
f (v′i , v−i); v′i

)
≥ u

(
f (vi, v−i); v′i

)
= v′i

(
a(vi, v−i)

)
− pi(vi, v−i).

Then, by a(v′i , v−i) = a(v) and Step 1,

pi(v′i , v−i) ≤ pi(vi, v−i) = −
∑
j,i

v j
(
a(v)

)
.

Substep 2-2. Suppose, by contradiction, that there exists v ∈ H0 such that a(v) , ϕ. Let
v′i ∈ VP be such that

v′i (b) =


0 if b = ϕ,

−∑n
j,i v j

(
a(v)

)
+ r

( n
n−1

)
if b = a(v),

−∑n
j,i v j(b) otherwise.

Then, by efficiency of f , it follows that a(v′i , v−i) = a(v). Therefore, by Substep 2-1,

pi(v′i , v−i) ≤ −
∑
j,i

v j
(
a(v)

)
. (3.77)

On the other hand, since (v′i , v−i) ∈ Gr
1 \ H0, by Lemma 3,

pi(v′i , v−i) = −
∑
j,i

v j
(
a(v′i , v−i)

)
+ r

( n
n − 1

)0
= −

∑
j,i

v j
(
a(v)

)
+ r >

∑
j,i

v j
(
a(v)

)
,

a contradiction to equation (3.77).

Step 3. Let us show that for any i ∈ N , any ℓ ∈ Z, and any v ∈ Gr
ℓ
,

pi(v) = −
∑
j,i

v j
(
a(v)

)
− r

( n
n − 1

)ℓ−1
· 1ϕ

(
a(v)

)
+ r

( n
n − 1

)ℓ−1
.

Take any i ∈ N , any ℓ ∈ Z, and any v ∈ Gr
ℓ
. Consider the case with v ∈ Gr

ℓ
\ H0. Then, by

efficiency of f , a(v) , ϕ. Therefore, by Lemma 3,

pi(v) = −
∑
j,i

v j
(
a(v))

)
+ r

( n
n − 1

)ℓ−1

= −
∑
j,i

v j
(
a(v)

)
− r

( n
n − 1

)ℓ−1
· 1ϕ

(
a(v)

)
+ r

( n
n − 1

)ℓ−1
.
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We next consider the case with v ∈ H0. Then, by Step 2, a(v) = ϕ, and hence by Step 1,

pi(v) = −
∑
j,i

v j
(
a(v))

)
= −

∑
j,i

v j
(
a(v)

)
− r

( n
n − 1

)ℓ−1
· 1ϕ

(
a(v)

)
+ r

( n
n − 1

)ℓ−1
.

By Step 3, condition (ii) in Definition 4 holds. Condition (iii) in Definition 4 immediately
follows from Step 2. □

Proof of Statement (ii) of Theorem 1: Consider any list of guesses {Gλ}λ∈Λ such that
{Gr
ℓ
}ℓ∈Z ⊊ {Gλ}λ∈Λ. Suppose, by contradiction, that there exists a social choice rule f = (a, p)

that is efficient, individually rational, feasible and G-implementable with respect to {Gλ}λ∈Λ.
Since {Gr

ℓ
}ℓ∈Z ⊊ {Gλ}λ∈Λ, for each ℓ ∈ Z, there exists λ(ℓ) ∈ Λ such that Gr

ℓ
⊂ Gλ(ℓ). Since

{Gr
ℓ
}ℓ∈Z ⊊ {Gλ}λ∈Λ, there exists ℓ ∈ Z and λ(ℓ) ∈ Λ such that Gr

ℓ
⊊ Gλ(ℓ). Then, there exists

v ∈ Gλ(ℓ) \ Gr
ℓ

such that one of the following three conditions holds:

(i) 0 < max
b∈A

n∑
j=1

v j(b) < r
( n
n − 1

)ℓ−1
,

(ii) max
b∈A

n∑
j=1

v j(b) = r
( n
n − 1

)ℓ−1
,

(iii) r
( n
n − 1

)ℓ
< max

b∈A

n∑
j=1

v j(b).

Suppose that condition (i) holds. Then, by v ∈ Gλ(ℓ) \ H0 and Lemma 3,

vi
(
a(v)

)
− pi(v) = vi

(
a(v)

)
+

∑
j,i

v j
(
a(v)

)
− r

( n
n − 1

)ℓ−1

=

n∑
j=1

v j
(
a(v)

)
− r

( n
n − 1

)ℓ−1

= max
b∈A

n∑
j=1

v j(b) − r
( n
n − 1

)ℓ−1

< r
( n
n − 1

)ℓ−1 − r
( n
n − 1

)ℓ−1
= 0,

a contradiction to individual rationality of f .
Suppose that condition (ii) holds. Then, v ∈ Gr

ℓ−1 \ H0 ⊂ Gλ(ℓ−1) \ H0. Therefore, by
Lemma 3,

pi(v) = −
∑
j,i

v j
(
a(v)

)
+ r

( n
n − 1

)ℓ−2
.

107



On the other hand, since v ∈ Gλ(ℓ) \ H0, by Lemma 3,

pi(v) = −
∑
j,i

v j
(
a(v)

)
+ r

( n
n − 1

)ℓ−1
.

This is a contradiction.
Finally, suppose that condition (iii) holds. Then, by v ∈ Gλ(ℓ) \ H0 and Lemma 3,

n∑
i=1

p j(v) = −(n − 1)
n∑

j=1
v j

(
a(v)

)
+ nr

( n
n − 1

)ℓ−1

= −(n − 1)max
b∈A

n∑
j=1

v j(b) + nr
( n
n − 1

)ℓ−1

< −(n − 1)r
( n
n − 1

)ℓ
+ nr

( n
n − 1

)ℓ−1
= 0,

a contradiction to feasibility of f . □

Appendix D: Proof of Lemma 1

Take any Vickrey auction f r = (ar, pr ) with a cutoff reserve price r ∈ VA.

Proof of Statement (i) of Lemma 1. Note that since {Gr
0,G

r
1} ⊊ {Ĝr

0, Ĝ
r
1}, if f r is

G-implementable with respect to {Ĝr
0, Ĝ

r
1}, then it is also G-implementable with respect to

{Gr
0,G

r
1}. Therefore, Statement (i) of Theorem 2 implies G-implementability of f r with

respect to {Ĝr
0, Ĝ

r
1}. In addition, one can easily check that f r satisfies efficiency. So, we only

show that f r satisfies individual rationality. Take any i ∈ I and any v ∈ Vn
A . Consider the case

with v ∈ Gr
0. Then, for each ℓ ≤ L, viℓ ≥ E r (v−i)[ℓ], since otherwise v < Gr

0. In addition, by
definition of f r , for each ℓ ≤ ar

i (v),

viℓ ≥ viari (v) ≥ v[L] ≥ v−i[L − ar
i (v) + 1].

Therefore,

u ( f r (v); vi) =
ari (v)∑
ℓ=1

viℓ −
L−|Er (v−i)|∑
ℓ=L−ari (v)+1

v−i[ℓ] −
∑

rℓ∈Er (v−i)
rℓ

=

|Er (v−i)|∑
ℓ=1

viℓ +

ari (v)∑
ℓ=|Er (v−i)|+1

viℓ −
L−|Er (v−i)|∑
ℓ=L−ari (v)+1

v−i[ℓ] −
∑

rℓ∈Er (v−i)
rℓ
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≥
∑

rℓ∈Er (v−i)
rℓ +

ari (v)∑
ℓ=|Er (v−i)|+1

v[L] −
L−|Er (v−i)|∑
ℓ=L−ari (v)+1

v−i[ℓ] −
∑

rℓ∈Er (v−i)
rℓ ≥ 0.

Next, consider the case with v ∈ Gr
1. Then, since viℓ ≥ v[L] ≥ v−i[L − ar

i (v) + 1] for all
ℓ ≤ ar

i ,

u ( f r (v); vi) =
ari (v)∑
ℓ=1

viℓ −
L∑

ℓ=L−ari (v)+1
v−i[ℓ] ≥

ari (v)∑
ℓ=1

v[L] −
L∑

ℓ=L−ari (v)+1
v−i[ℓ] ≥ 0.

Therefore, f r satisfies individual rationality. □

Proof of Statement (ii) of Lemma 1. Take any social choice rule f = (a, p) that is
efficient, individually rational, and G-implementable with respect to {Gr

0,G
r
1}. Let us show

that f r generates strictly higher revenue than that of f . Since all Vickrey auctions with the
same cutoff reserve price r generates the same revenue, we assume that ar = a without loss
of generality. It suffices to show that for each i ∈ I and each v ∈ Vn

A , pr
i (v) ≥ pi(v).

Step 1. Let us show that for each i ∈ I and each v ∈ Vn
A , if v ∈ Gr

0, then pr
i (v) ≥ pi(v).

Take any i ∈ I and any v ∈ Vn
A . Suppose that v ∈ Gr

0. Let

W0
i (v−i) ≡ {wi ∈ VA : (wi, v−i) ∈ Gr

0}.

Then, since W0
i (v−i) ⊂ RL

+ is a convex set, it is connected on RL
+. In addition, since f r and f

are G-implementable with respect t to {Gr
0,G

r
1}, by Lemma 2, for each wi,w

′
i ∈ W0

i (v−i),

u ( f r (wi, v−i);wi) ≥ u
(
f r (w′

i, v−i);wi
)

and u ( f (wi, v−i);wi) ≥ u
(
f (w′

i, v−i);wi
)
.

Therefore, by Chung and Olszewski (2007; Theorem 4), f r and f satisfy the payoff (revenue)
equivalence property, that is, there exists a constant C ∈ R such that

pr
i (wi, v−i) = pi(wi, v−i) + C for all wi ∈ W0

i (v−i).

We shall show C ≥ 0. Suppose, by contradiction, that C < 0. Let wi ∈ W0
i (v−i) be such

that
wi = (E r (v−i)[1], . . . ,E r (v−i)[k],0 . . . ,0) ∈ VA,

where k = |E r (v−i)|. Note that wi is well defined. Then, by C < 0,

pr
i (wi, v−i) < pi(wi, v−i).
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In addition, by efficiency of f and f r , ai(wi, v−i) = ar
i (wi, v−i ≥ k, and hence pr

i (wi, v−i) =∑
rℓ∈Er (v−i) rℓ. Therefore,

u ( f (wi, v−i);wi) =
ai(wi,v−i)∑
ℓ=1

wiℓ − pi(wi, v−i) <
ai(wi,v−i)∑
ℓ=1

wiℓ − pr
i (wi, v−i)

=
∑

rℓ∈Er (v−i)
rℓ −

∑
rℓ∈Er (v−i)

rℓ = 0,

a contradiction to individual rationality of f . Hence C ≥ 0. It in turn implies that

pr
i (vi, v−i) ≥ pi(vi, v−i).

Step 2. Let us show that for each i ∈ I and each v ∈ Vn
A , if v ∈ Gr

1, then pr
i (v) ≥ pi(v).

Take any i ∈ I and any v ∈ Vn
A . Suppose that v ∈ Gr

1. Let

W1
i (v−i) ≡ {wi ∈ VA : (wi, v−i) ∈ Gr

1}.

Then, since W1
i (v−i) ⊂ RL

+ is a connected on RL
+, by the same argument as Step 1, there exists

a constant C ∈ R such that

pr
i (wi, v−i) = pi(wi, v−i) + C for all wi ∈ W1

i (v−i).

Note that by definition of f r and individual rationality of f ,

pr
i (0L, v−i) = 0 ≥ pi(0L, v−i).

Then, since 0L ∈ W1
i (v−i), C ≥ 0. Therefore, pr

i (vi, v−i) ≥ pi(vi, v−i).

Then, by Steps 1 and 2, f r generates a higher revenue than that of f . □

Appendix E: Proof of Theorem 2

Consider any Vickrey auction f r = (ar, pr ) with a cutoff reserve price r ∈ VA. We prepare
two lemmas.

Lemma 4. Let f = (a, p) be an efficient social choice rule. For each each i ∈ I, each v ∈ Vn
A ,

and each k, k′ ≤ L, if ai(v) ≥ k ≥ k′ or k′ ≥ k ≥ ai(v), then

k∑
ℓ=1

viℓ −
L∑

ℓ=L−k+1
v−i[ℓ] ≥

k ′∑
ℓ=1

viℓ −
L∑

ℓ=L−k ′+1
v−i[ℓ].
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Proof. Take any i ∈ I, any v ∈ Vn
A , and any k, k′ ≤ L. Let us show the case with ai(v) ≥ k ≥ k′.

By efficiency of f , for each ℓ ≤ ai(v),

viℓ ≥ v−i[L − ℓ + 1],

since otherwise ℓ > ai(v), which is a contradiction. Then,

k∑
ℓ=1

viℓ −
L∑

ℓ=L−k+1
v−i[ℓ] −

(
k ′∑
ℓ=1

viℓ −
L∑

ℓ=L−k ′+1
v−i[ℓ]

)
=

k∑
ℓ=k ′+1

viℓ −
L−k ′∑
ℓ=L−k+1

v−i[ℓ]

=

k∑
ℓ=k ′+1

viℓ −
k∑

ℓ=k ′+1
v−i[L − ℓ + 1] ≥ 0.

We can similarly show the case with k′ ≥ k ≥ ai(v). ■

Lemma 5. For each v−i ∈ Vn−1
A and each rℓ ∈ E r (v−i), rℓ > v−i

[
L − |E r (v−i)|

]
. In addition,

if E r (v−i) , ∅, then
L−|Er (v−i)|∑
ℓ=1

v−i[ℓ] +
∑

rℓ∈Er (v−i)
rℓ ≥

L∑
ℓ=1

v−i[ℓ].

Proof. Immediately follows from definition of E r (v−i). ■

Proof of Statement (i) of Theorem 2. Let us show that f r is G-implementable with
respect to {Ĝr

0, Ĝ
r
1}.

Step 1. Let g0 = (d0, t0
1, . . . , t

0
n) be an outcome function defined in Appendix A; for each

v ∈ Vn
A ,

(i)
∑n

j=1 d0
j (v) ≤ L,

(ii) if v ∈ Ĝr
0, then d0

i (v) = ar
i (v),

(iii) if v ∈ Ĝr
1, then d0

i (v) ∈ min arg max
k≤L

û
(
k, t̂0

i (k, v−i); vi

)
,

(iv) t0
i (v) = t̂0

i

(
d0

i (v), v−i
)

for all i ∈ I,

where for each pi ∈ R and each k ≤ L,

û (k, pi; vi) = u
©«(0, . . . ,0, k︸︷︷︸

i-th

,0, . . . ,0), pi; vi
ª®®¬ ,
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t̂0
i (k, v−i) =


∑|Er (v−i)|
ℓ=|Er (v−i)|−k+1 E r (v−i)[ℓ] if k ≤ |E r (v−i)|,∑L−|Er (v−i)|
ℓ=L−k+1 v−i[ℓ] +

∑
rℓ∈Er (v−i) rℓ if |E r (v−i)| < k .

Remember that the domain of g0 is Vn
A . One can easily check that for each v ∈ Ĝr

0, g0(v) =
f r (v). Let us show that g0 is a well-defined outcome function and that under a revelation
mechanism (Vn

A,g
0), reporting the true valuation function is a dominant strategy for each

individual.
To show that g0 is well-defined, it suffices to show that for each v ∈ Gr

1,
∑n

j=1 d0
j (v) ≤ L.

Suppose, by contradiction, that there exists v ∈ Gr
1 such that

∑n
j=1 d0

j (v) > L. Then, there
exists i ∈ N such that d0

i (v) > 0 and v jd0
j (v)

≥ vid0
i (v)

for all j ∈ I with d0
j (v) > 0. Thus,

v−i

[∑
j,i

d0
j (v)

]
≥ vid0

i (v)
. (3.78)

We consider two cases. First, consider the case with 1 ≤ d0
i (v) ≤ |E r (v−i)|. By definitions

of t̂0
i and d0

i , we have

d0
i (v)∑
ℓ=1

viℓ −
|Er (v−i)|∑

ℓ=|Er (v−i)|−d0
i (v)+1

E r (v−i)[ℓ] = û
(
d0

i (v), t̂0
i

(
d0

i (v), v−i
)
; vi

)
> û

(
d0

i (v) − 1, t̂0
i

(
d0

i (v) − 1, v−i
)
; vi

)
=

d0
i (v)−1∑
ℓ=1

viℓ −
|Er (v−i)|∑

ℓ=|Er (v−i)|−d0
i (v)+2

E r (v−i)[ℓ].

It in turn implies that

vid0
i (v)
> E r (v−i)

[
|E r (v−i)| − d0

i (v) + 1
]
≥ E r (v−i)

[
|E r (v−i)|

]
. (3.79)

Let k ≤ L be such that
rk = E r (v−i)

[
|E r (v−i)|

]
.

Then, the number of coordinates of r that are blocked by some v−i[·] is���{rℓ ∈ {r1, . . . ,rk} : rℓ < E r (v−i)
}��� = k − |E r (v−i)|.

Since rk is not blocked by any v−i[·], i.e., rk ∈ E r (v−i), by definition of E r (v−i),

E r (v−i)
[
|E r (v−i)|

]
= rk > v−i

[
k − |E r (v−i)| + 1

]
. (3.80)
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In addition, by d0
i (v) ≤ |E r (v−i)|,

v−i

[
k − |E r (v−i)| + 1

]
≥ v−i

[
L − d0

i (v) + 1
]
. (3.81)

Thus, by equations (3.79), (3.80), and (3.81),

vid0
i (v)
> v−i[L − d0

i (v) + 1].

Since
∑n

j=1 d0
j (v) > L,

∑
j,i d0

j (v) ≥ L − d0
i (v) + 1, and hence

vid0
i (v)
> v−i[L − d0

i (v) + 1] ≥ v−i

[∑
j,i

d0
j (v)

]
,

a contradiction to equation (3.78).
Next, consider the case with d0

i (v) > |E r (v−i)|. Then, by definition of d0
i ,

d0
i (v)∑
ℓ=1

viℓ −
L−|Er (v−i)|∑
ℓ=L−d0

i (v)+1

v−i[ℓ] −
∑

rℓ∈Er (v−i)
rℓ = û

(
d0

i (v), t̂1
i (d

0
i (v), v−i); vi

)
> û

(
d0

i (v) − 1, t̂0
i (d

0
i (v) − 1, v−i); vi

)
=

d0
i (v)−1∑
ℓ=1

viℓ −
L−|Er (v−i)|∑
ℓ=L−d0

i (v)+2

v−i[ℓ] −
∑

rℓ∈Er (v−i)
rℓ .

Therefore, vid0
i (v)
> v−i[L − d0

i (v) + 1]. Then, since
∑

j,i d0
j (v) ≥ L − d0

i (v) + 1,

vid0
i (v)
> v−i[L − d0

i (v) + 1] ≥ v−i

[∑
j,i

d0
j (v)

]
,

a contradiction to equation (3.78).
Finally, we show that under a mechanism (Vn

A,g
0), reporting the true valuation function is

a dominant strategy for each individual. Take any i ∈ I, any v ∈ Vn
A , and any v′i ∈ VA. We

shall show that
u
(
g0(vi, v−i); vi

)
≥ u

(
g0(v′i , v−i); vi

)
. (3.82)

Note that by efficiency of f r , even if (vi, v−i) ∈ Gr
0,

d0
i (v) = ar

i (v) ∈ arg max
k≤L

û
(
k, t̂0

i (k, v−i); vi

)
.
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Then, by definition of g0 = (d0, t0
1, . . . , t

1
n),

u
(
g0(vi, v−i); vi

)
= û

(
d0

i (vi, v−i), t̂0
i (d

0
i (vi, v−i), v−i); vi

)
≥ û

(
d0

i (v′i , v−i), t̂0
i (d

0
i (v′i , v−i), v−i); vi

)
= u

(
g0(v′i , v−i); vi

)
.

Step 2. Let g1 = (d1, t1
1, . . . , t

1
n) be an outcome function defined in Appendix A; for each

i ∈ I and each v ∈ Vn
A ,

(i) d1
i (v) =


ar

i (v) if v ∈ Gr
1 ∪ T r

i ,

min
{
ar

i (v),max{ar
i (v′i , v−i) : (v′i , v−i) ∈ Gr

1}
}

otherwise,

(ii) t1
i (v) =


pr

i (v) if v ∈ Gr
1 ∪ T r

i∑L
ℓ=L−d1

i (v)+1 v−i[ℓ] otherwise,

Obviously, for each v ∈ Ĝr
1, g1(v) = f r (v). Let us show that under a revelation mechanism

(Vn
A,g

1), reporting the true valuation function is a dominant strategy for each individual.
Take any i ∈ I, any v ∈ Vn

A , and any v′i ∈ VA. Let us show that

u
(
g1(vi, v−i); vi

)
≥ u

(
g1(v′i , v−i); vi

)
. (3.83)

We divide into three cases.

Case 1. Consider the case with (vi, v−i) ∈ Gr
1. In this case, by definition of f r ,

d1
i (vi, v−i) = ar

i (v),

t1
i (vi, v−i) =

L∑
ℓ=L−d1

i (v)+1

v−i[ℓ].

Note that by definition of (d1, t1
1, . . . , t

1
n),

t1
i (v′i , v−i) =

L−|Er (v−i)|∑
ℓ=L−d1

i (v′i ,v−i)+1

v−i[ℓ] +
∑

rℓ∈Er (v−i)
rℓ,

or

t1
i (v′i , v−i) =

L∑
ℓ=L−d1

i (v′i ,v−i)+1

v−i[ℓ].
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In addition, by Lemma 5,

L−|Er (v−i)|∑
ℓ=L−d1

i (v′i ,v−i)+1

v−i[ℓ] +
∑

rℓ∈Er (v−i)
rℓ ≥

L∑
ℓ=L−d1

i (v′i ,v−i)+1

v−i[ℓ].

Then, by definition of (d1, t1
1, . . . , t

1
n), this equation implies that

t1
i (v′i , v−i) ≥

L∑
ℓ=L−d1

i (v′i ,v−i)+1

v−i[ℓ].

Therefore, by Lemma 4,

u
(
g1(vi, v−i); vi

)
=

ari (v)∑
ℓ=1

viℓ −
L∑

ℓ=L−ari (v)+1
v−i[ℓ]

≥
d1
i (v′i ,v−i)∑
ℓ=1

viℓ −
L∑

ℓ=L−d1
i (v′i ,v−i)+1

v−i[ℓ]

≥
d1
i (v′i ,v−i)∑
ℓ=1

viℓ − t1
i (v′i , v−i) = u

(
g1(v′i , v−i); vi

)
.

Case 2. Consider the case with (vi, v−i) ∈ T r
i . In this case,

d1
i (vi, v−i) = ar

i (v),

t1
i (vi, v−i) =

L−|Er (v−i)|∑
ℓ=L−ari (v)+1

v−i[ℓ] +
∑

rℓ∈Er (v−i)
rℓ .

Suppose that (v′i , v−i) ∈ Gr
1. Then, g1(v′i , v−i) = f r (v′i , v−i). Hence by (vi, v−i) ∈ T r

i and
definition of T r

i ,

u
(
g1(vi, v−i); vi

)
= u ( f r (vi, v−i); vi) ≥ u

(
f r (v′i , v−i); vi

)
= u

(
g1(v′i , v−i); vi

)
.

Next, suppose that (v′i , v−i) ⊂ T r
i . Then,

d1
i (v′i , v−i) = ar

i (v′i , v−i),

t1
i (v′i , v−i) =

L−|Er (v−i)|∑
ℓ=L−ari (v′i ,v−i)+1

v−i[ℓ] +
∑

rℓ∈Er (v−i)
rℓ .
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Thus, by Lemma 4,

u
(
g1(vi, v−i); vi

)
=

ari (v)∑
ℓ=1

viℓ −
L−|Er (v−i)|∑
ℓ=L−ari (v)+1

v−i[ℓ] −
∑

rℓ∈Er (v−i)
rℓ

≥
ari (v′i ,v−i)∑
ℓ=1

viℓ −
L−|Er (v−i)|∑

ℓ=L−ari (v′i ,v−i)+1
v−i[ℓ] −

∑
rℓ∈Er (v−i)

rℓ = u
(
g1(v′i , v−i); vi

)
.

Finally, suppose that (v′i , v−i) ∈ Gr
0 and (v′i , v−i) < T r

i . Then,

d1
i (v′i , v−i) = min

{
ar

i (v′i , v−i), max
wi∈VA

{ar
i (wi, v−i) : (wi, v−i) ∈ Gr

1}
}
,

t1
i (v′i , v−i) =

L∑
ℓ=L−d1

i (v′i ,v−i)+1

v−i[ℓ].

Note that in particular, d1
i (v′i , v−i) ≤ maxwi∈VA{ar

i (wi, v−i) : (wi, v−i) ∈ Gr
1}. Then, there exists

wi ∈ VA such that (wi, v−i) ∈ Gr
1 and ar

i (wi, v−i) ≥ d1
i (v′i , v−i). For each k ≤ L, let

w
(k)
i = (wi1, . . . ,wik,0, . . . ,0) ∈ VA.

Then, for each k ≤ L, (w(k)
i , v−i) ∈ Gr

1. Moreover, by ar
i (wi, v−i) ≥ d1

i (v′i , v−i) and by efficiency
of f r , there exists k ≤ L such that

u
(

f r (w(k)
i , v−i); vi

)
= u

(
g1(v′i , v−i); vi

)
.

Since (vi, v−i) ∈ T r
i , by definition of T r

i ,

u
(
g1(vi, v−i); vi

)
= u ( f r (vi, v−i); vi) ≥ u

(
f r (w(k)

i , v−i); vi

)
= u

(
g1(v′i , v−i); vi

)
.

Case 3. Consider the case with (vi, v−i) ∈ Gr
0 and (vi, v−i) < T r

i . In this case,

d1
i (vi, v−i) = min

{
ar

i (v), max
wi∈VA

{ar
i (wi, v−i) : (wi, v−i) ∈ Gr

1}
}
,

t1
i (vi, v−i) =

L∑
ℓ=L−d1

i (v)+1

v−i[ℓ].

If d1
i (vi, v−i) = ar

i (vi, v−i), then by the same argument as Case 1, the condition holds true.
Suppose that d1

i (vi, v−i) = maxwi∈VA{ar
i (wi, v−i) : (wi, v−i) ∈ Gr

1}. We consider two subcases.

116



Subcase 3-1. Consider the case with (v′i , v−i) ∈ Gr
1 or (v′i , v−i) ∈ Gr

0 \ T r
i . Then,

d1
i (v′i , v−i) ≤ max

wi∈VA

{ar
i (wi, v−i) : (wi, v−i) ∈ Gr

1} = d1
i (vi, v−i) ≤ ar

i (vi, v−i).

In addition,

t1
i (v′i , v−i) =

L∑
ℓ=L−d1

i (v′i ,v−i)+1

v−i[ℓ].

Then, by Lemma 4,

u
(
g1(vi, v−i); vi

)
=

d1
i (vi,v−i)∑
ℓ=1

viℓ −
L∑

ℓ=L−d1
i (vi,v−i)+1

v−i[ℓ]

≥
d1
i (v′i ,v−i)∑
ℓ=1

viℓ −
L∑

ℓ=L−d1
i (v′i ,v−i)+1

v−i[ℓ] = u
(
g1(v′i , v−i); vi

)
.

Subcase 3-2. Consider the case with (v′i , v−i) ∈ T r
i . Then,

d1
i (v′i , v−i) = ar

i (v′i , v−i),

t1
i (v′i , v−i) =

L−|Er (v−i)|∑
ℓ=L−ari (v′i ,v−i)+1

v−i[ℓ] +
∑

rℓ∈Er (v−i)
rℓ .

Since d1
i (vi, v−i) = maxwi∈VA{ar

i (wi, v−i) : (wi, v−i) ∈ Gr
1}, there exists wi ∈ VA such that

(wi, v−i) ∈ Gr
1 and d1

i (vi, v−i) = ar
i (wi, v−i). Then, t1

i (vi, v−i) = pr
i (wi, v−i), and hence

u
(
g1(vi, v−i); vi

)
= u ( f r (wi, v−i); vi) . (3.84)

In addition, for each w′
i ∈ VA with (w′

i, v−i) ∈ Gr
1, since ar

i (vi, v−i) ≥ d1
i (vi, v−i) = ar

i (wi, v−i) ≥
ar

i (w′
i, v−i), by Lemma 4,

u ( f r (wi, v−i); vi) =
ari (wi,v−i)∑
ℓ=1

viℓ −
L∑

ℓ=L−ari (wi,v−i)+1
v−i[ℓ]

≥
ari (w′

i ,v−i)∑
ℓ=1

viℓ −
L∑

ℓ=L−ari (w′
i ,v−i)+1

v−i[ℓ] = u
(
f r (w′

i, v−i); vi
)
. (3.85)

Since (vi, v−i) ∈ Gr
0 and (vi, v−i) < T r

i , by equation (3.85) and definition of T r
i ,

u ( f r (wi, v−i); vi) > u ( f r (vi, v−i); vi) . (3.86)
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Therefore, by equations (3.84) and (3.86), and by Lemma 4,

u
(
g1(vi, v−i); vi

)
= u ( f r (wi, v−i); vi) > u ( f r (vi, v−i); vi)

=

ari (v)∑
ℓ=1

viℓ −
L−|Er (v−i)|∑
ℓ=L−ari (v)+1

v−i[ℓ] −
∑

rℓ∈Er (v−i)
rℓ

≥
ari (v′i ,v−i)∑
ℓ=1

viℓ −
L−|Er (v−i)|∑

ℓ=L−ari (v′i ,v−i)+1
v−i[ℓ] −

∑
rℓ∈Er (v−i)

rℓ

= u
(
g1(v′i , v−i); vi

)
.

Then, by Steps 1 and 2, a set of revelation mechanisms
{
(Vn

A,g
0), (Vn

A,g
1)
}

G-implements
f r with respect to {Ĝr

0, Ĝ
r
1}. □

Proof of Statement (ii) of Theorem 2. Let f = (a, p) be a social choice rule that is
efficient, individually rational, and G-implementable with respect to {Ĝr

0, Ĝ
r
1}. Note that

since {Gr
0,G

r
1} ⊂ {Ĝr

0, Ĝ
r
1}, f is also G-implementable with respect to {Gr

0,G
r
1}. Then, by

Statement (ii) of Lemma 1, f r generates a higher revenue than that of f . □

Proof of Statement (iii) of Theorem 2. Take any {Gλ}λ∈Λ with
{
Ĝr

0, Ĝ
r
1
}
⊊ {Gλ}λ∈Λ.

Then, there exists G ∈ {Gλ}λ∈Λ such that Ĝr
0 ⊊ G or Ĝr

1 ⊊ G. Let us show that f r is no
longer G-implementable with respect to {Gλ}λ∈Λ. We consider two cases.

Case 1. Let us consider the case with Ĝr
1 ⊊ G. Then, there exists v ∈ G such that

v < Ĝr
1 = Gr

1 ∪ T r . That is, v ∈ Gr
0 and v < T r . Since T r =

∩
i∈I T r

i , there exists i ∈ N such
that v < T r

i . Then, by definition of T r
i , there exists v′i ∈ VA such that (v′i , vi) ∈ Gr

1 ⊂ G and
u ( f r (vi, v−i); vi) < u

(
f r (v′i , v−i); vi

)
. This is a contradiction to Lemma 2.

Case 2. Let us consider the case with Ĝr
0 ⊊ G. Then, there exists v ∈ G such that

v < Ĝr
0 = Gr

0 ∪ {0}. That is, v ∈ Gr
1 and v , 0. By efficiency of f r , there exists i ∈ N such

that ar
i (v) ≥ 1. Moreover, by v ∈ Gr

1, E r (v−i) , ∅, since otherwise (vi, v−i) ∈ Gr
0. We first

consider the case with |E r (v−i)| ≤ ar
i (v). Let v′i ∈ VA be such that

v′iℓ =


max{v[1],r1} + ε if ℓ ≤ ar

i (v),

0 otherwise,
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where ε is an arbitrary positive number. Then, (v′i , v−i) ∈ Gr
0 ⊂ G. Moreover, by efficiency of

f r at (v′i , v−i), ar
i (v′i , v−i) = ar

i (v). Therefore,

u
(
f r (v′i , v−i); v′i

)
=

ari (v′i ,v−i)∑
ℓ=1

v′iℓ −
L−|Er (v−i)|∑

ℓ=L−ari (v′i ,v−i)+1
v−i[ℓ] −

∑
rℓ∈Er (v−i)

rℓ

=

ari (v)∑
ℓ=1

v′iℓ −
L−|Er (v−i)|∑
ℓ=L−ari (v)+1

v−i[ℓ] −
∑

rℓ∈Er (v−i)
rℓ .

On the other hand, since (vi, v−i) ∈ Gr
1,

u
(
f r (vi, v−i); v′i

)
=

ari (v)∑
ℓ=1

v′iℓ −
L∑

ℓ=L−ari (v)+1
v−i[ℓ].

Note that by Lemma 5,

L−|Er (v−i)|∑
ℓ=L−ari (v)+1

v−i[ℓ] +
∑

rℓ∈Er (v−i)
rℓ >

L∑
ℓ=L−ari (v)+1

v−i[ℓ].

Therefore,
u
(
f r (v′i , v−i); v′i

)
< u

(
f r (vi, v−i); v′i

)
,

a contradiction to Lemma 2.
We next consider the case with |E r (v−i)| > ar

i (v). Let v′i ∈ VA be such that

v′iℓ =


max{v[1],r1} + ε if ℓ ≤ ar

i (v),

E r (v−i)[ℓ] if ar
i (v) < ℓ ≤ |E r (v−i)|,

0 otherwise,

where ε is an arbitrary positive number. Then, (v′i , v−i) ∈ Gr
0 ⊂ G. Moreover, by efficiency of

f r at (v′i , v−i), ar
i (v′i , v−i) = |E r (v−i)|. Therefore, by using definition of v′i ,

u
(
f r (v′i , v−i); v′i

)
=

ari (v′i ,v−i)∑
ℓ=1

v′iℓ −
L−|Er (v−i)|∑

ℓ=L−ari (v′i ,v−i)+1
v−i[ℓ] −

∑
rℓ∈Er (v−i)

rℓ

=

|Er (v−i)|∑
ℓ=1

v′iℓ −
∑

rℓ∈Er (v−i)
rℓ

=

ari (v)∑
ℓ=1

v′iℓ +
|Er (v−i)|∑
ℓ=ari (v)+1

E r (v−i)[ℓ] −
∑

rℓ∈Er (v−i)
rℓ
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=

ari (v)∑
ℓ=1

v′iℓ −
ari (v)∑
ℓ=1

E r (v−i)[ℓ].

On the other hand, since (vi, v−i) ∈ Gr
1,

u
(
f r (vi, v−i); v′i

)
=

ari (v)∑
ℓ=1

v′iℓ −
L∑

ℓ=L−ari (v)+1
v−i[ℓ].

Note that by definition of E r (v−i) and |E r (v−i)| > ar
i (v), for each rℓ ∈ E r (v−i),

rℓ > v−i [L − |E r (v−i)| + 1] ≥ v−i[L − ar
i (v) + 1].

Therefore,

ari (v)∑
ℓ=1

E r (v−i)[ℓ] >
ari (v)∑
ℓ=1

(
v−i[L − ar

i (v) + 1]
)
≥

L∑
ℓ=L−ari (v)+1

v−i[ℓ].

Hence
u
(
f r (v′i , v−i); v′i

)
< u

(
f r (vi, v−i); v′i

)
,

a contradiction to Lemma 2.
□
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Chapter 4

An Axiomatic Foundation of the
Multiplicative Human Development Index
*27

4.1 Introduction

Building on Sen’s (1985) idea of capabilities, the Human Development Index (HDI) measures
well-being of a society by aggregating the degrees of achievements in three characteristics:
health, education, and income. However, over the two decades since its introduction, it had
been pointed out that the aggregation formula has a serious drawback: the three characteristics
are treated as completely substitutable (e.g., Desai, 1991; Sagar and Najam, 1998; Herrero,
Martínez, and Villar, 2010). For example, no matter how bad the state of health is, it can be
compensated by further education or additional income. Since achievements in each of the
different characteristics contribute to different functionings, their measurements are not in fact
completely substitutable. To limit the possibility of such substitutability, Herrero, Martínez,
and Villar (2010) defined minimal lower boundedness and explored index functions that satisfy
this property and other standard axioms: symmetry for the characteristics, normalization, and
separability. In their main result, they claimed that a class of multiplicative index functions
can be characterized by those axioms.

In 2010, the United Nations Development Programme revised the aggregation formula
for HDI by replacing arithmetic mean with geometric mean in its definition. This new
HDI belongs to the class of multiplicative index functions by Herrero, Martínez, and Villar.
Therefore, their result seems to provide a rationale for the revision. In fact, Zambrano (2014)
used their result as a key ingredient in providing a rationale for the revision.

Nevertheless, we show that Herrero, Martinez, and Villar’s claim does not hold. We
provide examples of non-multiplicative index functions satisfying all their axioms. This
means, in particular, that the rationale provided by Zambrano (2014) for the new HDI needs
to be fixed.

*27This chapter is co-authored with Yoko Kawada and Shuhei Otani, and based on Kawada, Nakamura, and
Otani (2018).
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The purpose of this chapter is to find index functions that treat characteristics as non-
substitutable, following Herrero, Martínez, and Villar. However, we focus on the case where
achievements have already been aggregated across individuals; so, as in practice, an index
function only aggregates them across characteristics. We thus abstract away from consid-
erations regarding the distribution of human development among individuals (e.g., Foster,
López-Calva, and Székely, 2005; Seth, 2013).

In this setting, we introduce a class of index functions, what we call quasi-geometric
means. A quasi-geometric mean has a common function for all characteristics, based on
which the index function takes the inverse of the geometric mean across characteristics. We
first show that quasi-geometric means are the only index functions satisfying symmetry for
the characteristics, normalization, and separability. Second, we prove that power means are
the only quasi-geometric means satisfying homogeneity. Finally, it is shown that the new
HDI (geometric mean) is the only power mean satisfying two complementability axioms;
minimal lower boundedness and sensitivity to lowest-level characteristics, while the old HDI
(arithmetic mean) is the only one satisfying local substitutability. Therefore, they can be
interpreted as the opposite extremes in the class of power means in terms of complementability
and substitutability. This contrast provides a theoretical justification for using the new HDI.

The rest of this chapter is organized as follows. Section 4.2 presents the model of Herrero,
Martínez, and Villar. Section 4.3 introduces their main result and provides counterexamples.
In Section 4.4, we provide characterizations, the proofs of which are relegated to Appendix 4.5.
Section 4.5 concludes the discussion. Appendix 4.5 provides examples showing the tightness
of the axioms in our theorems, and in Appendix 4.5 we present the model of Zambrano and a
rationale for the new HDI in his setting, which builds on our Theorem 1 below.

4.2 The Model

A society consists of a finite number of individuals N ≡ {1,2, . . . ,n} (n ≥ 1). Let K ≡
{1,2, . . . , k} (k ≥ 1) be a finite set of characteristics. In the case of the new HDI, the
characteristics are health, education, and income.*28

For each i ∈ N and each j ∈ K , a measurement of i’s achievement for j is a value
yi j ∈ [0,1]. Note that yi j’s are normalized so that they are comparable independently of the

*28In practice, achievements in health, education, and income are measured by life expectancy at birth, mean
years and expected years of schooling, and gross national income per capita, respectively.
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units in which they are originally measured.*29 A measurement vector for j ∈ K is a vector

y j ≡
©«
y1 j

y2 j
...

ynj

ª®®®®®¬
∈ [0,1]n.

Then a social state is a matrix

Y ≡ (y1, y2, . . . , yk) =


y11 y12 · · · y1k
...

... · · · ...

yn1 yn2 · · · ynk

 ∈ Ω ≡ [0,1]nk .

An index function is a continuous function I : Ω→ R that assigns each social state Y ∈ Ω
to an index I(Y ) ∈ R. The higher the index is, the better the social state is.

4.3 Counterexamples to Herrero, Martínez, and Villar’s (2010) Theo-
rem

Herrero, Martínez, and Villar (2010) claim that a class of multiplicative index functions can
be characterized by the following five axioms. Monotonicity requires that in any social state,
if all the measurements increase, then its index also increases.

Monotonicity. For each X,Y ∈ Ω, if X ≫ Y , then I(X) > I(Y ).*30

For each Y ∈ Ω and each permutation π on K , let π(Y ) be the social state that is obtained
by arranging Y ’s columns according to π. Symmetry for the characteristics requires that an
index function be independent of the labels of the characteristics.

Symmetry for the characteristics. For each Y ∈ Ω and each π, I
(
π(Y )

)
= I(Y ).

For convenience, define

1n ≡
©«

1
1
...

1

ª®®®®®¬
n rows

and 0n ≡
©«

0
0
...

0

ª®®®®®¬
n rows

.

*29It is worth noting that careful thought has to be put when normalizing data to values on the unit interval
because the choice of normalization method affects the ordering over the values (Zambrano 2014).

*30For each X,Y ∈ Ω, X ≫ Y means that xi j > yi j for all i ∈ N and all j ∈ K .
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In addition, define

1 ≡ [1n,1n, . . . ,1n︸         ︷︷         ︸
k columns

] and 0 ≡ [0n,0n, . . . ,0n︸         ︷︷         ︸
k columns

].

Normalization requires that in any social state, if all the measurements take the same value,
then its index also takes the value.

Normalization. For each α ∈ [0,1], I(α · 1) = α.

For each Y ∈ Ω and each j ∈ K , let

Y− j ≡ (yi)i∈K\{ j} ∈ [0,1]n(k−1).

Minimal lower boundedness requires that in any social state, if there exists a characteristic for
which the measurement vector is at the lowest level, then its index is not more than that of any
other social state.

Minimal lower boundedness. For each X,Y ∈ Ω and each j ∈ K , I(X) ≥ I(Y− j,0n( j)).

Consider two arbitrary social states with a common measurement vector for some char-
acteristic. Separability requires that if this common measurement vector is replaced with
another one, then an index function preserves the order between the two social states.

Separability. For each X,Y ∈ Ω with X,Y ≫ 0 and each j ∈ K ,

I(X− j, x j) ≥ I(Y− j, x j) =⇒ I(X− j, y j) ≥ I(Y− j, y j).

Consider any index function I : Ω → R satisfying the aforementioned five axioms.
Herrero, Martínez, and Villar (2010) define the egalitarian equivalent value function ξ j :
Ω→ R for each j ∈ K implicitly by such an I. That is, for each Y ∈ Ω,

I(Y ) = I
(
Y− j, ξ j(Y− j, y j) · 1n

)
.

For each j ∈ K , if ξ j : Ω→ R is independent of Y− j , i.e.,

∀y j ∈ [0,1]n, ∀X− j,Y− j ∈ [0,1]n(k−1), ξ j(X− j, y j) = ξ j(Y− j, y j),

then ξ j(Y− j, y j) is simply denoted by ξ j(y j). In addition, if all the egalitarian equivalent value
functions are independent of their characteristic, i.e.,

∀ j, ℓ ∈ K, ξ j = ξℓ,
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then the common egalitarian equivalent value function ξ j is simply denoted by ξ : [0,1]n → R.
Herrero, Martínez, and Villar (2010, Theorem) claim that an index function satisfies the

set of the five axioms if and only if it takes the multiplicative form of a common egalitarian
equivalent value function, which contains the new HDI.

Claim 1 (Herrero, Martínez, and Villar, 2010, Theorem). For each index function I : Ω→ R,
the following statements (i) and (ii) are equivalent:

(i) I : Ω → R satisfies monotonicity, symmetry for the characteristics, normalization,
minimal lower boundedness, and separability;

(ii) there exists ξ : [0,1]n → R such that for each Y ∈ Ω,

I(Y ) =
∏
j∈K

ξ(y j)
1
k .

We provide two counterexamples to this claim which show that (i) does not imply (ii) for
any k ≥ 2. We assume n = 1 for simplicity, but the ideas of these counterexamples work for
any n ≥ 2.

Example 1 (k = 2). Let Î : [0,1]2 → R be an index function such that for each (y1, y2) ∈
[0,1]2,

Î(y1, y2) ≡
1
2
y

2
3
1 y

1
3
2 +

1
2
y

1
3
1 y

2
3
2 .

Then Î satisfies (i) but violates (ii). ♢

Proof. Step 1: Î satisfies (i). One can easily show that Î satisfies monotonicity, symmetry for
the characteristics, normalization, and minimal lower boundedness. To show separability,
take any (x1, x2), (y1, y2) ≫ 0. We need to prove that

Î(x1, x2) ≥ Î(y1, x2) =⇒ Î(x1, y2) ≥ Î(y1, y2); and

Î(x1, x2) ≥ Î(x1, y2) =⇒ Î(y1, x2) ≥ Î(y1, y2).

We only offer a proof for the first equation since the second can be proven in a similar way.
Suppose Î(x1, x2) ≥ Î(y1, x2). Then

0 ≤ Î(x1, x2) − Î(y1, x2)

=

[
1
2

x
2
3
1 x

1
3
2 +

1
2

x
1
3
1 x

2
3
2

]
−

[
1
2
y

2
3
1 x

1
3
2 +

1
2
y

1
3
1 x

2
3
2

]
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=
1
2

x
1
3
2

[
(x

2
3
1 − y

2
3
1 ) + (x

1
3
1 − y

1
3
1 )x

1
3
2

]
=

1
2

x
1
3
2

[
(x

1
3
1 + y

1
3
1 )(x

1
3
1 − y

1
3
1 ) + (x

1
3
1 − y

1
3
1 )x

1
3
2

]
=

1
2

x
1
3
2 (x

1
3
1 + y

1
3
1 + x

1
3
2 )(x

1
3
1 − y

1
3
1 ).

Hence, by x1, x2, y1 > 0, x
1
3
1 ≥ y

1
3
1 . Therefore,

Î(x1, y2) − Î(y1, y2) =
1
2
y

1
3
2 (x

1
3
1 + y

1
3
1 + y

1
3
2 )(x

1
3
1 − y

1
3
1 ) ≥ 0,

meaning that Î(x1, y2) ≥ Î(y1, y2).
Step 2: Î violates (ii). Suppose, by contradiction, that there exists ξ : [0,1] → R such

that for each (y1, y2) ∈ [0,1]2,

Î(y1, y2) = ξ(y1)
1
2 ξ(y2)

1
2 . (4.87)

Then for each α ∈ [0,1],

α = Î(α,α) = ξ(α) 1
2 ξ(α) 1

2 = ξ(α). (4.88)

By computation,

Î
(
1,

1
64

)
=

1
2
· 1

2
3 ·

(
1
64

) 1
3

+
1
2
· 1

1
3 ·

(
1
64

) 2
3

=
1
2
· 1

4
+

1
2
· 1

16

=
5
32
,

and thus, by (4.87),

ξ(1) 1
2 ξ

(
1
64

) 1
2

=
5
32
.

However, by (4.88),

ξ(1) 1
2 ξ

(
1
64

) 1
2

= 1
1
2 ·

(
1
64

) 1
2

=
1
8
,

a contradiction. ■
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A natural extension of Î to the case k = 3 is that for each (y1, y2, y3) ∈ [0,1]3,

Î(y1, y2, y3) ≡
1
3
y

2
4
1 y

1
4
2 y

1
4
3 +

1
3
y

1
4
1 y

2
4
2 y

1
4
3 +

1
3
y

1
4
1 y

1
4
2 y

2
4
3 .

However, this violates separability since

Î(1,0.082,0.01) ≒ 0.1044 > 0.1037 ≒ Î(0.3,0.3,0.01),
Î(1,0.082,1) ≒ 0.4522 < 0.4528 ≒ Î(0.3,0.3,1),

meaning that the counterexample works only for k = 2. Therefore, we provide another
counterexample for k = 3, which can be modified to be a counterexample to Zambrano’s (2014)
Theorem 1. This counterexample works for any k ≥ 2 with straightforward generalization.

Example 2 (k = 3). Let Ĩ : [0,1]3 → [0,1] be an index function such that for each (y1, y2, y3) ∈
[0,1]3,

Ĩ(y1, y2, y3) ≡ log
[
(ey1 − 1) 1

3 (ey2 − 1) 1
3 (ey3 − 1) 1

3 + 1
]
.

Then Ĩ satisfies (i) but violates (ii). ♢

Proof. Step 1: Ĩ satisfies (i). One can easily show that Ĩ satisfies monotonicity, symmetry for
the characteristics, normalization, and minimal lower boundedness. To show separability,
take any (x1, x2, x3), (y1, y2, y3) ≫ 0. We need to prove that

Î(x1, x2, x3) ≥ Î(y1, y2, x3) =⇒ Î(x1, x2, y3) ≥ Î(y1, y2, y3);
Î(x1, x2, x3) ≥ Î(y1, x2, y3) =⇒ Î(x1, y2, x3) ≥ Î(y1, y2, y3); and

Î(x1, x2, x3) ≥ Î(x1, y2, y3) =⇒ Î(y1, x2, x3) ≥ Î(y1, y2, y3).

We only offer a proof for the first equation since the second and third can be proven in a
similar way. Suppose Ĩ(x1, x2, x3) ≥ Ĩ(y1, y2, x3). Then

log
[
(ex1 − 1) 1

3 (ex2 − 1) 1
3 (ex3 − 1) 1

3 + 1
]
≥ log

[
(ey1 − 1) 1

3 (ey2 − 1) 1
3 (ex3 − 1) 1

3 + 1
]
.

Since the base e is not less than 1,

(ex1 − 1) 1
3 (ex2 − 1) 1

3 (ex3 − 1) 1
3 ≥ (ey1 − 1) 1

3 (ey2 − 1) 1
3 (ex3 − 1) 1

3 .

Since ex3 − 1 > 0 by x3 > 0,

(ex1 − 1)(ex2 − 1) ≥ (ey1 − 1)(ey2 − 1).
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Hence,

Ĩ(x1, x2, y3) − Ĩ(y1, y2, y3)

= log
[
(ex1 − 1) 1

3 (ex2 − 1) 1
3 (ey3 − 1) 1

3 + 1
]
− log

[
(ey1 − 1) 1

3 (ey2 − 1) 1
3 (ey3 − 1) 1

3 + 1
]

≥ log
[
(ey1 − 1) 1

3 (ey2 − 1) 1
3 (ey3 − 1) 1

3 + 1
]
− log

[
(ey1 − 1) 1

3 (ey2 − 1) 1
3 (ey3 − 1) 1

3 + 1
]

= 0.

Therefore, Ĩ(x1, x2, y3) ≥ Ĩ(y1, y2, y3).
Step 2: Ĩ violates (ii). Suppose, by contradiction, that there exists ξ : [0,1] → R such

that for each (y1, y2, y3) ∈ [0,1]3,

Ĩ(y1, y2, y3) = ξ(y1)
1
3 ξ(y2)

1
3 ξ(y3)

1
3 . (4.89)

Then for each α ∈ [0,1],

α = Ĩ(α,α,α) = ξ(α) 1
3 ξ(α) 1

3 ξ(α) 1
3 = ξ(α). (4.90)

By (4.89) and computation,

ξ(0.1) 1
3 ξ(0.5) 1

3 ξ(0.9) 1
3 = Ĩ(0.1,0.5,0.9) ≒ 0.3808.

However, by (4.90),

ξ(0.1) 1
3 ξ(0.5) 1

3 ξ(0.9) 1
3 = (0.1) 1

3 · (0.5) 1
3 · (0.9) 1

3 ≒ 0.3557,

a contradiction. ■

4.4 Characterizations

In this section, we search for an axiomatic foundation of the new HDI. To that end, we focus
on the real-use situation by assuming n = 1 and k ≥ 3. Assumption n = 1 simplifies a social
state to a vector y ≡ (y1, . . . , yk) ∈ [0,1]k , which consists of the aggregated measurements in
each characteristic as in practice.*31

In aggregation theory, a number of studies have investigated the class of quasi-arithmetic
means, which was introduced by Aczél (1948) in a fixed characteristic model.

*31Even when n ≥ 2, we can aggregate all individuals’ measurements for each characteristic by using egalitarian
equivalent value functions defined in Section 4.3, and then we obtain the situation n = 1. Therefore, the
assumption n = 1 is not restrictive in the real-use situation.
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Definition 1. An index function I : [0,1]k → [0,1] is a quasi-arithmetic mean if there exists
a continuous and strictly increasing function η : [0,1] → R such that for each y ∈ [0,1]k ,

I(y) ≡ η−1
(1

k

∑
j∈K

η(y j)
)
.

On the one hand, it is worth noting that the quasi-arithmetic mean with η(y j) = y j turns
out to be arithmetic mean. On the other hand, as long as the domain is restricted to (0,1]k ,
the quasi-arithmetic mean with η(y j) = log y j turns out to be geometric mean. However,
since the domain includes 0 in our model, geometric mean does not belong to the class of
quasi-arithmetic means.

So, as a counterpart in our model, we define quasi-geometric means. It is then shown that
they are the only index functions satisfying symmetry for the characteristics, normalization,
and separability.*32

Definition 2. An index function I : [0,1]k → [0,1] is a quasi-geometric mean if there exists
a continuous and strictly increasing function η : [0,1] → R such that for each y ∈ [0,1]k ,

I(y) ≡ η−1
(∏

j∈K

η(y j)
1
k

)
.

Proposition 1. Suppose n = 1 and k ≥ 3. Then quasi-geometric means are the only index
functions satisfying symmetry for the characteristics, normalization, and separability.

Proof. See Appendix 4.5. ■

Let us sketch the proof for the uniqueness in our first proposition. Consider any index func-
tion I satisfying the trio of axioms. First, we generate a continuous and complete preordering
from I. It inherits symmetry for the characteristics and separability of I, which enables us
to apply Debreu’s representation theorem (1959, Theorem 3): the preordering can be repre-
sented by an additively separable function. By transforming this function monotonically, we
obtain a quasi-geometric mean, which is ordinally equivalent to I. Finally, by continuity and
normalization, it can be shown that this quasi-geometric mean is in fact cardinally equivalent
to I.

*32Characterizations of quasi-arithmetic means are often applied to constructing social indices, such as poverty
measures or inequality measures (e.g., Foster and Shorrocks, 1991; Shorrocks, 1980). In this context, population
is usually treated as variable so that subgroup consistency or subgroup decomposability can be imposed.
However, in our model, these axioms require characteristics to be variable, which seems quite strange. So, we
impose separability instead of the axioms, but it plays a role similar to them.

129



The index function Ĩ in Example 2 is a quasi-geometric mean where η(y j) ≡ eyj − 1 for
each y j ∈ [0,1]. Thus, it satisfies all the three axioms in Proposition 1. However, it violates
homogeneity.*33 This axiom requires that if all achievements grow by the same fraction of
magnitude, then an index function also varies by the fraction of magnitude.

Homogeneity. For each y ∈ [0,1]k and each λ > 0 with λ · y ∈ [0,1]k ,

I(λ · y) = λ · I(y).

By adding homogeneity to the set of axioms in Proposition 1, the class of power means
can be characterized.*34

Definition 3. An index function I : [0,1]k → R is a power mean with exponent p ∈ R if for
each y ∈ [0,1]k ,

I(y) =

∏

j∈K y
1
k

j if p = 0,(
1
k
∑

j∈K y
p
j

) 1
p if p , 0.

Proposition 2. Suppose n = 1 and k ≥ 3. Then power means are the only index functions
satisfying symmetry for the characteristics, normalization, separability, and homogeneity.

Proof. See Appendix 4.5. ■

Both geometric mean (p = 0) and arithmetic mean (p = 1) belong to the class of power
means, but they are opposite extremes in the class in terms of complementability and substi-
tutability. First, recall that minimal lower boundedness requires that a poor achievement in
a characteristic should not be compensated by a good achievement in other characteristics.
However, this turns out to be too weak a local complementability axiom to pin down the
new HDI. Hence, we impose an Inada-like boundary condition．Sensitivity to lowest-level
characteristics requires that the marginal contribution of the improvement in a lowest-level
characteristic be locally extremely large and thus cannot be compensated with good achieve-
ments in other characteristics.

Sensitivity to lowest-level characteristics. For each i ∈ K and each y−i ∈ (0,1]k−1,

lim
h→+0

I(h, y−i) − I(0, y−i)
h

= +∞.

*33The authors would like to thank an anonymous referee for suggesting this axiom.
*34Power means are also known as generalized means or Hölder means.
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On the other hand, we consider local substitutability as defined below. It requires that a
state exist in which achievements in some two characteristics are fully substitutable.

Local Substitutability. There exist y ∈ (0,1]k , i, j ∈ K and t > 0 such that yi , y j + t ∈ [0,1]
and y j , yi + t ∈ [0,1] for which

I(yi − t, y j + t, y−i,j) = I(y).

Note that local substitutability is weaker than the following notion of full substitutability:
for each y ∈ [0,1]k , each i, j ∈ K , and each t > 0, if yi − t, y j + t ∈ [0,1], then

I(yi − t, y j + t, y−i,j) = I(y).

Arithmetic mean (old HDI) satisfies both local and full substitutabilities. However, local
substitutability is sufficient to pin it down within the class of power means.

Summarizing these observations, the next theorem contrasts the new and old HDIs within
the class of power means: the new HDI is the only power mean satisfying minimal lower
boundedness and sensitivity to lowest-level characteristics, while the old HDI is the only one
satisfying local substitutability. Therefore, these aggregation formulas are opposite extremes
in the class of power means in terms of complementability and substitutability. This contrast
provides a theoretical justification for the use of the new HDI.

Theorem 1. Suppose n = 1 and k ≥ 3.

(i) The new HDI (geometric mean) is the only index function satisfying symmetry for the
characteristics, normalization, separability, homogeneity, minimal lower boundedness,
and sensitivity to lowest-level characteristics.

(ii) The old HDI (arithmetic mean) is the only index function satisfying symmetry for the
characteristics, normalization, separability, homogeneity, and local substitutability.

Proof. (i) Take any index function I : [0,1]k → R satisfying symmetry for the characteristics,
normalization, separability, homogeneity, minimal lower boundedness, and sensitivity to
lowest-level characteristics. Then by Proposition 2, I is a power mean with some exponent
p ∈ R. First, if the exponent were positive (p > 0), then

I(0,1,1, . . . ,1︸     ︷︷     ︸
k−1

) =
(

k − 1
k

) 1
p

> 0,
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which contradicts minimal lower boundedness. Second, suppose by contradiction that the
exponent were negative (p < 0). Take any i ∈ K and y−i ∈ (0,1]k−1. Since I(0, y−i) = 0 by
minimal lower boundedness, for all h > 0,

I(h, y−i) − I(0, y−i)
h

=
1
h

(
1
k
(hp +

∑
j,i

y
p
j )
) 1

p

=

(
1
k

(
1 +

∑
j,i

( y j

h

) p)) 1
p

=

(
1
k

(
1 +

∑
j,i

(
h
y j

)−p)) 1
p

.

Since p < 0, by sending h to 0 from the right,

lim
h→+0

I(h, y−i) − I(0, y−i)
h

=

©«
1
k

(
1 +

∑
j,i

lim
h→+0

(
h
y j

)−p

︸         ︷︷         ︸
=0

)ª®®®®®¬

1
p

=

(
1
k

) 1
p

< ∞,

which contradictions sensitivity to lowest-level characteristics. Therefore, p = 0.
(ii) Take any index function I : [0,1]k → R satisfying symmetry for the characteristics,

normalization, separability, homogeneity, and local substitutability. Then by Proposition 2,
I is a power mean with some exponent p ∈ R.

Step 1: there exist y ∈ (0,1]k , i, j ∈ K and t ∈ R \ {0} such that yi ≥ y j and 1 ≥ yi − t ≥
y j + t ≥ 0 for which

I(yi − t, y j + t, y−i,j) = I(y).

By local substitutability, there exist y ∈ (0,1]k , i, j ∈ K and t > 0 with yi , y j + t ∈ [0,1]
and y j , yi + t ∈ [0,1] such that

I(yi − t, y j + t, y−i,j) = I(y).

Consider the case witht yi ≥ y j . If yi − t ≥ y j + t, then the claim holds. Thus, suppose that
yi − t < y j + t. Let

t′ = yi − t − y j .

Since yi , y j + t, t′ ∈ R \ {0}. Moreover,

y j + t′ = y j + (yi − t − y j) = yi − t,
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yi + t′ = yi − (yi − t − y j) = y j + t.

Therefore, by symmetry for characteristics,

I(yi − t′, y j + t′, y−i,j) = I(y j + t′, yi − t′, y−i,j) = I(yi − t, y j + t, y−i,j) = I(y).

By a similar argument, we can show the case with y j ≥ yi.

Step 2 (show that p , 0). Suppose, by contradiction, that p = 0. Then, by Step 1(
yi − t

) (
y j + t

)
= yiy j . (4.91)

Let f : R→ R be such that for each s ∈ R,

f (s) =
(
yi − s

) (
y j + s

)
.

By differentiating this function for s, we have

f ′(s) =
(
yi − s

)
−

(
y j + s

)
.

Then, for any s ∈ R with yi − s > y j + s, f ′(s) > 0, that is, f is strictly increasing on(
−∞, yi−yj2

]
. Therefore, since t ∈

(
−∞, yi−yj2

]
and t , 0,(

yi − t
) (
y j + t

)
, yiy j,

a contradiction to equation (4.91).

Step 3 (p = 1). Suppose, by contradiction, that p , 1. Then, by Steps 1 and 2,(
yi − t

) p
+

(
y j + t

) p
=

(
yi
) p
+

(
y j

) p
. (4.92)

Let g : R→ R be such that for each s ∈ R,

g(s) =
(
yi − s

) p
+

(
y j + s

) p
.

By differentiating this function for s, we have

g′(s) = −p
(
yi − s

) p−1
+ p

(
y j + s

) p−1
.

Hence, for any s ∈ R with yi − s > y j + s, if p > 1, then g′(s) < 0 so g is strictly decreasing
on

(
−∞, yi−yj2

]
; on the other hand, if p < 1, then g′(s) > 0 so g is strictly increasing on(

−∞, yi−yj2
]
. In either case, since t ∈

(
−∞, yi−yj2

]
and t , 0, equation (4.92) never holds, a

contradiction. ■
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4.5 Concluding Remarks

We considered the problem of designing an aggregation formula used in HDI. First, we
showed that quasi-geometric means are the only index functions satisfying symmetry for the
characteristics, normalization, and separability. Second, we showed that power means are
the only index functions satisfying homogeneity as well as the trio of axioms. Although both
the new HDI (geometric mean) and the old HDI (arithmetic mean) belong to the class of
power means, they can be interpreted as the opposite extremes in terms of complementability
and substitutability: that is, the new HDI is the only power mean satisfying minimal lower
boundedness and sensitivity to lowest-level characteristics while the old HDI is the only one
satisfying local substitutability. This contrast provides a theoretical justification for the use
of the new HDI.

We also proved that Herrero, Martínez, and Villar’s axiomatization (2010, Theorem) does
not hold. Consequently, one might question which index functions satisfy their set of axioms:
monotonicity, symmetry for the characteristics, normalization, separability, and minimal
lower boundedness. Let us conclude the present chapter by answering this question in our
setting n = 1 and k ≥ 3. Note that as seen in the proof of Proposition 1 (Appendix 4.5), under
n = 1, monotonicity is implied by the trio of symmetry for the characteristics, normalization,
and separability.*35 Thus, monotonicity can be dropped. It then follows from Proposition 1
that by adding minimal lower boundedness to the trio of the axioms therein, quasi-geometric
means with η(0) = 0 can be characterized. This observation clarifies the importance of
homogeneity in Theorem 1(i).

Corollary 1. Suppose n = 1 and k ≥ 3. Then quasi-geometric means with η(0) = 0 are the
only index functions satisfying symmetry for the characteristics, normalization, separability,
and minimal lower boundedness.

Proof. Let us only show the uniqueness. Consider any index function I : [0,1]k → R

satisfying symmetry for the characteristics, normalization, separability, and minimal lower
boundedness. Then by Proposition 1, there exists a continuous and strictly increasing function
η : [0,1] → R+ such that for each y ∈ [0,1]k ,

I(y) = η−1
(∏

j∈K

η(y j)
1
k

)
. (4.93)

*35Any index function satisfying the trio of axioms is a quasi-geometric mean with a strictly increasing function
η : [0,1] → R. Hence, the inverse function η−1 is also strictly increasing, and in turn the quasi-geometric mean
satisfies monotonicity.
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Take any x ∈ (0,1]. By (4.93) and by using minimal lower boundedness twice and normal-
ization,

η−1
(
η(0) 1

k η(x) k−1
k

)
= I(0, x, . . . , x) = I(0) = 0.

Hence,
η(0) 1

k η(x) k−1
k = η(0),

meaning that
η(0) 1

k

(
η(x) k−1

k − η(0) k−1
k

)
= 0.

Note that since η is strictly increasing, x > 0 implies η(x) k−1
k > η(0) k−1

k . Therefore,

η(0) = 0. ■

Appendix A: Omitted Proofs in Section 4.4

In our proof of Proposition 1, we apply Debreu’s (1959) representation theorem of a preference
on a separable set of variables. To introduce this powerful theorem, let us first set up relevant
definitions.

Debreu considers a continuous and complete preordering ≿ on a commodity-bundle space
S ⊂ Rℓ. Suppose that this space can be decomposed into m subspaces S1, . . . ,Sm (m ≤ ℓ),
that is,

S = ×m
i=1Si .

*36

The factors 1, . . . ,m are independent if for all i ∈ {1, . . . ,m}, all xi, yi ∈ Si, and all x−i, y−i ∈
× j,iSj ,

(xi, x−i) ≿ (yi, x−i) ⇐⇒ (xi, y−i) ≿ (yi, y−i).

A factor i ∈ {1, . . . ,m} is essential if there exist x−i ∈ × j,iSj and xi, yi ∈ Si such that

(xi, x−i) ≻ (yi, x−i).

Debreu’s Representation Theorem (Debreu, 1959, Theorem 3). Suppose that the factors
1, . . . ,m are independent and that at least three of them are essential. If Si is connected for
each i ∈ {1, . . . ,m}, then a continuous and complete preordering ≿ on S = ×m

i=1Si can be
represented by an additively separable utility function: that is, for each i ∈ {1, . . . ,m}, there
exists a continuous function Ui : Si → R, and for each x, y ∈ S,

x ≿ y ⇐⇒
m∑

i=1
Ui(xi) ≥

m∑
i=1

Ui(yi).

*36If m < ℓ, then each Si might be a vector space. This is why we denote a generic element of Si by xi instead
of xi .
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A.1 Proof of Proposition 1

One can easily check that quasi-geometric means satisfy symmetry for the characteristics,
normalization, and separability. Conversely, let us prove the uniqueness. Consider any index
function I : [0,1]k → R satisfying the trio of axioms.

Step 1 (Find a function that is ordinally equivalent to I on (0,1]k). Note that separability of I

is defined on (0,1]k . Hence, to use Debreu’s Representation Theorem, let Î be the restriction
of I to (0,1]k . Then Î : (0,1]k → R is continuous on (0,1]k and satisfies symmetry for the
characteristics, normalization, and separability on (0,1]k .

Generate a continuous and complete preordering≿ on (0,1]k from Î according to Euclidean
distance ≥ on R: for each x, y ∈ (0,1]k ,

x ≿ y ⇐⇒ Î(x) ≥ Î(y). (4.94)

Then the space (0,1] for each characteristic is connected.
First, we claim that the characteristics 1, . . . , k are independent. For each j ∈ {1, . . . , k},

each x j, y j ∈ (0,1], and each x− j, y− j ∈ (0,1]k−1, by (4.94) and separability of Î,

(x j, x− j) ≿ (y j, x− j) ⇐⇒ Î(x j, x− j) ≿ Î(y j, x− j)
⇐⇒ Î(x j, y− j) ≿ Î(y j, y− j)
⇐⇒ (x j, y− j) ≿ (y j, y− j).

Second, we claim that all characteristics j ∈ {1, . . . , k} are essential. Suppose, by contra-
diction, that there exists an inessential characteristic. Then by symmetry for the characteristics
of Î, all characteristics are inessential. Hence, for each distinct α, β ∈ (0,1], by normalization
and inessentiality of all characteristics,

α = Î(α, . . . , α) = Î(β, . . . , β) = β,

a contradiction to α , β.
Therefore, Debreu’s Representation Theorem can be applied to ≿ on (0,1]k . That is,

for each j ∈ {1, . . . , k} there exists a continuous function ĝ j : (0,1] → R, and for each
x, y ∈ (0,1]k

x ≿ y ⇐⇒
k∑

j=1
ĝ j(x j) ≥

k∑
j=1

ĝ j(y j). (4.95)

Since Î : (0,1]k → R satisfies symmetry for the characteristics, by (4.94) and (4.95),

∀ j, ℓ ∈ {1, . . . , k}, ĝ j = ĝℓ .
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Let ĝ ≡ ĝ j for all j ∈ {1, . . . , k}. Then, by normalization and (4.95), ĝ is strictly increasing.

Step 2 (Monotonic transformation of ĝ). Define η̂ : (0,1] → R++ by

∀c ∈ (0,1], η̂(c) = eĝ(c) > 0. (4.96)

Then since ĝ is continuous and strictly increasing on (0,1], so is η̂. Hence, η̂−1 : η̂
(
(0,1]

)
→

(0,1] exists and is strictly increasing.
For each x ∈ (0,1]k ,

k∏
j=1
η̂(x j)

1
k =

k∏
j=1

(
eĝ(xj )

) 1
k
= e

1
k

∑k
j=1 ĝ(xj ),

and hence, taking the natural logarithm on the first and last equations,

log
[ k∏

j=1
η̂(x j)

1
k

]
=

1
k

k∑
j=1

ĝ(x j). (4.97)

Therefore, by (4.94), (4.95) and (4.97), and since log(·) and η̂−1 are strictly increasing, for
each x, y ∈ (0,1]k ,

Î(x) ≥ Î(y) ⇐⇒ x ≿ y

⇐⇒ log
[ k∏

j=1
η̂(x j)

1
k

]
=

1
k

k∑
j=1

ĝ(x j) ≥
1
k

k∑
j=1

ĝ(y j) = log
[ k∏

j=1
η̂(y j)

1
k

]
⇐⇒

k∏
j=1
η̂(x j)

1
k ≥

k∏
j=1
η̂(y j)

1
k

⇐⇒ η̂−1
(∏

j∈K

η̂(x j)
1
k

)
≥ η̂−1

(∏
j∈K

η̂(y j)
1
k

)
. (4.98)

Step 3 (Quasi-geometric mean with η̂ is cardinally equivalent to Î on (0,1]k). Take any
y ∈ (0,1]k . We first claim 0 < Î(y) ≤ 1. Since y j ≤ 1 for each j ∈ K , by strict increasingness
of η̂, ∏

j∈K

η̂(y j)
1
k ≤

∏
j∈K

η̂(1) 1
k ,

and by strict increasingness of η̂−1,

η̂−1
(∏

j∈K

η̂(y j)
1
k

)
≤ η̂−1

(∏
j∈K

η̂(1) 1
k

)
.
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Therefore, (4.98) and normalization of Î together imply

Î(y) ≤ Î(1) = 1.

On the other hand, since y ≫ 0, there exists c > 0 such that y ≫ c · 1 ≫ 0. Since η̂ and η̂−1

are strictly increasing,
η̂−1

(∏
j∈K

η̂(y j)
1
k

)
> η̂−1

(∏
j∈K

η̂(β) 1
k

)
Therefore, by normalization of Î and (4.98),

Î(y) > Î(c · 1) = c > 0.

Let α ≡ Î(y) ∈ (0,1]. Then by normalization of Î at α · 1,

Î(y) = α = Î(α · 1).

Hence, by (4.98),

η̂−1
(∏

j∈K

η̂(y j)
1
k

)
= η̂−1

(∏
j∈K

η̂(α) 1
k

)
= α = Î(y).

We have shown that for each y ∈ (0,1]k ,

Î(y) = η̂−1
(∏

j∈K

η̂(y j)
1
k

)
. (4.99)

Step 4 (Extend η̂ to [0,1]). Recall the definition (4.96) of η̂. We can extend η̂ : (0,1]k → R
to η : [0,1]k → R by defining

η(0) ≡ lim
c↘0

eĝ(c) ∈ R+.

Since ĝ is continuous and strictly increasing on (0,1], so is this extension η on [0,1].
On the other hand, recall that I : [0,1]k → R is continuous on [0,1]k . Therefore,

the equivalence (4.99) remains to hold even if the domain is extended to [0,1]k : for each
y ∈ [0,1]k ,

I(y) = η−1
(∏

j∈K

η(y j)
1
k

)
,

completing the proof. ■

It is worth noting that k ≥ 3 are necessary for (ii) to imply (i). If k = 2, then the index
function in Example 1 satisfies all the axioms. If k = 1, then the identity function

∀y ∈ [0,1], I(y) = y

is the only index function satisfying all the axioms.
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A.2 Proof of Proposition 2

It is not difficult to check that power means satisfy symmetry for the characteristics, normal-
ization, separability, and homogeneity.

Conversely, to show the uniqueness, consider any index function I : [0,1]k → R satisfying
the set of axioms. Then by Steps 1–3 in the proof of Proposition 1, the restriction Î : (0,1]k →
R can be represented by the continuous and strictly increasing function η̂ : (0,1] → R defined
in (4.96). Note that for each y j ∈ (0,1], since η̂(y j) > 0, we can define

ξ̂(y j) ≡ log η̂(y j) ∈ R.

Then by (4.99),

Î(y) = η̂−1
(∏

j∈K

η̂(y j)
1
k

)
= ξ̂−1

(
log

[(∏
j∈K

expξ̂(yj )
) 1
k
] )

= ξ̂−1
(
log

[
exp

1
k

∑
j∈K ξ̂(yj )

] )
= ξ̂−1

(1
k

∑
j∈K

ξ̂(y j)
)
.

Hence, Î is a quasi-arithmetic mean with ξ̂ on (0,1]k .
By Aczél’s Corollary 6 (1987, p.131), power means are the only quasi-arithmetic means

satisfying homogeneity. So there exists an exponent p ∈ R such that for all y ∈ (0,1]k ,

Î(y) =

∏

j∈K y
1
k

j if p = 0,(
1
k
∑

j∈K y
p
j

) 1
p if p , 0.

Since both I and power means are continuous on [0,1]k , by extending the domain from (0,1]k

to [0,1]k , this equivalence remains to hold: for all y ∈ [0,1]k ,

I(y) =

∏

j∈K y
1
k

j if p = 0,(
1
k
∑

j∈K y
p
j

) 1
p if p , 0,

completing the proof. ■
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Appendix B: Tightness of the axioms

For each y ∈ [0,1]k , denote by y[ j] the j-th highest measurement in y = (y1, . . . , yk).

• Let I1 : [0,1]k → R be an asymmetrically weighted product function

∀y ∈ [0,1]k, I1(y) =
k∏

j=1
(yαjj ),

where α j < 1 for all j ∈ K ,
∑k

j=1 α j = 1, and α j , αℓ for some distinct j, ℓ ∈ K .

• Let I2 : [0,1]k → R be a geometric mean multiplied by some number c , 1

∀y ∈ [0,1]k, I2(y) = c
k∏

j=1
y j

1
k .

• Let I3 : [0,1]k → R an index funtion such that

∀y ∈ [0,1]k, I3(y) =
k∏

j=1
(y[ j]αj ),

where αk < 1,
∑k

j=1 α j = 1, and α j , αℓ for some distinct j, ℓ ∈ K .

• Let I4 : [0,1]k → R be an index function such that

∀y ∈ [0,1]k, I4(y) = exp ©«
k∏

j=1

(
log

(
y j + 1

) ) 1
k
ª®¬ − 1.

• Let I5 : [0,1]k → R be a power mean with exponent 1
2

∀y ∈ [0,1]k, I5(y) =
©«1

k

k∑
j=1

y
1
2
j
ª®¬

2

.

• Let I6 : [0,1]k → R be a power mean with exponent −1

∀y ∈ [0,1]k, I6(y) =
©«1

k

k∑
j=1

1
y j

ª®¬
−1

.
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• Let I7 : [0,1]k → R be an asymmetrically weighted sum function such that

∀y ∈ [0,1]k, I7(y) =
1
k

k∑
j=1
α j y j,

where
∑k

j=1 α j = 1 and α1 = α2 , α3 .

• Let I8 : [0,1]k → R be an arithmetic mean multiplied by some number c , 1

∀y ∈ [0,1]k, I8(y) = c ©«1
k

k∑
j=1

y j
ª®¬ .

• Let I9 : [0,1]k → R be the minimum function

∀y ∈ [0,1]k, I9(y) = min
j∈K

y j .

• Let I10 : [0,1]k → R be an index function such that

∀y ∈ [0,1]k, I10(y) = η−1 ©«1
k

k∑
j=1
η(y j)

ª®¬ ,
where for each y j ∈ [0,1],

η(y j) =


2y2
j if y j ≤ 1

2,(
yj
2

) 1
2 if y j >

1
2 .

SYM NORM SEP HMG MLB SENS
I1 − + + + + +

I2 + − + + + +

I3 + + − + + +

I4 + + + − + +

I5 + + + + − +

I6 + + + + + −

Table 1: Tightness of axioms in Theorem 1(i)

The satisfaction and the violation of axioms by these functions are summarized by Tables
1 and 2. It shows the independence of the axioms in our Propositions 1 and 2, and Theorem
1.
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SYM NORM SEP HMG LS
I7 − + + + +

I8 + − + + +

I9 + + − + +

I10 + + + − +

I5 + + + + −

Table 2: Tightness of axioms in Theorem 1(ii)

Appendix C: Amendment of Zambrano’s (2014) Theorem 1

To state our amendment of Zambrano(2014)’s Theorem 1 precisely, let us introduce Zam-
brano’s model, which differs from that of Herrero, Martínez, and Villar (2010).

Zambrano considers the problem of designing an index function that aggregates partial
indices for the three characteristics: health, education, and income. A social state is a vector
(h, e, y), each component of which is the aggregate level of achievements of the members of
a society in health, education, or income. Let H ≡ [h0, h∗] ⊂ R be the space of the aggregate
level of achievements in health. Similarly, let E ≡ [e0, e∗] and Y ≡ [y0, y∗].

Partial index functions in health, education, and income are continuous functions Ch :
H → [0,1], Ce : E → [0,1], and Cy : Y → [0,1], respectively. An aggregator function
is a continuous function I : [0,1]3 → R that aggregates partial indices yielded by these
three functions. Note that an aggregator function herein corresponds to an index function in
Herrero, Martínez, and Villar’s model, where n = 1 and k = 3.

An index function C : H × E × Y → R is defined by the functions Ch,Ce,Cy, and I as
follows: for each (h, e, y) ∈ H × E × Y ,

C(h, e, y) ≡ I
(
Ch(h),Ce(e),Cy(y)

)
.

The new HDI is an index function C∗ : H × E × Y → R that is defined by the following
functions C∗

h,C
∗
e ,C

∗
y , and I∗. For each (h, e, y) ∈ H × E × Y ,

C∗
h(h) =

h − h0

h∗ − h0 ,

C∗
e (e) =

e − e0

e∗ − e0 ,

C∗
y(y) =

log y − log y0

log y∗ − log y0 ,

I∗
(
C∗

h(h),C
∗
e (e),C∗

y(y)
)
= C∗

h(h)
1
3 · C∗

e (e)
1
3 · C∗

y(y)
1
3 .
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Zambrano proposes six axioms: Monotonicity, aggregation symmetry, normalization,
minimal lower boundedness, separability, and partial capability growth. The first five ax-
ioms can be defined in a similar manner. Partial capability growth requires that different
functionings improve capabilities in different ways. In particular, an improvement of health
achievements changes health capabilities at a constant rate, and so does an improvement of
education achievements; on the other hand, an improvement of income achievements changes
income capabilities at a decreasing rate.

Partial capabilities growth. For each (h, e, y), (h′, e′, y′) ∈ H × E × Y and each ∆h,∆e, dy

such that h + ∆h, h′ + ∆h ∈ H, e + ∆e, e′ + ∆e ∈ E , and y + y · dy, y
′ + y′ · dy ∈ Y ,

• Ch(h + ∆h) − Ch(h) = Ch(h′ + ∆h) − Ch(h′);

• Ce(e + ∆e) − Ce(e) = Ce(e′ + ∆e) − Ce(e′); and

• Cy(y + y · dy) − Cy(y) = Cy(y′ + y′ · dy) − Cy(y′).

Claim 2 (Zambrano, 2010, Theorem 1). The new HDI C∗ : H × E × Y → R is the only
index function satisfying monotonicity, aggregation symmetry, normalization, minimal lower
boundedness, separability, and partial capabilities growth.

However, the following modification of the index function in our Example 2 shows that
the new HDI is not a unique index function satisfying the axioms.

Example 3. Let C : H×E×Y → R be an index function such that for each (h, e, y) ∈ H×E×Y ,

C(h, e, y) ≡ log
[(

exp
(
C∗

h(h)
)
− 1

) 1
3
(
exp

(
C∗

e (e)
)
− 1

) 1
3
(
exp

(
C∗
y(y)

)
− 1

) 1
3
+ 1

]
.*37

Then C satisfies monotonicity, aggregation symmetry, normalization, minimal lower bound-
edness, separability, and partial capability growth, but it is not the new HDI.

Zambrano’s Theorem 1 can be fixed by applying our Theorem 1(i). Sensitivity to lowest-
level characteristics is similarly defined as an axiom on aggregator function I : [0,1]3 → R.
To this end, we introduce aggregation homogeneity.

Aggregation homogeneity. For each (h, e, y) ∈ H×E×Y and eachλ > 0 with
(
λCh(h), λCe(e), λCy(y)

)
∈

[0,1]3,
I
(
λCh(h), λCe(e), λCy(y)

)
= λ · I

(
Ch(h),Ce(e),Cy(y)

)
.

*37Note that the natural exponential function exp(·) is used here instead of Napier’s constant in order not to be
confused with the aggregate level in health e.
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Theorem 2. The new HDI C∗ : H ×E ×Y → R is the only index function satisfying aggrega-
tion symmetry, normalization, minimal lower boundedness, separability, partial capabilities
growth, aggregate homogeneity, and sensitivity to lowest-level characteristics.

Proof. Slightly modify Zambrano’s proof for the uniqueness as follows. Here note that Zam-
brano refers to normalization, minimal lower boundedness, separability as scale, subsistence,
and independence, respectively and that symmetry, normalization and separability together
imply monotonicity.

• (p.868, ℓ.14-15) “Since C satisfies Monotonicity, Subsistence and Independence it is a
consequence of Theorem 1 in Herrero et al. (2010a) that...”
−→ a consequence of our Theorem 1(i)

• (p.868, ℓ.19) “By Scale and Aggregation Symmetry, ...”
−→ By Scale, Aggregation Symmetry, Aggregation Homogeneity, and Sensitivity to
lowest-level characteristics ■

For the tightness of the axioms in Theorem 2, that in our Theorem 1(i) is applicable. Ex-
amples I1, I2, I3, I4 and I5 in Appendix 4.5 together with C∗

h,C
∗
e ,C

∗
y generate index functions

that satisfy all the axioms except aggregation symmetry, normalization, separability, aggrega-
tion homogeneity, sensitivity to lowest-level characteristics, and minimal lower boundedness,
respectively. The following example borrowed from Zambrano (2014) satisfies all the axioms
except partial capabilities growth:

C(h, e, y) ≡
(

log h − log h0

log h∗ − log h0

) 1
3

·
(

log e − log e0

log e∗ − log e0

) 1
3

·
(
y − y0

y∗ − y0

) 1
3

.
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Chapter 5

A Characterization of the Esteban-Ray
Polarization Measures
*38

5.1 Introduction

A seminal work by Esteban and Ray (1994; henceforth “ER”) formalizes an idea of polar-
ization and develop a theory for its measurement. In their main theorem (ER, Theorem 1),
they claim that a class of allowable polarization measures, called the Esteban-Ray measures,
is characterized by a set of axioms that capture an idea of polarization. However, we show
that this claim does not hold by presenting a counterexample. We strengthen their Axiom 1
so that the characterization result can be reestablished.

The rest of this chapter is organized as follows. Section 2 introduces definitions and
axioms. Section 3 presents our results. Proofs are relegated to Appendix.

5.2 Model and Axioms

Our model follows that of ER. Let R be the set of attributes (a basic perceptual variable
is the natural logarithm of income). We consider population distributions on R with finite
supports. That is, a distribution is denoted by a pair of n-dimensional vectors (π, y) =
((π1, . . . , πn), (y1, . . . , yn)) ∈ Rn

++×Rn for some n ∈ N, where πi is the population of individuals
with attribute yi and yi , y j for distinct i, j ∈ {1, . . . ,n}. Let

D ≡
∞∪

n=1
Rn
++ ×

{
y ∈ Rn : yi , y j for all distinct i, j ∈ {1, . . . ,n}

}
be the set of distributions. A polarization measure is a function P : D → R+ that maps each
distribution (π, y) ∈ D to a non-negative real number P(π, y) ∈ R+. ER’s analysis focuses on

*38This chapter is co-authored with Yoko Kawada and Keita Sunada, and based on Kawada, Nakamura, and
Sunada (2018).
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polarization measures that take the following functional form:

P ((π, y)) =
n∑

i=1

n∑
j=1
πiπ jθ

(
πi,

��yi − y j
��) , (5.100)

where θ is a function R2
+ → R such that θ(·, ·) is strictly increasing in the second argument

(distance), continuous in each argument, θ(0, ·) = 0, θ(·,0) = 0, and θ(πi, δ) > 0 for all πi > 0
and δ > 0.*39 An interpretation and background of this form is discussed in ER.

ER propose three axioms that capture an idea of polarization. Axiom 1 says that when a
large mass exists at attribute 0, unifying two close masses increases polarization.

Axiom 1. For any p > 0 and any x > 0, there exist ε > 0 and µ > 0 such that, for any y > x

and any q < p with y − x < ε and 0 < q < µp,

P (((p,q,q), (0, x, y))) < P
((
(p,2q),

(
0,

x + y

2

)))
.

p

q q

2q

0 x yx+y
2

Axiom 2 requires that when an intermediate mass gets closer to the right extreme mass,
polarization go up.

Axiom 2. For any p,q,r > 0 with p > r , any x, y > 0 with |y − x | < x < y, and any
∆ ∈ (0, y − x),

P ((p,q,r) , (0, x, y)) < P ((p,q,r) , (0, x + ∆, y)) .

*39The assumption θ(0, ·) = 0 is not imposed by ER. However, this assumption is necessary to deduce equation
(6) in their proof of Theorem 1.
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p

q

r

0 x y

Axiom 3 requires that if the population of an intermediate mass decreases, and if the
population of left and right extreme masses increase equally, then polarization go up.

Axiom 3. For any p,q > 0, any x, y > 0 with x = y − x, and any ∆ ∈ (0,q/2),

P ((p,q, p) , (0, x, y)) < P ((p + ∆,q − 2∆, p + ∆) , (0, x, y)) .

p

q

p

0 x y

Condition H is a homotheticity property requiring any bilateral comparison be invariant
to the scale of population.

Condition H. For any (π, y), (π′, y′) ∈ D and λ > 0, if P(π, y) ≥ P(π′, y′), then P(λπ, y) ≥
P(λπ′, y′).

5.3 Main Results

5.3.1 Counterexamples

ER claim that the class of the Esteban-Ray measures is characterized by Axioms 1–3 and
Condition H.
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Claim 1 (ER, Theorem 1). A polarization measure P∗ of the family defined in (5.100) satisfies
Axioms 1, 2, and 3, and Condition H if and only if it is of the form

P∗(π, y) = K
n∑

i=1

n∑
j=1
π1+α

i π j
��yi − y j

�� (5.101)

for some constants K > 0 and α ∈ (0, α∗] where α∗ ≃ 1.6.*40

We show that Claim 1 does not hold because Axiom 1 is too weak to characterize the
class of the Esteban-Ray measures. In their proof of Claim 1, ER show that Axiom 1 and the
continuity of θ(·, ·) in equation (5.100) imply that θ(πi, ·) must be locally concave with respect
to the distance; that is, for each x > 0, there exists ε > 0 such that θ(πi, ·) is concave on a
half-open interval [x, x+ε). Then, they claim that this local concavity of θ implies that θ(πi, ·)
must be concave on R+. However, this claim is not correct. To see this, fix any c ∈ R++ and
let f̂ : R+ → R+ be such that for each δ ∈ R+,

f̂
(
δ
)
=


Kδ if δ < c,

K′δ − (K′ − K)c if δ ≥ c,

where 0 < K < K′. Then, a convex piecewise linear function θ(πi, δ) = παi f̂ (δ) is not concave
on R+, but satisfies the local concavity.*41 Therefore, Axiom 1 cannot exclude the convex
piecewise linear function. In fact, a polarization measure with the convex piecewise linear
function θ(πi, δ) = παi f̂ (δ) satisfies Axioms 1–3 and Condition H, and hence Claim 1 does
not hold.

Proposition 1 (Counterexample to Claim 1). Let P̂ : D → R+ be such that

P̂(π, y) =
n∑

i=1

n∑
j=1
π1+α

i π j f̂ (|yi − y j |), (5.102)

where α ∈ (0, α∗]. Then, P̂ satisfies Axioms 1, 2, and 3, and Condition H, but does not take
the form of (5.101).

Proof. See Appendix A. ■

*40For the definition of α∗, see ER’s equation (2) and subsequent arguments on page 833.
*41To confirm this, consider any x > 0. If x ≥ c, then for any ε > 0, θ(πi, ·) is concave on the half-open interval

[x, x + ε). Conversely, if x < c, then by letting ε = 1
2 (c − x) > 0, θ(πi, ·) becomes concave on the half-open

interval [x, x + ε).
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We have two remarks on this proposition; (i) our counterexample function P̂ and an
Esteban-Ray measure generate different orderings; (ii) a set of counterexamples is dense in
a set of polarization measures with standard properties. These discussions are relegated to
Supplementary Appendix B.

5.3.2 Modification

We provide a modified axiom that excludes the convex piecewise linear functions, and amend
a characterization of the Esteban-Ray measures. For any x > 0 and ε > 0, let B(x, ε) ≡ {z ∈
R+ : |x − z | < ε}.

Axiom 1′. For any p > 0 and any x > 0, there exist ε > 0 and µ > 0 such that for any
a, b ∈ B(x, ε) and q < p with 0 < q < µp,

P (((p,q,q) , (0,a, b))) < P
((
(p,2q) ,

(
0,

a + b
2

)))
.

In contrast to Axiom 1, Axiom 1′ implies that θ(πi, ·) must satisfy the following stronger
version of local concavity with respect to the second argument: for each x > 0, there exists
ε > 0 such that θ(p, ·) is concave on an open interval (x − ε, x + ε). Since the convex
piecewise linear function θ(πi, δ) = παi f̂ (δ) with kink point c is not concave on any open
interval (c − ε, c + ε) with ε > 0, θ̂ does not satisfy this strong local concavity. This is why
Axiom 1′ can exclude the convex piecewise linear functions.

Though Axiom 1′ and Axiom 1 are mathematically quite different, Axiom 1’ has almost
the same interpretation as the original compelling axiom. In this sense, this modification does
not change the spirit of the original axiom.*42 Now we restore an axiomatic foundation of the
Esteban-Ray polarization measures.

Proposition 2. A polarization measure P∗ of the family defined in (5.100) satisfies Axioms
1′, 2, and 3, and Condition H if and only if it is of the form

P∗(π, y) = K
n∑

i=1

n∑
j=1
π1+α

i π j
��yi − y j

��
for some constants K > 0 and α ∈ (0, α∗] where α∗ ≃ 1.6.

Proof. See Appendix C. ■

*42Assuming differentiability of measures is one way to exclude convex piecewise linear functions. However,
differentiability is irrelevant to the original Axiom 1. Moreover, we cannot find a normative reason for adopting
differentiability as an axiom in this context. For these reasons, we do not assume differentiability to characterize
the Esteban-Ray measures.
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Appendix A: Proof of Proposition 1.

Let us show that P̂ satisfies Condition H and Axioms 1, 2, and 3.

Condition H. Take any (π, y), (π′, y′) ∈ D and any λ > 0. Suppose that

P̂(π, y) ≥ P̂(π′, y′).

Then, by the definition of P̂,

n∑
i=1

n∑
j=1
π1+α

i π j f̂ (|yi − y j |) ≥
n′∑

i=1

n′∑
j=1
π′1+αi π′j f̂ (|y′i − y′j |).

Since λ > 0, this equation implies that

n∑
i=1

n∑
j=1

(λπi)1+α(λπ j) f̂ (|yi − y j |) ≥
n′∑

i=1

n′∑
j=1

(λπ′i )1+α(λπ′j) f̂ (|y′i − y′j |).

Therefore,
P̂(λπ, y) ≥ P̂(λπ′, y′).

Axiom 1. Take any p > 0 and x > 0. Let us show that there exist ε > 0 and µ > 0 such that
for any y > x with y − x < ε and any q > 0 with q < µp,

P̂ ((p,q,q), (0, x, y)) < P̂
(
(p,2q) ,

(
0,

x + y

2

))
.

Case 1 (x < c). Let ε > 0 and µ > 0 be such that

ε = min
{

1
2
(c − x), (2α − 1)x

}
,

µ =
1
2
.

Take any y > x with y − x < ε and any q > 0 with q < µp. Note that x, y, x+y
2 , |y − x | < c.

Therefore,

P̂ ((p,q,q), (0, x, y)) = K
((

p1+αq + q1+αp
)
(x + y) + 2q2+α |y − x |

)
,

and
P̂

(
(p,2q) ,

(
0,

x + y

2

))
= K

(
2p1+αq + 21+αq1+αp

) ( x + y

2

)
.
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Moreover, since |y − x | < ε, 2q < p and ε ≤ (2α − 1)x, it follows that

2q |y − x | < εp ≤ (2α − 1)xp < (2α − 1)(x + y)p.

Then, by the same argument as ER (line 14 on page 837),

P̂ ((p,q,q), (0, x, y)) < P̂
(
(p,2q) ,

(
0,

x + y

2

))
.

Case 2 (x ≥ c). Let ε > 0 and µ > 0 be such that

ε = min
{

1
2

c, (2α − 1)(K′x − (K′ − K)c)
}
,

µ =
1

2K
.

Take any y > x with y − x < ε and any q > 0 with q < µp. Note that x, y, x+y
2 ≥ c and

|y − x | < c. Therefore,

P̂ ((p,q,q), (0, x, y)) =
(
p1+αq + q1+αp

) (
K′x + K′y − 2(K′ − K)c

)
+ 2q2+αK |y − x |,

and

P̂
(
(p,2q) ,

(
0,

x + y

2

))
=

(
2p1+αq + 21+αq1+αp

) ( x + y

2
K′ − (K′ − K)c

)
=

(
p1+αq + q1+αp

) (
K′x + K′y − 2(K′ − K)c

)
+ (2α − 1)q1+αp(K′x + K′y − 2(K′ − K)c).

Then, P̂ ((p,q,q), (0, x, y)) < P̂
(
(p,2q) ,

(
0, x+y

2
) )

if and only if

2qK |y − x | < (2α − 1)p
(
K′x + K′y − 2(K′ − K)c

)
.

Since |y − x | < ε, 2Kq < p and ε ≤ (2α − 1)(K′x − (K′ − K)c), we have

2qK |y − x | < εp ≤ (2α − 1)p
(
K′x − (K′ − K)c

)
< (2α − 1)p

(
K′x + K′y − 2(K′ − K)c

)
.

Therefore,

P̂ ((p,q,q), (0, x, y)) < P̂
(
(p,2q) ,

(
0,

x + y

2

))
.

Hence P̂ satisfies Axiom 1.

Axiom 2. Fix any p,q,r > 0 with p > r , and any x < y with x > y − x. Let us show that for
any ∆ ∈ (0, y − x),

P̂ ((p,q,r) , (0, x, y)) < P̂ ((p,q,r) , (0, x + ∆, y)) .
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Take any ∆ ∈ (0, y − x). For simplicity, we write

P̂ ≡ P̂ ((p,q,r) , (0, x, y)) ,
P̂∆ ≡ P̂ ((p,q,r) , (0, x + ∆, y)) .

Then,

P̂ = f̂ (x)
(
p1+αq + q1+αp

)
+ f̂ (y − x)

(
q1+αr + r1+αq

)
+ f̂ (y)

(
p1+αr + r1+αp

)
,

P̂∆ = f̂ (x + ∆)
(
p1+αq + q1+αp

)
+ f̂ (y − x − ∆)

(
q1+αr + r1+αq

)
+ f̂ (y)

(
p1+αr + r1+αp

)
.

We shall show P̂∆ − P̂ > 0.
Since f̂ is convex and x > y − x, the slope of f̂ at x is larger than that at y − x; that is,

f̂ (x + ∆) − f̂ (x) ≥ f̂ (y − x) − f̂ (y − x − ∆).

Therefore,

P̂∆ − P̂

≥
(

f̂ (x + ∆) − f̂ (x)
) (

p1+αq + q1+αp
)
−

(
f̂ (y − x) − f̂ (y − x − ∆)

) (
q1+αr + r1+αq

)
≥

(
f̂ (y − x) − f̂ (y − x − ∆)

) ((
p1+αq + q1+αp

)
−

(
q1+αr + r1+αq

))
.

Hence, P̂∆ − P̂ is positive whenever p > r since f̂ (y − x) − f̂ (y − x − ∆) > 0.

Axiom 3. Fix any p,q > 0, and any x, y > 0 with x = y − x. Let us show that for any
∆ ∈ (0,q/2),

P̂ ((p,q, p) , (0, x, y)) < P̂ ((p + ∆,q − 2∆, p + ∆) , (0, x, y)) .

Take any ∆ ∈ (0,q/2). For simplicity, we write

P̂ ≡ P̂ ((p,q, p) , (0, x, y)) ,
P̂∆ ≡ P̂ ((p + ∆,q − 2∆, p + ∆) , (0, x, y)) .

Then,

P̂ = 2 f̂ (d)
(
p1+αq + q1+αp

)
+ 2 f̂ (2d)

(
p2+α),

P̂∆ = 2 f̂ (d)
(
(p + ∆)1+α(q − 2∆) + (q − 2∆)1+α(p + ∆)

)
+ 2 f̂ (2d)

(
(p + ∆)2+α

)
.

We shall show P̂∆ − P̂ > 0.
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Case 1 (2d < c). In this case,

P̂ = K
(
2d

(
p1+αq + q1+αp

)
+ 4d

(
p2+α) ),

P̂∆ = K
(
2d

(
(p + ∆)1+α(q − 2∆) + (q − 2∆)1+α(p + ∆)

)
+ 4d

(
(p + ∆)2+α

) )
.

Then, by the same argument as ER (paragraph of verifying axiom 3 on page 837), it follows
that P̂∆ − P̂ > 0.

Case 2 (d < c and c < 2d). By definition of f̂ , it follows that f̂ (2d) ≥ 2Kd. Then, since
(p + ∆)2+α ≥ p2+α,

2 f̂ (2d)(p + ∆)2+α − 2 f̂ (2d)p2+α ≥ 4Kd(p + ∆)2+α − 4Kdp2+α.

Therefore,

P∆ − P ≥ K
(
2d

(
(p + ∆)1+α(q − 2∆) + (q − 2∆)1+α(p + ∆)

)
+ 4d

(
(p + ∆)2+α

) )
− K

(
2d

(
p1+αq + q1+αp

)
+ 4d

(
p2+α) ) . (5.103)

Then, by the same argument as Case 1, the right hand side of (5.103) is positive. Hence
P̂∆ − P̂ > 0.

Case 3 (c < d). Let
A ≡ 2

(
p1+αq + q1+αp

)
+ 4

(
p2+α),

A∆ ≡ 2
(
(p + ∆)1+α(q − 2∆) + (q − 2∆)1+α(p + ∆)

)
+ 4

(
(p + ∆)2+α

)
,

B ≡ 2
(
p1+αq + q1+αp

)
+ 2

(
p2+α),

B∆ ≡ 2
(
(p + ∆)1+α(q − 2∆) + (q − 2∆)1+α(p + ∆)

)
+ 2

(
(p + ∆)2+α

)
.

Then, we can compute that

P̂ = K′dA − (K′ − K)cB,

P̂∆ = K′dA∆ − (K′ − K)cB∆.

Moreover, by the same argument as Case 1, it follows that A∆ ≥ A. Therefore,

K′d (A∆ − A) ≥ K′c (A∆ − A) ,

and hence
P̂∆ − P̂ ≥

(
K′cA∆ − (K′ − K)cB∆

)
−

(
K′cA − (K′ − K)cB

)
.
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Therefore, it suffices to show that the derivative of the function

P̂(∆) ≡ K′cA∆ − (K′ − K)cB∆,

evaluated at ∆ = 0, is non-negative and positive for all but at most one ratio z ≡ p/q. By a
simple computation, this derivative is given by

P̂′(∆) = q1+α
(
2c(K′ − K)(2 + α)z1+α − 4cKφ(z, α)

)
, (5.104)

where the function φ is defined by

φ(z, α) = (1 + α)
(
z − zα

2
− z1+α

)
− 1

2
.

Then, since α ∈ (1, α∗] , (5.104) is non-negative and is positive for all but at most one ratio z

(see ER; equation (2) and subsequent arguments on page 833). Therefore, P̂ satisfies Axiom
3. □

Appendix B: Discussions on Proposition 1.

(i) Ordinal difference between a counterexample and ER’s measure

Our counterexample and an Esteban-Ray measure generate different orderings. For example,
let (π, y) = ((1,1,1), (0,4,8)) and (π′, y′) = ((1,1,1), (0,1,7)). Specify each parameter of P̂ as
K = 1, K′ = 10 and c = 4; that is, let

P∗(π, y) =
n∑

i=1

n∑
j=1
π1+α

i π j
��yi − y j

��,
P̂(π, y) =

n∑
i=1

n∑
j=1
π1+α

i π j f̂ (|yi − y j |),

where

f̂
(
|yi − y j |

)
=


|yi − y j | if |yi − y j | < 4,

10|yi − y j | − 36 if |yi − y j | ≥ 4.

Then, for any α ∈ (1, α∗],

P∗(π, y) = 32 > 28 = P∗(π′, y′),

but
P̂(π, y) = 104 < 118 = P̂(π′, y′).

Hence, P∗ and P̂ yield different orderings.
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(ii) Denseness of counterexamples

Many functions of the form of (5.100) satisfy Axioms 1–3 and Condition H, but do not take
the form of (5.101). Indeed, let

F = { f : R+ → R+ | f is convex, strictly increasing, non-linear,

piecewise linear with discrete kink points, and f (0) = 0.}.

Then, for any f ∈ F, a function of the form (5.100)

P(π, y) =
n∑

i=1

n∑
j=1
π1+α

i π j f (|yi − y j |)

satisfies Axioms 1–3 and Condition H but does not take the form of (5.101).
Moreover, let

G = {g : R+ → R+ | g is convex, strictly increasing, and g(0) = 0},

then F is dense in G with a standard metric ρ, defined as ρ( f ,g) = supx∈R+ | f (x) − g(x)|.
That is, for all g ∈ G and any ε > 0, there exists f ∈ F, such that ρ( f ,g) < ε. Denseness of
F suggests that Axiom 1 does not work well to characterize the Esteban-Ray measures.

Proposition. For any f ∈ F, a function of the form (5.100)

P(π, y) =
n∑

i=1

n∑
j=1
π1+α

i π j f (|yi − y j |)

where α ∈ (0, α∗] satisfies Axioms 1, 2 and 3, and Condition H but does not take the form of
(5.101). Moreover, F is dense in G.

The first statement can be proven by the same way as Proposition 1. Here we show that F

is dense in G. Consider any g ∈ G. Take any ε > 0.

Case 1 (g is non-linear). We will construct a piecewise linear function that uniformly
approximates g. Consider the partition of [0,∞), [0, ε), [ε,2ε), [2ε,3ε), . . .. Since g is strictly
increasing and continuous*43, for each k ∈ {1,2, . . .}, there exists a unique real number
dk ∈ R+ with dk = g−1(kε). For example, g(d1) = ε and g(d2) = 2ε. Define d0 = 0. Note

*43Since g convex, strict increasing, and g(0) = 0, it is continuous on [0,∞).
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that R+ is partitioned by a family [d0, d1), [d1, d2), [d2, d3), . . .. Let f be a piecewise linear
function such that

f (x) =



ε

d1
x if x ∈ [0, d1),
ε

d2 − d1
(x − d1) + ε if x ∈ [d1, d2),

ε

d3 − d2
(x − d2) + 2ε if x ∈ [d2, d3),

...
ε

dk − dk−1
(x − dk−1) + (k − 1)ε if x ∈ [dk−1, dk),

...

That is, f is the piecewise linear function such that f (dk) = kε = g(dk) for each k ∈
{0,1,2, . . .}. Obviously, f ∈ F.*44

We show that g can be uniformly approximated by f . Consider any x ∈ R+. Since the
family [d0, d1), [d1, d2), [d2, d3), . . . is a partition of R+, there exists k ∈ {1,2, . . .} such that
x ∈ [dk−1, dk), and so

f (x) ∈ [(k − 1)ε, kε) and g(x) ∈ [(k − 1)ε, kε).

Therefore, | f (x) − g(x)| < ε.

Case 2 (g is linear). Since g is linear, there exists k > 0 such that g(x) = kx for any x ∈ R+.
Fix any c ∈ R++. Let f̃ be a convex piecewise linear function such that

f̃ (x) =


1
c

(
kc − 1

2ε
)

x if x < c,

k x − 1
2ε if x ≥ c.

Obviously, f̃ ∈ F. Then, f̃ (x) ∈ (kx − ε, k x) for any x ∈ R+. Therefore, | f̃ (x) − g(x)| < ε.
Hence, F is dense in G.

Appendix C: Proof of Proposition 2.

(Sufficiency.) We can show that P∗ satisfies Axiom 1′ as the same way in ER, so we omit the
proof of this part.

*44Since g is convex, dk − dk−1 > dk+1 − dk for each k ∈ {1,2, . . .}. Therefore, ε
dk−dk−1

is increasing in k, that
is, f is a convex piecewise linear function.
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(Necessity.) We show that Axiom 1′ implies concavity of θ. since the proof of Proposition 2
is the same as that of Theorem 1 except for this point. Consider the distribution depicted in
Axiom 1’. Initially, polarization is given by

P1 ≡ pq[θ(p,a) + θ(p, b)] + pq[θ(q,a) + θ(q, b)] + 2q2θ(q, |b − a|),

and polarization after the distribution shifting is

P2 ≡ 2pq

[
θ

(
p,

a + b
2

)]
+ 2pq

[
θ

(
2q,

a + b
2

)]
.

Axiom 1’ implies that

2p

[
θ

(
p,

a + b
2

)
+ θ

(
2q,

a + b
2

)]
> p[θ(p,a) + θ(p, b)]

+ p[θ(q,a) + θ(q, b)]
+ 2qθ(q, |b − a|).

Take the limit as q → 0. Then, for any x > 0, there exists ε > 0 such that for any a, b ∈ B(x, ε),

θ

(
p,

a + b
2

)
≥ θ(p,a) + θ(p, b)

2
.

This means local mid-point concavity, but we show that it is sufficient for global and any
convex-combination concavity; for any a, b > 0 and any t ∈ [0,1],

θ (p, ta + (1 − t)b) ≥ tθ(p,a) + (1 − t)θ(p, b).

Suppose, by contradiction, that there exist a, b > 0 and t ∈ [0,1] such that

θ (p, ta + (1 − t)b) < tθ(p,a) + (1 − t)θ(p, b). (5.105)

For each s ∈ [0,1], define

h(s) = θ (p, sa + (1 − s)b) − sθ(p,a) − (1 − s)θ(p, b).

Then h is locally mid-point concave. Indeed, since θ(p, ·) is locally mid-point concave at any
point, θ(p, ·) is mid-point concave on B(sa+ (1− s)b, ε) for any s ∈ [0,1] and for some ε > 0.
Moreover, −sθ(p,a) − (1 − s)θ(p, b) = (θ(p, b) − θ(p,a))s − θ(p, b) is a straight line, which
is globally concave. Since the sum of two concave functions is also concave, h is locally
mid-point concave. Note that h(1) = h(0) = 0 and h(t) < 0 by (5.105).
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Since h is continuous, by the extreme value theorem, h has the minimum value on [0,1].
Let

m = min{h(s) : s ∈ [0,1]},
u = max{s ∈ [0,1] : h(s) = m}.

Then h(s) > h(u) for every s ∈ (u,1] and h(s′) ≥ h(u) for every s′ ∈ [0,u]. Thus h is not
locally concave on any epsilon ball with center u. Indeed, take any ε′ > 0. Let a′ ∈ B(u, ε′)
with a′ > u. Let b′ = u − |a′ − u|. Note that a′, b′ ∈ B(u, ε′), 1

2 (a′ + b′) = u, h(a′) > h(u), and
h(b′) ≥ h(u). This implies that

h
(
1
2
(a′ + b′)

)
= h(u) < h(a′) + h(b′)

2
.

This contradicts local mid-point concavity of h, as desired. Therefore, we have restored a
claim: “θ(p, ·) must be concave” (line 11, page 835 of ER).
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