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Summary

Living in a knowledge society, we are facing an abundance of new infor-
mation every day. Technology pervasively surrounds us and enables the
virtually uninterrupted information retrieval and distribution, resulting in
a constant communication between people and computers. One of the key
functions of a computer is to support its user and react to input with the
response expected or desired by the users, creating an understanding of
context. By using explicit and implicit input modalities we can increase the
information density and allow computers to better interpret the user’s con-
text, making them context-aware. Recent developments in cognitive psy-
chology and computer science have extended the context-awareness of com-
puters by a cognitive layer, i.e. systems can infer user states of changing
cognitive performance measures. Even though, most of the research focuses
on constrained settings and utilizes cumbersome, often stationary machin-
ery, recent developments in the ubiquitous and wearable computing domain
have presented us with the potential for less invasive, mobile solutions. The
research presented in this dissertation investigates the development of un-
obtrusive sensing solutions, that allow for uninterrupted sensing in labo-
ratory and everyday life settings. We present a series of studies based on
psychophysical principles utilizing off-the-shelf hardware for measuring eye
motion features and changing facial temperature. These measurements al-
low us to infer variations in states of alertness, fatigue, and cognitive work-
load. We introduce three research probes that investigate the feasibility
of consumer-grade sensing solutions and correlate changes in physiological
signals with cognitive state variations. Furthermore, we present a proto-
typical feedback loop that utilizes blink frequency variations as an input

i
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modality, and give an outlook on a sensing device that combines infrared
and electrooculography sensors in regular frames. The concepts, results,
and tools detailed in this thesis enable researchers, product and application
designers, and potentially teachers and students to gain insights into the
capacities of context-aware systems, here in particular cognition-aware sys-
tems. Awareness of fluctuating levels of cognitive performance measures
will support better management of tasks, allow for the development of new
adaptable user interfaces informed by cognitive states, and will eventually
support maintaining short- and long-term health of users by better in-situ
matching of task-load and available cognitive resources.

Keywords:

Context-Aware Computing, Cognition-Aware Computing, Ubiquitous Com-
puting, Wearable Sensing, Psychophysiology
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Chapter 1
Introduction

1.1 Background
A continuous process of development defined by consolidation, individual-
ization, and distribution has lead modern computing into its third era. First
came the era of centralized computing units, so called mainframe comput-
ers, that were often owned by one organization, but shared by different
users. One of the first fully operational digital computers was the ENIAC
(Electronic Numerical Integrator and Computer) that required a space of
approximately 167m2 and weighed 27 tons [93]. The first major change in
the evolution of consumer computers, and the step into the second era, hap-
pened about 20 years after ENIAC was shut down. In the years 1974/75
when the first personal computer (PC) (Altair 8800) and the first portable
computer (IBM 5100) were introduced to the consumer market [44]. These
computers are usually owned and used by one person. The foundation for
the most recent step in this evolution was done when computers were con-
nected to wired networks. The advancement to ad-hoc wireless networks
has enabled us to embed systems in everyday devices (e.g. watches) and
design small handheld devices (e.g. smarthphones) that communicate not
only with central computing units, but also with each other. This lead to a
transformation of computers from room-filling stationary devices owned by
a few organizations, not just into widely distributed objects, but also into
attachments to our bodies. The ubiquity of these systems has given the
third era of modern computing its name, the era of Ubiquitous computing,
or ubicomp [218]. With computers being literally put into our hands and
onto our bodies, information today is available at virtually any time and in
any place, not only to be received but also to be sent. Not only, can we all
use our waiting time at the bus stop for answering emails or reading the
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INTRODUCTION 1.1 Background

news, we can do our shopping on the subway, and can communicate with
friends and colleagues.

The increasing availability of ubiquitous networks and information initi-
ated a profound process of societal change. Daniel Bell first defined this new
Information Society [24], and postulated that by moving away from a society
aiming at producing material goods, towards a culture of information pro-
duction, processing, and consumption, professions that were able to create,
gather, and distribute information would become more valuable and pow-
erful than manufacturing labor. By transforming into service societies, the
major commodities have now become information, knowledge, and technol-
ogy, and here especially Information and Communication Technology (ICT).
Whereas information societies are born out of technological development
and the ability to create and disseminate information, the UNESCO pro-
claimed that cultural and social identity have to be taken into account in
order to transform information into knowledge [27], resulting in the con-
version of information societies into knowledge societies. The development
of network technology enabling the connection of individuals and organiza-
tions independent of their geographical location has lead to the formation
of communities that have not existed before, which have significantly accel-
erated the creation, processing, and sharing of knowledge.

The crux of the issue lies in the accelerating (and unprece-
dented) speed at which knowledge is created, accumulated and,
most probably, depreciates in terms of economic relevance and
value. This trend has reflected, inter alia, an intensified pace of
scientific and technological progress.

Paul A. David and Dominique Foray [55]

Consequently, this has lead us into a situation where we find ourselves
put under pressure to keep up with the available amounts of information
and the acquisition of new knowledge. The knowledge society requires us
to perpetually deal with the increasing amount of knowledge and informa-
tion by engaging in learning. As long as we are able to handle and filter
all the input appropriately, things will not go out of hand. The delivery of

3



INTRODUCTION 1.1 Background

information or user-side processing is a more or less solved problem. Never-
theless, on information recipient’s side we are facing major issues. Informa-
tion processing and knowledge acquisition require significant investment of
personal effort, time, and cognitive resources, and depend on personal in-
terest, preexisting knowledge, and talent. This leads to people developing
individual strategies for dealing with these requirements. On the one hand
some people handle and organize learning tasks well and effectively. On
the other hand, different people are more efficient and successful when be-
ing supervised and guided, e.g. through courses and classes. Additionally,
there are temporal preferences, as some learners are more efficient in the
morning hours, whereas others can process new information better in the
evening. Therefore, there is no turnkey solution for successfully educating
the members of our knowledge society, but rather does it require personally
tailored and adaptable solutions that identify and support individual pref-
erences.

Whereas psychologists have been investigating and researching why we
are reacting to particular stimuli with certain emotions, e.g. fear of heights,
a physiologist is curious about the parts of our body, especially the brain
and our sensory organs, that are responsible for receiving and emitting in-
formation which cause the fear of heights. Since the 1850s/60s psychophys-
iologists have tried to find the relation between both fields, and thereby
make sense of these phenomena. Today, there are various subdivisions of
psychophysiology, e.g. social psychophysiology and cognitive neuroscience,
that are specializing their focus even more [74]. All these directions follow
the goal to understand the bodily foundation of mental processes and sen-
sations. Understanding which mental process or reaction causes a certain
type of physical expressions would mean that we can look into the human
brain by simply looking at a person’s outside. A well-known example is the
startle reaction. Startled people usually show widely opened eyes, an open
mouth, and facial muscles under high tension. These very obvious expres-
sions of a startle reaction are accompanied by other rather hidden signals,
such as increasing heart rate, changes in respiration, changing pupil sizes,
and inhibited eye blinks. With these reactions, our autonomous nervous
system (ANS) is preparing us for a potentially dangerous situation. A star-
tle reaction is mostly the result of an abrupt change of the situation to which
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we were acclimated, such as a sudden loud noise behind us. The human
body answers with a state of extreme attentional focus in order to not miss
any information that might be crucial for its survival.

With the 1940s and upcoming human-machine interaction research, mostly
for military purposes, the study of attention experienced a revival. Even
though one can argue that cognitive science was actually born in Ancient
Greece, the development of new tools in the early 20th century in combi-
nation with constant industrial and medical progress, has been the most
important phase so far. Researchers had finally reached a state, where sig-
nals, of what was thought to be expressions of cognitive processes, could be
measured.

An often overseen physiological expression of arousal and cognitive stim-
ulation is the human eye blink. For a long time it has been understood as
a natural reflex with the sole purpose of cleaning and lubricating our eyes.
In fact, only one third of the appearing blinks are necessary to fulfill this
function. While investigating the eye movements of autistic children, re-
searchers have found indications for seemingly random blinks to have a
meaning instead. Rather than being distortions of the obtained data, they
promise to give insights into how our attentional system functions. Our
eye blinks are interrupting the constantly available flow of visual informa-
tion. A regular eye blink cuts out about 200ms of all visual input [155].
That means that with every blink we lose about one fifth of a second of vi-
sual stimuli. Nevertheless, during that time our brain is processing past
stimuli and preparing for incoming signals. It is assumed that eye blinks
have a resetting function for our focused attention. Following this logic, it
means that the moments we do not blink are the ones we are especially
engaged with sensory stimuli. Nakano et al. [147] from Osaka University
have used Functional Magnetic Resonance Imaging (fMRI) for investigat-
ing changes in the human brain while watching videos and simultaneously
measuring subjects’ eye blink patterns. One of the most important findings
was that even though every human has a different characteristic blink pat-
tern, when watching engaging visual contents (i.e. videos with plots) we
tend to synchronize our blinks to certain moments in these films. Nakano
concludes that we delay our blinks in order to avoid missing crucial visual
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information, meaning by implication that we are slowing down our blink
frequency (BF) when we pay attention.

Going beyond controlled lab situations, this dissertation introduces stud-
ies aiming at measuring physiological markers to quantify cognitive pro-
cesses in daily life situations. Recently made available off-the-shelf smart
eye wear builds the core components of this system. Based on latest re-
search from the field of Ubiquitous Computing (ubicomp) and cognitive psy-
chology [130], this thesis will look at unobtrusively measuring physiological
signals for inferring cognitive states. Changes of facial temperature pat-
terns and variations in eye blink patterns form the core of this work, and
will be monitored and analyzed. We will present results from experiments
and studies investigating the role of eye blink as implicit input modalities
in potential context-aware systems, as well as expression of sustained at-
tention and alertness. Furthermore, a detailed description will be given on
the development of a model that allows for predicting fatigue levels solely
from eye blink frequencies in everyday situations. In order to be able to
apply our findings to the knowledge acquisition domain, we will introduce
a way to infer changes in cognitive load from facial temperature readings.
We will, therefore, explain the underlying anatomy responsible for the con-
nection between skin temperature changes on the face and changing cogni-
tive load levels. Based on Cognitive Load Theory (CLT) we will introduce a
study and identify facial regions that are suited for measurements to infer
cognitive load levels. This work will utilize unobtrusive sensing solutions
in order to not distract users from their actual activity. We consequently
use sensors integrated in available smart wear, such as J!NS Meme [110],
and infrared (IR) cameras for our setups. In the final step, we will give an
outlook on an eye wear-based cognition-aware system that is currently in
development.

1.2 Research Questions
In order to infer cognitive processes from physiological markers in every-
day situations, this research focuses on three major aspects that are inves-
tigated in detail, namely off-the-shelf hardware solutions, potential physio-
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logical signals, and the cognitive context of users in everyday life.

Overall

RQ1 Can we use consumer-grade devices to infer cognitive states in labora-
tory and in everyday settings?

Physiological Signals

RQ2 Is an off-the-shelf eye wear-based EOG sensing solution able to reli-
ably detect changes in blink frequencies?

RQ3 Which facial regions are suitable for inferring cognitive load changes
through thermal imaging, and how is eye blink frequency impacted by
cognitive load inducing treatments?

Implementation

RQ4 Can we continuously quantify human fatigue levels in everyday situ-
ations using consumer-grade devices?

Physiological markers have shown to be directly connected to cognitive
processes. In the first part of this thesis we are describing methods that en-
able the measurement of physiological signals. One of the main contribu-
tions of our work is to show that currently available off-the-shelf hardware
solutions are capable of reliably reading physiological signals in laboratory
and everyday settings and enable us to infer cognitive state changes. The
overall research question (RQ) this dissertation aims to answer is, can we
use available consumer-grade devices to infer cognitive states in laboratory
and everyday settings (RQ1).

Since every person differs in, inter alia, aptitude, motivation, physical
and mental vigilance, due to factors such as personal lifestyle and e.g. edu-
cational background, it is necessary to understand the context of a user. Ide-
ally, system setups are as unobtrusive as possible to avoid changing these
contexts. Context-aware systems have a proactive nature and therefore
omit the necessity for explicit input devices, such as mouse or keyboards.
Since the user is constantly processing the information received (e.g. from
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a text book), and the ubiquity of mobile devices allows for sensors to con-
stantly monitor data. These biocybernetic loops, i.e. systems that uses sen-
sors to collect psychophysiological data from the user, filters and processes
the data and quantifies it to infer information that helps to describe user
contexts, such as frustration, user engagement, alertness, in mathemati-
cal terms [76], are able to respond to desirable states, e.g. high alertness
and high productivity as well as undesirable states, such as frustration and
fatigue, in time [36,167]. Part of this thesis describes our approach on sens-
ing physiological signals using only off-the-shelf devices. Rather than rely-
ing on complex computing algorithms and expensive medical-grade machin-
ery, our work explicates two Sensing scenarios that present reproducible
setups that enable us to measure physiological signals enabling us to in-
fer different cognitive states, namely cognitive load changes, and alertness
fluctuations. Eye blinking is known to be related to cognitive activity, but is
also susceptible to noise, and a plethora of environmental influences. RQ2
investigates the impact of changing technical settings of content delivery
systems on human eye blink and aims at proving that off-the-shelf Elec-
trooculography (EOG) sensing glasses are able to reliably detect changes
in blink frequencies. Furthermore, we will introduce two experiments that
use off-the-shelf IR cameras to measure facial temperature changes. These
temperature changes are known to be directly influenced by differing levels
of cognitive load. We are investigating a set of eleven facial regions for ther-
mal reactions to changing cognitive demand in two experiments. RQ3 will
be answered by presenting a set of facial regions that reliably show charac-
teristic temperature patterns under increased cognitive load.

Not only can we investigate interpersonal differences, but also individ-
ual differences in vigilance have a strong impact on cognitive performance.
Hence, we are investigating an unobtrusive method to elicit alertness levels
from physiological signals in everyday situations (RQ4). We are using off-
the-shelf EOG sensing glasses to collect raw data over a period of 14 days.
We analyze the data and present a model that enables us to predict alert-
ness level changes solely by looking at varying blink frequencies.
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1.3 Vision
The fundamental motivation for this research is the unwavering belief that
education is the most crucial prerequisite for us humans to be able to fully
develop and contribute to the progress of our society. Unhindered access
to information is the single most empowering and therefore defining factor
for freedom. Nevertheless, since every human being has individual prefer-
ences, strengths, and biological rhythms, we believe that we have to dras-
tically change our understanding of effective learning and teaching [214].
The problem of the currently existing, generalized education systems is that
it basically offers a one-fit-for-all solution, ignoring individual differences
among students and learners. Going beyond the walls of classrooms, the
steadily increasing amount of freely accessible information is also demand-
ing its growing share of our cognitive resources. We believe that the domain
of cognition-aware computing awards us the tools necessary to profoundly
change the way anyone can receive, process, and memorize information.

Physiological computing has been used to increase the efficiency of per-
formance, and improve the pleasure derived from interacting with comput-
ers. By analyzing physiological data from the user, cognitive states can be
monitored and identified [76]. Thereby, the computer becomes aware of the
physical, mental, and emotional context of a user. Consequently, the phys-
ical data can be used as an input modality to dynamically adjust systems,
e.g. by supporting comprehension of information by providing assistance
with additional information, by turning off of certain functions such has
notifications to avoid distraction, or triggering a reminder to take a break
or walk when sleepiness or frustration result in decreasing attention and
alertness.

Whereas context-aware systems focus on diverse factors necessary to de-
scribe the user’s context, e.g. environmental aspects (e.g. temperature, lo-
cation, nearby devices) and personal backgrounds (e.g. educational history,
personal preferences) [62], cognition-aware systems target in-situ men-
tal capacities of each user [36]. They are, therefore, necessary aggregates in
a complex, holistic context-aware systems infrastructure. Our approach fo-
cuses on the utilization of off-the-shelf devices for building systems that are
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able to infer cognitive states from physiological information to later become
the core of everyday cognition-aware systems for more effective knowledge
acquisition. It is based on unobtrusive and passive mobile sensing-solutions
that do not induce overt changes on the user context.

Assistance On a rather global level, cognition-aware systems have the
potential to develop into automated, learning personal assistants. Instead
of requiring a person to schedule meetings and certain tasks, such as daily
chores, throughout the days of each week, monitored and learned user pat-
terns support informed decisions made by such assistant. This assistance
goes beyond scheduling work related tasks in idle times, by taking varia-
tions in cognitive states into account, e.g. by reserving times of high cogni-
tive capacity for demanding meetings and tasks. Accordingly, periods of low
cognitive capacity can be used to finish daily chores such as washing clothes
or grocery shopping. Perfectly adjusted schedules can, therefore, lead to in-
tentionally induced flow states, a state described of complete immersion into
the current task, defined by peaking productivity and low frustration [54].
This means, by learning from cognitive patterns of the user, scheduling will
include not only work meetings and dental appointments, but ideal times to
deal with reading material, workouts, or simply planning break times and
relaxation periods. Moreover, data collected from groups of students, could
be collected to adjust lecture schedules and examinations in order to enforce
less frustrating and more effective learning environments. This in conse-
quence will lead to increased happiness (lower frustration levels), higher
productivity, and in the long-run better physical and mental health [79].

Interventions On a more immediate level, cognition-aware systems have
the potential to influence aspects that directly concern the user and the ac-
tual system. The system is able to react to the cognitive state and the task
at hand, by adjusting different parameters. For example, when difficulty or
high frustration is identified, the User Interface (UI) can adopt by introduc-
ing additional information explaining a topic in more detail, or by rewinding
and replaying, or slowing down the currently watched video. In addition to
these changes on the content side, these systems can also intervene on the
user side. They can suggest coffee breaks or short minute walks, when in-
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creasing fatigue and low cognitive capacities are monitored. Accordingly,
notifications can be turned off, silenced, or delayed when high productiv-
ity or even the flow state are perceived. In this case, productive, effective
and satisfying states can be maintained and protected from potential dis-
tractions that pull the user out of such. Additionally, while cognition-aware
systems potentially allow for limiting access to distracting websites and
applications, they also enable shielding a person from a call when being in-
volved in an important conversation. In classroom situations, teachers can
be informed of students with certain difficulties, or an average fatigue level
of the class. This would allow the instructor to directly address problems,
change presentation or teaching methods and thereby, apply a more direct
and diversified teaching style. Going beyond the educational sector, unob-
trusive cognition aware systems could be installed in every machine and
vehicle that is used for extensive periods of time, helping to avoid accidents
and potential harm to people caused by increased fatigue [95].

Self-Awareness By observing and understanding individual patterns of
cognitive states, users can become aware of their personal performance
rhythms and adjust accordingly. This allows users to make more informed
decisions, e.g. to adjust their lifestyle. Moreover, self-aware users poten-
tially schedule their sleep and workout times to better fit their own di-
urnal patterns, which will support their long-term mental and physical
health. Foster et al. [78] have shown that prolonged disregard of the indi-
vidual Circadian Rhythm (CR) can result in weakening physical and men-
tal health potentially entailing serious health issues. Therefore, increased
self-awareness can help to, for example, more thoroughly organize long haul
trips avoiding unnecessary jet lags.

1.4 Challenges and Contribution
The idiosyncratic feature of knowledge societies to continuously dissemi-
nate new information, requires member to keep step by getting involved
with a great amount of information on a daily basis. The resources we
are having at hand are nevertheless finite, such as time and cognitive re-
sources. Especially attention, vigilance and alertness, which have a direct
influence on cognitive performance measures, succumb effects of exhaus-
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tion and need phases to replenish throughout the day . If these resources
are over-exhausted they also affect higher cognitive functions, such as rea-
soning and working memory [183]. The combination of these circumstances
necessitates the development of more efficient learning, skill development,
and knowledge acquisition strategies. A major advantage of the technolog-
ical development and societal change that has resulted in the evolution of
knowledge societies, is the abundance of available sensing and computing
devices. This enables virtually everyone to not only read and study on-the-
go, but rather presents us with tools that allow for enhancing even tradi-
tional learning settings, such as classrooms and study rooms, by supporting
scheduling and understanding of individual mental states. In order to sup-
port the development of simple cognition-aware systems for everyday use,
this thesis addresses the following challenges:

1. Cognitive capacities are fluctuating over the day. So far context-aware
systems rarely take those changes into account. When enabling con-
sideration of cognitive performance fluctuations by context-aware sys-
tems, these systems gain profound insights and can provide better in-
formed services. The challenge to tackle is how technology can be used
to quantify diurnal variations of cognitive capacities.

2. Pervasive sensing solutions, and study methods that allow for deduc-
ing information that describe contexts are traditionally intrusive by
character. Even though they describe established and well researched
methods, sleep diaries, rectal temperature readings, blood sampling,
or the utilization of medical grade appliances such as fMRI, Elec-
troencephalography (EEG), or Functional Near-Infrared Spectroscopy
(fNIRS) tend to change the actual context of the user when being uti-
lized. Even already available consumer product solutions often tend
to distract their user or require active input which causes disruptions
of the actual activity and thus, negatively influence productivity [134].
The challenge is how to reliably sense and monitor changes of cogni-
tive performance measures without overtly altering the context of the
user.

3. To account for circumstances such as atypical physiological signal pat-
terns of cognitive states, e.g. unusually high BF after a night of little
sleep, UI of cognition-aware systems have to be altered. The relatively
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fixed setup of user interfaces makes it difficult for users to change
technical parameters and settings so that these address their cur-
rent needs. Moreover, these UI adjustments could possible support
sustaining or altering mental states to better match certain task re-
quirements. Therefore, the challenge lies in establishing setups that
support adjustments to unusual cognitive states, and simultaneously
are able to counteract to undesirable or maintain desirable mental
states. To avoid excessive system complexity, the physiological signals
that are used to infer cognitive states can ideally be used as the in-
put modalities that inform the context-aware system of necessary UI
adjustments.

In this thesis, these challenges are taken up by integrating principles
of Human-Computer Interaction (HCI), theoretical frameworks of cognitive
psychology, human physiology, and technical capacities. We are utilizing
pervasive sensing and ubicomp approaches and combine them with con-
cepts of psychophysiological research, e.g. how to infer cognitive load levels
from physiological signals , to create cognition-aware systems and respon-
sive feedback loops. We are presenting results and methodologies of a series
of laboratory and field studies, and present technical prototypes. We have
been taking a human-centered approach aiming at finding solutions, that
are simple, reproducible, and effectively working by using available off-the-
shelf consumer products. The major contribution of this research body is
fourfold:

1. Presenting hardware setups consisting of off-the-shelf hardware
that enable to reliably and unobtrusively collect physiological data in
controlled laboratory settings as well as in-the-wild.

2. Identifying thermally active facial regions on the human face
that allow for inferring cognitive load levels from temperature mea-
surements.

3. Quantifying human alertness and cognitive load in laboratory
and everyday life settings through utilization of non-invasive, off-the-
shelf devices in order to identify cognitive and circadian performance
patterns.
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4. Presenting a model which allows continuously recorded EOG data and
the resulting eye blink frequencies to predict fatigue level changes
in everyday settings. This enables cognition-aware systems to be
informed of diurnal changes in alertness, allowing for schedule ad-
justments, increased self-awareness

1.5 Ethics and Privacy
Ethics All described studies and experiments, including those not ex-
plained in detail in this thesis, were conducted by strictly following Keio
University Graduate School of Media Design’s requirements. This included
detailed explanation to every voluntary and recruited participant, where
we informed participants of their rights, the upcoming procedure, the re-
quirements, and of possible risks. Every study was preceded by collecting
written consent from participants. Explicit consent was required from par-
ticipants before data recordings were obtained, and photographs and video
recordings were made. All images of people participating in our studies that
are printed in this dissertation were informed of the usage of their data and
photograph and gave their written consent. For the in-the-wild study de-
scribed in detail in 6, project equipment was handed out to participants.
Participants were informed that the devices did not record any other data
than that necessary for the study, here EOG data from sensor, and infor-
mation and interactions recorded in a specific application written for this
study.

Privacy Throughout the course of this research, vast amounts of data
were recorded from all participants. This happened via questionnaires, sen-
sor devices (e.g. heart rate (HR) Monitors, EOG Glasses), smartphones,
notebeook computers, thermal cameras, and photography equipment. For
all smartphone recordings we decided to hand out necessary equipment to
all users, in order to avoid breaches in privacy by installing applications on
private devices and asking for permissions to access data recorded from in-
ternal sensors. Furthermore, we could make sure that no sensitive private
data was taken from private devices. The collected data has been securely
stored, and every participant received a signed version of the consent form
guaranteeing that no data is used outside the framework of the study, and
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privacy is completely preserved by anonymizing participants and their de-
mographic data through assigning identification numbers (IDs) instead of
recording participants’ names.

1.6 Research Context
The research presented in this thesis was conducted mainly within the
framework of the research groups of Associate Professor Kazunori Sugiura
and Associate Professor Kai Kunze at the Keio University Graduate School
of Media Design in Yokohama Japan. Additional guidance and contribu-
tions were obtained through collaborations with international researchers
from Osaka Prefecture University, Kyoto University, the University of Mel-
bourne, the University of Kaiserslautern, and the German Research Center
for Artificial Intelligence (DFKI).

JST PRESTO
The major share of the research was carried out within the scope of the

Japan Science and Technology Agency (JST) project “Collective Open eye
wear - Glasses to Augment the Intelligence of Society” (PI: Assoc. Prof.
Kai Kunze), grant number JST Presto: JP-MJPR16D4. This project aims
at developing an Open eye wear Platform, a toolset that allows to quan-
tify cognitive functions that inform the development of interactions to sup-
port the augmentation of human cognition and behavior. The work among
all members of the project in collaboration with external researchers has
resulted in publications at CHI 2016 [204], 2017 [48, 49, 202, 203] and Ubi-
Comp 2016 [205], 2017 [198], 2018 [206] conferences and in the organization
of the workshop “eye wear - Workshop on Eye Wear Computing” collocated
with with UbiComp/ISWC in 2018 [197].

JST CREST
A minor part of the work, mainly the research conducted for Chapter

7.3.1 was conducted within the JST project ”Behavior change and harmo-
nious collaboration by experiential supplements” (original: 経験サプリメ
ントによる行動変容と創造的協働) under supervision of Associate Profes-
sor Kai Kunze and project leader Professor Koichi Kise (Osaka Prefecture
University) under grant number JST CREST JP-MJCR16E1. The project
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is set out to utilize harmonious human-machine collaboration by record-
ing experiences in the form of digital data and store them in an experience
bank for distribution, leading to the development of experiential supple-
ments. Special focus is put on users’ cognitive biases and mental states,
especially in the fields of learning, health care, sports and entertainment.
This recent collaboration with Professor Koichi Kise and Research Assis-
tant Professor Olivier Augereau has lead to workshop publications at Ubi-
Comp 2018 [15, 200] and at the first READ Symposium at the DFKI in
2018 1. Collaborative work with Tilman Dingler, Ph.D. from the University
of Melbourne has resulted in a paper publication at MUM 2018 [71].

1.7 Distribution of Work
Several parts of the work presented in this thesis have been published at
international conferences and workshops.

Works published in scientific journals, at international conferences and
in workshops, that are located outside the scope of this thesis comprise
research in the domains of Virtual Reality (VR) [158–160, 170, 223], Q&A
communities [215], UIs [47,69,113,199,229], haptics [46], human augmen-
tation [90], and others [157,201].

The collaborative character of this project has resulted in a series of
publications, which are referenced in this thesis. These are grounded in the
studies conducted within the scope of this research project, are based on the
development and design of prototypes, and introduce concepts and findings.
In the following these works are sorted and placed within the scope of this
work:

Chapter 3 - Eye Blink This section is based on a study published at
CHI 2016 [204]. Under supervision of Assoc. Prof. Kazunori Sugiura, Prof.
Naohisa Ohta, and Assoc. Prof. Kai Kunze, idea, concept, study design, and
data collection and analysis are attributed to the author of this thesis. The

1 http://read2018.dfki.de/
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system implementation and actual study were a collaborative effort of the
main author and two co-authors Junichi Shimizu, and Chi Zhang.

Chapter 4 - Facial Thermography The study described in this section
was designed on the basis of close discussions between the thesis author and
George Chernyshov under main supervision of Assoc. Prof. Kai Kunze. Con-
cept, study design, and data analysis stem from the main author, whereas
technical setup and implementation trace back to collaborative efforts with
George Chernyshov. The study was conducted in a cooperative effort be-
tween the three main authors, and under supervision of Professors Ohta,
Sugiura, and Kunze and resulted in a successful extended abstract submis-
sion to CHI 2017 [202] and UbiComp 2017 [198].

Chapter 5 - Feedback Loop The prototype of this biocybernetic loop was
designed and developed by the main author. Junichi Shimizu’s invaluable
contribution included the development of a blink detection algorithm and its
implementation in the feedback loop. The concept necessary for the setup
was produced by the author, which included cinematography, editing, and
compositing. Under guidance and supervision of Prof. Kai Kunze this work
was presented and published at UbiComp 2016 [205], and at “Workshop on
Amplification and Augmentation of Human Perception” at CHI 2017 [203].

Chapter 6 - Alertness Assessments In-The-Wild The here presented
study was a collaborative work with Tilman Dinger, Ph.D. from the Univer-
sity of Melbourne (Osaka Prefecture University at the time of the study).
The necessary application design was based on Tilman Dingler’s mobile
toolkit for cognition-aware systems [70]. Android application development
stemmed from George Chernyshov. Idea, concept, study, and data analysis
with support by Andrew Vargo, Ph.D. (Kyoto University), were driven by
the author of this thesis. Blink detection development was based on work
by Shoya Ishimaru (DFKI) applied by Aman Gupta (Keio University). Part
of the work was conducted during a research visit stay of the main author
to the University of Melbourne which resulted in a paper that was accepted
for publication at CHI 2019, funded by the main author’s JST AIP Network
Lab fund within the framework of the JST CREST project by Prof. Koichi
Kise.
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Section 7.3.1 - Prototype The research basis for this work was solely
driven by the author of this thesis under supervision of Kai Kunze. Nev-
ertheless, the research was conducted within the scope of the JST CREST
project by Prof. Koichi Kise, and included several research visits to Osaka
University. Prototype development and concept refinement were supported
by Koichi Kise and Olivier Augereau. The concept was presented and pub-
lished at UbiComp 2018 [206] and the READ Symposium at the DFKI 2.

1.8 Thesis Outline
This dissertation is comprised of 7 chapters, divided into a number of sec-
tions and subsections. The two last chapters contain the bibliography and
the appendices, thus will not be introduced in detail. The thesis is struc-
tured reflecting the layered character of this research. After motivating
the work, we specify the contributions in the field of context-aware com-
puting. Subsequently, we detail the theoretical foundations that form the
basis for the conducted research and help to locate this work into the do-
main. We then explain the conducted studies that laid the groundwork for
and resulted in the prototype development and application case scenarios
presented in Part III. In this chapter we detail the development of a proto-
typical feedback loop and describe an application case for alertness track-
ing in everyday settings to validate our approach. Chapter 7.3.1 gives an
outlook on a currently tested system that is grounded in the all the works
presented earlier. It describes a first attempt for a holistic cognition-aware
system integrated into a responsive feedback-loop to support learners and
teachers. The final part will conclude the thesis by summarizing the overall
research contribution and discussing limitations and future works.

Part I: Introduction and Background

Chapter 1 - Introduction The first chapter introduces the context within
which the work is located, and motivates the author’s vision for cognition-
aware systems. Throughout the sections of this chapter, the RQs building
the scaffold of this research are stated, challenges the author faced through-

2 http://read2018.dfki.de/
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out the work, and the contributions to the field of ubicomp are described.

Chapter 2 - Foundations The second chapter lays the theoretical ground-
work for the conducted studies and applied methodologies, and gives an
overview of relevant related works and key concepts of cognitive psychology
and physiological computing that constitute preconditions for the presented
work.

Part II: Physiological Sensing

Chapter 3 - Eye Blink Eye blink has been shown to be directly related to
cognitive functions, such as sustained attention. On this account, chapter
3 establishes the foundation for how eye blink can be sensed and in which
way it can be influenced. We present a lab study which investigated the
impact of frame rates human eye blink, because content delivery systems,
such as computer displays are constantly gaining importance in educational
domains.

Chapter 4 - Facial Thermography In this chapter we concentrate on a
study that examined facial regions for their thermal characteristics under
different levels of cognitive engagement. We identify a set of regions qual-
ified for measuring temperature pattern changes that allow for inferring
cognitive demand levels.

Part III: Implementation

Chapter 5 - Eye Blink in Feedback Loops Attention is crucial for ef-
fective knowledge acquisition. Sustained attention enables us to focus on
a task for a prolonged period of time. In order to non-invasively alter eye
blink features related to sustained attention, we developed an application
that uses eye blink frequencies as input modalities. This chapter contains
the detailed description of this prototypical responsive feedback loop that
enables display setting changes (Frame rate (FR)) in response to varying
blink frequencies.

Chapter 6 - Alertness Assessment In-The-Wild As our alertness levels
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fluctuate throughout the day, our cognitive performance also underlies con-
stant variations. We therefore, investigated ways to infer changes in alert-
ness in everyday settings through an in-the-wild study. Chapter 6 presents
the results and introduced a model for continuously eliciting alertness lev-
els through eye blink frequency measurements obtained with off-the-shelf
hardware.

Part IV: Conclusion and Future Work

Chapter 7: Conclusion and Future Work This chapter summarizes the
results of the presented work with regard to the RQs stated in the begin-
ning and affirms the contributions made throughout this work. The thesis
is concluded by indicating future works and discussing limitations and im-
plications for cognition-aware systems.

Section 7.3.1 - Outlook Based on the theoretical foundations and pre-
sented results, section 7.3.1 gives an insight into future works, such as a
project that introduces a new prototype based on the major findings and
models presented in this body of work. The suggested system contains of a
device that contains IR sensors for continuous temperature readings on the
face, and EOG sensors for inferring eye movement features.
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Chapter 2
Foundations

In order to develop cognition-aware systems, we have to tap into differ-
ent scientific domains. This chapter presents an overview of the theoret-
ical groundwork and related works based in ubiquitous computing and
context-aware systems. The crucial cognitive layer is added by incorpo-
rating concepts and approaches from cognitive psychology.

2.1 Ubiquitous Computing
”Late at night, around 6am while falling asleep after twenty hours at the
keyboard, the sensitive technologist can sometimes hear those 35 million
web pages, 300 thousand hosts, and 90 million users shouting ’pay attention
to me!”’ [222] Today, when writing this dissertation, there are 1,928,819,370
websites online, admittedly less than 200 million are active. Together with
a wide variety of social networks, of which the biggest has approximately 2
billion users, we can imagine the voices shouting for attention, have stepped
into the light and are constantly audible to many of us. Unquestionable, the
steady development of Information and Communication Technology (ICT)
and networking technology have pushed the society into a new era, name
the third era of computing. This age is defined by computers being om-
nipresent in our daily lives, e.g. in our telephones, tablets, cars, smart mi-
crowaves, key locks, or clothes, and continually collecting, processing, and
distributing information. Furthermore, these computers offer us services
such as connection with our friends and family all over the globe, and sup-
port us by, for example, recommending the next movie to watch, the best
Mexican restaurant nearby, or simply remind us that we have not received
a reply to an email we sent a few days ago and still have to pay the rent.
Clearly, the pervasive character of these devices, applications, and services
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is characteristic for the third era of computing.

Mark Weiser coined the term ubiquitous computing in 1988 during his
time at Xerox PARC [124]. He further refined it later, braking the first
ground for research into the field [221], that is defined by three areas: sen-
sors, systems, and experiences [124]. The concept of Ubiquitous Com-
puting (ubicomp) is born out of the availability of computers, computing
devices, and sensors virtually anytime and anywhere. Watches, phones,
tablets, even glasses and shoes carry sensors that send information to com-
puting units in the vicinity, via networks to remote devices, or often have
the potential to compute recorded data themselves. The unavoidable fall-
out of this development is the we are constantly surrounded by devices that
collect, process, and spread information. In order to be effective, and fulfill
their purpose, these devices and services require our attention, often in the
form of passive and/or active input. The necessity of this type of interaction
and the overbearing presence of devices in our everyday life bear the risk to
cause repeated distractions from our actual activities. These interruptions
are not necessarily negative though, but can be of benefit [153]. Neverthe-
less, there is a strong tendency towards negative influence on focus and
productivity, as Iqbal et al. [107] have shown, e.g. it takes up to 15 minutes
to refocus on the original task after having been distracted.

The increasing interspersion of our everyday life with computers and
sensors has resulted in a strong competition for the user’s attention, which
is by nature a limited resource. In order to guarantee the effective opera-
tion of the devices surrounding us, they should require as little as possible
active input from the user. Weiser and Brown have postulated that contin-
uous development of ubicomp technology will give rise to calm computing,
which is defined as devices and interfaces that are practically invisible to
the user [222].

The most profound technologies are those that disappear. They
weave themselves into the fabric of everyday life until they are
indistinguishable from it.

Mark Weiser [221]
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Communication between user and device, therefore, has to be driven
solely by sensors and invisible User Interfaces (UIs). This would cause a
fundamental change and eventually would make totally unobtrusive sup-
port of user’s daily tasks possible. Nevertheless, no matter how invisible or
even emphatic systems are, they prerequisite for such awareness is under-
stand the current context without pulling the user or her attention away
from the task at hand [18].

2.2 Context
Context is any information that can be used to characterize

the situation of an entity. An entity is a person, place, or object
that is considered relevant to the interaction between a user and
an application, including the user and application themselves.
Context-aware

Anind K. Dey [60]

When referring to context-aware systems, we firstly have to explain the
term context. Throughout the scientific literature there are various defi-
nitions. The first to give rise to context-aware computing were Schilit and
Theimer [179], who characterized context to information describing location,
people and objects in near vicinity, and the changes that occur to those ob-
jects over time. Accordingly, their definition of context-aware systems was
entailed the adjustment of software according to the user’s location, the peo-
ple and objects around as well as to their changes. Similar definitions were
provided by Brown et al. [32] and Ryan et al. [175], that add entities such
as time of day, season, temperature (Brown) to the definition, or more gen-
erally explain context through location, time, environment, and identity of
the user (Ryan). Whereas these rationales are rather comprehensive, oth-
ers simply adduce synonyms of context [104], which makes practical use
extremely difficult. Better workable are descriptions that focus on charac-
terizing a situation. Some researchers have drawn clear lines between user
side and application side. They differentiate between context as a descrip-
tion of either the user’s environment, e.g. Franklin and Flachsbart [80], or
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the system’s or application’s environment. Within the latter, another sub-
division is enforced, namely between the application settings [171] and the
application surroundings [219].

What becomes obvious is that some of the researchers consider aspects
describing the situation of the user as an important, whereas others fo-
cus solely on the system. Since context does not simply describe a static
phenomenon, but rather aspects that are constantly subject to change [62,
161, 178], and therefore, constantly influence the actual context, identity
(who), location (where), activity (what), and time (when), even though be-
ing more more important than others, are not sufficient to fully construe a
context [61]. What is clear is, that all these parameters are relatively easy
to quantify and record. Going beyond this, Pascoe, Dey, and Abowd [62,161]
extend the notion of context by including aspects that are rather difficult
to be quantified, such as emotional, social, and informational states [60].
Schmidt et al. [182] introduce a working model that includes human fac-
tors in addition to information solely describing the physical environment.
This allows for context to be regarded as a construct within which aspects
defining the state of each user as well and parameters defining the system
are subject to constant change potentially influencing each other. Consider-
ing this, it is seems impossible to create a system that considers all these
aspects, therefore, researchers have to prioritize the elements of a context
that matter (most) to an application.

One question that has not been answered in these arguments is the
why. From the so far considered parameters location, identity, time, and
activity, a system cannot derive the reason for a situation’s attributes. Sim-
ply by combining the who, where, what, and when, a system does not trigger
a certain follow up action, without the system developer implementing this
function. This means, that the interpretation of the why, lies in the re-
sponsibility of the system developer. For example, if an eye tracking system
recognized that a student looks at a certain part of a text for an unusu-
ally prolonged time, the system can add additional information to the text,
paraphrase the sentence, or simply translate it into another language. The
extended focus is described as the so called incoming context and is under-
stood as a difficulty in understanding (why), triggering an action (introduc-
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tion of additional information). This understanding has to be encoded in
the system, so that this specific situation is interpreted as intended by the
system [60].

2.2.1 Context-Aware Computing
The most apparent benefit of computing in general, but pervasive comput-
ing in particular, is the promise that it makes our lives easier. As we hu-
mans observe, process, and assess information describing a context, e.g. the
number of people engaged in a heated conversation, the topic of the dis-
cussion, the amount of alcohol consumed, or the time of day, in order to
adjust to changes in the situation and make informed decisions, e.g. it is
time to go home, latest developments in computer-science and ubiquitous
computing research, show encouraging potential for context-awareness in
computers, too. Most importantly, in order to enable computers to become
context-aware, they have to receive, process, and assess information, that
explain the context. One of the major challenges is to enable computers to
make sense of the provided information in a way that allows them to react
in the desired way. Ideally, the response does not require any further input,
or overt reaction by the user [40].

The absence of information defining contexts would deprive computers
of their potential to dynamically react to the distinctive needs and situa-
tions. Instead, as Norman [151] states “what we have are two monologues,
two one-way communications. People instruct the machines. The machines
signal their states and actions to people. Two monologues do not make a dia-
logue.” Providing relevant and sufficient information is, therefore, required
for the system to be able to classify context and use this to provide relevant
services to the user depending on the current task at hand [60]. Context-
aware systems have a proactive nature, meaning, they omit the necessity
for explicit input devices, such as mouse or keyboards. They are able to
create feedback loops based on mutual information intake and output [181]
between user and computer that potentially make communication and in-
teraction more intuitive and dynamic [9]. These services and information
conversely alter the context resulting in a state of permanent information
exchange, and context assessment through the user and the system.
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By including information describing human factors in addition to solely
focusing on factors descriptive of the physical world, as propose by Schmidt
et al. [182], or information that enable the computer to estimate emotional
states of the user (affective computing [163]), the context-awareness can be
enriched by a cognitive and emotional dimension. Consequently, this al-
lows for a context-aware system to adapt to the user’s emotions and mental
states ensuring a better adjustment to needs and expectations in a timely
manner.

2.2.2 Cognition-Aware Computing
An integral part of a holistic context-aware approach includes the distribu-
tion and assessment of information that enables computers to infer users’
cognitive states. This would facilitate the system with the ability to assess
conditions related to information intake, processing, and knowledge acqui-
sition. In order to make systems aware of these states, aspects such as
such as attention, memory, knowledge, and cognitive load have to be quan-
tified [38]. Due to the added layer of cognition-awareness, these systems are
suitable for implementation in situations that are concerned with informa-
tion intake and processing. Ideally, cognition-aware systems are capable of
adjusting UIs and content to the user’s current cognitive capacities, there-
fore avoiding frustration and boosting productivity levels [67]. Frustration
and stress often derive from a mismatch between task requirements and the
cognitive state of the user [213]. This mismatches often derive from falsely
scheduled tasks, and can, when occurring for prolonged periods of time, re-
sult in serious health issues, such as depression or burnout. Frustration
is a factor that is not only important in the cognition-aware computing do-
main, but also finds intense consideration in the field of affective computing.
Deriving from both disciplines, in reference to Gilleade et al. [86] and Din-
gler [68], we identify six fundamental functions, cognition-aware systems
ideally provide to their users:

1. Offering Assistance - When the task-load is too high, or the learner
is not progressing because she is perplexed, and frustration is increas-
ing [39,115].
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2. Task Adaptation - The systems responds to the user states, such as
boredom or disengagement by increasing or decreasing task difficulty
in order to maintain or increase engagement with the task [177].

3. Emotional Reinforcement - Positive conditions states are enforced,
whereas negative emotions are ideally softened or alleviated [6,121].

4. Adjustment of Information Distribution - Identification of phases
of increased alertness and attentional resources can be used to push
higher amounts of information towards the user or a variety of infor-
mation over different channels, e.g. audio and video, whereas during
periods of decreased capacities, the number of density of information
delivered can be reduced, to prevent frustration [67].

5. Interruption Management - In order to avoid distraction from the
task at hand or pulling the user out of a phase of high attention,
cognition-aware systems can adjust user UIs and turn off notification
sounds, filter incoming information, or delay alerts [149].

6. Circadian Alignment - Longterm recordings of cognitive states can
inform systems of circadian rhythmicity of user’s cognitive capacities.
Allowing for predicting periods of high alertness, tasks can be sched-
uled accordingly, e.g. tasks that require high attention will not be
scheduled for consecutive hours, but spread out over the weak. If pro-
longed periods of high cognitive load are tracked, demanding tasks
should be delayed or rescheduled in order to allow the user replen-
ishing time. Additionally, in-situ measurements can help to react to
sudden changes, e.g. when blockages in understanding occur or break-
throughs in a difficult task release new resources [3].

2.2.3 Circadian Computing
Our biological clock regulates our cognitive and physical performance dur-
ing waking hours creating circadian rhythmicity. Consequently, the human
ability to focus and concentrate underlies constant fluctuations across the
day: at times we are able to work highly focused, at other times we have
trouble focusing easily let our thoughts wander. In order to get to under-
stand these patterns, and consequently improve matching of task and cog-
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nitive capacity, researchers have long investigated our biological rhythms,
and factors influencing these. The idea behind circadian-computing [3] is
to make systems aware of these fluctuations, and enable them in a way to
support users in-situ according to their current cognitive abilities. Such sys-
tems are capable of identifying productive phases throughout the day and
provide suggestions for tasks or adjust interfaces on-the-fly with the goal
of keeping users engaged, challenged, and attempting to avoid information
overload and frustration.

Recent developments in mobile and sensing technology have enabled ev-
eryday devices, such as smartphones, watches, and wristbands to become
sophisticated trackers of our daily activities. They enable us to measure
physiological signals, including heart rate and blink rate around the clock.
Data collected in this way has been shown feasible for analysis, detection,
and monitoring of cognitive states: Abdullah et al. [4] and Dingler et al. [70]
have proposed mobile solutions for tracking cognitive capacities (e.g., alert-
ness) based on data from smartphones, or most recently Tseng et al. pre-
sented an alertness tracking model using picturs taken with smartphone
cameras [211]. A major shortcoming of these proposed systems, however,
is that the alertness measures are limited to phone usage, but fail to col-
lect measures when the phone is not being used, such as while driving, in
social gatherings, or during intense work sessions. Furthermore, since in-
teractions with the smartphone or any other sensing device require active
engagement, attention would be drawn away from the actual activity users
were engaged with. To avoid these distractions and fill the occurring gaps of
monitoring, unobtrusive, continuous logging techniques have to be applied,
e.g. by continuous logging of physiological signals.

2.3 Mental State Analysis
Throughout the past 10 years, sensing physical activities has widely spread
due to the rapid development of small and inexpensive sensors [51]. Among
the most common sensors are pedometers integrated in wristbands and
smartphones. Pedometers count the number of steps a user does, and aim
at encouraging its wearer to be physically active. In a same way, the “wor-
dometer” [14] can measure the reading activity and could be used to en-
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courage people to read more. Compared to physical activity, sensing mental
states is a more challenging task as it cannot be easily measured by stan-
dard motion sensors. While it is not difficult to distinguish someone who is
running from someone who is walking, it is more complicated to say if some-
one is intently reading, or simply daydreaming while starring at a text.

According to standard biophysical approaches [23], mental states are
hidden and cannot be directly accessed by someone else’s perception. Still,
in some cases, certain clues can help to infer another person’s mental state,
e.g. through changes in the tone of the voice, speed of speaking, or facial ex-
pression. Through the ongoing development and increasing pervasiveness
of computers in our everyday lives, and with the help of artificial intel-
ligence and robotics applications, machines could estimate specific states,
and develop forms of empathy for the user. Therefore, they can adapt them-
selves to the user’s mood, fitness, and knowledge.

2.3.1 Sensing Mental States
Before describing the most important states and sensing solutions for our
work in more detail, this subsection is to give a brief overview over available
solutions and approaches. Mental states represent, but are not limited to
phenomena, such as intentions, emotions, desires, and knowledge [176].

Intention Intentions can be estimated from a person’s physical motion.
For example, it is possible to predict that a person will grasp an object (short
term intention) based on her hand movement [225]. This can be important
for the development of reliable self-driving cars. Their algorithms have to
estimate pedestrian intentions. It was shown that this can be done by ana-
lyzing the way pedestrians walk in addition to contextual information [140].
One of the most efficient ways to predict if someone will move a limb is to
use Electromyography (EMG) sensors, which detect the muscle activity, or
EMG, which measures brain activity. EMG can be utilized for powering ex-
oskeletons [127], whereas Electroencephalography (EEG) is commonly used
for neurorehabilitation [137].
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Emotion One of the main approaches to detect emotions is to use a cam-
era for analyzing facial expressions [136]. Usually focusing on analyzing six
or seven universal facial expressions, “the list of emotions that have a uni-
versal facial expression is far shorter than the number of emotions” [75].
During emotional arousal a number of bodily changes are observed such
as variations in blood pressure, heart rate, respiration speed, pupil diam-
eter, perspiration, and blood-sugar [150]. This indicates that physiological
sensors can be used for estimating emotions. Some commonly used phys-
iological sensors are: EEG, Electrodermal activity (EDA) measuring skin
conductivity, directly related to perspiration, Photoplethysmography (PPG)
measuring blood volume changes, and Infrared thermopile (IT) for periph-
eral skin temperature.

Knowledge One of the main issues in education is to assess the pro-
cesses of knowledge acquisition and states of knowledge of a student. As
a large part of our knowledge comes from what we read, it is possible to
estimate someone’s knowledge by logging and analyzing their reading con-
tent. Several studies have shown that it is possible to distinguish expert
and novice levels in a certain knowledge domain by analyzing people’s eye
movement [30, 101]. It is also possible to predict the learner’s proficiency
level in a foreign language by examining eye motion features [13]. A differ-
ent field of research focuses on estimating the mental workload or engage-
ment with content. Both are important components of the knowledge acqui-
sition process [1, 202]. The wide variety of possible sensing approaches for
inferring cognitive load, can be seen when looking at a survey about mental
workload assessments by Heard et al. [97], in which they present 24 differ-
ent inference methods based on different sensors such as EEG, Functional
Near-Infrared Spectroscopy (fNIRS), Heart rate variability (HRV), EDA,
respiration rate, thermal imaging, posture, and blink frequency.
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2.4 Quantification of Cognitive States

2.4.1 Electrooculography
Eye movement data has been shown to provide insights into cognitive states
and processes [38]. Due to the strong presence of electrically active nerves
in the retina it forms a negative electrical pole, whereas the opposite cornea
forms the positive pole. This shapes the so called cornea-retinal potential
(CRP) [152]. Electrooculography (EOG) sensors, measure the changes of the
electrical potential caused by eye movements. For this, EOG utilizes the
electrical potential difference between the cornea (+) and the retina (-) of
the human eye (Figure 2.1). Certain movements such as the pattern during
a blink, where eyes perform a characteristic nose- and downward oriented
motion, can be identified in the EOG. For robust readings, the electrodes
have to be correctly placed around the eyes and nose [59]. EOG allows for
a low energy solution to identify blinks, saccades, and fixations. A major
advantage of EOG is its relative unobtrusiveness, compared to approaches
based on fmri! (fmri!) and EEG which require attachments of a number of
sensors to the head, or head-worn cameras and eye trackers [37].

2.4.2 Facial Thermography
The basis for identifying changes in facial temperature, that indicate the
best measuring locations on the face, are the courses of the blood vessels
through the skull, [41]. In times of higher cognitive load (e.g. studying)
cerebral neurons are more active than in resting states. This means, they
require more oxygen and glucose to function. Because the human brain
is very sensitive to temperature changes, it is protected by a complex net-
work of blood vessels that provide cooling. The basic mechanism of brain
cooling relies on venous blood cooled down in the scalp or facial (especially
nasal) tissues. Multiple veins bring blood to the brain where they cool down
the arterial blood passing through them, that is supplying the brain. How-
ever, since the venous blood goes from the scalp and face towards the brain,
it cannot give a good estimation of the intracranial temperature. Fat and
bones of the skull act as heat insulators, which significantly decreases the
ability of convective cooling, making the blood circulation the main heat ex-
change mechanism [195, 216]. An illustration of the course of ophthalmic
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Figure 2.1: Schematic of the Cornea-Retinal Potential and potential changes resulting from
eye movement. (http://noorqamariah.blogspot.com/2013/01/weekonealso.html

arteries can be found in Figure 2.2

In order to assess the changes of the brain temperature, we compare
temperatures of facial tissues supplied by blood from the internal carotid
artery, that is passing through the brain with temperatures of tissues sup-
plied by the external carotid artery. The common carotid arteries are the
main blood supply of the head and branch into exterior and interior carotid
arteries in the throat region. The internal carotid artery is supplying the
brain and is connected to all the main intracranial arteries via the Circle of
Willis. Thus, blood from the Circle of Willis can be used as an indicator of
the brain temperature. One of the branches of the internal carotid artery is
the ophthalmic artery. It supplies the eyes and surrounding tissues and has
branches that supply nasal, eyebrow and forehead regions of the face, form-
ing suitable regions for comparative temperature measurements. Measure-
ments are usually are conducted using thermal imaging from infrared (IR)
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Figure 2.2: Illustration of course of ophthalmic arteries (edited version of https://upload.wikimedia.org/

wikipedia/commons/c/ce/Gray514.png)

cameras and sensors [1].

2.4.3 Electro-Dermal Activity
Another approach, which shall be shortly introduced here, is based on skin
conductance, and is one of the most sensitive psychophysical indicators [226].
The amount of sweat secreted in times of arousal is responsible for the
changes in skin conductance. This so called Galvanic Skin Response (GSR)
or EDA can easily be measured in regions with a high concentration of
sweat glands, such as the hands and feet. Especially reactions to startle
stimuli that divert attention with a strong probability, such as a flash of
light, create spikes in skin conductance. The sensitivity of the signal also
results in a high susceptibility of EDA to noisy recordings. Nevertheless, it
can help to identify changes in attentional patterns [226].
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2.5 Cognitive Psychology
Cognitive scientists have long aimed at understanding what is happening
with received information in the human brain. How do we choose, process,
store, and utilize information in order to recognize objects, communicate, or
navigate through our environments [73]? In order to decide which informa-
tion out of the virtually endless supply to choose, humans have developed
a complex selection process, called attention. “Attention solves the problem
of information overload in cognitive processing systems by selecting some
information for further processing, or by managing resources applied to sev-
eral sources of information simultaneously.” [130]

In 1860 Gustav Fechner introduced a new research program to the aca-
demic world, which he named Psychophysik (Eng psychophysics) [85]. This
interdisciplinary field was aiming at studying and understanding the con-
nection between the physical and the phenomenal world, i.e. between body
and mind. Fechner was convinced that the physiology and the psychol-
ogy of human existence are different expressions of the same reality. “In
suggesting that processes of the brain are directly reflected in processes
of the mind, Fechner anticipated one of the main goals of modern neuro-
science, which is to establish correlations between neuronal (objective) and
perceptual (subjective) events.” [74] He distinguishes between inner psy-
chophysics, which describes the connection of sensations and the underlying
neuronal phenomena, and outer psychophysics dealing with the physical
stimulus and how it causes a sensation. Until modern medical equipment,
such as EEG, Positron Emission Tomography (PET), Functional Magnetic
Resonance Imaging (fMRI), and Near-Infrared Spectroscopy (NIRS) allowed
the direct monitoring and study of sensory processes and brain activities,
the concept of inner psychophysics was merely theoretical. However, with
the above mentioned non-invasive technologies scientists were able to re-
search neural reactions in the brain while stimuli were used to trigger sen-
sations. They therefore helped to modernize the traditional concept of psy-
chophysics by introducing objective measures of neural activity, i.e. intro-
ducing neurophysiology [74]. As a result, certain neural activity patterns
can now be matched with specific stimuli, and most importantly become re-
producible. This means that particular brain functions and reactions can be
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(re)created by using distinct sets of stimuli. Since the 1960s/70s researchers
have been increasingly concerned with the physiological foundation of cog-
nitive processes. The discipline which investigates these phenomena psy-
chophysiology has ever since branched into more specialized fields such as
cognitive neuroscience and cognitive psychology.

2.5.1 Visual Attention
Since the turn of the 18th to the 19th century, scientific debates have in-
tensified and focused on the question of what influence attention has on our
performance and perception. Does attention change the quality of informa-
tion we perceive, e.g. the vividness of color or sound volume? Does focused
attention make us more successful and efficient when completing a task?
It was quickly found, that there is a direct relation between attention paid
and task performance quality, namely that focused attention to a task leads
to better results, whereas distraction causes less optimal results [20,45,99].
Current studies are mainly involved with two major questions. Firstly, they
are investigating the actual mechanisms of attention, meaning the reasons
and procedures of attention influencing performance. Secondly, studies are
looking into the networks of attentional control, i.e. the allocation of at-
tention in regards to space and time, and the distribution of attentional
priorities [130].

There are various paradigms that explain aspects of attention mech-
anisms. Three are of particular interest for this thesis, namely the Vi-
sual Search, Change Blindness, and Attention Blink paradigms. The Vi-
sual Search paradigm by Treisman and Gelade [209] says that processing
combinations of visual features in an object requires attentional resources,
whereas the processing of a simple visual feature defining the object occurs
pre-attentively [56, 57]. Therefore, if the attribution and management of
attentional resources shall be investigated, we have to focus on complex
visual stimuli, such as films. Change Blindness is a rather well known
phenomenon, defined by subjects not noticing changes in images, when
they are shown alternately, and interrupted by a brief blank image (ca.
80ms). Change Blindness is a major indicator for the restrictions of our
visual awareness system [190, 210]. Most importantly for our work, is the
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third paradigm, the phenomenon Attention Blink. In the mid 1990s psy-
chophysical experiments found that within 200-500ms after a target stim-
ulus, subjects are unaware of signals they would usually recognize when
they appeared up to 200ms before or later than 500ms after the stimulus.
This 300ms long period, the “refractory period of attention”, was postulated
to be the period, where human attention is not sensitive to visual stim-
uli [135, 139]. When looking at the mechanisms of the Change Blindness
and Attention Blink paradigm, it becomes clear that the suppression of vi-
sual stimuli is of special importance for attentional processes.

2.5.2 Alertness
Alertness is a psychomotor quality, which describes our readiness to re-
spond to stimuli but also plays a role in our higher cognitive functions affect-
ing our productivity, decision making [154], and memory [207]. Throughout
the day, our alertness levels succumb to systematic changes [88]–subject to
circadian rhythms–resulting in phases of high alertness, during which we
can perform tasks with high precision and phases of low alertness, during
which we have a hard time concentrating [28,192]. Awareness of these fluc-
tuations enables us to gain an understanding of productive hours during
the day, but also avoid critical work prone to accidents due to fatigue [65].
”Fatigue and subjective sleepiness [...] express the relationship that exists
between alertness and performance during wakefulness on the one hand
and sleep on the other hand.” [214]. Fatigue, therefore negatively affects
alertness, resulting, for example, in slower reaction times.

2.5.3 Cognitive Load
The concept of cognitive load, which we follow throughout this work is based
on the Cognitive Load Theory (CLT), which divides the concept of cognitive
load into three subcategories, namely intrinsic cognitive load, extraneous
cognitive load, and germane cognitive load [34]. The levels of all three sub-
categories of cognitive load are directly correlated with the learning materi-
als, whereas the intrinsic load is a result of complexity of the given content,
also called ’element interactivity’ [196], the extraneous load depends on the
format of the information presentation [166], and the germane load is a di-
rect result of learners’ processing efforts [83]. The sum of all three load
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systems describes the total cognitive load of a learner dealing with learning
material. Obviously, a measurement of high cognitive load will not give us
a clear indication for the reason, which might grounded in either the in-
trinsic, extraneous, germane, or a combination of subcategories. Different
approaches have been proposed for measuring cognitive load. Methods such
as self-assessments elicited from questionnaires [128, 156], and behavioral
pattern analysis, such as measurements of the time spent on a task [33].
Physiological measures of cognitive load are usually based on brain activity
measurements during task performances, such as through fMRI [189], and
facial temperature measurements based on thermal imaging [1].

In Part II of this dissertation we will detail three experiments that in-
vestigate physiological sensing solutions based on off-the-shelf devices. We
thereby focus on identifying eye blink features in EOG raw data recorded
with J!NS Meme glasses, and infering changes in cognitive load from facial
temperature recordings.
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Chapter 3
Eye Blink

This chapter is a summary of work on eye blink frequencies as psychologi-
cal signals for inferring cognitive state changes. Before identifying cognitive
state changes, this chapter addresses research question (RQ)2, and shows
that off-the-shelf Electrooculography (EOG) glasses are able to reliably de-
tect blink frequency changes. Parts of this work have been presented and
published at the ACM Conference on Human Factors in Computing Sys-
tems 2016 [204].

If it is true that our rates and rhythms of blinking refer directly
to the rhythm and sequence of our inner emotions and thoughts,
then those rates and rhythms are insights to our inner selves and
therefore as characteristic of each of us as our signatures.

Walter Murch [143]

3.1 Related Works
Even though the number is highly flexible and depends on subjective condi-
tions and environmental factors, humans blink at an average of 15-20 times
per minute [25]. For a long time, blinking has been understood as solving a
single purpose, namely that of cleaning and lubricating the eye balls. Nev-
ertheless, studies have shown that one third of our natural eye blinks are
sufficient for fulfilling this function [116]. This means that 10 out of 15
eye blinks per minute either serve no or a different purpose [193]. Recent
studies have shown that when humans are engaged in social communica-
tion situations their blink patterns change significantly. Especially states
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of arousal, intensifying cognition, and emotional changes have a direct im-
pact on our blink frequency [146]. Moreover, scientist have recently used
eye blink rates as measures for the level of concentration [187].

Studies on the blink patterns of subjects with Autism Spectrum Disor-
der (ASD) suggest that by observing eye blink features, levels of engage-
ment of the subjects with their environment can be inferred [145,186]. For
example, researchers at Emory University used recorded video scenes to
observe changes in blink patterns in children with and without ADS. The
results showed that both groups delayed their eye blinks when scenes were
especially interesting and engaging. Nevertheless, the inhibition of blinks
by children without ASDs was quicker. This, so Schultz et al. [186], is a sign
of active anticipation of contents shown in videos. By following the story-
line, they were expecting actions to unfold.

When being involved in a visual task, the brain is constantly search-
ing for a timing where blinking would not cause a disadvantage for the
observer, by missing crucial information. Nakano et al. of Osaka Univer-
sity presented video stories to participants while monitoring their eye blink
and observing participants’ brain activities with Functional Magnetic Res-
onance Imaging (fMRI) recordings. Across all participants, they found syn-
chronized blinking patterns directly responding to the contents of the video
stories [147, 224]. Scenes of less interest usually presented with higher
blink frequency, whereas scenes that were more of interest showed delayed
and inhibited eye blinks, a sign for increased sustained attention [132].
Since participants did not know how long a video scene was about to be,
results suggests that the brain was “reading” and anticipating the story in
order to trigger the eye blink in situations that require less or no atten-
tion [147].

Frame rate (FR) variations and their impact on the quality of motion
pictures have been widely researched and investigated. Thus, the impor-
tance of FR for the graphical quality of displayed contents is beyond con-
troversy [52,126,220]. In order to better understand the complex impact of
different FRs on cognitive processes, Kuroki et al. [126] compare variations
in the human Electroencephalography (EEG) power spectra of observers of
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different real motion images in comparison to motion pictures in 60fps and
240fps. Their findings indicate that the EEG caused by the 240fps film is
closer to that of motion in reality than the 60fps version. With an increas-
ing FR motion artifacts (judder) are reduced [220]. This leads Kuroki to
defining 240fps as the setting for motion images that offers the viewer the
highest quality with greatest reduction of blur and jerkiness [125].

Besides the drive for reproducing reality, which stands behind many
of the technological developments in the field of video display, the impact
of changing technical parameters on cognitive processes should not be ne-
glected. One possibility of investigating arousal and mental workload is to
analyze the human eye blink. Startle responses, stress, and fatigue, have
a direct impact on the blink frequency of people [63, 174]. In particular the
work by Haak et al. [92] focuses on the effect of stress on the eye blink.
The experiment shows that stressful situations lead to shorter intervals be-
tween eye blinks, thus a higher blinking frequency.

3.2 Eye Blink and Perception

3.2.1 Motivation
One of the major steps in the evolution of ubiquitous computing is the de-
velopment of physiological computing. Being a requirement for calm com-
puting [222], real-time measurements and analysis of physiological signals
through sensors enable implicit communication channels between comput-
ers and their users. Awareness of the user’s emotional and cognitive state
allows computers to react and adapt in real time. Physiological comput-
ing has two goals: (1) the increase of efficiency of performance, and (2)
improving the pleasure derived from interacting with computers through
monitoring and processing physical sensor data from the system user. Con-
sequently, data describing negative and/or positive affects are used as input
modalities that trigger specific reactions of the system, e.g. intervention
when frustration levels are high [76].

Humans receive most of their sensory information through their head,
making it a particularly interesting location for sensing, tracking, and en-
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hancing social and cognitive functions. There are first indications from con-
trolled lab studies that specific behavior patterns and physiological signals
(e.g. eye movements, eye blinks) are linked to those social and cognitive
functions [5]. Naturally, humans inhibit their eye blink when special focus
and awareness is required. In situations of danger, it is the normal reflex to
suppress the natural eye blink in order to avoid missing vital visual infor-
mation [186]. Recent work has shown that eye blink frequency is directly
related to mental fatigue derived from intense cognitive task load, and di-
rectly correlates with blink frequencies [91,132].

Today, a great portion of information and learning content is displayed
through computer, phone, and tablet screens. As a first approach towards
building cognition aware systems for improved knowledge acquisition, we
examine a possible impact of video frame rates (FR) on human eye blink.
In order to prevent synchronized eye blinks among candidates, we avoided
scenes that present any cuts or any form of storyline [147]. Moreover, most
studies focus on constrained lab settings using expensive medical equip-
ment. The use of unobtrusive head based sensing to estimate cognitive
functions in real life situations is largely unexplored. The non-invasive form
factor of glasses seems particularly suitable for research in areas such as
attention management and knowledge acquisition, promising to keep dis-
tractions low. Moreover, according to the National Eye Institute, 64% of the
adult population of the US are wearing eyeglasses [148]. This is signifi-
cantly more than the 41% of Americans wearing watches [227].

3.2.2 Experiment
In the following we introduce the participants, experimental setup, and the
experimental design in detail.

Participants

We invited twelve participants to our experiment (eleven university stu-
dents, one faculty), of which seven were male, and five were female. The
majority (nine) were between 20 and 30 years old. Three were older than
30 years, with one person being 65 years old. Five of the members had nor-
mal visual acuity without any visual aid. The visual acuity of one person in
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this group was corrected to normal by laser surgery. Seven candidates were
depending on visual aids such as contact lenses (three people) and glasses
(four people). In the initial questionnaire we asked for information regard-
ing health issues, and sleeping patterns. This was necessary in order to
exclude fatigue and medical conditions, which could have altered the eye
blinking frequency of candidates. All candidates except for one (more) had
their average amount of sleep.

Experimental Setup

Each clip was shot on a SONY FS700 in 2K RAW (2048x1024) in 240 frames
per second (fps). The edited, adequately accelerated, and color corrected
videos were exported to H.264/MPEG-4 in 30fps, 60fps, 90fps, and 120fps
respectively. The electroencephalographic power spectrum (EEG) of view-
ers of videos with higher frame rates (here: 240fps) is closer to the EEG of a
person watching motion in reality than the EEG of a viewer of a low frame
rate video (here: 60fps) [126].

For recording eye blinks, each participant was asked to wear J!NS Meme
glasses. These are sensing glasses equipped with accelerometer and gyro-
scope for measuring head movement and postures, and three EOG sensors,
that allow for accurate measurements of eye movements and eye blinks [10].
Meme are sensing devices rather than computing appliances. All necessary
applications and programs are running on connected smartphones, tablets,
or computers. Therefore, a lot of room in the frame could be saved that
would have usually been necessary for bigger batteries.

EOG bears on electrical potentials of the human eye that change when
eyes are moving and blinks are triggered [168]. Changes in this biopotential
are measured in form of vertical and horizontal EOG data and transmitted
to the MEME logger via an integrated Bluetooth Low Energy (BLE) module.
Similar to times of danger, when the normal human reflex is to suppress the
natural eye blink in order to avoid missing vital visual information, special
ocular tasks make people time their eye blink so that the amount of missed
information can be kept as small as possible [147, 204]. We solely used the
three EOG sensors integrated in the nose pads for this studies, Figure 3.1.
The electrodes are very sensitive and EOG is easily affected by users touch-
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Figure 3.1: J!NS Meme and EOG sensors.

ing their face, especially the area around the nose. Hence, all participants
were informed to not touch their faces while watching the video clips.

Additionally, we tracked each participant’s heart rate (HR) with a Mio
Alpha Heart Rate Monitor Sports Watch that continuously records HR data
from the wrist. It is connected to a smartphone (here: iPhone 5s) using
Bluetooth 4.0 via Wahoo Fitness, an iPhone application that allows the ex-
traction of recorded results. The purpose of tracking the HR in this exper-
iment was to enable the experimenter to identify physiological states and
conditions such as stress, nervousness, and tension that have a direct im-
pact on blink frequencies (BFs). For instance, the occurrence of alertness
and physical exhaustion cause a decrease in heart rate variability [26], and
therefore, an increase in the heart rate [141].

Experimental Design

We filmed scenes with three different levels of temporal changes in adjacent
frames. One video shows water dripping from a faucet (low changes), the
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second video shows two hands typing on a computer keyboard (medium),
and the third video shows people walking in the back-and foreground (high).
Each of these three videos was shot in 240fps, 2K RAW (2048x1024 Pixel)
with a SONY FS700 camera. We edited and color corrected the videos in
The Foundry Nuke 9.0v8, and exported each video to the H.264/MPEG-
4 format in 30fps, 60fps, 90fps, and 120fps. In order to avoid changes
in replay speed, videos were accelerated accordingly (120fps: 2x the orig-
inal speed, 90fps: 2,67x, 60fps: 4x, 30fps: 8x). The two parameters FR
and temporal changes (low, medium, high) between frames lead to a 4x3
within-subject design, resulting in twelve combinations that were counter-
balanced in a Latin square. Every participant was asked to watch three
video blocks. Every block contained four videos with each one being 30 sec-
onds long. Since the video content was repetitive, there was a risk of losing
viewers’ attention. Therefore, after every single block the viewers took a
two-minute break. Including a five-minute initial preparation and short
questionnaire time, the experiment took about 15 minutes per participant.
Additionally, in order to be able to control for changes in HR over the time
of the experiment we asked every participant to stand up and walk a few
steps after each block of four videos to “reset” their HR.

The recruited subjects were asked to fill out an initial questionnaire (de-
mography, visual aids, sleep patterns, etc.) before the experiment started.
Before the experiment, we explained to each participant the procedure, and
supported them with putting on the devices properly. In some cases, by
explaining the experiment purpose to attendees in detail, a bias can be in-
troduced, and result in participants to pay special attention to the objective
of the experiment. In our case, this could lead to an actively suppressed eye
blink. To prevent the data from being distorted by this phenomenon, we did
not explain to users what the J!NS Meme were used for. This guaranteed
that the participants’ eye blinks were as spontaneous and natural as possi-
ble.
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3.2.3 Results
Since eye blink can be actively delayed, we had to make sure that partici-
pants did not pay attention to their blink, for this reason they were informed
of what data was recorded after the experiment was finished. All subjects
showed a regular heart beat during the whole experiment with minimal
variations, as can be seen in exemplary Figure 3.3. We could not detect any
significant variants that might have caused changes in the eye blink fre-
quency [26].

Figure 3.2: Box-plots for the four levels of the independent variable frame rate: 30fps,
60fps, 90fps, 120fps with clear outlier identification.
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Descriptive Statistics
Frame rate Mean Std. Dev. N
30fps 13,03 5.15 11
60fps 10.27 4.72 11
90fps 10.91 3.68 11
120fps 8.33 5.09 11

Table 3.1: Descriptive statistics average blink frequency in correlation to displayed frame
rate after outlier was removed.

Removal of user 11, due to blink frequency readings, that were outside
the expected range of BFs of healthy humans, resulted in an observed aver-
age blink frequency of 13.03 blinks/min (SD = 5.15) for 30fps videos. Accord-
ingly, we monitored average blink rates of 10.27 blinks/min (SD = 4.72) for
the 60fps and 10.91 blinks/min (SD = 3.68) for the 90fps group, respectively.
The 120fps videos triggered an average BF of 8.33 blinks/min (SD = 5.09)
(Table 3.1. As Figure 3.4 shows, the combined average eye blink frequency
shows a trend towards less eye blinking with higher FRs. Our data sample
indicates an average of five blinks per minute difference between the 30fps
and the 120fps clips, and three blinks per minute between the 30fps clips
and the 60fps videos. Since no significant HR data changes occurred during
the experiment significantly while watching the videos, we conclude that
neither sleepiness nor other physiological factors are inducing the lower BF.
In accordance with the established research [92], we infer that high FRs
result in less physical strain on the viewer, whereas the lower FRs cause
higher BF, i.e. strain on the eyes. The almost equal values of the 60fps and
90fps videos could derive from different factors. It might be due to the re-
luctance of the viewers in familiarization with high FR video, because of the
long predominance of low FR content distribution, such as cinema (24fps)
and TV (30fps).

3.2.4 Discussion
It has to be mentioned we only visually controlled if participants were actu-
ally looking at the screen. The monitor was placed in front of a white wall on
a plane table in order to avoid distraction. The chances, that viewers were
still (un-)intentionally looking at the wall or the table existed nevertheless.
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Figure 3.3: Sample heart rate recording for participant 6.

In such a rather small sample group this might have been a factor influenc-
ing our results. Despite all that, we believe that we found evident trends
that lower FRs cause more stress on the viewer’s ocular system, whereas
higher FRs result in a lower average BF. With focus on cognition-aware sys-
tems, this could entail, that when technical parameters of content delivery
systems, such as screens can directly impact physiological signals, that we
use to infer changes in cognitive processes, we have to consider these find-
ings, because test setups can directly change the signals that we measure
to infer certain cognitive state characteristics. Furthermore by lowering
stress on the eyes, which requires higher BFs, these systems could support
prolonged focus on content by directly taking strain off the visual system
of the users. When physical stress, caused, e.g. by flicker on a screen, can
be minimized, fatigue of the eye can also be lowered, which in consequence
can help avoid interrupting eye blinks. Nevertheless, it has to be taken
into account that increased and overly long delays of eye blink potentially
cause symptoms of computer vision syndrom (CVS) [72]. Recent research
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Figure 3.4: Average blink frequency over all users for each frame rate

has proposed different solutions for this problem, including attachments to
glasses [58], and interventions on the actual display [53]. These solutions
can be implemented in order to enable a cognition-aware system that sup-
ports better focus and simultaneously take precautions in order to avoid
damage to the user and the eyes.

3.3 Chapter Summary
We were investigating the impact of different FRs on viewers’ BF. The re-
sults show a clear trend of higher FRs resulting in lower BFs, which can
be a marker of ocular fatigue. We avoided showing videos that contain any
story line, dialogue, or cuts, in order to avoid associations about what might
happen next, emotional reactions, or cognitive engagement with the con-
tent, since all these can induce BF changes. We used J!NS Meme glasses
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with integrated EOG sensors to record eye movement, and analyzed it for
the typical eye blink pattern. We showed that Meme EOG recordings en-
able the identification of BF changes. In addition to the eye blink frequency,
we also constantly monitored the heart rate of all participants. There were
no significant changes that could have explained the variances in blinking.
In conclusion, the gained data suggests that there is an impacts of video
FR on viewers, expressed in measurable changes of BFs, and that unob-
trusive, everyday objects such as eye glasses can be used for tracking such
variations.
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Chapter 4
Facial Thermography

In the following we are presenting the design and results of two experi-
ments that investigate the potential of an off-the-shelf infrared (IR) imaging
solution for inferring changes in cognitive load by monitoring facial tem-
perature changes. This chapter focuses on research question (RQ)3 and
presents an answer to which facial regions are suitable for inferring cogni-
tive load changes through thermal imaging. Moreover, in order to induce
cognitive load changes we have to introduce stimuli that possibly also in-
fluence other physiological signals of interest, such as eye blink frequen-
cies, which are indicators for alertness levels. Hence, this chapter will
also investigate the impact of cognitive load inducing treatments on hu-
man eye blink frequencies (RQ3). We are building descriptive models that
explain directional changes of the temperature, and investigate the impact
of different stimuli on a set of features extracted from recorded Electroocu-
lography (EOG) data. Parts of this work have been presented and pub-
lished at the ACM Conference on Human Factors in Computing Systems
2017 [49,202] and at the 2017 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing [198].

4.1 Related Work
Facial thermography is a non-invasive method that continuously provides
data, and can be used to monitor temperature changes that are indicative
for changes in cognitive workload. Higher workload is associated with ris-
ing facial surface temperatures. The basis for the correlation between cog-
nitive workload and facial temperature is provided by the arteries and the
venous system of our head [82, 142]. This approach is based on measuring
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the temperature differences between different facial areas [84, 138]. Stud-
ies investigating this subject have been done [105, 114, 228], having iden-
tified potential temperature measurement points on the tip of the nose,
directly over the pupils, and right in the center of the forehead, between
eyebrows and hairline. The venous system of our head builds the founda-
tion for this phenomenon, because it is deeply involved in the temperature
regulation of the human brain. The detailed anatomical foundation for this
phenomenon is explain in section 2.4.2. By using an infrared camera tem-
perature changes of the forehead can be easily measured.

4.2 Facial Temperature as a Measure for Cog-
nitive Load

A major challenge for every member of the knowledge society, is that they
have to manage and economize their use of cognitive capacities every day
and allow times to replenish them. Humans have always required breaks
to regain physical and mental strength, but today, we too often tend to use
these idle times to check on information available that often distracting us
from the original task. Whereas this distraction is often welcomed, it never-
theless, puts strain on our mental capacities, further draining our cognitive
resources. By making cognitive load measurable, we enable the user to
actively start managing resources and react to potentially risky overuse,
which can result in serious health issues.

In this chapter we present two experiments that aim at identifying suit-
able facial regions for measurements of temperature changes. These re-
gions of interest (ROIs) are presenting skin temperature changes in re-
sponse to changes in cognitive activity. We are utilizing facial thermogra-
phy measurements from IR imaging in addition to analyzing EOG data ob-
tained from J!NS Meme glasses [108]). So far, facial temperature has been
measured using thermal camera setups, which renders a mobile, everyday
solution impossible [1]. The form factor of eye wear, and the immediate
proximity of the frame to physiologically active facial regions, e.g. for mea-
suring facial temperature changes and EOG, render standard off-the-shelf
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spectacle frames an interesting solution for sensing in everyday situations
(Figure 4.1). A set of tests looking into the impact of cognitive demand
on different facial regions is necessary to find predestined regions that en-
ables us to later place contactless IR sensors on head mounted devices for
measuring cognitive load changes in real life settings. Consequently, the
development of a cognition-aware system based on eye wear would liberate
subjects and researchers from expensive medical grade equipment and sta-
tionary settings.

Figure 4.1: User wearing J!NS MEME glasses.

4.3 Pre-Study
In the following we will explain the preliminary experiment and introduce
setup, design, before detailing the data analysis and findings.
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4.3.1 Experimental Setup
To investigate the correlation of changes in facial temperature patterns,
EOG data, and cognitive load, we compare thermal measurements of sub-
jects in situations demanding varying levels of cognitive engagement. To
induce the required states we use video clips of two different categories.
The first category consists of movie trailers of different genres, here: ac-
tion/horror, adventure/drama, and romance/drama. These are traditionally
produced and edited for the purpose of drawing the viewer’s attention in
a short period of time (usually about 2,5 minutes) and setting the scene.
Videos are, therefore, ideal for this kind of experimental setup [188]. All
participants were asked to follow the story line and pay as close atten-
tion as possible to the trailer details. They were informed that they will
be asked questions concerning the contents of the trailers and that right
and wrong answers will be counted. We integrated this Q&A session in
order to put participants in a state where they have to recall information
engaged with shortly before. The working memory responsible for recall-
ing these information is directly related to changes in cognitive load [16].
The questions were asked after each trailer, and were of varying difficulty,
concerned with all kinds of facts presented in the trailers, e.g. names of
production companies, publishing dates, spoken phrases, and details such
as titles of books only briefly shown. We selected the official movie trail-
ers for the films “Cloverfield”1, “Wild”2, and “The Theory of Everything”3.
The second video category consisted of a single five minute video, that was
unedited and continuously showed a seashore scene. The video contained
no cuts, had no story, showed a single camera angle, and no added sound-
track. Each trailer was about 150 seconds long, whereas the unedited video
clip was intentionally chosen to be five minutes long in order to give the
participants’ cognitive system enough time to “reset”, and avoid triggering
any emotional or higher cognitive responses.

1 https://www.imdb.com/title/tt1060277/

2 http://www.foxsearchlight.com/wild/

3 http://www.focusfeatures.com/the theory of everything
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Participants and Procedure

We recruited five university students between the ages of 20 and 35 of which
two were female. All candidates had normal or corrected to normal vision
and were of different academic backgrounds. The room temperature was
controlled by a digital wall thermostat and set to 21◦C. Subjects were intro-
duced to the experimental procedure. Before starting the actual tasks, we
engaged each participant for ten minutes in a light chat in order to allow
their facial temperature to adjust to the room climate. This period was used
to establish the baseline facial temperature for each participant. The first
three candidates were initially watching the Hollywood trailers followed
by the seashore sequence. The last two students were presented with the
videos in opposite order. After each of the trailers, participants were asked
15 questions from a set of questions directly related to the trailer content.
Even though we registered the number of correct and incorrect answers,
the sole purpose of the questionnaire was to trigger cognitive demand in
each participant. Every participants’ EOG data was recorded using J!NS
Meme glasses, allowing us to analyze eye movement and eye blinks. Facial
temperatures were recorded using a Seek Thermal XR IR camera at 15fps
during the whole experiment. The complete setup including a candidate
wearing J!NS Meme can be seen in Figure 4.2.

4.3.2 Results
We analysed data collected from EOG glasses and IR images. We sampled
the temperature at six points in time for every trailer-questionnaire set,
and three times during the unedited video. The exact times were as follows:
in the beginning of the experiment before the first video was played to re-
ceive a baseline value, during the trailers we logged temperatures in the
exactly when half the trailer was played, and in the end of each trailer. For
the Q&A sessions, the temperature was analyzed at three times, namely
before the first question, after seven questions, and right after the answer
to question 15. We logged the temperature changes of 11 ROIs on each can-
didate’s face. These ROIs are listed in table 4.1, and displayed in Figure 4.3.

Through analysis of the thermography recordings, we could identify that
all four main areas on the face presented with temperature pattern changes.
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Figure 4.2: User and Experimental Setup

We decided to not further analyze the eye temperature development due to
the fact that IR sensors placed near the eye can cause health risks, and
are potential obstacles in the field of view of the user. Consequently, the
areas we investigated in greater detail were: forehead (A1), cheeks (A2),
and nose (A3), summarized in Table 4.1. The vascular anatomy postulates,
that A1 is supplied by the ophthalmic artery, whereas A2 is supplied by
the facial and infraorbital artery. A3 is supplied by branches of both, facial
and ophthalmic arteries. Since the nose acts as a heat-sink, and because
of increased respiration during the interview as a consequence of speaking,
temperature patterns on A3 can be differentiated from those on A1 and A2.

EOG data was constantly recorded throughout the experiment for each
user. For this pre-study, we briefly discuss the impact of the different stim-
uli on four features, which we extracted from the raw EOG data, namely
eye blink frequency, eye blink duration, vertical EOG peak, and the width
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Facial Region of Interest
Facial Region Location ROI ID Grouped ROIs
Forehead Central FC

A1
Forehead Top FT
Forehead Left FL
Forehead Right FR
Forehead Bottom FB
Eye Left EL
Eye Right ER
Cheek Left CL

A2
Cheek Right CR
Nose Top NT

A3
Nose Bottom NB

Table 4.1: List of Regions of Interest on the face for potential temperature measurements

of each blink event.

Thermography

We analyzed the effect of the two levels of our independent variable (IV) (1)
video and (2) Q&A on the recorded facial temperature. For this pre-study,
omitting the eyes, we utilized 11 metrics as our dependent variable:

1. change in temperature on FL, FC, FR, FT, FB, NT, NB, CL, CR,

2. change in temperature difference between FC and NT, and FC and
NB.

All temperature changes were defined as the differences between the
mean baseline temperature, measure before the experiment started, and
the mean temperature at each point of measurement. This resulted in 18
points of time (=numbers), where measurements were taken, and one base-
line temperature reading. In order to detect the directional effect of the
Q&A session on facial temperatures, we fitted the data of each facial region
for all five users with a multivariate regression model.
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Figure 4.3: Regions of Interest, where temperature changes were measured.

Effect of Q&A session on ROI Temperature

We found significant effects of Q&A in comparison to video on FC tempera-
ture, FR temperature, NT temperature and NB temperature. The overview
of calculated test statistics can be found in Table 4.2, and the estimated val-
ues for effect of Q&A session in comparison to video session on facial tem-
perature changes are listed in Table 4.3

As can be seen in the summarized results in Table 4.3, we identified
four facial regions that present with statistically significant changes in
temperature during the Q&A session in comparison to the video session.
The strongest impact of Q&A sessions on temperature was observed on NB
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Descriptive Statistics
ROI Mean Std. Dev. N
FL -0.247 0.171 18
FC 0.264 0.141 18
FR -0.211 0.161 18
FT -0.031 0.294 18
FB 0.022 0.160 18
NT -2.142 0.345 18
NB -0.711 0.498 18
CL 1.447 0.354 18
CR 1.220 0.431 18

Table 4.2: Descriptive statistics for effect of Q&A session in contrast to video session on
temperature changes on the face.

with (F(1,16) = 15.228, p = 0.001), causing a significant decrease of 0.676◦C
(±0.173). Our model explains 45.6% of this effect. Furthermore, Q&A ses-
sion significantly affected the temperature on NT (F(1,16) = 5.303, p <0.05),
resulting in an average decrease of 0.335◦C (±0.145), R-squared = 0.202
(Figure 4.4). On the forehead region (Figure 4.5), Q&A significantly in-
creased the skin temperature of FC by 0.139◦C (±0.059), (F(1,16) = 5.571, p
<0.05), R-squared = 0.212; and on FR by 0.153◦C (±0.068), (F(1,16) = 5.102,
p <0.05), R-squared = 0.194.

In the second part of our analysis, we compared the temperature changes
of NT, NB and FC (see Table 4.4). When comparing the NT temperature
during the video presentation with the temperature during the Q&A ses-
sions, we find an average decrease of 0.34◦C. This confirms the estimates
identified with the multivariate regression model. As NT got colder during
the Q&A sessions, the FC temperature increased by an average of 0.14◦C.
This results in an average increase in temperature difference between FC
and NT of 0.47◦C (Figure 4.6), and between FC and NB of 0.82◦C (Fig-
ure 4.7), rendering the nose, here especially the bottom region, and central
forehead region as robust thermally active ROIs markers of cognitive load
changes.
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Parameter Estimates
ROI β Std. Error F p R-squared
FL 0.057 0.082 0.488 0.495 -0.031
FC 0.139 0.059 5.571 0.031 0.212
FR 0.153 0.068 5.102 0.038 0.194
FT 0.185 0.135 1.869 0.191 0.049
FB 0.060 0.076 0.622 0.442 -0.023
NT -0.335 0.145 5.303 0.035 0.202
NB -0.676 0.173 15.228 0.001 0.456
CL 0.035 0.172 0.042 0.840 -0.060
CR -0.014 0.209 0.005 0.946 -0.062

Table 4.3: Parameter estimates for effect of Q&A session in comparison to video sessions
on temperature changes on the face.

Mean Temperature Changes
Condition FC FR NT NB FC-NT FC-NB
Video 0.195 -0.288 -1.975 -0.373 2.170 0.568
Interview 0.334 -0.134 -2.310 -1.049 2.644 1.382

Table 4.4: Mean temperature changes between the baseline and the two conditions Video
and Q&A .

In summary, the two tested conditions caused a significant increase in
the mean forehead temperature and decrease in the mean nasal temper-
ature. We were able to identify active regions that express cognitive load
changes in a predictable manner. Especially, forehead-nose temperature
differences, here between the central forehead region and the bottom of the
nose presented with clear results. A comparison of the temperature changes
for all 11 ROIs can be found in Figure 4.8.

Electrooculography

In addition to the identification of potential ROI sets for facial temperature
measurements, we also logged EOG data to obtain eye movement features.
The obtained data sets did not show statistically significant results, but
trends which serve as a foundation for the features to be extracted from
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Figure 4.4: Temperature change between the baseline and the conditions Video and Q&A
on the nose top and bottom.

the EOG data in the following main study. During the video presenta-
tion, blinks were fewer in number but quicker, whereas the unedited five
minute clip triggered slow and strong blinks. The logged EOG data was
used to identify eye blinks of candidates watching the videos and answer-
ing in the Q&A sessions, Figure 4.9 shows a typical example for each treat-
ment. It shows a six second extract of the recorded eye blinks. The fea-
tures characterizing eye blinks presented in these samples are the height
of the peaks describing the force, and the width illustrating the duration of
the blink event. Fewer quick blinks were triggered during the trailer pre-
sentation, whereas blinks were slow and strong while candidates watched
the unedited video. According to Nakano et al. [147], delayed, quick eye
blinks are a sign of increased attention. In comparison, a lower blink fre-
quency (BF) is an indicator for fatigue, in our case induced by the seashore
video. As can be seen in the right image of Figure 4.9, our blink rate acceler-
ates significantly while speaking, corroborating the relevant literature [25].
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Figure 4.5: Temperature change between the baseline and the conditions video and Q&A
on the forehead center and right.

4.3.3 Discussion
The thermography results in combination with the trends shown in the
EOG analysis corroborate with the literature, and indicate a relation be-
tween cognitive demand of various degrees with changing facial tempera-
ture patterns and eye blink features. Even though the correlation between
temperature changes and cognitive load variations are not novel, our con-
tribution to the scientific discourse lies in identifying different sets of ROIs
that are suitable for measurements. We used a controlled experimental de-
sign in order to be able to avoid possible data distortion by environmental
factors, such as light and temperature. We had to make sure that all par-
ticipants were in a calm state, and not agitated, or mentally fatigued, since
these states directly influence the physiological signals that we were look-
ing at. The experiment had only a small group of participants, but never-
theless, could already produce significant results and clear trends that are
in accordance with the scientific literature. Finally, it has to be stated that
the inference of high cognitive load from facial temperature readings does
not give us a clear indication for the reason of the changes. As the Cogni-
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Figure 4.6: Change in temperature difference between forehead center and nose top, af-
fected by conditions Video and Q&A.

tive Load Theory (CLT) states, the reasons could be grounded in either the
intrinsic, extraneous, germane load category, or even a combination of sub-
categories. Future research has to support differentiation between these
three load categories to better inform cognition-aware systems of the user
context.

4.4 Main Study
In the following we will illustrate the setup, design, and results analysis
of an extended study looking into the impact of induced cognitive load on
facial temperature changes and eye blink features. This part of the work is
based on the results of the pre-study presented in Section 4.3.

63



FACIAL THERMOGRAPHY 4.4 Main Study

Figure 4.7: Change in temperature difference between forehead center and nose bottom,
affected by conditions Video and Q&A.

4.4.1 Experimental Setup
Based on the findings of the pre-study, we designed a second experiment
with a bigger group of participants and longer periods of single stimuli. In
addition to inducing cognitive load, we also intended to investigate the po-
tential impact of film genre on physiological features. For this reason we
selected eight movies out of two categories, (1) Action and (2) Drama from
the Internet Movie Database4. The Action films were: “The Dark Knight
Rises”5, “Jack Reacher”6, “The Fate of the Furious”7, and “Transformers:

4 https://www.imdb.com/

5 https://www.imdb.com/title/tt1345836/?ref =fn al tt 1

6 https://www.imdb.com/title/tt0790724/?ref =fn al tt 1

7 https://www.imdb.com/title/tt4630562/?ref =fn al tt 3
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Figure 4.8: User independent mean temperature changes of 11 facial regions. Orange
fields mark QA sessions.

The Last Knight”8. The movies from the genre Drama were: “If I Stay”9,
“Titanic”10, “Collateral Beauty”11, and “P.S. I Love You”12. Since the aver-
age movie trailer has a length of 2.5 minutes, we played the trailers in pairs
in order to achieve an average stimulus onset of five minutes. The unedited
video used for relaxation, therefore classified as relax by us, showing a for-
est scene and playing only the natural sounds13 was equally run for five
minutes. In order to induce increased cognitive load in the participants, we
implemented a Stroop task application, a classical psychological tool for the
assessment of executive functions [194]. The test demands users to name or
select the color in which a word describing a color is written. The difficulty
derives from the fact that words written often name a color different from

8 https://www.imdb.com/title/tt3371366/?ref =nv sr 1

9 https://www.imdb.com/title/tt1355630/?ref =fn al tt 1

10 https://www.imdb.com/title/tt0120338/?ref =fn al tt 1

11 https://www.imdb.com/title/tt4682786/?ref =nv sr 1

12 https://www.imdb.com/title/tt0431308/?ref =fn al tt 1

13 https://www.youtube.com/watch?v=c2NmyoXBXmE
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Figure 4.9: Comparison of blink features: strong and frequent blinks in times of lower
cognitive engagement and attention, quick and delayed eye blinks during periods of high
attention

the font color, e.g. the word written is “yellow”, but the font is colored in red.
In this case, the participant has to chose the color red. This time we did not
ask participants to follow the story lines in detail, since there was no Q&A
session conducted, instead we asked them to simply enjoy the trailers, and
perform as good as possible in the Stroop test. We did not inform partici-
pants of the actual purpose of the study, but deceived them by claiming we
were to test impact on task performance. Our hardware setup was identi-
cal to the pre-study, utilizing a Seek Thermal XR IR camera at 15fps. The
experiment was conducted in a darkened, climate controlled studio, and all
test were run in darkness in order to prevent potential visual distractions.
The setup including a candidate wearing J!NS Meme while engaging in the
Stroop test can be seen in Figure 4.10.
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Figure 4.10: Thermal imaging, recorded while user engages in stroop task. Temperature
difference between nose (colder) and forehead (warmer) is clearly visible.

Design

We applied a repeated measures design, where all participants were ex-
posed to all treatments. We investigated the effect of different video genre,
and a Stroop test on facial temperature changes and eye blink features. To
avoid the order effect typical for repeated measures designs, we counter-
balanced the order of the stimuli using a Latin Square. After receiving
written consent from every user, collecting their demographic information,
and a concise introduction to the experiment, we asked all participants to
relax for five minutes before the first stimulus onset. This time was neces-
sary for the users to acclimate to the room temperature and for us to record
facial baseline temperatures. After the baseline recording, we started the
experiment with two pairs of videos and the relaxation video. After these
approximately 15 minutes, users were asked to conduct the Stroop task for
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5 minutes, before watching another set of five videos (2x Action, 2x Drama,
1x Relax) for another 15 minutes. The whole experiment took in average 40
minutes (Figure 4.11.

Figure 4.11: Schematic example of the experimental sequence including stimulus onset
times.

Participants

We recruited 15 participants through university mailing lists and profes-
sional networks. The group of participants consisted of 8 male and 7 female
members with a mean age of 29 years (SD = 10.82). All participants had
normal or corrected to normal visual acuity, did not have any medical con-
ditions that might confound data recordings, nor were any of them taking
medication. All participants were different from from those enlisted in the
pre-study and mostly university students and academic staff.

4.4.2 Results
For our data analysis we recorded IR images and raw EOG data. We sam-
pled the temperature from the thermal recording 42 points in time, six
times for each video block, and 6 times throughout the Stroop test. For this
experiment, building on findings from the pre-study, we logged the tempera-
ture changes of three ROIs on each candidate’s face, and calculated a fourth
ROI, namely Navg. These ROIs are listed in Table 4.5.
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Facial Region Location ROI ID
Forehead Central FC
Face Average Favg
Nose Top NT
Nose Bottom NB
Nose Average Navg

Table 4.5: List of ROIs on the face monitored for assessments of temperature changes.
Navg = NB - NT

EOG data was continuously recorded throughout the experiment. Every
user was advised to not touch their face too often and to make sure that they
are wearing the glasses properly. We used the J!NS MEME blink detection
algorithm to identify eye blink features in the raw EOG data (Figure 4.12.
We will present detailed analysis of variations in eye blink frequency, sac-
cades, peak width, and the 1st derivative of the vertical EOG (rising slope
change) in reaction to the presented stimuli.
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Figure 4.12: Sample of J!NS MEME blink detection algorithm. Events marked with a blue
◦ present detected eye blinks, triangles point in the direction of the identified eye move-
ment (up or down). The top graph shows the vertical EOG, the 2nd graph the horizontal
EOG, accelerometer and gyroscope data was not recorded.

Thermography

We fitted the data of each facial region for all 15 users with a multivariate
regression model in order to detect the directional effect of our IV with the
levels (1) Video, and (2) Stroop task, on facial temperature changes. We
used eight metrics as our dependent variable:

1. change in temperature on FC, Favg, NT, NB, and Navg

2. change in temperature difference between FC and NB and FC and
Navg.

Additionally, we tested the effect on the difference between FC - Navg
and FC - NB across all users for the four IV levels (1) Relax, (2) Drama,
(3) Action, and (4) Stroop task. We did not test for changes in the differ-
ences between FC and NT, because NB has shown stronger significant re-
sults. All temperature changes were defined as the differences between the
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mean baseline temperature, measure before the experiment started, and
the mean temperature at each point of measurement, i.e. 42 points in time,
where measurements were taken, and one baseline temperature reading.

Effect of Stroop session on ROI Temperature

We found significant effects of the Stroop task in comparison to Video on
NT temperature, NB temperature, and Navg. The overview of calculated
test statistics can be found in Table 4.6, and the estimated values for effect
of Stroop task in comparison to video session on facial temperature changes
are listed in Table 4.7

Descriptive Statistics
ROI Mean Std. Dev. N
FC -0.048 0.208 40
Favg -0.048 0.208 40
NT -0.023 0.241 40
NB -0.019 0.246 40
Navg -0.021 0.238 40

Table 4.6: Descriptive statistics for effect of Stroop task in contrast to Video stimuli on
temperature changes on the face.

Parameter Estimates
ROI β Std. Error F p R-squared
FC -0.023 0.101 0.051 0.823 -0.25
Favg -0.024 0.101 0.055 0.816 -0.25
NT -0.310 0.105 8.662 0.006 0.164
NB -0.318 0.107 8.788 0.005 0.166
Navg -0.314 0.103 9.288 0.004 0.175

Table 4.7: Parameter estimates for effect of Stroop task in comparison to Video stimuli on
temperature changes on the face.

As can be seen in the summarized results in Table 4.7, we identified
three statistically significant changes in temperature induced by the Stroop
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task in comparison to the video stimuli. The strongest impact of Stroop task
on temperature was observed on Navg with (F(1,38) = 9.288, p<0.05), caus-
ing a significant decrease of 0.314◦C (±0.103). Our model explains 17.5% of
this effect. Furthermore, Stroop task significantly affected the tempera-
ture on NT (F(1,38) = 8.662, p <0.05), resulting in an average decrease of
0.32◦C (±0.105), R-squared = 0.164, and on NB by 0.318◦C (±0.107), (F(1,38)
= 8.788, p <0.05), R-squared = 0.166 (Figure 4.13).

Figure 4.13: Change in temperature difference between forehead center and nose top, nose
bottom, and nose average affected by conditions Video and Stroop task
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Mean Temperature Changes
Condition FC-NB FC-Navg
Relax -0.198 - 0.185
Drama - 0.015 -0.019
Action 0.002 0.003
Stroop 0.247 0.243

Table 4.8: Mean temperature change between the baseline and the four conditions Relax,
Drama, Action, Stroop.

In the second part of our analysis, we compared the temperature changes
between FC and NB across all users (Table 4.8). We tested the effect of
stimulus type on the difference between central forehead temperature and
temperature at the bottom of the nose with a one-way ANOVA. We found a
significant effect of stimulus type on the Forehead-Nose Difference (F(3,56)
= 16.567, p <0.0001). Post-hoc Tukey HSD found significant differences
between all stimuli, except for the difference between Drama and Action
trailers (Table 4.9). The overall development of temperature differences per
user and stimulus can be found in Figure 4.14.

Effect of Stimulus on FC-NB
Pair Tukey HSD Q p
Relax vs. Drama 4.096 0.027
Relax vs. Action 4.476 0.013
Relax vs. Stroop 9.926 0.001
Drama vs. Action 0.379 0.900
Drama vs. Stroop 5.829 0.001
Action vs. Stroop 5.450 0.002

Table 4.9: Effect of stimulus on changes in temperature differences between central fore-
head and nose bottom.
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Figure 4.14: Change in temperature difference between forehead center and nose bottom
affected by stimulus type

In the third part of our analysis, we compared the temperature changes
between FC and Navg across all users (Table 4.8. We tested the effect of
stimulus type on the difference between central forehead temperature and
temperature at the bottom of the nose with a one-way ANOVA. We found
a large significant effect of stimulus type on the Forehead-Nose Difference
(F(3,56) = 21.296, p <0.0001). Post-hoc Tukey HSD found significant dif-
ferences between all stimuli, except for the difference between Drama and
Action trailers (Table 4.10). The overall development of temperature differ-
ences per user and stimulus can be found in Figure 4.15.
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Effect of Stimulus on FC-Navg
Pair Tukey HSD Q p
Relax vs. Drama 4.354 0.017
Relax vs. Action 4.916 0.005
Relax vs. Stroop 11.231 0.001
Drama vs. Action 0.563 0.090
Drama vs. Stroop 6.877 0.001
Action vs. Stroop 6.315 0.001

Table 4.10: Effect of stimulus on changes in temperature differences between central fore-
head and average nose temperature.

Figure 4.15: Change in temperature difference between forehead center and average nose
temperature affected by stimulus type

In summary, the different stimuli exhibited increases in the difference
between forehead and nose temperature, whereby the nose temperature
significantly decreases during phase of higher cognitive load, induced by
a Stroop test. Our model could identify a significant decrease in the mean
nose (top, bottom, average) temperature for the tested conditions (1) Video
and (2) Stroop, but did not identify significant changes in the forehead tem-
perature. We detected significant differences between all stimuli (Relax,
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Drama, Action, Stroop) for the difference between central forehead temper-
ature and the bottom and average nose temperatures.

Electrooculography

Different lab and in-situ studies have investigated the correlation between
cognitive processes and eye features, such as blink duration [37, 42], Per-
centage Of Eye Closure (PERCLOS) [173, 191], eye movement [123, 180],
and eye blink frequency [12, 72, 96, 192]. Visual tasks that induce less in-
terest in a viewer usually present with higher blink frequency, whereas
interest is expressed through delayed and inhibited eye blinks. This is a
sign for increased sustained attention [132]. Moreover, BF increases with
raising fatigue levels, whereas eye movement speed decreases and blink du-
ration is elongated [180]. While the majority of the systems, especially for
eye blink detection, are based on camera systems, we utilize the potential of
EOG data and extract five features to infer cognitive states, namely blink
frequency, saccadic movements, blink peak width, and the rising vertical
EOG slope change.

Eye Blink Frequency

We tested the effect of the four stimuli, (1) Relax, (2) Drama, (3) Action,
(4) Stroop on the blink frequency. Initial outlier detection identified user
10, whose data we omitted for the following analysis. Data was normally
distributed and, therefore, we conducted a repeated measures ANOVA. The
analysis did not result in any statistically significant findings, neither for
this setup nor for a binary (Video vs. Stroop) design. (Table 3.1)
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Descriptive Statistics
Stimulus Mean (Bk/sec) Bk/min Std. Dev. N
Relax 0.37 22.14 0.13 14
Drama 0.40 23.79 0.11 14
Action 0.40 24.19 0.12 14
Stroop 0.37 21.91 0.19 14

Table 4.11: Descriptive statistics for blink frequency and stimulus.

Saccades

Saccades are rapid eye movements conducted by both eyes simultane-
ously in any direction. Through vertical and horizontal EOG recordings we
can detect saccadic movements in all directions. Increased eye movement
is usually triggered by increased interest and higher alertness. We found
mean saccades/minute to be highest during the Drama videos, whereas the
Relax video, as expected, caused the lowest saccadic movement (Table 4.12).
We tested the effect of the three different video stimuli (1) Relax, (2) Drama,
and (3) Action on the number of saccadic movements. We did not compare
with the Stroop test data, because the Stroop test requires users to actively
search and look around on a screen to identify the right color, therefore,
it would result in a naturally high number of saccadic movements. With
the data of user 10 removed (outlier) we conducted a repeated measures
ANOVA. Mauchly’s Test indicated that the assumption of sphericity had not
been violated, (χ2(2) = 3.62, p = 0.16). The difference between the means is
statistically significant: F(2,26) = 24.17, p=0.000, all p-values are Bonfer-
roni adjusted for multiple comparisons (Table 4.13. The type of video has a
significant effect on the number of saccades per minute.

Descriptive Statistics
Stimulus Mean Std. Dev. N
Relax 9.607 4.61 14
Drama 17.491 5.28 14
Action 15.252 4.29 14

Table 4.12: Descriptive statistics for saccades/minute and stimulus.
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Effect of Video on Saccadic Movement
Pair Mean Diff. Std. Error p
Relax vs. Drama -5.646 1.125 0.001
Relax vs. Action -7.885 1.419 0.00
Drama vs. Action -2.239 0.905 0.084

Table 4.13: Mean saccadic movement difference between the conditions Relax, Drama, and
Action.

Blink Peak Width

We tested the effect of Stimulus type on blink peak width with a Fried-
man test, due to the violation of the assumption of normality in our data
identified with a Shapiro-Wilk test. The Friedman test detected a statisti-
cally significant difference in blink peak width depending on which stimulus
users engaged with, (χ2(3) = 20.143, p = 0.000). A following Bonferroni cor-
rected, post-hoc analysis with Wilcoxon signed-rank tests was conducted,
resulting in a significance level set at p <0.008. There were neither sig-
nificant differences in the means between the Stroop test and the videos,
nor between the Drama and Action setting. Nevertheless, Relax in com-
parison to Action (Z = -3.233, p = 0.001) and Drama (Z = -3.296, p = 0.001)
resulted in a significant statistical differences in blink peak width (=du-
ration) (Table 4.15). We find the shortest mean blink duration during the
Stroop task, which requires heightened alertness and attention, whereas
the Relax video induces longer lasting eye blinks, clearly stating the impact
of cognitive performance measures on blink duration (Table 4.14).

Descriptive Statistics
Stimulus Mean Std. Dev. N
Relax 0.139 0.023 14
Drama 0.124 0.013 14
Action 0.121 0.011 14
Stroop 0.120 0.016 14

Table 4.14: Descriptive statistics for blink peak width and Stimulus.
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Effect of Stimulus on Peak Width
Pair Z p
Stroop vs. Relax -2.480 0.013
Stroop vs. Action -0.973 0.331
Stroop vs. Drama -0.220 0.826
Drama vs. Relax -3.296 0.001
Drama vs. Action -1.852 0.964
Action vs. Relax -3.233 0.001

Table 4.15: Mean blink duration (peak width) difference between the conditions Relax,
Drama, and Action.

Change of Rising Slope

The first derivative of the vertical EOG signal describes the velocity, i.e.
the rate of change of the EOG surge or drop, measured in meter/second.
A Shapiro-Wilk test classified our sample as non-parametric, because of a
violation of the assumption of normality. Consequently, we tested the ef-
fect of Stimulus type on the first derivative with a Friedman test, which
detected a statistically significant difference in velocity depending on the
stimulus, (χ2(3) = 16.886, p = 0.001). Post-hoc analysis with Bonferroni
corrected Wilcoxon signed-rank tests resulted in a significance level set at p
<0.008. There were significant differences in the means between the Stroop
test and Relax video (Z = -3.045, p = 0.002), as well as between Stroop test
and Action videos (Z = -2.668, p = 0.0076) and between Stroop test and
Drama videos (Z = -2.668, p = 0.0076)(Table 4.17). All other pairings were
statistically insignificant. We find the fastest changing vertical EOG during
the Stroop test, slowest during the Relax video, enabling us to inferring a
correlation between attentional system, alertness, and the first derivative of
the vertical EOG signal (Table 4.16). When high alertness is required, blink
events have to be kept short in order to avoid missing crucial visual infor-
mation, whereas during times of high fatigue or low attentional demand,
eye movements can be slower, and blinks can be performed at a slower rate.
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Descriptive Statistics
Stimulus Mean Std. Dev. N
Relax 15.414 9.801 14
Drama 13.489 8.280 14
Action 13.893 8.151 14
Stroop 9.286 4.169 14

Table 4.16: Descriptive statistics for 1st derivative of the vertical EOG signal.

Effect of Stimulus on Velocity
Pair Z p
Stroop vs. Relax -3.045 0.002
Stroop vs. Action -2.668 0.0076
Stroop vs. Drama -2.668 0.0076
Drama vs. Relax -0.973 0.331
Drama vs. Action -0.408 0.683
Action vs. Relax -1.915 0.056

Table 4.17: Differences between the mean velocity of vertical EOG changes, in response to
conditions Relax, Drama, and Action.

4.4.3 Discussion
The two experiments presented in this chapter, show the impact of cog-
nitive demand inducing processes, such as information recall, information
processing, and selective attention capacity, on facial temperature patterns.
Increasing cognitive demand leads to changes in surface temperatures on
the face, which can be measured, and enable us to infer cognitive load vari-
ations. We investigated a set of 11 facial regions and their thermal patterns
in reaction to changing cognitive demand.

The initial study on identifying eye blink changes with the help of EOG
glasses resulted in promising findings. In order to develop a comprehensive
eye wear platform enabling us to monitor a variety of physiological signals
that allow for inferring a set of cognitive state changes in real time, we con-
centrated our efforts on identifying thermally active facial regions in near
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proximity to the used glasses’ frames. We focused exclusively on regions
surrounding the human eyes and nose, due to their promising anatomical
features, such as the paths of blood vessels and their connection with the
blood supply of the human brain. We identified two regions (forehead and
nose) which expressed statistically significant temperature changes under
both tested conditions. Whereas, under increased cognitive demand, nose
temperatures decreased significantly, forehead temperature patterns only
showed significant changes, namely increases, during the pre-study. The
main study could not reproduce these findings, and, therefore, requires fur-
ther investigation with either more sensitive equipment, or a bigger sample
size. Since the bigger study did not show any significant forehead temper-
ature increase in different tests, we tend towards the theory that the fore-
head temperature changes are not necessarily triggered by cognitive load,
but rather by stress, and other Autonomic Nervous System (ANS) activat-
ing stimuli, corroborating findings by Kataoka et al. [118]. Nevertheless,
our experiments produced significant temperature difference increases be-
tween the nose and forehead region when comparing states of low and high
cognitive demand. These results were significant in both test settings.

We furthermore saw that BF is a highly sensitive measure susceptible to
noise and distortions. It requires longer recordings for less controlled stud-
ies, or a stronger experimental design control to avoid overly noisy record-
ings. Other eye movement features such as saccadic movements, eye blink
peak width (blink duration), and the velocity of the vertical EOG can be
added to more clearly identify cognitive processes such as engagement with
content, cognitive load, and alertness. In the next part of the dissertation
we will introduce a study on the correlation between eye blink frequencies
and alertness levels, which shows that it is necessary to collect big amounts
of EOG data to be able to reliably extract significant features.

4.5 Chapter Summary
The development of unobtrusive cognition-aware systems that can support
information intake and knowledge acquisition, require special focus on cog-
nitive processes. One approach is to utilize physiological signals for infer-
ring fluctuations in cognitive capacities and mental states. In the exper-
iments introduced here, we focused on identifying thermally active facial
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regions that express changes in cognitive load through skin temperature
fluctuations. This approach is based on the human anatomy and CLT. We
identified a set of ROIs on the face that follow the form factor of regular
glasses, in that these regions are close to the glasses’ frames. This allows for
attaching IR sensor to the glasses, e.g. the bridge, that point upwards and
downwards for measuring the temperature changes between FC and NB.
Additional placements on the rim of the glasses pointing at the wearer’s
cheeks would enable multiple temperature readings that can be compared.
The experiment setup was designed exclusively with off-the-shelf products,
in order to identify strength and weaknesses of the proposed system. More-
over, we looked into eye motion features that support the identification of
cognitive states. We put special focus on variations in blink frequency, that
are well known markers for alertness and fatigue, which have a strong im-
pact on cognitive performance measures, such as reaction time, information
processing capacities, and attention. We initially investigated the potential
of off-the-shelf EOG glasses to identify blink frequency changes. For this,
looked into the susceptibility of blink frequency changes to differing display
frame rates, and showed that J!NS Meme glasses are capable of correctly
identifying a direct correlation. Furthermore, it is an important factor to
be aware of, when using eye blink frequencies to infer sustained atten-
tion states, fatigue, and alertness levels, through experiments performed
in front of monitors.

Consequently, for designing eye wear platform based cognition-aware
systems for everyday use, we developed a prototype that includes IR sensors
in the glasses, recording temperature changes in the forehead and nose-tip
regions. In section 7.3.1 we will introduce the prototype that contains In-
ertial Measurement Unit (IMU) and EOG sensors as well as additional IR
sensors. The combination of these sensing solutions will allow us for more
comprehensive identification of cognitive state changes, including varying
cognitive load, changing alertness levels, sustained attention, as well as
variations in physical activity.

82



III

IMPLEMENTATION

83



Chapter 5
Feedback Loops

This chapter gives detailed insights into the development of a responsive
feedback loop. The working prototype is part of a simple but effective context-
aware system toggling between different display frame rates in response to
users’ blink frequencies. Parts of this work have been presented and pub-
lished at The 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing [205] and The ACM CHI Conference on Human Fac-
tors in Computing Systems 2017 [203].

A central goal of physiological computing is to increase the efficiency of
performance, and improve the pleasure derived from interacting with com-
puters, i.e. support the user of a system. The central unit to make this pos-
sible is the biocybernetic loop [76]. The biocybernetic loop is fed with data
collected from sensors that describe the user’s context. The data is filtered
and analyzed in order to identify patterns that define relevant character-
istics of the user context. The system then quantifies the user state and
compares the current state to baseline values or other relational markers,
e.g. comparing a person’s heart rate (HR) while running with the resting
HR. After assessing the context, the system’s algorithm triggers a reaction
to the state, i.e. feedback, e.g. a motivational message to foster further run-
ning, because the HR is in a range that is beneficial for the cardiovascular
health. In reaction to the feedback, the user responds, which again is col-
lected in form of data, assessed by the system, and a second-order feedback
is given, creating a feedback loop. When these systems are designed to
explicitly influence emotional states, they are usually located in the affec-
tive computing domain [162].

So far we have investigated physiological signals for their potential im-
portance for a cognition-aware system that supports learning and informa-
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tion intake. We have establish correlations between cognitive load and fa-
cial temperature changes (Chapter 4, and examined the susceptibility of
the human eye blink to digital display Frame rate (FR) changes (Chapter
3). In the following chapter, we are presenting our prototype for a feedback
loop that utilizes the users’ eye blink frequency as an input modality, and
automatically responds by toggling between videos with different FRs, po-
tentially triggering second-order blink frequency (BF) changes in the user.

5.1 Related Work
Related works that use eye blink in feedback loops are rare. Bulling et
al. [36] have proposed a framework for utilizing eye movement features in
context-aware systems. Even though it is not set up as a feedback loop, the
hands-free text input system based solely on eye blink as an input modality
by MacKenzie and Behrooz [131] shall be named here. The closest to our
proposal is work by researchers at the University of Nottingham. Pike et
al. [165] utilized blinking for a film experience in their project “#Scanners”.
The sequence of scenes of their movie is influenced by the viewer’s eye blink
and Electroencephalography (EEG), promising every user of #Scanners to
experience their own individual version of a movie. The feedback given by
the system through real-time cuts with every single eye blink triggered by
the viewer. A different feedback loop, based on physiological data input,
can be found in the commercially available smartphone application “#Al-
mostForgot”. This app utilizes the user’s heartbeat for adjusting the tempo
of a piece of music. While watching an animated video, the user’s heartbeat
is measured with the phone’s backside camera [98]. However, both projects
belong to the entertainment domain, and are can not necessarily be placed
in the field of context-aware computing. Our approach differs by using eye
blink as an input modality to alter technical parameters (FRs) that directly
influence the presentation of displayed content, which in response has an
impact on features of the physiological signal used as the input signal, here
the BF, a classical biocybernetic feedback loop [77].

85



FEEDBACK LOOPS 5.2 Eye Blink as an Input Modality

5.2 Eye Blink as an Input Modality

5.2.1 Motivation
The system with the highest degree of individualization is, without any
doubt, the human body. Within this system, our eyes take the role of gate
keeper responsible for receiving and rejecting visual information. The end-
lessly available stream of information is naturally interrupted by our eye
blink. Eye blinking is a necessary process for lubricating and cleaning the
eye balls, but also to cut out visual stimuli, e.g. during times of rest and
sleep. Blinking usually happens unintentionally, but can be controlled in
situations where a delay might be crucial such as in moments of stress,
fear, or danger [63].

Being able to fully grasp the bodily foundation of mental processes and
sensations is a major milestone on the way to computer-supported amplified
human senses and abilities. Understanding the reasons for certain physio-
logical signal patterns, that are based on our mental states, would in return
mean, that we can look into the human mind by simply assessing the per-
son’s outside. Within the rather short period of time, where researchers
have been able to depict brain activity and cognitive processes with medical
grade equipment, investigations have been limited to laboratories. How-
ever, today’s off-the-shelf wearable computing and sensing devices enable
us to non-invasively investigate and observe human cognitive processes by
measuring and interpreting physiological signals.

Importantly, by using eye blink as an implicit input modality, the user
is not required to actively make an input and change any settings. That
pretends her from being distracted from the task at hand. Our goal is to
develop a mobile sensing solution, based on eye wear, that can easily be
connected to computer-based learning stations in different locations. There-
fore, cognitive states can be tracked at home and at school or work, long
term measurements are made possible, which are beneficial, since bigger
sets of data help to more accurately interpret the user context. As a stan-
dardized interface, eye blink input could be used to adjust any computer or
screen based device to the individually preferred settings right after con-
nection.
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5.2.2 Approach
Our work is focused on expanding the framework of cognition-aware sys-
tems by an eye wear solution that intuitively can deliver data derived from
physiological signals to responsive media systems [169]. Our system records
Electrooculography (EOG) data directly from users engaging with contents
on a computer display, e.g. video lectures, scientific papers, or websites. The
technical parameters of the display, among others FRs, have a direct impact
on the viewer. The impact is expressed by changes in features of the physi-
ological signal. In our case, prolonged screen work can result in symptoms
of computer vision syndrom (CVS) [72]. Moreover, certain cognitive pro-
cesses, such as sustained attention, induce delayed eye blinks, and poten-
tially cause eye fatigue. In order to avoid these negative effects, we have to
measure, analyze, and assess them before deciding which alteration of the
system can appropriately counteract undesired states, or support desired
conditions. For the development of context-aware systems, it is important
to define which kind of feedback to employ. Triggered feedback can be used
to bring the signal back into a range that stands for a balanced condition, so
called negative feedback control [94], or it can be used to drive the state into
an unbalanced condition, intensifying negative or positive states, through
positive feedback control [81].

5.2.3 Implementation
As described in Chapter 3, by investigating the impact of different FRs on
viewers’ BF, we found that higher FRs were correlated with lower BFs.
Building upon these findings, we developed a prototype that displayed videos
rendered in 60fps (V1), 30fps (V3), and 15fps (V3) respectively. We pro-
duced all videos ourselves and applied the appropriate retiming in order
to avoid temporal distortions in the videos. We are currently using lower
frame rates in order to keep the computational workload small, compared
to a 30fps, 60fps, and 120fps system. As Figure 5.1 shows, our current pro-
totype plays all three videos simultaneously. The videos are layered, with
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Figure 5.1: Schematic of the layered feedback loop

only one being displayed on screen for the viewer. A Quartz Composer com-
position developed by us (Figure 5.2) toggles between these three videos.
The eye blink data is input through a custom patch written for this pro-
gram. Before showing the videos to the viewer, we let participants for some
time while wearing the J!NS Meme glasses. During this time we log the
natural blink, so that we can define every individual’s BF baseline. Even
though highly idiosyncratic, the average standard human BF is given with
about 17 blinks/minute [25]. Nevertheless, environmental factors, sleepi-
ness, stress, monitor work, etc. can cause every person to present with a
different BF.

After obtaining the baseline frequency, we calculate an individual lower
threshold (A) and upper threshold (B) for every user. When BFs are going
either over or under the respective thresholds the program switches to a
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Figure 5.2: Quartz Composer algorithm, using eye blink frequencies as input, with user-
dependent thresholds.

different video. For our current system, we defined the calculation of the
thresholds as follows:

A = fb - (fb/2)

B = fb + (fb/2)

(fb = individual baseline BF)

The program constantly processes the input BF and toggles between V1,
V2, and V3 accordingly. Every presentation starts with V2, because its FR
is the most common among the three. We are currently applying a negative
feedback control. This means, if the BF goes below A, i.e. BF is too low,
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the program will switch to V1. The lower FR of V1 functions as a trigger
for increased BF. To detect the eye blink we use J!NS Meme glasses for
recording the EOG data [110]. We implemented a robust blink detection al-
gorithm using the vertical and horizontal eye movement of the wearer. The
filtering process and detection of the blinks from the vertical and horizon-
tal EOG data of a participant blinking six times and looking up two times
is depicted in Figure 5.3. A problem with EOG signals is its susceptibility
to noise. Simple touching of the face or moving of the glasses can cause
significant noise in the raw data. In order to extract the eye blinking data
correctly, we adjust the Simple Moving Average (SMA) to 10 samples for
each data set (Figure 5.4). We then sample 0.1sec and calculate the dif-
ference. After that, we add up these values and compare the vertical and
horizontal values (Figure 5.5). Finally, the eye blink can be clearly detected
by setting a threshold for the vertical and horizontal EOG data (Figure 5.6).
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Figure 5.3: Raw EOG Data showing 6 blinks, and 2 gazes up.

Figure 5.4: EOG Data after SMA Adjustment.
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Figure 5.5: Comparison of sampled horizontal and vertical EOG values.

Figure 5.6: Detected eye blinks after setting threshold.
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5.2.4 Discussion
The apparent conflict between potentially desired prolonged sustained at-
tention and the risk for CVS symptoms due to extended delays of eye blinks,
shows that influencing mental and physiological processes is often a double-
edged sword. Truly cognition-aware systems have to be able to balance the
potential for enhancement with the apparent risks in a way that protects
the user from potential harm. We see application scenarios for a prototype
such as the here introduced on in a variety of domains, for example:

VDU-work The proposed system is a simple but effective addition to to-
day’s predominantly existing screen-dependent work-, entertainment- and
study environments. Less strain and exertion for the eye would mean more
effective and healthier hours of work and pleasure.

Medical Applications Medical Monitors can adapt to the individual char-
acteristics of each physician and therefore make camera supported surg-
eries and diagnoses safer by taking physical stress off the doctor.

Entertainment Especially in virtual reality environments that require
head-mounted displays (HMDs), it is of crucial importance to avoid overex-
ertion of the visual apparatus. Blink rate frequency can be used to adjust
the FR of the screens in the HMD to ensure longer and less debilitating us-
age. Affective and context-aware systems open up exciting possibilities for
new storytelling models, that are responsive to the viewers current mood
and state. This includes more accurate recommender systems, as well as
real-time adjustment of content. Prospectively, the set of physiological data
used can be extended by data obtained from facial skin temperature (cog-
nitive load) or galvanic skin response (emotional response) to draw more
complex pictures of the users’ current state.

5.3 Chapter Summary
We introduced a feedback-loop that uses eye blink frequency as an implicit
input modality. Changes in BF are assessed by the system for potential
breaches of defined lower and upper BF thresholds. These thresholds are
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Figure 5.7: Scheme of Feedback Loop System

individually defined, because every person’s BF baseline is different. Even
the same person regularly presents with different BFs, due to environmen-
tal factors, and personal lifestyle. We hope that this system breaks ground
in the domain of cognition aware systems, because of its potential to ad-
dresses physiological (altered eye BF as well as cognitive processes (sus-
tained attention). A major motivation for this project is to make attention
tracking available for everyday situations. Therefore, we focus on an un-
obtrusive solutions using off-the shelf products. The schematic of the func-
tioning prototype can be seen in Figure 5.7.
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Chapter 6
Continuous Alertness Tracking

The following chapter elucidates the design and execution of an in-the-wild
study, in order to collect Electrooculography (EOG) data from everyday sit-
uations for building a model that can predict fatigue and alertness states
from changing eye blink frequencies. This chapter addresses the question if
we can continuously quantify human fatigue levels in everyday situations
using consumer-grade sensing devices (research question (RQ)4). We an-
swering this question by giving detailed insights into the data analysis and
model development, introduces our own blink detection algorithm, and dis-
cusses applicability, benefits, and shortcomings. Parts of this work were
presented and published at The 2018 ACM International Joint Conference
on Pervasive and Ubiquitous Computing [200], and this work was accepted
for full paper presentation and publication at The 2019 ACM CHI Confer-
ence on Human Factors in Computing Systems.

As the day progresses, cognitive functions are subject to fluctuations.
While the circadian process results in diurnal peaks and drops, the home-
ostatic process manifests itself in a steady decline of alertness across the
day. Awareness of these changes allows the design of proactive recom-
mender and warning systems, which encourage demanding tasks during
periods of high alertness and flag accident-prone activities in low alertness
states. In contrast to conventional alertness assessments, which are often
limited to lab conditions, bulky hardware, or interrupting self-assessments,
we base our approach on eye blink frequency data known to directly relate
to fatigue levels. Using electrooculography sensors integrated into regular
glasses’ frames, we recorded the eye movements of 16 participants over the
course of two weeks in-the-wild and built a robust model of diurnal alert-
ness changes. The presented method allows for unobtrusive and continuous
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monitoring of alertness levels throughout the day.
The main contributions of this chapter are as follows:

• We present results of a 2-week in-the-wild study showing the connec-
tion between increasing reaction times due to the homeostatic process
and rising blink frequencies throughout the day.

• We present a model which allows continuously recorded EOG data and
the resulting eye blink frequencies to predict fatigue level changes in
everyday settings.

6.1 Related Works
The work presented here builds upon research from the fields of cognitive
psychology, wearable sensing, and cognition-aware systems.

6.1.1 Alertness Assessments
Traditional methods to assess alertness fluctuations include constrained
settings or unpleasant and laborious procedures, such as extended mea-
sures in enclosed and controlled environments, so-called sleep labs, or re-
peated measurements of core body temperature through rectal probes [102,
122]. A variation of tools have been developed for subjective and objective
assessments of alertness levels [87]: subjective measures commonly refer
to self-assessments, such as the Karolinska Sleepiness Scale (KSS) describ-
ing the perceived state of drowsiness [7] and the Stanford Sleepiness Scale
(SSS), which inquires an imminent sleep onset [100]. Such assessments,
however, do not only require prompting users throughout the day and there-
fore cause interruptions and can be prone to subjective biases [76,214], but
are often not accurate, because of impaired cognitive performance due to
sleep deprivation [8]. Objective measures, on the other hand, can be based
on different performance assessment tasks, such as search and find tasks
and reaction time tests [214]. One of the most widely used tests for mea-
suring alertness is the Psychomotor Vigilance Task (PVT), which measures
the reaction times of users to visual stimuli appearing at random time in-
tervals [66]. The PVT has since been adapted to mobile phones [119] and
integrated into cognitive assessment toolkits [70]. In our work, we use the
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PVT to establish a ground truth for alertness levels throughout the day.

6.1.2 Eye Data and Electrooculography
EOG-based systems have been successfully used for activity recognition in
the past [37], but required sensors to be attached to the face and connected
with a computing unit through cables, which rendered the setup rather in-
trusive. The possibility of integrating EOG sensors into regular prescription
glasses makes this technique feasible to consistently track eye movements
throughout the day in an unobtrusive way. EOG is immune to any form
of light changes enabling eye movement measurements in well-lit (outside,
daytime) as well as in dark environments (inside, nighttime). EOG utilizes
the electrical potential difference between the cornea (+) and the retina (-
), which changes when the eyes move. When closing the eyelid during a
blink, eyes perform a characteristic nose- and downward oriented motion
that can be measured by electrodes correctly placed around the eyes and
nose [59]. EOG offers a robust, low-power sensing solution capable of moni-
toring complex consecutive eye movements, rendering it ideal for recordings
in everyday situations as well as a using it as a possible input modality
for Human-Computer Interaction (HCI) and ubiquitous computing applica-
tions [35,205].

Blink rates have been shown to increase with raising fatigue levels while
eye movement speed decreases and blink duration gets longer [180]. Recent
works, such as by Haq et al. [96] present highly accurate methods to detect
eye blink rates of drivers indicating drowsiness and fatigue levels. While
the application case is limited to the user being in front of the stationary
camera setups, the necessary image processing, and computer vision al-
gorithms [133] require considerate computational complexity [173]. Less
cumbersome setups are made possible by mobile systems, which often rely
on commercially available head-mounted infrared cameras installed in eye
trackers [117] or on infrared reflectance sensors [58]. While the utilized
bright infrared light bears an inherent risk of irritating the eye through
the emitted heat if not properly set up, different works have also shown
that these systems are likely to produce faulty measurements because of
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changing light conditions [112, 208], rendering their in-the-wild use as not
feasible.

6.2 Different Approaches to Assess Alertness
The here presented study differentiates itself from established related works
threefold. Firstly, our system solely consists of consumer-grade hardware.
Secondly, we implement a passive continuous sensing solution, which, after
validating our models, does not require any active input by the user any-
more. Thirdly, we are running an in-the-wild study over an extended period
of time, namely 14 days with continuous recordings throughout the day. We
thereby aim at proving that blink frequency changes can be used to reli-
ably predict changing fatigue levels in uncontrolled situations, using only
off-the-shelf hardware.

Whereas the correlation between changing fatigue levels and differing
blink frequencies is not novel, related works often rely on stationary setups,
such as video cameras and infrared (IR) cameras, e.g. in work by Wang et
al. [217], Caffier et al. [42], and polygraphs by Barbato et al. [17], or depend
on expensive medical grade equipment, such as Functional Magnetic Reso-
nance Imaging (fMRI) [129]. By utilizing sensing glasses and off-the-shelf
smartphones, we are enabling users to wear the necessary devices through-
out their everyday routine, without requiring visits to medical or research
institutions, and without restricting their mobility.

Recently, Abdullah et al. [4] and Dingler et al. [70] have implemented
different mobile solutions using data derived from smartphone sensors and
user interactions with the phone. Dingler’s approach requires active inter-
actions at multiple points in time throughout the day, e.g. with tasks such
as the PVT, to infer changes in cognitive performance measures. We are
using the PVT as means to establish a ground-truth against which we are
comparing our EOG recordings. The presented study results in a model
that enables us to predict fatigue changes solely based on eye blink data,
rendering future active assessment tasks, such as the PVT unnecessary.
Even though the mobility aspect of Dingler’s approach enables users to go
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about their everyday life, the system still relies on periodic, active user in-
put. In comparison, Abdullah’s work utilizes a prediction algorithm that
uses sensor data automatically extracted from smartphone usage behavior
and context. The features used to predict cognitive performance changes
include local time, internal time, sleep duration, but also usage patterns
such as duration of usage, time between sessions, the total number of usage
sessions per hour. This concept allows for passive approach, nevertheless, it
still requires active engagement with the device in order to be able to obtain
the data necessary for construing cognitive state changes.

Investigations of the correlation between blink frequency and alertness
levels based on EOG are neither novel, but to the best of our knowledge,
we are the first to show its potential and reliability over an extended pe-
riod of time. Using commercial EOG glasses to verify the relationship be-
tween blink rate and reaction time in-the-wild over 2 weeks, clearly differ-
entiates our work from controlled lab studies and from studies conducted
over rather short periods of time, e.g. 1-4 sessions over a maximum of
two days [17, 42, 217]. Abdullah et al. [2] ran their study utilizing mobile
phone usage over 97 days, but, as mentioned before, still require active
user interaction with the phone for reliably predicting alertness fluctua-
tions. Our continuous recordings over 14 days, resulted in a model that
reliably predicts in-situ fatigue changes caused by the latent homeostatic
process, based solely on blink rate measurements.

A group of other approaches to assessing alertness levels is solely based
on intrusive, and as mentioned before, not always reliable self-assessments.
Interview protocols that use standardized scales for classifying circadian
types, such as the Children’s Morningness-Eveningness Preferences scale
(CMEP) [89], are able to identify individual characteristics, but are inade-
quate for in-situ identification of cognitive changes. Other passive sensing
solutions that are relying on Inertial Measurement Unit (IMU), such as
consumer-grade fitness trackers, collect physiological data that allows for
identifying fatigue level changes. These are either limited in their possible
application cases, e.g. physical activities (e.g. running) [185], or still put a
burden on the user by requiring to be in or near the bed during sleep to col-
lect necessary data. Furthermore, for enabling a reliable state evaluation,
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they do require active data input in accompanying applications, e.g. caffeine
intake, throughout the day. In comparison to these approaches, our system,
based on cost-efficient off-the-shelf hardware, enables continuous and pas-
sive blink frequency measurements. Our model qualifies blink frequency as
a context variables to inform real-time systems for in-situ monitoring of fa-
tigue levels, which can be used to raise alarms in safety-critical situations
or proactively adjust settings (e.g., silencing notifications during fatigued
periods).

6.3 Alertness Assessments In-The-Wild
In the following we will discuss our approach on unobtrusive and continu-
ous quantification of alertness levels in everyday life through monitoring of
users’ EOG data.

6.3.1 Motivation
Human cognitive and physical performance are heavily dependent on the
daily 24 hour cycle. While a biological rhythm, which is chronically out of
sync, can cause serious health problems [50, 212], time-of-day variations
have a significant impact on our everyday cognitive performance [183], af-
fecting alertness and fatigue levels. This is due to the so-called Homeostatic
Process (HP), which constitutes the increasing urge to sleep with prolonged
wakefulness [29]. When working long hours this has been shown to lead
to an increased risk of making mistakes and subsequently causing acci-
dents [95]. Such hours are common practice in some professions, including
pilots and medical staff, which demand extended work shifts [120]. On top
of this, vehicles are often operated at late hours after a full day of work,
where high fatigue levels and sleepiness has been shown to lead to delayed
breaking reflexes [19,103] with often fatal consequences.

Sleep deprivation leads to slower reaction times (RTs), which negatively
affects task performance [184], including cognitive performance, which shows
in a deterioration of vigilance and alertness levels [43,214]. Vital biological
signals, such as body temperature and heart rate, also underly the influence
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of our “biological clock” [122], which describes the endogenous, idiosyncratic
fluctuations in wakefulness. These fluctuations are in part due to the Cir-
cadian Rhythm (CR), which is among others responsible for the post-lunch
dip in vigilance despite a night of proper rest [3,214].

Changes in alertness and fatigue also affect higher cognitive functions,
such as reasoning and working memory [183]. It is, therefore, necessary to
find ways to identify these changes in order for automated systems to be
able to detect and predict these variations. The resulting cognition-aware
systems are capable of identifying cognitive capacities and can dynamically
adjust and respond to desirable and undesirable states, e.g., by scheduling
tasks effectively, triggering reminders to take a break in times of sleepi-
ness, or turning off notifications to prevent interruptions when productivity
is high [67,167].

To enable people to accurately track their fatigue levels in their every-
day lives, we propose a solution utilizing sensing glasses to record EOG
signals for detecting the characteristic eye movements occurring during eye
blinks. Different studies have demonstrated that fatigue is directly related
to changes in eye blink features, such as frequency and duration: greater
fatigue causes higher blink frequency (BF) and longer blinks [31, 192]. In
this research, we use an off-the-shelf eye-tracking device to unobtrusive
collect eye movement data and detect changes of fatigue. We conducted an
in-the-wild study to validate BF as a predictor of changing fatigue levels
in everyday situations: for two weeks, participants periodically completed
self-assessments in the form of psychomotor-vigilance tests for providing
ground truth while wearing commercially available glasses equipped with
EOG sensors. We found a statistically significant, positive correlation be-
tween BF and RTs meaning that blink frequencies increase along with re-
action times (i.e., slower reflexes) over the day.

6.3.2 Study Design and Methodology
The aim of this study was to continuously record EOG data throughout
the day and, hence, investigate the correlation between alertness fluctua-
tions and blink frequencies. We, therefore, used an in-the-wild approach
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Figure 6.1: Android Application functions from left to right: daily sleep assessment, alert-
ness self-assessment on the Karolinska Sleepiness Scale (KSS), and Psychomotor Vigilance
Task (PVT) assessing reaction times

to record a data set that would enable us to identify fatigue changes in an
unconstrained, everyday setting. We adhere to Van Dongen and Dinges’ def-
inition of fatigue as a “loss of desire or ability to continue performing” [214].
Rising fatigue levels, therefore, coincide with declines in alertness and cog-
nitive performance [28], which can be measured by investigating changes
in RT [180]. To validate the alertness level ground truth we created a mo-
bile app, which periodically prompted participants to complete a sequence
of PVT to collect reaction times as measures of alertness together with the
time of day. In addition to this, the app also collected data on participants’
sleep patterns, self-assessed sleepiness, and naps as well as caffeine intake
(see Figure 6.1).

In-The-Wild Studies

Over the last years, we have been witnessing an increasingly fast develop-
ment of ubiquitous technologies, as can be seen in the number and type of
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sensors integrated in smartphones and watches, such as gyroscopes, barom-
eters, ambient light sensors, pressure sensors, etc. And even though we find
this high concentration of sensors in our everyday devices, experiments are
often still designed to take place in constrained laboratory settings. These
constrained settings are on the one hand good at identifying cognitive and
behavioral traits, but on the other do not suffice with creating a realistic
context for the user. The majority of people will not be reading texts in
front of a monitor in a temperature and light controlled environment, but
are exposed to environmental distractions.

Traditionally, investigations of peoples’ cognitive states have required
constrained lab studies, laborious examination techniques, such as rectal
temperature monitoring, or powerful medical devices, such as fMRI [102,
122, 144]. Due to the availability of modern mobile sensing solutions, med-
ical grade equipment is not crucial anymore for the research of cognitive
states. An example is presented by Pielot et al. [164] who identify states
of boredom through analysis of smartphone users’ mobile phone usage. In
order to put lab findings to a test and validate results in unconstrained set-
tings, in-the-wild (or in-situ) studies have been shown to provide a feasible
approach [106, 172]. Nevertheless, due to the strong fluctuations, individ-
ual characteristics, and masking factors influencing measures of cognitive
performance, noisy data recordings are a common issue [35]. For example,
an increased intake of caffeinated drinks can mask a person’s sleepiness at
a certain point in time. In-the-wild studies cannot control environmental
factors, therefore, require big groups, long-term experiments, or mathemat-
ical models to control for sources of noise. One approach to tackle this issue
was recently introduced by Abdullah et al. [4], who use a machine model
to predict alertness levels based on phone usage. The caveat of such mod-
els is that they require users to actively use their phone for data collection,
consequently influencing the current context and state a user might be in.
For this reason, unobtrusive, but permanent sensing promises to provide a
more holistic picture of people’s cognitive contexts throughout the day.

Whereas controlled laboratory settings are immanently limited in their
capability to fully capture the complexity of everyday settings [172], labora-
tories can be set up in a way so that they simulate real world environments.
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Nevertheless, only by placing context-aware systems into actual real world
environments we can collect the data necessary to fully evaluate perfor-
mance and usability of context-aware systems in everyday situations. A
major advantage of in-situ studies, and a major disadvantage of controlled
laboratory studies are the identification of long term effects, e.g. changes in
behavior or effects on health. Unobtrusive, pervasive sensing systems im-
plemented in everyday objects, such as smartphones, glasses and watches
have the potential to supply researchers with rich long term data that can
help to better design, and re-design ubiquitous systems.

Apparatus

We adapted the mobile toolkit by Dingler et al. [70] to collect our ground-
truth data. The toolkit based on Android features a task battery enabling
the assessment of alertness and different higher cognitive functions. Since
the PVT has been shown to provide the greatest amount of data points and
most accurate alertness measures, we limited assessments to this one and
left out the other two task types provided. For collecting the EOG data,
we used the same off-the-shelf J!NS Meme 1 [109] glasses (see Figure 3.1).
We used the academic version of the glasses with a 50 Hz sampling rate
and access to raw data for all EOG and IMU recordings. Together with the
J!NS Meme devices, we handed out Xiaomi mi4c smartphones to our par-
ticipants, which recorded the EOG data as well as contained and triggered
self-assessments every two hours (±20minutes). After each self-assessment,
the PVT commenced with 10-15 rounds with random delays of 2-10 seconds
between visual stimulus onsets. The app recorded reaction times as well
as the number of false attempts, such as taps that were made prematurely
(faster than 100 ms) or too late (later than 3000 ms) in order to remove out-
liers and noise. A notification service running in the background made sure
that participants were notified of the next pending survey in 100 - 140 min-
utes intervals. The goal of this implementation was to spread out measure-
ments and collect a representative sample of fatigue measures throughout
the day. If a notification was not immediately responded to the application
sent a new notification every five minutes until the participant finished the
survey. To avoid sleep interruptions, we enabled a pausing function that

1 https://jins-meme.com/en/
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stopped the notifications for a number of hours selected by the user. In
cases where the user woke up earlier than planned, she could manually
start the first/next survey. All recordings were stored locally on the phone
and processed after each participant finished their study.

Participants

Through professional networks and university mailing lists, we recruited
16 participants (7 female) with a mean age of 28 years (SD = 5.03). All par-
ticipants had normal or corrected to normal visual acuity, had no clinically
significant problems, or were taking fatigue-inducing medication through-
out the time of the study. The attendants who finished the full course of the
study were compensated with JPY3,000 (i.e., ca. 30 USD).

Procedure

We invited participants to our lab for an initial briefing session, where we
introduced them to the purpose and procedure of the study and explained
the functionality and controls of the smartphone and EOG glasses as well
as how to charge either. All instructions were additionally handed out in
written form before participants were asked to give their written consent.
The study instructor then set up the equipment and demoed the different
parts and functions of the smartphone application (Figure 6.1). Each brief-
ing session took between 45 and 60 minutes. Necessary charging devices
were provided as well.

The study ran for 14 days during which we asked participants to wear
the J!NS Meme throughout the entire waking day, i.e., from the moment
they woke up until the time they went to bed, except for times of showering,
bathing, swimming or other activities that would cause a risk to the user
or the device. In the morning, the participants had to connect the glasses
to the official J!NS Data Logger, an app installed on the phone, and dis-
connect it in the evening. Since the one battery charge of J!NS Meme is
officially stated to last up to 16 hours, we advised all participants to charge
the devices overnight in order to avoid possible recording interruptions due
to running low on power. The EOG sensors integrated into the glasses’ nose
pads and bridge, permanently logged the eyes’ EOG potentials through-
out participants’ regular daily activities. Data collection commenced the
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morning following each briefing. The app contained three different surveys
(see Figure 6.1): upon the first launch of the app, participants were asked
to provide demographic information. Every morning, the app triggered a
first survey asking participants to indicate their wake-up time, the num-
ber of hours slept and had to evaluate the sleep quality on a scale from 1
(=poor) to 5 (=very good). Whenever participants clicked on a notification
or opened the app, they were asked to fill in a brief momentary assess-
ment about whether they had had a nap or any caffeinated drink within
the time frame since the last survey. Further, they were asked to assess
their current level of sleepiness on the KSS from 1 (=extremely alert) to 9
(=extremely sleepy) [111] (see Figure 6.1).

6.3.3 Results
The goal of this study was to establish a relationship between eye blink
frequency and fatigue changes throughout the day. Therefore, we need to
verify the ground truth, i.e. changes in RT. Additionally, we look at differ-
ent influencing factors, such as caffeine intake and sleep.

Over the course of the 14 days study, the 16 participants responded to
an average of 4.09 (SD = 2.01) assessment tests per day, which accounted
for an average of 65.44 (SD = 28.1) assessment test per person, with a min-
imum of 24 assessments and a maximum of 115 assessments, resulting in
a total of 1,047 PVT assessments. Throughout their waking hours, partici-
pants were wearing the J!NS Meme glasses that permanently logged their
EOG for a total of 2,860 hours of EOG raw data. Assuming an average of
16 wake hours per person and day, this would result in approximately 8.5
hours of EOG recordings per person and day. In order to be able to identify
correlations between the reaction time and the blink frequency, we analyzed
the 10-minute period of EOG data that directly preceded the respective as-
sessment test. We chose this time window prior to the assessment test to
avoid potential effects resulting from performing the PVT.
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Ground Truth Validation: Performance Measures throughout the
Day

The homeostatic process dictates that the longer a person is awake, the
stronger the sleep pressure becomes, resulting in a decrease of task per-
formance. To validate our ground truth (i.e., PVT measures) and detect
systematic changes in the recorded performance, we fitted the data with a
linear mixed model. Results obtained from the PVT were related to the de-
terioration of task performance throughout the day resulting in longer RTs
as the day progresses.

Tukey outlier detectionshowed that both User 2 and User 10 fell outside
the 3rd quartile in their average RT, with 794.07ms (SD = 223.29) for User 2
and 798.67 (SD = 204.59) for User 10, indicating either failure of equipment
or failure in conducting the task. After removing the data from outliers
and responses given during the night hours [1:00 a.m. - 6:00 a.m.], that
accounted for 12 responses due to respective users’ unusual wake hours,
there were 937 observations left in our dataset for analysis. To be able to
visualize the average trend of the development of RT values over time, we
binned the average RT obtained through the PVT according to the hour in
which they fell across participants.

This means that the bins have firm demarcations, which can lead to
close times being put in different bins compared to further away bins. For
instance, the pair [10:01 a.m. and 10:59 a.m.] would be in the same bin,
whereas [10:59 a.m. and 11:00 a.m.] would fall in different bins. The dis-
tribution of the number of responses can be seen in Figure 6.2. The binning
has no effect on the results of the linear mixed model since this uses contin-
uous data. Nevertheless, in order to visualize the collective trends and to
enable the investigation of potential circadian rhythmicity, we chose hourly
binning for our datasets.

We used recordings binned from 7:00 a.m. through 1:00 a.m. for our
analysis. We fit a linear mixed model to the raw data with PVT average
as the dependent variable and the fixed factors time of measurement (time
of day in hours and minutes, with minutes converted into the decimal sys-
tem), self-rated sleepiness, consumption of caffeinated drinks in the pre-
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Figure 6.2: PVT measurements per binned hour with outliers (User 2 and User 10) re-
moved.

ceding two hours, and naps in the preceding two hours. Caffeinated drinks
and naps were treated as categorical variables and participating users were
treated as a random factor. We corrected for multiple comparisons by using
the Holm-Bonferroni procedure. Our analysis showed that time of assess-
ment affected RT (χ2(1) = 10.12, p = 0.002), increasing it by about 2.34 mil-
liseconds ±0.73 (standard error) per hour added throughout the day. The
model was validated by a robust linear mixed model which accounts for the
effects of outliers. The results were similar and the significant factor was
retained. The increase in RT in our PVT recordings implies a deterioration
of alertness with progressing time awake and constitutes the homeostatic
process. An analysis for a significant influence of the circadian process on
the RT, an omnibus test (ANOVA), did not reveal any significant results.
Figure 6.3, however, shows patterns that coincide with findings of previous
works [70], e.g., the peak performance times in the hours between waking
up and noon, the afternoon dip around 12 p.m. as well as the evening peak
performance period in the 8 p.m. bin.

Test for a possible influence of caffeine and naps have not yielded any
statistically significant effect on RT. Furthermore, self-assessments of sleepi-
ness did not show significant relation to the depicted RT fluctuations. In
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Figure 6.3: Visualization of variation in RTs across the day, as tested by a PVT (blue).
Linear trend is expressed in the red line.

summary, the analysis of the PVT recordings eventuated in a clear pre-
sentation of the impact of the homeostatic process on task performance
throughout the day, rendering our ground-truth validated.

6.3.4 Blink Detection
Before analyzing the collected EOG data for eye blink frequency changes,
we validated our blink detection algorithm in a pre-study. We collected EOG
data of one person in two different settings. In order to have a mobile
setup that allows for in-the-wild recordings, we installed two Pupil Labs
eye-tracker Kassner2014 cameras on the J!NS Meme frame, one arm on
each temple so that the cameras can point at the wearer’s eyes. This en-
abled us to record video of the eye movements synchronous with the EOG
signals from the glasses’ sensors without putting intrusive devices or sen-
sors on the wearer’s body. These videos were used to manually label eye
blink events. The test person had to wear the modified spectacles once while
sitting in our lab resting and once while taking a walk outside. We complied
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Figure 6.4: Plotted EOG data showing three detected (red dot) blinks in the vertical EOG.

to Ding et al.’s [64] recommendation that eye blink recordings shall at least
be five minutes long, because of eye blink frequency’s natural tendency to
fluctuate.

To estimate the eye blink frequency, we apply a peak detection algo-
rithm to the vertical components of the EOG collected with J!NS Meme .
After combining the vertical EOG values EOGV 1 and EOGV 2 we used a
low pass filter (Butterworth filter) to remove noise from the data. After fil-
tering, the algorithm normalizes the data and moves a sliding window, with
step size 0.01 sec over the data stream. Since eye blinks are characterized
by two consecutive peaks, one positive and one negative, the algorithm uses
two thresholds th right and th up to down to detect blinks. th right de-
scribes the height of the positive peak, i.e. the amplitude of the first and
higher peak, and th up to down describes the vertical distance between
both peaks, i.e. the vertical distance between the highest point of the first
peak and the lowest point of the second peak. In order to fully identify a
blink, three conditions have to be fulfilled. Firstly, the height of the first
peak has to be bigger than thr. Secondly, the vertical distance (the differ-
ence between y values of both peaks) between both peaks has to be larger
than thud. Thirdly, the larger peak has to be followed by the lower peak,
as can be seen in Figure 6.4. The detection algorithm was programmed in
Python.
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Validation

In order to validate the blink detection algorithm, and identify thresholds
and window size for the blink detection, we compared the number of iden-
tified blinks in our resting and walking EOG data sets to the manually
labeled blinks in the recorded video of the eyes. An eye blink in the record-
ings, shot by the eye tracking cameras, was counted when both eyes were
simultaneously closed, with full closure not lasting longer than one second.
We flagged in total 54 blink events throughout the five minutes of the rest-
ing state, and 84 blink events throughout the walking state. We achieved
the most accurate blink detection with a thr of 0.8, and a thud of 2.0. The
best sliding window size was identified to be 0.34. The algorithm detected
61 blinks/5min in the EOG data of the resting person, and 81 blinks/5min
when the user was walking. This reveals a margin of error of +12.5% (+7
blinks) for the resting state, and -3.7% (3 blinks less) for the walking state.

6.3.5 Correlation Analysis
After running the blink detection algorithm with the validated threshold
and window size settings, we fit a linear mixed model to the raw data with
the RT obtained from the PVT readings as the dependent variable and BF.
The participating users were treated as a random factor. We use the time
codes of the PVT recordings to identify the times of assessments and extract
the 10-minute EOG data segments that precede each assessment test. We
removed 324 segments that did not contain any data leaving 623 segments
of valid EOG data.

The 623 analyzed EOG segments yielded an average blink frequency
of 11.4 blinks/min (SD = 12.7). Our analysis shows that BF affected RT
(χ2(1) = 4.32, p = 0.001), increasing the RT by about 1.64 milliseconds ±0.38
(standard error) per unit of blink added, i.e., an increase of 1 blink/hour. We
corrected for multiple comparisons by using the Holm-Bonferroni method.
The model was validated by a robust linear model which accounted for the
effects of outliers. The results were similar, and the significant factor was
retained. The results indicate that BF is an indicator for fatigue expressed
in changes of RT (Figure 6.5, which coincides with the related literature [25,
192].
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Figure 6.5: Visualization of correlation between blink frequency and reaction time (blue
line). Linear trend is expressed in red line.

6.3.6 Discussion and Limitations
Results of our study show eye blink frequency to be a feasible indicator of an
alertness-related performance decline throughout the day. Using unobtru-
sively collected EOG data, we validated the connection between an increase
of reaction time (1.64 ms per hour) and a rising blink frequency (+1 blink on
average per hour) as the day progressed. It has to be said that the majority
of the effect size is still unexplained. Nevertheless, even though the EOG
recordings were extremely noisy, and did not control for any participant ac-
tivities or peculiarities, but instead set up a truly unconstrained study, our
model is able to cut through the noise and identify a statistically significant
predictor of RT. While we collected alertness ground truth through assess-
ment tasks, we used those to validate the connection between eye recordings
and fatigue and showed the feasibility of unobtrusively monitoring fatigue
levels. For future studies and applications that take into account users’
alertness levels, the form factor of normal glasses provides the possibility
to continuously collect fatigue data with users no longer being required to

112



CONTINUOUS ALERTNESS TRACKING 6.3 Alertness Assessments In-The-Wild

wear additional hardware and being released from following potentially in-
terrupting self-assessment protocols.

The app we used for collecting our allowed participants to delay and
pause notifications for assessments, e.g., for times of sleep or important
work or school meetings in order to not excessively disturb their regular
daily rhythm. As soon as these situations were finished, participants could
manually respond to the assessments. To account for the resulting unbal-
anced design, we used linear mixed models that allow the statistical anal-
ysis of unbalanced datasets. The models detected statistically significant
correlations between time of day dependent performance measures (RTs),
and BF obtained from EOG data sets being an indicator for fluctuations in
performance. Compared to related work [21,22,214], we measured reaction
times which were on average 100-200ms slower. This drift was proven sys-
tematic throughout all measurements based on a system lag of the smart-
phone/touchscreen used. Goel et al. [87] and Lim et al. [129] report average
RTs between 190ms and 293ms using medical grade fmri! (fmri!). The
general consensus in literature describes RTs of over 500ms as lapses of
attention. Since our average RTs were 100-200ms higher than reported
standards in the literature, we also considered RTs higher than 700ms as
lapses of attention, and removed outliers accordingly. The average BF of
11.4 blinks/min (SD = 12.7) we determined is lower than the reported av-
erage rates in healthy humans [25]. Since blink patterns are not only very
susceptible to environmental factors such as humidity, lighting conditions,
air streams, and the activity a person is currently engaged in, and EOG is
prone to noise from actions such as touches to the area around the sensors
to motions such as jumps and walking, we attribute the higher detected BF
partially to these effects. Nevertheless, the recorded BFs corrobate with
findings reported in other research on diurnal variations in blink frequen-
cies Barbato2000, and since the relative RTs and BF changes are of im-
portance for our analysis and the drift is systematic across subjects, we
deem the differences compared to related works negligible. The patterns of
the changes of RTs throughout the day are consistent with former studies
on the homeostatic process. Even though tests for significant hourly dif-
ferences in RT were inconclusive, our data indicates typical expressions of
circadian rhythmicity, such as peak performance times in the morning and
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evening and the mid-day dip. We also tested for the correlations of caffeine,
sleep, and self-rated sleepiness on the RTs, but our models did not detect
any significant effects. We used the validated KSS for self-assessment of
sleepiness, which was not identified as a significant predictor for objective
performance measures. Since self-reports require a strong degree of self-
reflection and introspection, their reliability is reportedly prone to conflict-
ing findings [76, 214]. Related studies by Abdullah et al. [4] and Dingler et
al. [70], also demonstrate only weak correlations between self-assessments
and objective measurements. The contribution of our work incorporates the
design of an unobtrusive system, based on off-the-shelf devices capable of
continuously collecting users’ EOG data. From these, eye blink frequencies
can be determined and considered as indicators of fatigue level variations
caused by the latent homeostatic process. Having validated the use of EOG
in the form factor of normal glasses to track changes in fatigue levels across
the day, our model now allows the development of a range of applications
and research apparatuses for continuous data collection in-the-wild. Ad-
ditionally, we are releasing the data collected throughout this study as a
public dataset in order to support further research and application develop-
ment.

6.3.7 Application Scenarios
By integrating sensors in everyday device, passive measurements of phys-
iological signals are enabled, and the burden imposed on the user to self-
assess is lifted. By using off-the-shelf EOG sensors, such as integrated in
J!NS Meme , no additional hardware is needed to track people’s alertness
across the day. This regular and unobtrusive data collection enables a wide
range of possible application scenarios. Context-aware systems can continu-
ously support the physical and mental well being of their users by introduc-
ing recommendations and interventions. In times of onsetting exhaustion
due to a demanding task, a reminder to take a break can help to replenish
cognitive and physical resources. Systems that understand our biological
clock and cognitive performance patterns can help us to schedule daily life
activities, such as a hairdresser appointments in time slots that are usu-
ally defined by low alertness levels, whereas times of high alertness could
be used to schedule an important work meeting. Long-term recordings of
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physiological data can be used to detect dominant patterns and build accu-
rate models, for example for deciding on work shifts, and the best timing for
vacation days. Additionally, group and teamwork could be timed in a way
that members come together in periods with the highest average degree of
alertness among all group members, allowing for flexible work times to be-
come adaptive schedules responding to our biological rhythms. This system
could also help to better adjust to new time zones in upcoming travels, and
thereby help to tackle jet-lag more effectively.

A major advantage of such systems is the ability to detect in-situ changes
in fatigue levels at any point in time. Cognition-aware systems with this
ability can intervene when last-minute changes in fatigue patterns occur,
e.g., in a surgeon whose sleep was interrupted and who presents with un-
usually strong exhaustion. Especially, the recently promoted domain of
semi-autonomous driving opens up a field of possible applications. Autopi-
lots in cars and buses (also trains and plains) that are activated in as soon
as the driver’s fatigue level exceeds a certain threshold. This threshold can
adjust to the current speed of the vehicle and environmental factors, by
considering the impact of rain or snow on driving conditions. A different
field where cognition-aware systems that react to our individual biological
rhythms are promising to have a strong impact, is the educational sector.
We all are subject to our individual circadian rhythms [89]. Especially our
established education system is still widely ignoring the fact that there are
students with different chronotypes, who preferably and demonstrably per-
form better in the evening hours than in the morning hours. Fatigue-aware
systems could help students study more efficiently and lower frustration for
students and instructors, e.g., by identifying increasing fatigue in a class-
room among students. Teachers could be notified, and change the teaching
method, give a break, or interact stronger with the students in order to in-
crease attention. Especially the unobtrusive and passive data logging will
ensure that distractions are widely avoided and no active engagement with
anything but the learning material will be required from students.
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6.3.8 Limitations and Future Work
One limitation of our setup is the susceptibility of the EOG signal to noise.
Since the EOG sensors are attached to glasses’ frames, their functional-
ity is dependent on a proper placement of the glasses on the nose. The
sensors are adjustable, and we made sure that every participants’ pair of
glasses was fitting well before the study started. Additionally, we ran dif-
ferent test runs with each participant in the preparation session to see how
well the signal would be recorded. The J!NS Meme Logger we used for our
EOG recordings allows monitoring the recorded signal in real time. Never-
theless, when users touched their face, were moving quickly, were turning
their head rapidly and even when they used their facial muscles intensely,
the EOG signal became noisy, likewise observed by Rostamina et al. [173].
Removing the noise from the dataset and finding the right thresholds for
detecting blinks properly was challenging. Additionally, even though we
tested every glasses-phone connection several times before the study, ran-
dom disconnects lead to the removal of ground truth data from our dataset.

Despite briefing all participants and asking them to try to avoid touching
their face, wear too much make-up, and to check for disconnects, we were
dependent on the diligence and compliance of our participants while at the
same time not wanting to put too many constraints on them in order to
preserve the character of the in-the-wild design. Limitations inherent to in-
the-wild studies can also be seen as chances for generalizing and validating
findings, as for example the lack of control over the activities users were en-
gaging in. A person who reads a lot will have a lower average BF compared
to a person that is often engaged in conversations [25]. We believe that even
though our data set was sufficient to control for these traits, we need a big-
ger set to find significance in the impact of coffee and sleep on fatigue levels.

Even though, unobtrusive and passive sensing make a step in the right
direction, we still have to find ways to validate ground truth data with-
out putting too much burden, especially on people who are skeptical of new
technology or even afraid of using it. Especially when it comes to investigat-
ing CRs and their influence on fatigue and alertness, we have to find ways
to include older adults in the group of participants, because age affects CR,
too [11].
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6.4 Chapter Summary
Alertness levels decline as the day progresses as a result of the homeostatic
process. Measuring how this decline affects fatigue levels can help systems
to proactively alert users to utilize phases of high alertness productively
and refrain from accident-prone activities during fatigued phases. More-
over, the potential to continuously monitor data allows systems to detect
detect changes in routines, such as travels to different time zones, and can
help to better cope with negative impacts. In this section, we presented re-
sults from an in-the-wild study showing the feasibility of using eye blink
frequencies to detect an alertness decline throughout the day. By unobtru-
sively collecting EOG data through sensors integrated into normal glasses’
frames, we validated the connection between an increase of reaction time
and rising blink frequencies as the day progressed. The model along with
the public release of the dataset collected allows future studies and applica-
tions to assess users’ alertness levels without the need for additional hard-
ware or potentially interrupting self-assessment protocols paving the way
to building continuous, unobtrusive sensing for cognition-aware systems.
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Chapter 7
Conclusion and Future Work

In this thesis we investigated physiological sensing modalities for cognition-
aware systems that support knowledge acquisition. Through a serious of lab
and field studies, we explored the connection between human eye blink and
facial temperature changes and cognitive processes by applying methodolo-
gies grounded in Ubiquitous Computing (ubicomp) and cognitive psychol-
ogy. In the following, we will summarize the presented research, stress
the contributions made in this work with regard to main reserach ques-
tions (RQs), discuss limitations before concluding with an outlook on future
works.

7.1 Conclusion
The constant increase of information and knowledge at hand requires peo-
ple to develop strategies for dealing with this abundance of available stim-
uli. The omnipresence of ubicomp devices and applications in our everyday
lives has provided us with the tools to access these information at virtually
any time and anywhere, leading to a constant demand for applying our cog-
nitive capabilities, such as our attention, alertness, and vigilance. While
these resources are limited and require regular replenishment by sleeping,
resting, and ensuring periods of low focus, they are also subject to fluctua-
tions over time. Recent developments in ubicomp and cognitive psychology
have shown that we can develop computer systems that can infer these
changes, and, therefore, are potentially able to assist and support us. In
order to fulfill this function, contex-aware systems have to be supplied with
information that enables their algorithms to infer the correct context, the
user is currently in. Sensors in devices such as smartphones and wrist-
bands, but also motion sensors installed in rooms etc. provide these contex-
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tual information. With the technology pervasively surrounding us, we can
constantly feed computers with information describing our context.

In chapter 3, we are posing the question “Is an off-the-shelf eyewear-
based EOG sensing solution able to reliably detect changes in blink fre-
quencies? ” ((RQ2), and present a lab study that shows the reliability of
off-the-shelf sensing solutions for logging changes in physiological signals.
The results of our experiment show that consumer-grade Electrooculogra-
phy (EOG) solutions, such as the tested J!NS Meme glasses, are able to
accurately identify changes in eye blink frequencies. In a second pair of ex-
periments we were investigating the notion of facial temperature changes
to be indicators of fluctuations in cognitive load. The conducted studies
in which users were exposed to stimuli inducing differing levels of cognitive
load, showed that these facial temperature changes could be measured with
off-the shelf, unobtrusive infrared (IR) cameras. Furthermore, we identified
a set of facial regions that reliably showed statistically significant patterns,
rendering them suitable for measuring skin temperature changes correlat-
ing with cognitive load changes RQ3. We furthermore looked into the po-
tential influence of the experimental stimuli on EOG signals. We did not
find any statistically significant changes in eye blink frequencies.

Whereas we can directly induce certain cognitive changes by exposing
users to specific stimuli, our cognitive capacities also succumb to fluctua-
tions throughout the day due to homeostatic processes and each person’s in-
dividual circadian rhythm. We answer RQ4 (“Can we continuously quantify
human fatigue levels in everyday situations using consumer-grade devices?”,
by detailing an in-the-wild study and its results on the correlation between
human eye blink frequencies and reaction time changes, and propose a
model that allows to derive alertness levels from blink frequencies (BFs).
The study was solely utilizing off-the-shelf EOG glasses and smartphones
and results showed the potential of these consumer-grade devices to reli-
ably collect data that can inform context- and cognition-aware systems.

The basic requirement for cognition-aware systems to support users as
desired, requires the systems to be informed of the user’s context. There-
fore, information is needed that enables the system to interpret the user
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context correctly, without the information retrieval disturbing the user con-
text (too much), so that the user does not get distracted. So far, medical
grade equipment, and controlled lab studies have helped to establish corre-
lations between physiological signals and cognitive states. Neither of those
offer unobtrusive solutions for real world implementation though. Our work
aimed at showing that available off-the-shelf devices are able to reliably
collect raw data from physiological signals that enable us to infer cogni-
tive states. Through our studies and experiments we could show that we
can use consumer-grade equipment to quantify changes in cognitive states
without overtly modifying the user context, and took devices from the lab
into the wild, and presented their feasible for inferring cognitive states in
everyday situations. This describes the next important step on our way
to quantifying cognitive state changes to provide metrics that support in-
creased self-awareness of humans and improved context-awareness of sys-
tems. This will allow us to develop systems that become aware of and can
adopt to users’ cognitive contexts, and help lowering frustration (e.g. in ed-
ucation), support productivity in work environments, and increase overall
well-being, which in the long-term will support physical and mental health
of the users.

7.2 Limitations
Whereas the limitations of the single studies and prototypes were discussed
in the respective sections of each chapter, we came across a number of wide
reaching limitations that will be discussed here. In the following the rather
global issues shall be discussed in more detail.

We based our research on lab studies and in-the-wild approaches. The
lab studies were utilized for the fundamental work defining our sensing
modalities. That was necessary in order to limit potential effects that might
influence the data recordings or user behavior. Controlled lab settings nev-
ertheless constrain participants in their behavior, by usually placing them
in a chair and asking them to engage with prepared tasks. For this reason,
in-the-wild approaches are a suitable complement to test lab results in real
world settings. Unfortunately, uncontrolled settings that come with noisy
recordings, due to influences such as environmental changes, lower preci-
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sion and exactness in study performance. This, nevertheless, offers a rich
data set to researchers, because in the long run, what we are trying to find
are solutions that support our everyday live. One of the problems we came
across, that according to Bardram et al. [18] is among the major challenges
for ubiquitous, context-aware computing systems is the question for what to
do when information resources are not available for the system. During our
study on continuous alertness measurements, users experienced a number
of disconnects between the utilized devices. Especially since we were inves-
tigating cognitive states, such as alertness in everyday life, we did not want
users to constantly check the connection. Firstly, that would have made the
study extremely cumbersome, and secondly, we would forced participants to
use their limited cognitive resources on the study setting, instead on their
everyday activities, meaning our results would have been literally useless.

The second major issue is the question for how to induce desired cogni-
tive states. We based our study designs on findings and established con-
cepts in psychology and cognitive psychology, nevertheless, it we are not
yet able to control for other factors influencing our data recordings. For
example, the applied stroop test has shown to induce a demand on our cog-
nitive workload, which can be inferred from certain physiological signals.
Nevertheless, a test such as this also puts the participant in a situation of
stress, especially during an experiment in a room with potential observers.
We cannot be sure which amount of the measured effect is accounted for
by stress, or other emotional factors. What we can do as researchers is,
to measure more than one expression of a phenomenon, such as we did in
chapter 4, where we utilized facial temperature measurements as well as
blink frequencies to infer cognitive engagement. If both modalities show
similar trends, we can derive a limited the confounding effect.

Last but not least, pervasive sensing and computing usually come with
questions regarding user security and privacy, especially when it comes to
imperceptible monitoring. Our users wearing the J!NS Meme glasses often
were concerned that we are tracking what they are looking at. Especially,
when recruiting for the in-the-wild study this was a repeatedly asked ques-
tion. By explaining the concept behind EOG to the participants and giving
them written guarantee that we are recording nothing but their eye move-
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ment, we overcame this problem.

7.3 Future Work
The presented research focuses on unobtrusive, wearable sensing solutions
for cognition-aware systems. Our work was mainly motivated by finding un-
obtrusive sensing solutions that potentially support members of the knowl-
edge society to deal with the abundance of continuously available informa-
tion, fluctuations of cognitive performance measures in their everyday life,
and help to avoid potential negative impacts due to tasks being badly ad-
justed to individual cognitive states. Results and findings presented pre-
sented in this thesis, have resulted in the development of a prototypical
sensing solution based on eye wear. In the following, we will introduce this
prototype in more detail and give an overview of a variety of potential ap-
plication scenarios.

7.3.1 Outlook
This subsection serves to consolidate the here presented findings and proto-
types and offers a view into future research. The aim of this part is bundle
the concepts and results and develop a fully working cognition-aware sys-
tem for implementation in educational environments. The proposed system
has been introduced, presented, and published at the 2018 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing Doctoral
Consortium [206].

7.3.2 Hypothesis
We aim at demonstrating that a responsive learning system that utilizes in-
formation describing changes in cognitive states of users, predicted through
learners’ cognitive load and alertness levels effectively increases study ef-
ficiency and, thereby, results in comparably better subsequent test results.
Additionally, the proposed system helps to identify learning content in real-
time that is either too advanced or too unambitious to be effective. This
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enables the introduction of interventions, such as taking a break as a coun-
termeasure to high fatigue or the addition of more information in times
of low cognitive workload, which makes the system responsive to learners’
individual contexts and intellectual preferences. By sensing in real-time,
recordings of the sensor data can potentially help to identify topics of high
individual interest as well as topics that require additional effort to be fully
comprehended by the user.

7.3.3 Methodology
We are utilizing only off-the-shelf hardware. The proposed mobile sensing
solution, based on Electrooculography (EOG) and thermography is indepen-
dent of environmental restrictions, e.g., lighting and stationary equipment
such as infrared (IR) cameras. It, therefore, allows for testing and imple-
mentation outside of lab environments. This passive monitoring solution for
cognitive states in everyday situations not only enables individual “brain
fitness tracking”, but has the additional potential to in-situ inform systems
that can help increase productivity and prevent possibly fatal accidents by
intervening when fatigue levels increase and alertness decreases.

Alertness level measurements will be based on our model predicting the
correlation between increasing alertness due to the latent homeostatic pro-
cess and eye blink frequencies, whereas knowledge acquisition will be as-
sessed through quizzes. Along with the aforementioned data, facial temper-
ature recordings are used to assess cognitive workload levels referring to
our own findings and related work by Abdelrahman et al. [1]. This data then
has to be analyzed for distinguishable patterns using classical data analyt-
ics, e.g. linear models and machine learning. The resulting prediction mod-
els will allow for the detection of changing cognitive states, in response to
which we can introduce interventions to support desirable cognitive states,
such as high focus and productivity, or prevent unwanted states, such as
frustration and boredom. The effectiveness of the different interventions
will be analyzed by conducting empirical user studies. To test the effective-
ness of the system we will design an independent measures study. We will
ask two groups of users to study the content of a video with increasing dif-
ficulty levels, e.g. an explanation of Einstein’s Theory of Relativity. We will
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then quiz each participant on the content of the video. The test results of
the group of users of our intervention system will be compared to the results
of a group of people who did not experience any interventions in response to
their cognitive state. Replays of identified difficult and/or easy parts in the
lecture will be used in post-hoc interview sessions to confirm identified cog-
nitive states. Besides the intention to share and publish the findings and
resulting models, we intend to build a system that can be deployed and used
in educational contexts to support learners with their individual needs.

Prototype

Physiological computing has been used to increase the efficiency of perfor-
mance, and improve the pleasure derived from interacting with computers.
By analyzing physiological data from the user, cognitive states can be moni-
tored and identified [76]. Thereby, the computer becomes aware of the phys-
ical, mental, and emotional context of a user. Consequently, the physical
data describing negative or positive states can be used as an input modal-
ity to dynamically adjust the system, e.g. by altering certain contents, by
providing assistance with additional information, turning off notifications
when distractions might not be desired, or triggering a reminder to take a
break or walk when sleepiness results in decreasing attention and effective-
ness. These context-aware systems have a proactive nature and therefore
omit the necessity for explicit input devices, such as a mouse or a keyboard.
They are able to create an interactive loop between a user and a computer.
Since the user is constantly processing the information received (e.g. from
a conversation, a book, a video), and the ubiquity of mobile devices allows
for sensor data to be constantly monitored and processed, we can create
biocybernetic loops that are able to respond to desirable and undesirable
states [167].

We present our version of a cognition-aware system for augmenting in-
formation intake and knowledge acquisition. The system uses contactless
IR temperature sensors on eye glasses to monitor changes in facial tem-
peratures in the central forehead region and around the tip of the nose
(Figure 7.1). We will infer cognitive load changes from changing tempera-
ture differences between the forehead and nose regions, since these always
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showed statistically significant increases under higher cognitive load in our
experiments. Furthermore, we utilize EOG potentials of the eyes to log eye
motion features, such as saccades and eye blinks. Human eye blink fea-
tures, such as blink duration and blink frequency are indicators of mental
fatigue and alertness levels as well as indicators of sustained attention.
Fatigue, directly related to sleep deprivation and mental exhaustion has a
negative impact on brain function and activity, and is thus, a crucial vari-
able when it comes to effective learning [207]. After successfully validating
the installed IR sensors, the hardware will be tested in a different study
setting.

The collected quantified information can be used to inform intervention
systems and recommender systems. These can, e.g., add additional infor-
mation when a learner presents with problems to comprehend contents,
they can fast forward parts of videos that are not interesting to the user,
and propose breaks in times of frustration and fatigue. This work seeks
to contribute to the development of context-aware systems for educational
purposes by developing a working platform that supports knowledge ac-
quisition and helps learners with their tasks on hand, through alterations
of study material and interventions that are directed at the learner in re-
sponse to learners’ cognitive states. Based on the findings of our studies and
experiments on alertness and cognitive load, we are aiming quantifying a
more comprehensive image of the cognitive state of the users in everyday
situations by combining facial temperature and EOG readings. The states
are defined by a combination of individual cognitive load levels and alert-
ness levels.

7.3.4 Application Cases
Responsive Learning Environments Cognition-aware systems enable
teachers to react to the classroom and study climate by giving real time
feedback from students. Special tasks, physical activities, or topic changes
can be utilized by the teacher to keep students in a positive and productive
state. An automated system enables more efficient studying at home due to
the possibility for the system to identify higher engagement levels during
preferred learning styles (reading, listening, watching, writing, etc.) and
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Figure 7.1: J!NS Meme with additional infrared sensors for measuring facial temperature
in the forehead and nose-tip region.

repeating this favored form when a decrease in performance is identified.

Health and Social Consequences When the system (glasses connected
to mobile device or computer) recognizes that the user is entering highly
productive states, it can block notifications and possible distractions in or-
der to avoid that the user is being pulled out of the experience. Similarly,
environmental settings such as screen brightness, room temperature, and
played background music can be adjusted to maintain productive states.
How can these regulations, especially under the light of humans being so-
cial living beings, be controlled in order to not negatively impact others in
the vicinity or connected to the system. Furthermore, what has to be taken
into consideration is the risk for over-stimulation and even the concept of
mental doping. Research in this direction has to investigate issues such
as potential health risks of augmentation technology and long-term impact
on user behavior. Could inventions triggered by cognition-aware systems
result in behavior change, consequently making the intervention that trig-
gered this change obsolete?

Experience Exchange Especially with virtual reality in sight, sensing
on head-mounted devices has the potential to enable physical signals as
implicit input modalities for film or game experiences. Identified higher
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pleasure with a certain scene or atmosphere can be used in adaptive sto-
rytelling models, breaking ground for new innovative entertainment appli-
cations. Furthermore, does cognition-awareness support the transmission
of emphatic signals over networks, and be triggered in others? If we can
record data that entails certain cognition performance measures, can we
actually store these, and retrieve them at a later point, when, for example,
attention is scarce?

Personal Task Management Personally, future works entail the final-
ization and testing of the system presented in section 7.3.1. After validat-
ing the thermal sensors, we are going to produce a serious of prototypes,
before going into a lab test study where standardized tests are used to in-
duce cognitive load and fatigue and recordings will be analyzed for signifi-
cant patterns. If the initial tests are successful, we will start an in-the-wild
study with university students over a period of several months. One group
of students will receive interventions as a response to identified cognitive
states, whereas the other group will not be interrupted. Recordings will be
compared in the, and learning goals defined by the class instructor will be
comparatively checked.
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