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Abstract  

In this study, phase transformations from lepidocrocite titania nanosheets (L-TiO2) to rutile (R-

TiO2) and anatase (A-TiO2) have been systematically investigated as a function of the preparation 

conditions, such as pH and freeze drying, and as a function of the temperature treatment. We have 

found that the transformation of (L-TiO2) into rutile takes place upon freeze drying treatment. We 

report that temperature determined the final phase-structure in the transition phase of the L-TiO2 

nanosheets into TiO2 nanoparticles, while the pH determined the final morphology and particle size. 

Based on the experimental results, two different transition pathways of dissolution-recrystallization 

and topologically rolling transition have been proposed. Our results give a full map of phase 

transition and morphology evolution of L-TiO2 to R-TiO2/A-TiO2 that can provide guideline to new 

materials design, especially for the photocatalysts.  

Key words: two dimensional titania nanosheets, phase transition, hydrothermal treatment, anatase, 

rutile. 
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1. Introduction 

Titanium oxides with various kinds of polymorphs, such as anatase, rutile, brookite and 

lepidocrocite-type layered structure, have been among the most studied material systems in energy 

relevant applications such as photoelectrochemical solar cells, photocatalysis and electrode 

materials for Li/Na-ion batteries.1-7 To meet the ever-increasing energy demand, intensive efforts 

have been devoted to develop the titanium oxides with tunable compositions, morphologies and 

structures.8-11 Understanding the properties of the materials as a function of the crystallographic 

structure and the phase transition amongst these polymorphs, e.g. the transformation of 

lepidocrocite-type TiO2 nanosheets into rutile or anatase is essential to establish protocols of 

synthesis of these materials and their subsequent applications. Among the well-developed protocols, 

solution-based methods are suitable to control the size, morphology and crystallographic orientation 

of nanocrystals providing a broad spectrum of physical, chemical and electronic properties that have 

found interest in diverse areas.12-14 For example, Pan et al. prepared specifically exposed facets 

anatase TiO2 nanorod using the hydrothermal method and layered Cs0.68Ti1.83O4 as precursor.15 This 

materials found later application on dye-sensitized solar cells. The transition of layered titanate 

nanosheets to anatase at different pHs and above 100 ℃ was first reported by Wen et al.16-17 The 

authors found that the formation of rutile is only favorable in strongly acidic environment (pH < 2). 

However, these studies do not provide a clear understanding of the phase transition and phase 

morphonology as the function of temperature and pH, thus there are still lack of a fully established 

transition map for an overall view. Energy relevant applications such as water splitting, solar 

conversation and lithium storage require precise control of the crystal phase, particles size, the 

special dominant facet and also the morphology, all of which are exclusively based on the complete 
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and deep understanding of such transition.  

Here, this work provides a coherent and insightful investigation on the phase transition of 

titanium oxides polymorphs, featuring the dependence of temperature and pH change and with the 

aim of providing important information for the optimization parameters of dominant (101) facet of 

anatase single crystal, which is candidate material of photoanodes in photocatalytic hydrogen 

evolution and dot-sensitized solar cells (DSSC). 

2. Methods 

Preparation of layered lepidocrocite-type TiO2 nanosheets suspension  

The CsxTi2-x/4O4 precursor was prepared by a solid-state reaction according to previous report.18 

Typically, intimate mixture of titanium dioxide and a cesium carbonate (99.9% metals basis, 

Aladdin) with molar ratio of 1:5.3 were placed in a crucible and was heated at 800 oC for 1 h for 

decarbonation. After cooling down, the powder was ground carefully and then was allowed for two 

cycles of heating at 800 oC, 20 h. During that process, the powder was also ground four times. The 

as-synthetized CsxTi2-x/4O4 powder was then subjected to acidic exchange by 1 M HCl with 

solution-solid ratio of 100 cm3/g. After 24 h, the solution was decanted and replaced by a fresh one. 

It was repeated 3 times. Obtained solid was filtered, rinsed with water 3 times and dried at 60 oC. A 

weighed amount of HxTi2-x/4O4 (0.1 g) was dispersed into 25 ml aqueous tetrabutyl ammonium 

hydroxide (TBAOH) solution (40 wt.%) under ultrasonic treatment for 4h, with H+/TBA+=1:5.  

Hydrothermal treatment of colloidal suspension 

First, 8mL of the L-TiO2 nanosheet suspension was diluted in 24 ml of water and the pH was 

adjusted to pH=1, 3, 6 or 9 by HCl and TBAOH solution. In the following step, the TiO2 nanosheet 

solution was transferred to a Teflon-lined stainless steel vessel with an internal volume of 50 ml. 

The reactor was sealed and kept for 24 h at different temperatures: 50 oC, 80 oC, 120 oC, 180 oC, 
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220 oC. After the hydrothermal treatment, the product of the reactions was collected by centrifuging 

and was washed with distilled water five times. Finally, the nanoparticles s were dried in a 

conventional oven at 50 oC overnight.  

Freeze-drying steps were performed using two different protocols: i) freeze-drying was applied 

directly after centrifuging; or ii) a small amount of the samples were diluted with water after 

centrifuging, and then the freeze-drying step was applied.  

Physicochemical and structural characterization  

The samples were characterized by scanning electron microscopy (SEM, Zeiss, 15 kV) with 

energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM, FEI 

Tecnai F30, 300 kV). X-ray diffraction (XRD) patterns were acquired by the Rigaku Smartlab-9Kw 

X-ray diffractometer. Raman scattering spectra were collected by the confocal Lase Raman 

Spectrome (HORIBA LabRAM) with 532 nm He-Ne laser, a laser power of 1 mW was used to 

avoid sample damage, optimum exposure time (5 s) and multicycle (8) enhance the intensity that 

produce good quality spectra. Thermogravimetry analysis (TGA) was performed in the temperature 

range of 25-550 oC by Shimadzu TGA-50 with a heating rate of 10 oC /min, the nitrogen gas flow 

was 30 ml/min. The Differential Scanning Calorimeter (DSC) was performed using a Shimadzu 

DSC-60 Plus with a heating rate of 10 oC /min, a nitrogen gas flow of 30 ml/min within the 

temperature window between 25-500 oC. UV-Visible absorption spectra of the colloidal suspensions 

were recorded by Shimadzu UV-3101PC UV/Vis spectrometer. Zeta-potential data was obtained by 

the Zetasizer Nano ZS. 

3. Results and discussion 

The characterization of as-prepared lepidocrocite-type TiO2 nanosheets (L-TiO2) is presented in 

Figure 1. The SEM and TEM images show well-defined single layer nanosheets with an average 
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later size between 200-300 nm. The faded contrast in the TEM image and the AFM image in Figure 

S1 certify the molecular-level thickness (1.5 nm) of the nanosheets.18-19 Prior to the solvothermal 

treatment, the photochemical properties and stability of the colloidal solution of the exfoliated TiO2 

nanosheets were evaluated as a function of the pH by UV-Vis spectroscopy (Figure 1d) and the 

Zeta-potential (Figure 1e). As can be seen in figure 1d, the absorption peak at 266 nm is associated 

to the presence of colloidal suspension of polydisperse TiO2 nanosheets, the peak weakens as the pH 

decreases from alkaline to acid until it disappears at pH=3. Such a decrease of the signal is directly 

associated to the accelerated flocculation of the suspension of nanoparticles in a range of pH 

between 5.0-6.0 (see optical image in Figure 1c). The flocculation of the nanoparticles can be 

explained in terms of the attractive and repulsive interaction of the particles and the surface charge 

as a function of the pH. As can be seen in Figure 1e, the Zeta-potential measurements reveal that the 

variation trend of exfoliated nanosheets on pH is similar to the UV-Vis spectra variation. Because of 

negatively charged surface of L-TiO2, well dispersed nanosheets show a potential of -30 mV in 

alkaline conditions. The potential starts to change in the positive direction as the pH decreases, 

indicating that the nanosheets follow an accelerated assembly or restacking. At pH=3, the surface 

charge of the nanoparticles becomes positive, the Zeta-potential reaches a potential of +6 mV, 

suggesting the full restacking of the TiO2 single-layer nanosheets. The change of the zeta potential 

and the change of charge is consistent with the precipitation process observed in the optical images 

and the trend observed on the UV-Vis spectra. 
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Figure 1. Characterization of L-TiO2 nanosheets by a) SEM image and b) TEM image. 

Photographs of colloidal solution of of L-TiO2 nanosheets at different pH (c) and their 

corresponding UV-Vis spectra (d) and Zeta-potentials (e). The inset in figure (d) corresponds 

to the plot of the intensity at 266 nm as a function of the pH.  

 

Once the presence of exfoliated L-TiO2 nanosheet and the stability of the suspension of the 

nanosheets as a function of the pH was confirmed, the hydrothermal phase transition of the 

nanosheets as a function of the temperature was evaluated at different pHs. The XRD patterns on 

figure S2 show no correlation between the phase transition and the pH, on the other hand this 

process is exclusively determined by the temperature. Evidence of the effect of the temperature on 

the phase transition is shown in figure 2. As can be seen in Figure 2a, L-TiO2 nanosheets retain the 

2D structure and restacked randomly in layered structure after the following freeze-drying protocol 

(i). The signals at low angles 2θ = 6.4o, 12.56o, and 18.56o are characteristic of reassembled 

nanosheets.18 Following the freeze-drying protocol (ii), unusual transition to rutile TiO2 (R-TiO2) 

can be indexed by diffraction peaks at 2θ = 27.56o, 36.14o, and 41.38o, which correspond to (110), 
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(101), and (111) lattice plane (JCPDS 78-1509), respectively. As the temperature increases from 50 

oC to 180 oC, XRD results clearly show how a new peak evolve at 2θ = 25.4 o and the intensity 

further increases. In addition, the peaks at 2θ = 27.56o, 36.14o gradually weaken and finally 

disappear. When the temperature reaches 220 oC, the peaks of the R-TiO2 phase have completely 

disappeared and the pure anatase TiO2 (A-TiO2) phase is obtained. The signals at 2θ = 25.4o, 37.9o 

and 48.1o correspond to the lattice planes of (101), (004), and (200) (JCPDS 73-1764), respectively.  

The phase transition L-TiO2 nanosheets as a function of the temperature observed by XRD was 

consistently confirmed using Raman spectroscopy (Figure 2b). In the Raman spectra of figure 2b, 

the bands observed at 143, 444 and 609 cm-1 are associated to B1g, Eg and A1g active modes of the 

R-TiO2 phase. The signal at 240 cm-1 can be attributed to the two-phonon scattering mode20 and the 

bands at 701 and 2930 cm-1 can be attributed to the incomplete conversion of L-TiO2 nanosheets, as 

they are similar to the bands of the of the sample obtained after the freeze-drying protocol (i). In the 

temperature range from 50 oC to 120 oC, the main bands of samples remain unaltered, with the 

exception of the band at 143 cm-1 which gradually increases. This indicates that the main structure 

maintains as R-TiO2 phase but A-TiO2 phase starts to be form. Similar to the results obtained from 

XRD, as the temperature increases higher than 180 oC, the bands at 444 cm-1 (Eg) and 609 cm-1 (A1g) 

of the rutile phase becomes weaker, while the bands at 197, 395, and 515 cm-1 associated to the 

Raman active modes of Eg and B1g of the A-TiO2 phase21 appear and their intensities increase as the 

temperature increases. Same as in the case of the XRD, no further changes were observed when the 

temperature reached 220 oC, as the bands at 144, 197, 395, 515 and 635 cm-1 associated to the A-

TiO2 phase reached full intensity.  
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Figure 2. a) XRD diffraction patterns and b) Raman scattering spectra of hydrothermally 

treated L-TiO2 nanosheets at pH=3 and at different temperatures as indicated in the figure. 

 

TEM and SEM images of the samples were recorded in order to visualized the morphological 

changes of the TiO2 nanostructures as a function of the temperature. Figure 3 shows electron 

microscopy images of the restacked L-TiO2 nanosheets and nanoparticles obtained at 180 oC 

hydrothermal treatment. As can be seen the pH of the synthesis strongly impact in the size and 

morphology of TiO2 nanoparticles. The nanoparticles of the sample prepared in pH=3 show 

granular shape particles with diameter of ~30 nm (Figure 3d, g, j). On the other hand, both samples 

prepared in pH=6 and pH=9, shows A-TiO2 nanoparticles with a rhomboid -like morphology and 

particles size of ~120 nm for the particles prepared in pH=9 and ~70 nm for those particles prepared 

in pH=6. This suggest that the phase transition and crystal growth is favored under alkaline 

conditions. A lattice spacing of 0.35 nm was determined from the HRTEM images of the A-TiO2 

nanocrystal particles prepared in pH=6 and pH=9. This lattice spacing corresponds to the plane 

(101) of anatase (Figure S4f) confirming the results obtained by XRD on Figure 2a.   
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Figure 3. (a-f) SEM images of stacked L-TiO2 nanosheets and A-TiO2 nanoparticles at 

different temperatures and pHs as indicated in the figure. (g-l) TEM images and HRTEM 

images of A-TiO2 nanoparticles prepared at different pHs and after treatment at different 

temperatures as indicated in the figure.  

 

Based on these results, we propose two pH-dependence transition mechanisms of A-L-TiO2 

nanosheets towards the formation of other polymorphs of TiO2 particles (Figure 4). In acidic media, 
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pH=3, the phase transition proceeds via a dissolution-recrystallization mechanism, while in neutral 

and alkaline media pH=6 and pH=9 the phase transition is controlled by a topological rolling 

mechanism. In the case of dissolution-recrystallization, nanosheets are restacked firstly and then 

dissolved in the solution under the harsh acidic environment. For example, as the annealing at 180 

oC proceeds, restacked small nanoplatelets with high free energy tend to dissolve into solution, 

which leads to a supersaturated solution of titanate. Then, A-TiO2 starts to precipitate on the 

surface/edge of flake-like nanoplates (L-TiO2) and grows up into small granular nanoparticles. 

Nanoplates eventually disappear and are totally transformed into A-TiO2 nanoparticles with 

diameters between 30 to 50 nm. The transformation process of the nanoparticles prepared at pH=3 

and annealed at 180 oC as a function of time (6 h to 24 h) is shown in the SEM images on figure S5; 

the temperature dependence of the same nanoparticles is shown in Figure S6a, b, c. At pH=3, the A-

TiO2 nanoplates goes under structure transformation at 50 oC due to dissolution. Such 

transformation process is enhanced even further at higher temperatures. At 80 oC, the SEM images 

indicate a significant increase in the rugosity of nanoparticles and a gradual transformation of the 

nanoplates into round shape are observed. When the annealing temperature reaches 120 oC, only 

smaller amorphous particles were observed in the SEM images. These evidence and poor 

crystallization of resulted A-TiO2 nanoparticles confirmed by HRTEM image (Figure 3j) give 

strong support of such recrystallization process.  

In the case of the samples prepared at neutral/alkaline pH (pH=6 to 9), the phase transition 

manner is dominated by the topological rolling mechanism.17, 22 HRTEM and SEM images show 

highly oriented shuttle-like nanocrystals with large aspect ratio of length to thickness. The lattice 

spacing of d101 = 0.35 nm related to the (101) plane is the most preferentially exposed (Figure S4f). 

The XRD results (Figure 5) confirms that the L-TiO2 precursor exhibit a typical interlayer plane of 
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(010), which is responsible for the (101) plane of resultant nanocrystals owing to topological 

rolling.23 The temperature dependence of the nanoparticles is shown in Figure S6d-f. Two 

dimensional nanosheets with high surface energy could not maintain the well dispersion any more 

as being suffered from heat treatment but become splitting and rolling to reduce the Gibbs free 

energy. These smaller nanoplates are finally transformed into single nanocrystals via topologically 

rolling into shuttle-like particles, as shown in Figure 3.  

 

Figure 4. Schematic illustration for the pH-dependence transition mechanism of L-TiO2 to A-

TiO2 nanoparticles. 

 

To determine the role of the pH in the transition of the morphology of the L-TiO2 nanosheets, 

XRD (Fig. 5) and TGA (Fig. S7) of the initial L-TiO2 nanosheets prepared at pH=3 and pH=6-9 

were measured. Figure 5 shows the XRD patterns of exfoliated nanosheets suspensions being 

adjusted to different pH and then subjected to freeze-drying protocol (i). The signal at 2θ ≈ 5o, 

which corresponds to the (010) plane, clearly shows the dependence on pH that decreases with the 
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pH changing from alkaline to acid and indicates a change in the interlayer spacing of the 

nanosheets. From the shift of the peak, the interlayer distances between the nanosheets were 

calculated to be 17.1 Å for pH=12, 16.5 Å for pH=9, 14.8 Å for pH=6, 13.8 Å for pH=3 and 11.7 Å 

for pH=1. This suggests that the interlayer spacing increases as the pH increases allowing a larger 

intercalation of the TBA species.  

The TGA curves in Figure S7, show that the initial mass decrease in the temperature range of 25 

oC to 200 oC is similar for all the samples. These initial weight losses are associated to the 

desorption of water molecules. In the range between 200 oC and 350 oC, the samples prepared in 

acidic media (pH=3 and pH=1) rapidly lose up to 54% of mass. On the other hand, the samples 

prepared in neutral and alkaline media (pH=12, pH=9 and pH=6) lose steadily only 30 % of the 

total mass. This mass loss is due to the decomposition of TBA in the interlayer to trimethylamine 

and dimethyl ether.24 The larger mass loss on the samples prepared at pH=1 and pH=3 in 

comparison to pH=6, pH=9, pH=12 indicates an increase of the amount of TBA intercalation in  

the samples prepared at lower pH. Interestingly, this result is contra intuitive as the XRD results 

show larger interlayer spacing in n the samples prepared at pH=6, pH=9, pH=12. The inversed 

results of the decrease of the interlayer spacing (XRD) and the increased intercalation of TBA ions 

(TGA) can be explained by accommodation of more TBA molecules in confined space in the 

interlayer (Fig. S7) and attributed to the molecule orientation and coulombic interactions.25  

Based on the information above, the difference of transition mechanisms at pH=3 and pH=6-9 

can be explained. At pH=3, the stability of stacked structure increases due to the increase of the 

coulombic interactions between the host L-TiO2 layers and the TBA ions incorporated in the 

structure. This is directly associated to the decrease of the interlayer spacing and the larger TBA 

intercalation capacity. The high stability of the structure formed at pH=3 limit the spitting-rolling 
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mechanism and favor the dissolution and recrystallization mechanism. For the case of pH=6 and 

PH=9, well dispersion, weak interactions between host layers and sufficient space facilitate the 

expelling of TBA ions/water molecules and finally follow a topological transition mode.  

 

Figure 5. X-ray diffraction patterns of restacked L-TiO2 nanosheets at different pH’s. 

 

4. Conclusion 

In this study, phase transformation from L-TiO2 nanosheets to R-TiO2 and A-TiO2 has been 

systematically investigated. Our study of the transition phase of the L-TiO2 nanosheets as a function 

of temperature and pH reveals that the temperature determines the final phase-structure of the TiO2 

nanoparticles while the pH mostly influences the morphology and particle size.  

It was found that 180 oC is a critical temperature that the resultant dominant phase is anatase. 

Under that condition, particles sizes increase with the pH increases from 3 to 9. The obtained A-

TiO2 particles in pH=3 solution are granular-like while in pH=6-9 are shuttle-like, in contrast to the 

initial sheet form L-TiO2. Because the electron microscopy images and the XRD did not show 

significant differences in morphology for the samples prepared in pH=6 and pH=9, it is considered 
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the phase transition and morphology evolution follows the same mechanism. Two different 

transition pathways of dissolution-recrystallization and topologically rolling transition have been 

proposed to give detailed insight of such phase transition process. In acidic solution, pH=3, it 

follows the dissolution-recrystallization mechanism owing to the harsh corrosive environment and 

strengthened interlayer reaction between nanosheets. The strengthened interlayer reaction caused by 

decreased interlayer spacing and increased uptake of TBA ions is favorable to the stability of 

restacked structure. Thus, the L-TiO2 precursor prefers to dissolution-recrystallization rather than 

topological rolling transition, which requires the individual nanosheets are dispersed well and can 

be rolling freely. Our results give a full map of phase transition and morphology evolution of L- 

TiO2 to R-TiO2/A-TiO2 that can provide guideline to new materials design, especially for the 

photocatalysts such as dominant (101) facet anatase single crystal, which can be controllably 

synthesized according to our optimal parameters.  
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Our study of the transition phase of the L-TiO2 nanosheets as a function of temperature and pH 

reveals that the temperature determines the final phase-structure of the TiO2 nanoparticles while the 

pH mostly influences the morphology and particle size. 

 


