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HIGHLIGHTS 

 External chromia thickness was unaffected by stress. 

 Tensile stress resulted in increase of alumina penetration by factor of 2. 

 This is taken to be evidence of Stress Aided Grain Boundary Oxidation (SAGBO).   

 Tensile stress at the tip of the intrusion increases the anion vacancy concentration. 

 Leads to flux of oxygen vacancies along intrusion, increasing the growth rate. 

 

ABSTRACT 

Double edge notched specimens of the Ni-based superalloy RR1000 have been subjected to 1-

1-1-1 fatigue tests with R=0 at 750oC in air for 111 hours at a peak elastic stress of 900 MPa. 

Extensive measurements of the thickness of the chromia layer formed during this exposure 

period show no influence of the applied stress. In contrast, the depth of the intergranular 

alumina penetrations underlying the chromia layer were approximately a factor of 2 larger in 

the most stressed regions (base of the notches) than in unstressed regions adjacent to the 

notches. This difference was highly significant and is considered to demonstrate Stress Aided 

Grain Boundary Oxidation (SAGBO). A model for this process has been developed in which 

the tensile stress at the tip of the alumina intrusion increased the anion vacancy concentration 

there and the vacancy flux along the intrusion. A consequence was that the intrusion growth 

rate increased above that in the absence of stress. The observed increase of a factor of 2 in 

intrusion length is estimated to be achievable at a tensile stress of ~1 GPa within the intrusion 

at its tip. This is considered to be plausible in such a high-strength alloy.  
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1.  INTRODUCTION 

It is now well recognised that stress, whether applied, thermal or induced by oxide growth, can 

affect the oxidation of metals and alloys [1-6]. Studies to date have tended to focus on the 

behaviour of surface oxide layers and have supported the expectation [7] that tensile stress may 

induce oxide cracking whereas compressive stress may initiate oxide spallation either through 

a buckling or wedging process. In either case, the damage to the surface oxide, which provided 

protection, results in an increase in the rate of oxidation [5,8-10]. 

 

For those oxides, e.g. ZrO2 or Al2O3 that form new oxide at the base of the surface layer, 

significant compressive growth stress have been measured within the oxide layer [11-13] 

reaching values as high as ~1 GPa. It has been suggested [14] that such values are sufficiently 

high to have a measurable influence on the thermodynamics of anion vacancy formation at the 

oxide/metal interface and could explain the sub-parabolic growth kinetics of ZrO2 on Zircaloy. 

The concept has also been applied by Limarga and Wilkinson [15,16] to the nitridation of TiAl 

exposed to 4-point bending. They confirmed that tensile stress increased the rate of penetration 

of the nitride front whereas compressive stress reduced it. Their results were well described by 

an expression of the form of Equation (1), which derives from the earlier theoretical treatment 

[14,17]: 

     

                                                i HDdy
exp

dt y kT

  
  

 
                                          (1) 

                                         

Here, y is the thickness of the nitride layer, dy/dt the rate of thickening of the layer, Di is the 

diffusion coefficient, ΔΩ is the volume change increase (positive) on converting TiAl to TiN, 

σH is the local hydrostatic stress (positive when tensile), k is Boltzmann’s constant and T is 

absolute temperature. A similar formulation has been used in other modelling studies of 

mechanical/oxidation interactions on the growth of the surface oxide layer [18-23].  

 

High temperature alloys have compositions that are intended to form a protective oxide layer, 

usually chromia or alumina. Important classes of such alloys are chromia-forming stainless 

steels and Ni-based superalloys. However, these alloys also contain elements, in particular Al, 

ACCEPTED M
ANUSCRIP

T



3 
 

Ti and Si, which form oxides that are more thermodynamically stable than chromia. As a result, 

internal oxidation of these elements can form and often does so as intergranular intrusions of 

silica in the stainless steels [24] or of alumina in the chromia-forming Ni-based superalloys 

[25-27]. This is a significant form of environmental degradation because fatigue cracks are 

known [28] to nucleate at alumina intrusions in the RR1000 superalloy used for aero-engine 

turbine discs. It is important to know whether the growth rate of such intrusions can be affected 

by imposed stress, i.e. whether Stress Aided Grain Boundary Oxidation (SAGBO) can occur. 

 

The earliest mention of SAGBO has been traced back to 1980 [29], but it is possible it was first 

proposed some years before. Since then, it has proven elusive to demonstrate experimentally 

that the phenomenon occurs. The focus has been on crack propagation, typically under fatigue 

conditions, in an oxidising environment at high temperatures where accelerated crack growth 

occurs [30-34]. The term “SAGBO” has been used occasionally to describe this process [31,35-

42] but two distinctly different mechanisms have been postulated. Under the category of 

dynamic embrittlement, stress-aided diffusion of elemental oxygen is envisaged to occur along 

the alloy grain boundary ahead of the crack tip. Its presence there is thought to reduce the 

cohesive strength of the grain boundary and, in so doing, produce conditions for an increased 

rate of crack propagation. Whereas long-range intergranular diffusion of elemental oxygen is 

known to occur [43] in Ni under test conditions in which internal oxidation only of carbon was 

possible, it is implausible in typical commercial alloys [44].  Such alloys contain elements with 

high affinity for oxygen (e.g. Cr, Al, Ti, Si) and these can be expected to getter elemental 

oxygen at the crack tip to form oxide phases. Intergranular oxidation ahead of fatigue cracks 

in Udimet 500 was reported decades ago by McMahon [45] but was attributed to long-range 

diffusion of oxygen and oxidation of Cr-rich carbide precipitates, i.e. a variant of dynamic 

embrittlement. Recent TEM studies on alloy 718 [35][46], Udimet 720Li [47], and RR1000 

[44],[48], indicate that intergranular oxidation emanates from the crack tip to form an 

intergranular oxide intrusion which contains oxide layers of Co, Ni, Cr, Ti and Al arranged in 

the order of their thermodynamic stability. In addition, atom probe tomography [36][49] and 

nanoSIMS [36],[47],[50] studies failed to detect elemental oxygen ahead of these oxide 

intrusions, consistent with their high thermodynamic stability. These recent observations 

provide persuasive evidence that the damaging effect of an oxidising environment arises from 

the fracture of these brittle oxides which will lead to enhanced crack growth. SAGBO, 

however, would also require the intrusion growth rate along the grain boundary to be increased 

by tensile stress, a detail seldom reported since the term was coined [51-54]. 
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In recent TEM observations [44], it was suspected that an enhanced rate of growth of the oxide 

intrusion ahead of a fatigue crack in the Ni-based superalloy RR1000 had indeed taken place. 

A new SAGBO model was suggested [55] to account for these observations based on the 

principle that the anticipated tensile stress at the tip of the intrusion would increase the anion 

vacancy flux to the crack tip and, hence, the growth rate of the intrusion. The underlying 

concept is the same as that suggested previously [14] to account for sub-parabolic zirconia 

growth. Using the equivalent of equation (1), the estimated enhancement factors for the oxide 

intrusions in RR1000 were found [55] to be commensurate with the presence of an intrusion 

tip stress of around 1 GPa which was considered not unreasonable for the alloy. Whereas these 

initial results were encouraging, it is recognised that they derive from complex circumstances, 

in which cracks and multiple oxide types were present, and need to be treated with some 

caution.   

 

The purpose of the present work was to explore the SAGBO concept further but using a simpler 

experimental arrangement in which a single oxide is examined in the absence of a crack. The 

Ni-based RR1000 alloy was again used because such high-strength alloys can sustain the high 

intrusion stresses (~ 1GPa) thought to be needed to produce measurable changes in oxidation 

behaviour. In common with other chromia-forming superalloys [25], intergranular intrusions 

of alumina develop [27] beneath the surface oxide and it is the growth of these that is 

considered in the present work. 

 

2.  EXPERIMENTAL METHOD 

The nominal composition of the RR1000 alloy used in this study is given in Table 1. The alloy, 

produced by powder metallurgy, was supplied by Rolls-Royce as machined and shot-peened 

specimens of double-edge notched (DEN) configuration, as shown in Figure 1. The average 

grain size was ~40 μm. 

Table 1: Nominal composition of RR1000 in both weight and atomic % 

 Ni Co Cr Mo Ti Al Ta Hf Zr C B 

Weight % bal. 18.5 15.0 5.0 3.6 3.0 2.0 0.5 0.06 0.02 0.03 

Atomic % bal. 17.9 16.5 3.0 4.3 6.4 0.6 0.2 0.04 0.14 0.10 
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These specimens were subjected to fatigue loading at 750oC in air under a conventional R=0 

trapezoidal 1-1-1-1 waveform, i.e. 1 second from zero to maximum tensile stress, a hold at the 

maximum for 1 second, followed by a reduction to zero in 1 second and a hold there for 1 

second, and the sequence is repeated. In the present tests, each 4-second cycle was applied 

~100,000 times, i.e. equivalent to a test time of ~111 hours. The maximum applied stress in 

these cycles was designed to produce an estimated tensile peak stress at the base of the notches 

of 900 MPa. Fatigue testing under these conditions did not result in specimen failure nor crack 

development nor oxide cracking.   

After testing, the mid-section of the sample, containing the notches, was sectioned, sputtered 

with gold and plated with nickel. It was then mounted in a conductive Bakelite resin and ground 

using progressively finer grades of wet SiC papers before being polished with progressively 

finer diamond solutions. The final polish was performed using OP-S colloidal silica solution. 

Examination was performed on the cross sections using a Jeol 7000F Field Emission Gun 

(FEG) Scanning Electron Microscope (SEM), fitted with Energy Dispersive Spectroscopy 

(EDS) used with an acceleration voltage of 20 kV. Images were taken at three different 

locations, denoted A, B, C on each notch of the samples as shown in Figure 1. Location B 

experiences the highest value of axial applied stress (900 MPa) whereas at locations A and C, 

the applied stress, both axial and tangential, will approximate to zero because of the proximity 

of the free surfaces. This has been confirmed by finite element analysis (L. Kovacs, Rolls-

Royce, unpublished work).  

At least four sets of five measurements of the external chromia thickness and internal oxide 

penetration depths were taken from each location over a length of ~80 μm using backscattered 

electron (BSE) images and Image J 1.48 analysis software. Approximately 120 μm was then 

removed from the cross section thickness by further polishing to expose a further set of grains 

for which the surface oxide thickness and intergranular penetration depths were measured. This 

procedure yielded a total of 40-50 measurements per location for each notch.  

3. RESULTS  

3.1 Surface Oxide 

Consistent with previous work [56], the surface oxide consisted of a titanium-enriched chromia 

layer, with an outer layer of discontinuous rutile, together with internally growing alumina 

intrusions within the alloy matrix, Figure 2 and Table 2. The internal intrusions are described 
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as intergranular, because formation predominantly occurs at the grain boundaries of small 

recrystallized grains with a diameter of approximately 1-3 µm, Figure 2, also described in [56]. 

In Figure 2, two images from the same section are included with different contrast settings, 

used here to emphasise the presence of recrystallized grains. This general morphology was 

present at the locations (B) experiencing the maximum applied stress and at those (A, C) with 

negligible applied stress. A set of EDS point scans down one of these intrusions is shown in 

Figure 2, together with results for each point in Table 2.  The results from points 3 and 4 are 

expected to be an underestimate of the aluminium content of the intrusion as, due to the size of 

the interaction volume of the electron beam (having a diameter of 1 µm and an estimated depth 

of no more than 1.1 µm), X-rays from the intrusion and the surrounding depleted alloy will 

contribute to the signal. Therefore, the results indicate the intrusions are alumina.  

The chromia layer thicknesses measured for each of the sampling locations are shown as the 

cumulative probability plots of Figure 3. A normal distribution has been used to describe the 

data. Figure 3(a) gives the results for locations A1, B1 and C1 and Figure 3(b) those for locations 

A2, B2 and C2.  

Clearly, differences exist between the distributions, even at the 95% confidence level. It is 

thought that these originate from occasional delamination of the Ni plate from the A and C 

locations during specimen preparation. It is likely that this results in some loss of oxide also 

and this will lead to smaller measured oxide thickness values at these locations. This is 

particularly evident for Notch 2 (Figure 3b) where the measured oxide thickness at Location C 

is consistently less than at Location A, the other unstressed location. The important feature of 

the results, however, is that there does not appear to be a significant difference between the 

mean oxide thickness values in stressed (Location B) and unstressed regions when 

delamination did not occur. 

It is difficult to estimate the stress in the external oxide during formation at the stressed 

location B, as the net stress is complicated by stresses associated with the growth of the oxide. 

During the unloaded part of the fatigue cycle it is likely that the oxide is in compression. The 

strain experienced by the oxide, however, will be that imposed by the elastic strain occurring 

in the test piece. Assuming a stress of 900 MPa at the base of the notch and a Young’s modulus 

of 150 GPa for this alloy at the test temperature of 750°C, this equates to a maximum strain of 

approximately 6 x 10-3. The wave form used in this test dictates that this strain is applied during 

the 1s loading ramp, imposing a strain rate of 6 x 10-3 s-1, followed by a 1s hold before 

unloading.  At this strain rate and temperature, it has been shown that through thickness 
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cracking of chromia formed on flat test specimens occurs under tensile stresses [57]. At the 

strain rate imposed in this work, cracking at intervals of ~25-30 μm would be expected. The 

sections at the base of the notch under examination were ~80 μm and thus if this were the case, 

one to three uniformly spaced cracks would be expected to have formed. This would result in 

highly localised changes to oxide thickness and impact the internal oxidation of the alloy.  

However, if the oxide is growing under compression the net tensile stress will be proportionally 

reduced and thus, although the strain rate is fast enough to crack the surface oxide the maximum 

strain level is not sufficiently high.  

It can then be inferred that the growth of the surface oxide layer is not affected significantly 

by the loading conditions. This indicates that the applied stress has negligible effect on the 

ionic transport through the oxide layer but this is not unexpected because, unlike the case of 

zirconia [14] or alumina, the dominant diffusing species is the cation. It means that new oxide 

is formed on the outer surface of the oxide layer where the volume expansion can occur into 

free space. Of significance, particularly for the present work, is that the measurements show 

no evidence of cracking or spallation of the surface oxide in the region of maximum applied 

stress (location B) since this would lead to an enhanced oxide growth rate locally, as 

described above, but this was not observed. This can be appreciated further from the cross-

sections shown in Figure 4 which also demonstrate the insensitivity of the surface-oxide 

thickness and morphology to the presence of an applied stress. 

 

3.2 Intergranular Oxidation 

 

As can be seen from Figures 2 and 4, intergranular intrusions form underneath the surface oxide 

layer. These consist of alumina and are a characteristic feature of such chromia-forming 

superalloys [25-27]. Figure 4 compares, for each notch, the microstructure at the most highly 

stressed region (Location B) with that at which the applied stress is approximately zero 

(Location C, for the examples shown). It is striking that the penetration depth at Location B, 

for both notches, is appreciably greater than at Location C. This difference was quantified in 

the same way as used for the surface oxide thickness, i.e. cumulative probability plots were 

produced from approximately 45 measurements for each of the six sampling locations. The 

penetration quoted is measured from the base of the surface oxide layer to the tip of the alumina 

intrusion. In this case, the measurements were unaffected by any delamination of the outer 

regions of the surface oxide during sample preparation. 
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The cumulative probability plots of Figure 5 show that there are no significant differences in 

penetration depths at Locations A and C for each of the two notches or between the notches as 

can be appreciated from the overlapping of the 95% confidence limits. In contrast, the 

penetration depths in both highly-stressed notch roots (Locations B) are greater than in 

Locations A and C to a high degree of significance. This difference is clear from Figure 4. It is 

also evident from Figure 5 that the notch penetrations differ significantly between notches with 

Notch 2 exhibiting larger depths (compare Figures 4(a) and 4(b)).  

The penetration depths for Notch 1, as determined by the 50% cumulative probability values, 

are 1.19 µm for Location 1A and a similar value of 1.30 µm for Location 1C. Location 1B, on 

the other hand, shows a penetration depth of 2.33 µm. The ratio of penetration depths for 

Location 1B with the average for Locations 1A and 1C provides an enhancement factor, Sℓ , 

which will be used as part of the theoretical development later in the paper. The value of Sℓ for 

Notch 1 is 1.9 and that for Notch 2 is 2.5 based on the cumulative probability plots of Figure 

5. The difference in enhancement factor between the two notches may be due to a difference 

in the extent of shot peening, applied manually to the test piece, but the situation is unclear at 

this time. The values are consistent with the images shown in Figure 4 and it is considered that 

the observations demonstrate the presence of Stress-Aided Grain Boundary Oxidation 

(SAGBO) in these tests. The next section of the paper will develop a model for SAGBO and 

its viability in explaining these deduced enhancement factors will be assessed in the 

Discussion.  

 

4.  THE PROPOSED SAGBO MECHANISM 

 

The growth of the alumina intrusion requires oxygen to diffuse through the surface layer of 

chromia and along the intrusion to its tip where new oxide is formed. In each case, transport is 

expected to be via short-circuit diffusion paths, predominantly grain boundaries, but the rate of 

growth of the intrusion could, in principle, be determined by diffusion through the chromia 

layer or along the alumina intrusion. It will be assumed here that the latter is rate determining.  

Oxygen diffusion is expected to occur by exchange with oxygen vacancies and it is the 

concentration gradient of these vacancies along the length of the intrusion that determines its 

rate of growth. Oxygen vacancies are created at the intrusion tip as a consequence of the 

formation of new alumina and the extension of the intrusion. The process is shown 

schematically in Figure 6. The defect structure of alumina is not well established and, for 
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present purposes, the ions and vacancies are assumed to be neutrally charged; this assumption 

has no significant influence on the development of the model. The reaction that occurs at the 

tip of the intrusion is:  

                                               2Al + 3O         Al2O3 + 3V                                                (A) 

Here O is an oxygen ion on the anion sub-lattice in alumina and V is a corresponding oxygen 

vacancy. An overall change in volume, ΔΩ, is associated with this reaction: 

                                ΔΩ = (ΩAl2O3 - 2ΩAl) – 3(ΩO – ΩV) = ΩA - 3ΩB                                              (2) 

Here, Ω represents the volume of the particular species, A is the first bracketed term and B the 

second. Although the vacancy volume is unknown, it is expected that ΩB will be much smaller 

than the volume change, ΩA, produced on formation of the oxide so that the volume change 

associated with reaction (A) can be approximated as: 

                                             ΔΩ ~ (ΩAl2O3 - 2ΩAl) = ΩA                                                (3) 

This volume change is substantial and estimated in the Appendix as a 93% volume expansion. 

In an isotropic solid, this strain would be distributed uniformly in the three principal directions. 

In the present case, however, the oxide is being formed along the plane of a grain boundary 

and it seems intuitively reasonable to assume that the dilatational strain manifests perpendicular 

to this plane. The expansion results in reactive stresses that are compressive along at least part 

of the length of the intrusion [55] but which become tensile at the intrusion tip. Two possible 

examples are shown in Figure 7 which represent different intrusion morphologies in Figure 4. 

For a wedge-shaped intrusion (Figure 7(a)), the compressive stress is largest near the surface 

oxide layer but diminishes with distance along the intrusion length, becoming tensile towards 

the tip if continuity across the oxide/metal interface is to be maintained. For the parallel-sided 

intrusion of Figure 7(b), the stress remains compressive along its length except at its tip where 

a thinner, curved region of new oxide would be expected to form.  

Stress will affect the diffusion of vacancies along the intrusion in two ways, implicit in equation 

(4): 

                                   v v B
v v

C C
J D

x kT x

   
   

  
                                                           (4) 
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Here, (Jv)σ is the vacancy flux in the presence of stress, Cv is the vacancy concentration and Dv 

is the vacancy diffusion coefficient.  

The second term in the brackets in equation (4) reflects the drift imposed by a stress gradient 

along the intrusion. For the case of the planar intrusion, Figure 7(b), the gradient should be 

negligible and there will be no drift term. For the wedge-shaped intrusion there will be a stress 

gradient, as shown schematically in Figure 7(a), and this will act on the volume change ΩB, the 

difference in volume between an oxygen atom and its vacancy. This is taken to be small and 

negligible because diffusion is occurring substitutionally. If it was occurring by interstitial 

transport then the volume term would correspond to the expansion caused by the interstitial 

and would not be negligible. For the present case, equation (4) simplifies to: 

                                                                        

                                            v
v v

C
J D

x


 


                                                           (5) 

The local stress, σ, also affects the boundary conditions for vacancy concentration through its 

effect on the vacancy chemical potential. It results in a modified vacancy concentration given 

by [14,17]: 

                                                A
v oC C exp

kT


                                                       (6) 

The subsequent model development follows that used to predict growth rates of an oxide 

intrusion ahead of a crack but is included here for completeness. Equation (6) is used to define 

the diffusion boundary conditions, i.e. the vacancy concentration, (Cv)it at the tip of the 

intrusion and also that, (Cv)ib at its base where it joins the surface oxide layer. These 

concentrations differ and lead to a concentration gradient along the intrusion length, ℓ, to give 

the vacancy flux (Jv)σ in the presence of stress as: 

                        
ib Av it A

v v it v ib
D

(J ) (C ) exp (C ) exp
kT kT



     
    

    

                             (7) 

The oxygen vacancy concentration at the tip of the intrusion is obviously larger than that at its 

base, otherwise O could not diffuse down its length in the counter flux of vacancies and allow 

the intrusion to grow even in the absence of stress. In fact, it is expected that (Cv)it >>(Cv)ib  

commensurate with the much smaller oxygen activity at the tip of the intrusion than at its base.   
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Additionally, the role of stress will be to increase this difference because of the tensile 

conditions at the intrusion tip but compressive at its base. The reasonable assumption is then 

that the second term in the square bracket of equation (7) will be much smaller than the first 

and may be neglected. Noting also that the rate of growth of the intrusion is proportional to the 

vacancy flux, this stress-affected rate can then be approximated as: 

                                                    (8) 

This is essentially of the same form as equation 1. K is a constant that allows for the increase 

in intrusion size per O atom that emerges at the tip and is insensitive to the presence or absence 

of stress. The ratio, Sr, of growth rates in the stressed to unstressed state, σit=0, can then be used 

as a measure of the SAGBO effect at a given intrusion length, ℓ.  

 

                                                                                                     (9) 

 

5.  DISCUSSION 

The main purpose of this Discussion is to assess whether the SAGBO model described above 

can explain the observed results of enhanced intergranular penetration in stressed regions at 

plausible values of the intrusion tip stress, σit. The evidence and explanation provided earlier 

discounts surface oxide cracking as a potential mechanism. The parameter Sr of equation (9) 

gives the ratio of intrusion growth rates with and without stress for a given intrusion length, ℓ. 

The current tests have determined the stress effect on intrusion length rather than on its rate of 

growth and consideration now needs to be given to the integration of equation (8) to give 

intrusion length. 

For the case that σit is invariant with both exposure time and intrusion length, equation (8) is 

readily integrated as: 
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                                        
t

it A
v v it

0 0

d KD C exp dt
kT

  
  

 
                                       (10) 

to give the parabolic rate equation:  

                                         

0.5
it A 0.5

v v it
2KD C exp t

kT


   
   
   

                                 (11) 

If σit were to vary with ℓ and t, equation (11) would be modified and parabolic kinetics would 

be unlikely to occur. This aspect is presently unresolved but helpful insights can be obtained 

from the work by Cruchley et al. [27] who showed that parabolic intergranular oxidation 

kinetics occurred in this alloy, albeit tested in the absence of an applied stress.  

The stress, σit, in equation (11) acts orthogonally to the plane of the grain boundary at the tip 

of the alumina intrusion and within that intrusion. Linear elastic conditions are then expected 

to apply. Three contributors to this stress can be identified and these may be superimposed: 

                                                      σit = σox + σsp + σap                                                                                 (12) 

Here, σox, is the stress generated within the intrusion by the dilatational strain produced on 

formation of the intrusion (Figure 7). Its magnitude will vary with the intrusion shape but it 

will be tensile at the intrusion tip. The component σsp is the stress generated by the shot-peening 

operation. σap is the stress generated within the intrusion at its tip by the applied load. It will be 

tensile in the present tests with an expected magnitude between the applied stress and the 

fracture stress of the alumina intrusion. It will vary through the fatigue cycle in the same 

manner as the applied load.  

The contributions made by σox and σsp to the intrusion tip stress were present at similar 

magnitude in Cruchley’s tests [27]. Parabolic kinetics were still found, however, indicating that 

neither parameter, nor their algebraic sum, varied significantly with intrusion length or 

exposure time. The dependence of σap is less clear but, to a first approximation, it will be 

assumed that it also is insensitive to these parameters. Equation (12) is now used in equation 

(11) to isolate the contribution of σap:   

                       

0.5
ox sp A ap A 0.5

v v it

( )
2KD C exp exp t

kT kT


        
     
     

           (13) 
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Equation (13), with σap=0, reduces to that describing the kinetics of intergranular oxidation in 

regions of the specimen free of applied stress, i.e. Locations A and C shown in Figure 1. This 

allows a SAGBO parameter, Sℓ, in terms of intrusion length at a given exposure time, to be 

defined as the ratio of equation (13) evaluated with σap ≠ 0 to that with σap = 0: 

                                          
0

ap A

t
S exp

2kT


  

   
 

                                                     (14) 

Here, ℓσ is the intrusion length at a given time in the presence of an applied stress (Location B 

in Figure 1) and ℓ0 is the corresponding value in the absence of an applied stress (Locations A 

and C). The variation of Sℓ with σap, calculated using ΩA = 2.07x10-29 m3 (Appendix), k = 

1.38x10-23 J.K-1 and T = 1023 K, is shown in Figure 8. 

The values for Sℓ found in the present work ranged from 1.9 for Notch 1 to 2.5 for Notch 2 

(Figures 4 and 5) and this range is shown as the horizontal shaded area in Figure 8. The 

corresponding predicted tensile stresses (equation 14) in the alumina intrusion at its tip are 

shown as the vertical shaded area in Figure 8 ranging from ~875 to ~1250 MPa. These stresses 

represent an effective average value through the course of the fatigue cycle since the 

enhancement factors measured also represent an average value. The stresses are high but not 

excessively so for this high-strength superalloy and seem plausible. The peak section stress of 

900 MPa applied to the specimen during the fatigue cycle will generate intrusion stresses higher 

than these “average” values, however, but there was no evidence that these caused cracking of 

the alumina intrusions. 

It can be surmised from the cumulative probability plots of Figure 5 and from Figure 8 that 

intrusion stresses more than ~500 MPa would be required to demonstrate with statistical 

significance that enhanced intergranular penetration was taking place. Such stresses could not 

be maintained in most alloys in which creep and plastic relaxation within the alloy matrix 

would occur. This may explain why experimental evidence for the SAGBO effect has been 

elusive and inconsistent. Recent generations of polycrystalline superalloys of high strength can 

be expected to demonstrate a SAGBO effect however. 

 

6.   CONCLUSIONS 

 Double edge notched specimens of the Ni-based superalloy RR1000 have been 

subjected to 1-1-1-1 fatigue tests with R=0 at 750oC in air for ~ 105 cycles (111 hours) 
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at a peak section stress of 900 MPa. The specimens ran out with no detectable fracture 

damage or oxide cracking. 

 The oxide that formed during the test consisted of a surface layer of chromia, 

outcroppings of rutile and intergranular intrusions of alumina underlying the chromia 

layer. This oxide morphology is characteristic of this type of Ni-based superalloy. No 

effect of the applied axial stress on chromia thickness was detected by comparing the 

regions of maximum stress (base of the notches) with unstressed regions. By contrast, 

a significant increase in the depth of intergranular penetrations was found in the highly-

stressed regions at the base of the notches. The increase in depth was approximately a 

factor 2 over that found in unstressed regions. This is taken to be evidence of Stress 

Aided Grain Boundary Oxidation (SAGBO).   

 A model for the SAGBO process has been developed in which the axial tensile stress 

within the alumina intrusion at its tip increases the oxygen vacancy concentration there. 

As a result, the vacancy diffusion flux along the intrusion from its tip will increase and 

lead to an enhanced growth rate of the intrusion.  

 Quantitative development of this model has been undertaken, albeit with a number of 

simplifying assumptions. Nevertheless, the results are encouraging and indicate that the 

observed increased intrusion depth can occur at a tip stress of around 1 GPa within the 

intrusion. This is considered plausible in this high-strength alloy but it implies that a 

SAGBO effect would be difficult to demonstrate experimentally in weaker alloys in 

which such large stresses could not be sustained. 
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Appendix  

 

Calculation of the Volume Increase on Alumina Formation in RR1000 

 

The volume change on alumina formation is usually expressed by the Pilling Bedworth Ratio 

(PBR), conventionally defined as the ratio of the volume of alumina formed to the volume of 

metal consumed in its formation. The evaluation of the PBR for pure metals is straightforward 

and can be obtained from molar volumes and the respective densities of the two phases. For 

the case of alumina formed from pure Al the PBR is 1.28.  The situation is less clear when Al 

is a constituent of an alloy as in the present case. The current consensus is that the molar 

quantities used should be those for the alloy, rather than the element, and that is the route taken 

here.  

The effective volume, Ωm, of an Al atom in the alloy can then be calculated from molar volumes 

as:  

                                                            m
m

m A

M

N

 
   

 
 

                                                         (A1) 

Here ρm is the alloy density, NA is Avogadro’s number (6.022x1023) and Mm is the average 

molecular mass of the alloy calculated by:  

                                                           m i i iM f M                                                             (A2) 

Where fi is the atom fraction of element i, given in Table A1, Mi is its atomic mass, and the 

summation applies to all elements given in that table.  

Table A1 - Nominal composition of RR1000 in atom fraction 

 

Ni Co Cr Mo Ti Al Ta Hf Zr C B 

0.5083 (bal.) 0.179 0.165 0.030 0.043 0.064 0.0063 0.0016 0.0004 0.0014 0.001 

  

Using this approach, the mean atomic mass, Mm, is obtained as 57.11 g. Substituting this value 

into equation A1 with ρm= 8.54 g.cm-3 yields a value for the average atomic volume, Ωm, for 
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RR1000 of 1.11x10-23 cm3 (1.11x10-29 m3). This is similar to the atomic volume of Ni of 

1.10x10-23 cm3.  

The effective Pilling-Bedworth ratio, Φ, for internal alumina formation in the alloy, is 

calculated using this value of the atomic volume for RR1000 on the basis that this is the 

effective volume occupied by an Al atom within the alloy. The molecular volume of alumina, 

ΩAl2O3, is then obtained in an analogous manner to equation A1: 

                                                   2 3

2 3

2 3

Al O
Al O

Al O A

M

N

 
  
 
 

                                                   (A3) 

Where MAl2O3is the molecular mass of alumina (101.96 g) and ρAl2O3is its density                   

(3.95 g.cm-3). The molecular volume is obtained as 4.29x10-23 cm3 (4.29x10-29 m3). Noting that 

two Al atoms are necessary to form alumina, the effective Pilling-Bedworth ratio is finally 

obtained as:  

                                                                                                         (A4) 

and the volumetric expansion on the formation of a molecule of alumina is 0.93 (93%). The 

volume term ΩA, defined in the text by equation (3), is: 

                                        ΩA = ΩAl2O3 - 2ΩAl = 2.07x10-29 m3                                                     (A5) 
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Figure 1 – A diagram showing dimensions of the DEN cyclic tensile stress specimen and the 

locations (A, B, C) at which detailed metallographic examination was undertaken. All 

dimensions in millimetres. Loading direction is indicated by arrows labelled with σ.  
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Figure 2: BSE images of the same region with differing contrast settings (a) showing the 

typical external oxide and subscale intrusion oxidation behaviour, and the location of a set of 

EDS point scans down one such intrusion, and (b) emphasising the recrystallization of the 

alloy just beneath the oxide. 
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Figure 3: Cumulative probability plots for the chromia layer thickness for each of the sampling 

locations for (a) Notch 1 and (b) Notch 2. The lines are fitted to the data and show the 95% 

confidence limits.  
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Location C, Notch 1                                                         Location B, Notch 1 

                                                                   (a) 

 

 
Location A, Notch 2                                                          Location B, Notch 2 

                                                                    (b) 

Figure 4: A comparison of the oxide morphology formed at Locations A/C (negligible 

applied stress) with that at Location B (maximum applied stress) for (a) Notch 1 and (b) 

Notch 2. 
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Figure 5: Cumulative probability plots of the depth of alumina intergranular intrusions for each 

of the sampling locations for Notch 1 and Notch 2. The lines are fitted to the data and show the 

95% confidence intervals.  

 

  

ACCEPTED M
ANUSCRIP

T



26 
 

 

 

 

     

 

 

  

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

Figure 6: A schematic representation of the intrusion tip, (a) prior to further reaction and (b) 

after reaction showing the creation of oxygen vacancies. 
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(a)                                                             (b) 

 

Figure 7: Stress distribution orthogonal to the plane of the grain boundary for (a) a wedge-

shaped intrusion and (b) an intrusion of constant width. The directions of flow of oxygen ions 

and oxygen vacancies are shown by the broken lines on the right-hand side of the figure.  
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Figure 8: The predicted variation, from equation 14, of the SAGBO parameter, Sℓ, with the 

tensile stress within the intrusion at its tip. The shaded regions show the range found for Sℓ, in 

the present work and the corresponding stresses. 
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Table 1: Nominal composition of RR1000 in both weight and atomic % 

 Ni Co Cr Mo Ti Al Ta Hf Zr C B 

Weight % bal. 18.5 15.0 5.0 3.6 3.0 2.0 0.5 0.06 0.02 0.03 

Atomic % bal. 17.9 16.5 3.0 4.3 6.4 0.6 0.2 0.04 0.14 0.10 

 

 

 

Table 2: EDS results for each element of the alloy composition at each point indicated in 

Figure 2. All results are given in wt.% with average errors but the values are indicative 

only for the narrow oxide intrusions because of the associated large matrix capture 

volume.  

Point O Ni Co  Cr   Ti Al Mo Ta Hf 

1 9.4 69.6 2.2 7.4 3.4 0.7 4.7 2.4 0.2 

2 28.3 16.4 3.5 37.9 8.9 1.4 1.3 2.1 0.2 

3 12.4 38.6 15.5 11.8 2.6 8.1 5.8 3.3 2.0 

4 8.2 46.6 18.2 8.5 1.1 9.5 6.2 0.8 1.0 

5 0.1 59.9 20.2 9.7 0.8 1.0 6.4 1.6 0.2 

6 - 58.8 15.9 9.2 4.1 3.2 4.4 2.8 1.5 

7 - 51.6 19.1 14.4 3.4 2.8 6.0 2.3 0.4 

Average errors 

for points 2-7 
0.5 0.6 0.3 0.3 0.2 0.2 0.5 0.4 0.6 

 

 

Table A2 - Nominal composition of RR1000 in atom fraction 

 

Ni Co Cr Mo Ti Al Ta Hf Zr C B 

0.5083 (bal.) 0.179 0.165 0.030 0.043 0.064 0.0063 0.0016 0.0004 0.0014 0.001 
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