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Abstract 

Over recent years, electroencephalography’s (EEG) use in the state-of-the-art brain-computer interface (BCI) technology has 
broadened to augment the quality of life, both with medical and non-medical applications. For medical applications, the 
availability of real-time data for processing, which could be used as command signals to control robotic devices, is limited to 
specific platforms. This paper focuses on the possibility to analyse and visualize EEG signal features using OpenViBE 
acquisition platform in offline mode apart from its default real-time processing capability, and the options available for 
processing of data in offline mode. We employed OpenViBE platform to acquire EEG signals, pre-process it and extract features 
for a BCI system. For testing purposes, we analysed and tried to visualize EEG data offline, by developing scenarios, using 
method for quantification of event-related (de)synchronization ERD/ERS patterns, as well as, built in signal processing 
algorithms available in OpenViBE-designer toolbox. Acquired data was based on deployment of standard Graz BCI experimental 
protocol, used for foot kinaesthetic motor imagery (KMI). Results clearly reflect that the platform OpenViBE is a streaming tool 
that encourages processing and analysis of EEG data online, contrary to analysis, or visualization of data in offline, or global 
mode. For offline analysis and visualization of data, other relevant platforms are discussed. In online execution of BCI, 
OpenViBE is a potential tool for the control of wearable lower-limb devices, robotic vehicles and rehabilitation equipment. Other 
applications include remote control of mechatronic devices, or driving of passenger cars by human thoughts.  
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1. Introduction 

In recent years, new attributes to human computer interaction have revolutionized various fields of application, 
e.g. medicine, entertainment, etc. Predominantly, these technologies are of the key interest to researchers in the areas 
of health and rehabilitation, e.g. upper or lower-limb wearable robot control such as prosthetic, exoskeleton, or 
orthosis devices [1]. The state of the art brain-computer interface (BCI) has enabled real-time monitoring of the 
brain activities, and allows the brain signals to control external devices, like neuroprosthesis, without the 
involvement of any muscular activity [2-5]. It also functions as a bridge to bring sensory input into the brain, 
bypassing damages sight, listening or sensing abilities. A BCI system commonly deploys input signals that are 
elicited upon execution of motor imagery tasks, i.e. kinaesthetic imagination of a limb movement; these could be 
hand, foot or tongue movements.  

The application areas of BCI range from wheelchair control to security system [6]. BCI has been used to control 
vehicles in 3D environment recently, as already presented in [7-15]. Various types of BCI system applications are 
shown in Fig. 1. In the near future, we hope to see a new revolutionary application of the BCI control of human 
limbs, in the cases when patients have spinal cord injuries. Driving a virtual car in a simulated and in realistic city 
using EEG is already presented [12]. System is based on P300 wave signal acquisition, which is analysed, 
recognised and converted into control commands. Virtual car is controlled in 3D environment. The P300 is an event 
related potential associated to brain activities in decision making. Vehicle control, in a car racing game, which is 
based on EEG signals that correspond to the driver’s right hand, left hand and both hands imaginary movements is 
also investigated and reported here [10].  

In order to analyse and visualize acquired EEG signals, the approach could be offline, or online. Offline analysis 
enables better understanding of brain functions and building the knowledge based on acquired data, it provides 
options of various processing tools needed to analyse data and visualize it graphically (in form of plots or graphs). 
However, it does not allow real-time execution of commands that could be used to control output devices in real-
time. On the contrary, online processing is suitable for real-time control of output devices; however, the limitations 
lie with the data analysis and realization of actions. Online processing of EEG data is apt for experts in the field who 
can visualize the quality of data. To analyse or process data, various tools are available, both for online and offline 
mode, and both open source and non-open source, such as, OpenViBE, BioSig, BCI2000, BCI++, MATLAB 
toolboxes EEGLAB, BCILAB (plug-in of EEGLAB) [16-20]. OpenViBE is open source software, popular and easy 
to access. It provides a platform for designing, testing and using the BCI in real-time and in virtual-time 
environments [21]. 

  

 
Fig. 1. BCI system’s structure for various applications 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.08.057&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
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related potential associated to brain activities in decision making. Vehicle control, in a car racing game, which is 
based on EEG signals that correspond to the driver’s right hand, left hand and both hands imaginary movements is 
also investigated and reported here [10].  

In order to analyse and visualize acquired EEG signals, the approach could be offline, or online. Offline analysis 
enables better understanding of brain functions and building the knowledge based on acquired data, it provides 
options of various processing tools needed to analyse data and visualize it graphically (in form of plots or graphs). 
However, it does not allow real-time execution of commands that could be used to control output devices in real-
time. On the contrary, online processing is suitable for real-time control of output devices; however, the limitations 
lie with the data analysis and realization of actions. Online processing of EEG data is apt for experts in the field who 
can visualize the quality of data. To analyse or process data, various tools are available, both for online and offline 
mode, and both open source and non-open source, such as, OpenViBE, BioSig, BCI2000, BCI++, MATLAB 
toolboxes EEGLAB, BCILAB (plug-in of EEGLAB) [16-20]. OpenViBE is open source software, popular and easy 
to access. It provides a platform for designing, testing and using the BCI in real-time and in virtual-time 
environments [21]. 

  

 
Fig. 1. BCI system’s structure for various applications 
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The OpenViBE platform comprises of a set of software modules dedicated to:  Data Acquisition, Data Pre-

processing, Data Processing, and Cortical Data Visualization. It also includes the module for interaction with virtual 
reality (VR) displays. OpenViBE is designed based on the concept of a box, i.e. a fundamental component 
controlling a fraction of the whole processing pipeline. This enables to develop reusable components, decreases 
development time and allows for quick extend of functionalities. The platform enables users to add new software 
modules based on their customized needs [21].  

This paper focuses on the testing of OpenViBE platform for the possibility to analyse KMI-based EEG signals in 
offline or global mode and visualize resulting features in form of output plots. For materializing this, we formulated 
our band power feature method in the designer window of OpenViBE. To select features of interest, from the 
recorded mu (8-11 Hz) and beta (12-30 Hz) rhythms, event-related desynchronization (ERD) and event-related 
synchronization (ERS) were quantified using standard methods [22, 23]. This paper will provide readers an insight 
of the possibilities to use OpenViBE for visualization of data in offline mode. 

 

2. Methods 

2.1. Experimental paradigm and data collection   

We started our investigation by concentrating on the BCI controlled robotic foot movement i.e. one of the 
rehabilitation applications, as shown in Fig.1. This was based on the detection and decoding of EEG signals that 
could be used for the control of a robotic foot. Once reliable signal detection and decoding via pre-processing and 
feature extraction methods is achieved, the next step simply requires conversion, or translation of the feature vector 
that could be applied to any application. We should highlight here that robotic foots or hands, as well as locomotive 
equipment, vehicles, or mechatronics devices are intelligent systems. Following that, there is no need for detailed, 
step by step control of the applications. This approach simplifies the requirements of BCI system, which could use 
different data acquisition (DAQ) systems. We have concentrated on electrophysiological signals, EEG, as input 
signals, since it is based on non-invasive methods to record brain activity, and provides reliable output.  

The study involved the evaluation of raw EEG data collected from four healthy participants, with no history of 
neurological disorder and no BCI experience. All were aged between 24-27 years. Ethics approval was granted by 
the College of Human Ethics Advisory Network (CHEAN) Committee of RMIT University, Melbourne, Australia. 
EEG neurofeedback (24-channel) BrainMaster Discovery 24E was used to record EEG signals from the brain. The 
experiment was based on performance of foot kinesthetic motor imagery. In order to set experimental protocol, the 
Graz motor imagery BCI stimulator box was used from OpenViBE acquisition platform, as shown in Fig. 2. Each 
trial consisted of a 3 sec reference period for the processing of epochs. An audio beep of 1 sec was incorporated in 
the beginning of the trial to alert the subject, see Table 1. Each trial was in total 10 sec long. That included 2 sec for 
cues display and 5 sec for performing motor imagery task, i.e. left or right foot movement. In total, one run 
consisted of 40 trials, including 20 for left foot and 20 for right foot, displayed randomly to overcome any 
adaptation. As the task involved kinesthetic motor imagery (KMI), therefore the mu and beta rhythms were analyzed 
[2, 3].  
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Fig. 2. Established hardware-software connection between Discovery 24E amplifier and OpenViBE acquisition software (adapted from [2, 3]) 

 

     Table 1. Motor imagery protocol for each cue in OpenViBE 

Cues Visuals Action 
Fixation cross  Prepare for experiment to 

start 

Audio beep  Get alert to start 

Visual cue   

Performance task  Imagine Moving Foot Left or 
Right 

Rest  Relax or rest 
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2.2. Data processing using OpenViBE 

  Using the designer tool of OpenViBE, we created a scenario by incorporating modules from the tool panel, see 
Fig 3. The ERD/ERS quantification was based on method suggested by [22, 23]. 

 
𝑦𝑦𝑖𝑖𝑖𝑖 = (𝑠𝑠𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑖𝑖)2;  𝐴𝐴𝑖𝑖 = 1

𝑁𝑁−1 ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1                                 (1) 

                                                                      𝑅𝑅 = 1
𝑘𝑘 ∑ 𝐴𝐴𝑖𝑖

𝑟𝑟0+𝑘𝑘
𝑟𝑟0                                                      (2) 

 
In equation 1,  𝑠𝑠𝑖𝑖𝑖𝑖  is the j-th sample of the i-th trial of the bandpass filtered data, �̅�𝑠𝑖𝑖 is the mean of the j-th sample 

averaged over all bandpass filtered trials, and 𝐴𝐴𝑖𝑖 is the power of the j-th sample. In equation 2, 𝑅𝑅 is the average 
power in the reference interval [𝑟𝑟0, 𝑟𝑟0 + 𝑘𝑘]. 

 
In order to quantify ERD and ERS patterns from oscillatory rhythms, the channel selector box was used to 

specify channels C3, Cz, and C4, i.e. effective electrode positions from the primary motor cortex, for analysis of mu 
and beta rhythms. Each of the mu and beta rhythms were bandpass filtered using 5th order Butterworth filter with 
low cut frequency of 8 Hz and high cut frequency of 11 Hz for mu, and a low cut frequency of  12 Hz and high cut 
frequency of  30 Hz for beta.  This was done using the temporal filter box. Next, simulation based epoching was 
done for each rhythm against each task, i.e. left foot and right foot KMI. Following that, simple Digital Signal 
Processing (DSP) block was used to square each signal respectively. For each trial (20 for left and 20 for right foot 
KMI) epoch averaging was done. Averaging over sample points was done using time based epoching feature box.  

However, calculating the ERD/ERS using equation 3: 
 

𝐸𝐸𝑅𝑅𝐸𝐸𝑖𝑖 = 𝐴𝐴𝑗𝑗−𝑅𝑅
𝑅𝑅 × 100%                                               (3) 

was not possible, as the whole data epoch was not accessible at the same time. Following that, the mean of one 
epoch could not be subtracted from equation 1. Because only small chunks of the signal were available on time, 
averaging over sample points resulted in a shorter output signal. Therefore data needed to be loaded into another 
platform for further processing. 

 
Alternate approach was the utilization of spectral analysis box based on Fast Fourier Transform (FFT), however 

in that case, pre-processing of data was only possible using a combination of temporal filtering and time based 
epoching in contrast to stimulation based epoching. In that case, selection of independent epochs related to left and 
right event markers was not possible and data would have been treated as a complete trial without segmentation 
displaying the real-time power spectrum for each chunk of data being analysed. 
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Fig. 3. Schematic organisation of boxes used to pre-process acquired data using OpenViBE designer 

 

3. Results 

Fundamental procedures to calculate ERD/ERS for analysis of data in one step could not be implemented using 
OpenViBE platform due to availability of data in small chunks at a time, as already explained. Resulting plots could 
only be achieved for run time, nor overall analysis. Following equation 1, for signals elicited from foot 
representation area, i.e. electrode position C3, Cz, and C4, the run-time resulting epochs for filtered mu and beta 
rhythm are shown in figure 4. Figure 5 and 6 reflect the run-time squared signal epochs followed by averaged 
epoched signals over trials for mu and beta frequency range, respectively. While epoching the signal based on 
stimulation for distinguishing between left vs. right task cue, it was observed that stimulation marker did not match 
the time that was set during experimental protocol, as after epoching the stream does not remain continuous 
anymore.  

Since the proposed study was based on extraction of band power features as suggested in equation 3, alternate 
sensorimotor features (of interest), elicited upon KMI, such as common spatial patterns (CSP) or time-frequency 
features, could be used.  In OpenViBE designer toolbox there are options as, spectral analysis to display the power 
spectrum in real-time, and CSP method. 
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  Using the designer tool of OpenViBE, we created a scenario by incorporating modules from the tool panel, see 
Fig 3. The ERD/ERS quantification was based on method suggested by [22, 23]. 

 
𝑦𝑦𝑖𝑖𝑖𝑖 = (𝑠𝑠𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑖𝑖)2;  𝐴𝐴𝑖𝑖 = 1

𝑁𝑁−1 ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1                                 (1) 

                                                                      𝑅𝑅 = 1
𝑘𝑘 ∑ 𝐴𝐴𝑖𝑖

𝑟𝑟0+𝑘𝑘
𝑟𝑟0                                                      (2) 

 
In equation 1,  𝑠𝑠𝑖𝑖𝑖𝑖  is the j-th sample of the i-th trial of the bandpass filtered data, �̅�𝑠𝑖𝑖 is the mean of the j-th sample 

averaged over all bandpass filtered trials, and 𝐴𝐴𝑖𝑖 is the power of the j-th sample. In equation 2, 𝑅𝑅 is the average 
power in the reference interval [𝑟𝑟0, 𝑟𝑟0 + 𝑘𝑘]. 

 
In order to quantify ERD and ERS patterns from oscillatory rhythms, the channel selector box was used to 

specify channels C3, Cz, and C4, i.e. effective electrode positions from the primary motor cortex, for analysis of mu 
and beta rhythms. Each of the mu and beta rhythms were bandpass filtered using 5th order Butterworth filter with 
low cut frequency of 8 Hz and high cut frequency of 11 Hz for mu, and a low cut frequency of  12 Hz and high cut 
frequency of  30 Hz for beta.  This was done using the temporal filter box. Next, simulation based epoching was 
done for each rhythm against each task, i.e. left foot and right foot KMI. Following that, simple Digital Signal 
Processing (DSP) block was used to square each signal respectively. For each trial (20 for left and 20 for right foot 
KMI) epoch averaging was done. Averaging over sample points was done using time based epoching feature box.  

However, calculating the ERD/ERS using equation 3: 
 

𝐸𝐸𝑅𝑅𝐸𝐸𝑖𝑖 = 𝐴𝐴𝑗𝑗−𝑅𝑅
𝑅𝑅 × 100%                                               (3) 

was not possible, as the whole data epoch was not accessible at the same time. Following that, the mean of one 
epoch could not be subtracted from equation 1. Because only small chunks of the signal were available on time, 
averaging over sample points resulted in a shorter output signal. Therefore data needed to be loaded into another 
platform for further processing. 

 
Alternate approach was the utilization of spectral analysis box based on Fast Fourier Transform (FFT), however 

in that case, pre-processing of data was only possible using a combination of temporal filtering and time based 
epoching in contrast to stimulation based epoching. In that case, selection of independent epochs related to left and 
right event markers was not possible and data would have been treated as a complete trial without segmentation 
displaying the real-time power spectrum for each chunk of data being analysed. 
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Fig. 3. Schematic organisation of boxes used to pre-process acquired data using OpenViBE designer 

 

3. Results 

Fundamental procedures to calculate ERD/ERS for analysis of data in one step could not be implemented using 
OpenViBE platform due to availability of data in small chunks at a time, as already explained. Resulting plots could 
only be achieved for run time, nor overall analysis. Following equation 1, for signals elicited from foot 
representation area, i.e. electrode position C3, Cz, and C4, the run-time resulting epochs for filtered mu and beta 
rhythm are shown in figure 4. Figure 5 and 6 reflect the run-time squared signal epochs followed by averaged 
epoched signals over trials for mu and beta frequency range, respectively. While epoching the signal based on 
stimulation for distinguishing between left vs. right task cue, it was observed that stimulation marker did not match 
the time that was set during experimental protocol, as after epoching the stream does not remain continuous 
anymore.  

Since the proposed study was based on extraction of band power features as suggested in equation 3, alternate 
sensorimotor features (of interest), elicited upon KMI, such as common spatial patterns (CSP) or time-frequency 
features, could be used.  In OpenViBE designer toolbox there are options as, spectral analysis to display the power 
spectrum in real-time, and CSP method. 
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Fig. 4.  Chunk of signal in run-time of OpenViBE designer at electrode positions C3, C4 and Cz (green pointer indicates run-time of each epoch). 
(A) acquired raw signal display with stimulations; (B) pre-processing part signal display following temporal filtering in the mu frequency range 

between 8Hz to 11 Hz and the beta frequency range 12Hz to 30 Hz with stimulations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  Epoched signal in run-time of OpenViBE designer at electrode positions C3, C4 and Cz (green pointer indicates run-time of each epoch). 
(A) pre-processing part signal display following squaring (simple DSP block) of left and right epoch, respectively in mu range; (B) processing 

part signal display following averaging over trials of epoched data in the mu frequency range 
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Fig. 6.  Epoched signal in run-time of OpenViBE designer at electrode positions C3, C4 and Cz (green pointer indicates run-time of each epoch). 
(A) pre-processing part signal display following squaring (simple DSP block) of left and right epoch, respectively in mu range; (B) processing 

part signal display following averaging over trials of epoched data in the mu frequency range. 

 
4. Discussion and Conclusion 

 
For different applications, such as controlling various local output devices in the real-time, based on BCI, or 

online control of mechatronic devices, both in real and virtual environments, OpenViBE is probably one of the most 
viable platform. However, it is not suitable for analysing command signals offline, nor it allows for visualization in 
form of plots or graphical outputs that could be saved for later use. OpenViBE is originally designed as a streaming 
tool for 'online' BCI experiments. Its operating philosophy is built on the logic of boxes processing small chunks of 
streamed signal at a time. It is contrary to MATLAB plugins, such as BCILAB, EEGLAB, or R/scipy etc. that 
provide access to analysis of data offline, where all the data (or epoch) is available at once in the form of big 
matrices or tensors. Although that one very large epoch can be formed in OpenViBE with available tool boxes to do 
the required analysis using a buffer box, clearly the platform is not designed for analysis or exploration of data 
offline. For analysis and visualization of data offline or in global sense, the data needs to be exported to a classical 
statistical package, as mentioned above. OpenViBE is best suitable for real-time control of output devices or 
systems driven by cortical signals in real or virtual environments.  

Results from our research presented here suggest that OpenViBE could, potentially be a tool for the control of 
robotic foot controlled via KMI signals in real-time. The same imaginary actions could be used to control passenger 
cars through acceleration and brake pedals control, with the right foot and steering with the left foot. It is certain that 
such vehicles should include high level of automations, known as function specific, as defined in [24], i.e. 
applications like GPS navigation, collision avoidance, electronic stability control, emergency braking, parking 
assistance and others. These vehicles are not completely autonomous; therefore the driver could still have a sense of 
control, using his/her thoughts. Investigation on BCI control of various other applications that include all kind of 
virtual and real vehicles and mechatronic systems are subject to associated research projects.  

The future prospects of this project involve the actuation of robotic foot model via KMI using OpenViBE.  Smart 
robotic foot investigation and model design are subjects of an associated project conducted concurrently to our EEG 
BCI project.  Model design, reliable data acquisition and decoding, using BCI methods, are the key steps in all these 
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(A) pre-processing part signal display following squaring (simple DSP block) of left and right epoch, respectively in mu range; (B) processing 

part signal display following averaging over trials of epoched data in the mu frequency range. 

 
4. Discussion and Conclusion 

 
For different applications, such as controlling various local output devices in the real-time, based on BCI, or 

online control of mechatronic devices, both in real and virtual environments, OpenViBE is probably one of the most 
viable platform. However, it is not suitable for analysing command signals offline, nor it allows for visualization in 
form of plots or graphical outputs that could be saved for later use. OpenViBE is originally designed as a streaming 
tool for 'online' BCI experiments. Its operating philosophy is built on the logic of boxes processing small chunks of 
streamed signal at a time. It is contrary to MATLAB plugins, such as BCILAB, EEGLAB, or R/scipy etc. that 
provide access to analysis of data offline, where all the data (or epoch) is available at once in the form of big 
matrices or tensors. Although that one very large epoch can be formed in OpenViBE with available tool boxes to do 
the required analysis using a buffer box, clearly the platform is not designed for analysis or exploration of data 
offline. For analysis and visualization of data offline or in global sense, the data needs to be exported to a classical 
statistical package, as mentioned above. OpenViBE is best suitable for real-time control of output devices or 
systems driven by cortical signals in real or virtual environments.  

Results from our research presented here suggest that OpenViBE could, potentially be a tool for the control of 
robotic foot controlled via KMI signals in real-time. The same imaginary actions could be used to control passenger 
cars through acceleration and brake pedals control, with the right foot and steering with the left foot. It is certain that 
such vehicles should include high level of automations, known as function specific, as defined in [24], i.e. 
applications like GPS navigation, collision avoidance, electronic stability control, emergency braking, parking 
assistance and others. These vehicles are not completely autonomous; therefore the driver could still have a sense of 
control, using his/her thoughts. Investigation on BCI control of various other applications that include all kind of 
virtual and real vehicles and mechatronic systems are subject to associated research projects.  

The future prospects of this project involve the actuation of robotic foot model via KMI using OpenViBE.  Smart 
robotic foot investigation and model design are subjects of an associated project conducted concurrently to our EEG 
BCI project.  Model design, reliable data acquisition and decoding, using BCI methods, are the key steps in all these 
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novel and exciting applications.   
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