
 

 

 

 

 

ORGANIC BINDER MEDIATED Co3O4/TiO2 HETEROJUNCTION FORMATION FOR 

HETEROGENEOUS ACTIVATION OF PEROXYMONOSULFATE 

By 

SARAH KASANGANA KAPINGA 

 

Thesis submitted in fulfilment of the requirements for the degree 

Master of Engineering: Chemical Engineering 

 

In the 

 Faculty of Engineering 

 

At the 

CAPE PENINSULA UNIVERSITY OF TECHNOLOGY 

Cape Town Campus 

 
 
 

Supervisors: 

Dr Mahabubur Chowdhury & 

Prof Veruscha Fester 

 

March 2019



DECLARATION 

ii 

 

DECLARATION 

I, Sarah Kasangana Kapinga, hereby declare that the contents of this thesis represent 

my own work, and that this thesis has not previously been submitted for academic 

examination towards any qualification. Furthermore, it represents my own opinions, not 

necessarily those of the Cape Peninsula University of Technology. 

 

   

 

Signature 

 

 

Signed in Cape Town this day ______________ 

 

 

 



ABSTRACT 

iii 

 

ABSTRACT 

A shortage of water has resulted in the need to enhance the quality of wastewater that is 

released into the environment. The advanced oxidation process (AOP) using heterogeneous 

catalysis is a promising treatment process for the management of wastewater containing 

recalcitrant pollutants as compared to conventional processes.  

 

As AOP is a reliable wastewater treatment process, it is expected to be a sustainable answer to 

the shortage of clean water. AOP using heterogeneous catalysis based on Co3O4 particles and 

PMS, in particular has been found to be a powerful procedure for the degradation and 

mineralization of recalcitrant organic contaminants. In addition, due to the growing application of 

Co3O4 in lithium batteries, large quantities of these particles will be recovered as waste from 

spent lithium batteries, so there is a need to find a use for them. 

 

Although this method has received some promising feedback, challenges still need to be 

addressed, such as the toxicity of cobalt particles, the poor chemical and thermal stability and 

particle aggregation, and the prompting of lower catalytic efficiency in long haul application. 

Furthermore, the removal of the catalyst after the treatment of pollutants is also an issue. 

 

In order to be applicable, a novel catalyst must be produced requiring the combination of Co3O4 

with a support material in order to inhibit cobalt leaching and generate better particle stability. 

From the available literature, TiO2 was found to be the best support material because it not only 

provides a large surface area for well dispersed Co3O4, but it also forms strong Co-O-Ti bonds 

which greatly reduced cobalt leaching as compared to other support materials. Moreover, it also 

greatly encourages the formation of surface Co–OH complexes, which is considered a crucial 

step for PMS activation. Therefore, the issues cited above could be avoided by producing a 

Co3O4/TiO2 heterojunction catalyst. 

 

The techniques used to evaluate the optical and morphological characteristics of the Co3O4/TiO2 

were ultraviolet and visible (UV-Vis) spectra, X-ray diffraction (XRD), Fourier transform infrared 

(FTIR) analysis and transmission electron microscope (TEM). The catalytic performance of 
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Co3O4/TiO2 heterojunction catalyst was evaluated by the degradation of different dyes (methyl 

orange, commercial dyes in a synthetic dye bath). 

From the results obtained, it can be seen that Co3O4 and TiO2 have a strong interaction. The 

produced Co3O4/TiO2 heterojunction structure had a rod-like structure, showing a good catalytic 

efficiency while inhibiting cobalt leaching, reducing it by up to 97% less than that of the pristine 

Co3O4. The organic binder mediated route is a more economical and greener technique to 

produce this sort of catalyst as compared to the other methods from the literature. 

 

The 70:30 Co3O4/TiO2 had the lowest cobalt leaching while maintaining a good catalytic activity: 

97% of 40mg/l of MO was degraded under 15 minutes while using a 0.18g/L of PMS. The 

catalyst was determined to be effective for the treatment of commercial metal-complex dye, 

taking less than 20 minutes of reaction time to achieve a colourless solution from dark colour 

solutions. In addition, the catalytic efficiency of the Co3O4/TiO2 produced materials that are 

repeatable so its reusability showed no significant loss in catalytic activity over four recycling 

stages. The quenching experiments showed that the sulphate radicals are the main active 

species. 
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GLOSSARY: TERMS AND CONCEPTS 

Advanced oxidation processes (AOP): in a wide sense, AOP is an arrangement of 

synthetic treatment methodology intended to expel natural (and in some cases 

inorganic) materials in water and wastewater by oxidation through responses with 

hydroxyl radicals or sulphate radicals. 

Azo dyes: any synthetic dyes with molecules that contain two adjacent nitrogen atoms 

between carbon atoms. 

Catalyst: a substance that expands the rate of a chemical reaction without itself 

experiencing any perpetual chemical change. 

Heterojunction: the interface that happens between two layers of different crystalline 

semiconductors. These semiconducting materials have unequal band gap, which differ 

from a homojunction. 

Heterogeneous catalysis: refers to the type of catalysis where the phase of the 

catalyst is different from that of the reactant. This not only refers to solids and fluids vs 

gas, but also to immiscible fluids (e.g. oil and water). 

Homogenous catalysis: In chemistry, homogeneous catalysis is a chemical reaction 

where the catalyst and the reactants are in the same phase (e.g. liquid-liquid).  

Nanotechnology: an area of technology that covers dimensions and tolerances of less 

than 100 nanometres, particularly the control of individual molecules and atoms. 

Nanoparticles: Nanoparticles are particles somewhere in the range of 1 and 100 

nanometres in size with a surrounding interfacial layer.  

Support material: In chemistry, a catalyst support is a material, usually a solid, with a 

high surface area, to which a catalyst is affixed. The support might be inert or take part 

in the catalytic reactions. 
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CHAPTER 1: INTRODUCTION 

Natural contaminants in water remain an incredible worry to the earth, particularly those 

unmanageable or non-biodegradable contaminants that cannot be dealt with successfully by 

traditional processes (Hu & Long, 2016a). Azo dyes, generally utilized as a part of textiles, 

paper, leather manufacturing, coating and the plastic production, can unequivocally harm the 

earth due to their non-biodegradability, harmfulness and potential cancer-causing qualities 

(Cabo et al., 2015; Ma et al., 2015). Methyl Orange, an azo dye with a noteworthy presence in 

the textile area, is drawing a great deal of consideration and research action (Luo et al., 2015). 

Heterogeneous catalytic oxidation of natural contaminants has been used generally for 

wastewater management, in which the improvement of exceptionally proficient catalysts is of 

basic significance (Zhou et al., 2015). In recent decades, advanced oxidation processes 

(AOPs), which include responsive oxygen species like hydroxyl radical (•OH) with standard 

reduction potential in the range of 1.8–2.7 V (Yang et al., 2009), have received much 

consideration due to their high efficiency and low-cost characteristics when compared to other 

chemical, physical and biological strategies for the removal of recalcitrant and harmful organic 

contaminants (Wei et al., 2015). However, the oxidation of an organic compound by a sulphate 

oxidant, peroxymonosulfate (PMS) or Oxone, has been utilized on the grounds that it has been 

determined that sulphate radicals are a promising alternative option to hydroxyl radicals in light 

of the fact that SO4
−• is more effective than •OH. SO4

•−, with a redox potential of 2.5 to 3.1 V 

(Neta et al., 1988). Li and colleagues have determined that it also has a more extended lifetime 

(Li et al., 2015). Moreover, this sort of oxidant is prompt to be activated by heat (Waldemer et 

al., 2007), ultraviolet light (Sharma et al., 2015), alkalines (Furman et al., 2010), ultrasound (Cai 

et al., 2016) and right transitional metal ions (Fe2+, Co2+, Mn2+) (Rastogi et al., 2009; Chan & 

Chu, 2009; Saputra et al., 2013). 

In particular, cobalt oxide (CoOx) particles showed better catalytic activity over other transitional 

metal oxides, detailed by the most recent literature (De la Peña O′Shea et al., 2009). 

Regardless of the fact that CoOx NPs could exhibit high catalytic performance, they indicated 

poor chemical and thermal stability while also showing particle aggregation, leading to lower 

catalytic efficiency in long haul application (Cheng & Cheng, 2009). The development of 

dynamic and stable heterogeneous Co-based catalysts for water treatment is vital, and different 
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methodologies utilizing diverse support material (e.g., carbon materials, clays, zeolites) have 

been reported (Duarte et al., 2012; Yunjin Yao et al., 2013). 

 

In any case, the heterogeneous catalytic oxidation process using PMS and cobalt particles has 

another issue too. The real concern is that cobalt particles are lethal and consequently will 

prompt genuine medical problems (Shukla et al., 2010a). In spite of the fact that the composed 

Co-based heterogeneous catalysts possess enhanced stability, the leaching of cobalt metal ions 

is inescapable. In this manner, other successful and ecologically amicable catalysts and 

methods are as yet required (Agustina et al., 2005). Along these lines, new sorts of 

heterogeneous cobalt-based catalysts are strongly requested to stay away from cobalt being 

released in water, and to enhance the oxidation effectiveness by means of support materials 

(Bezemer et al., 2006; (Den Breejen et al., 2009). 

 

Many efforts have gone into the investigations concerning heterogeneous catalysts for PMS 

enactment. Anipsitakis and colleagues (2005) have reported heterogeneous activation of PMS 

by using Co3O4 micro-scale particles. Chen et al. (2008) proposed Co3O4 nanoparticles by 

means of a precipitation strategy  and Yang et al. (2008) immobilized Co3O4 nano-crystallites 

onto different support materials. Wang et al. (2014) discovered that Fe3O4/CS-supported Co3O4 

nanomaterials display a high activity of PMS activation. Liang et al. (2012a) utilized α-MnO2 as a 

support for Co3O4 nanoparticles, with the end goal that the compound creates a synergistic 

effect in PMS activation. Muhammad et al. (2012), utilized coal fly-supported Co3O4 catalysts for 

phenol degradation and found that the catalyst showed higher activity. 

In view of every one of these reviews, regardless of some encouraging results on enhancing the 

catalytic activity and decreasing cobalt leaching, it remains an incredible challenge to make the 

heterogeneous PMS activation industrially practical (Hu et al., 2013). Thus in this study, with a 

specific end goal of minimizing cobalt leaching and expanding the catalytic surface area of 

Co3O4, Co3O4, particles were dispersed onto TiO2 support. TiO2 served not only as a support 

material for achieving well-dispersed Co3O4, which reduces cobalt leaching, but additionally it 

significantly encouraged the development of surface Co-OH complexes considered the rate-

limiting step for PMS activation. 
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1.2 Research problem 

The expanding number of contaminants and their huge chemical diversity require a constant 

improvement in oxidative water treatment. Cobalt metal ions leaching have been a standout 

amongst the most imperative issues in the Co3O4 based heterogeneous peroxymonosulfate 

(PMS) activation reaction. 

 

1.3 Research questions 

1. What is the effect of having Co3O4 in a heterojunction structure with TiO2 on the catalytic 

activity? 

2. What are the effects of different process parameters, such as different cobalt to TiO2 

ratio and calcination temperatures, on the catalyst performance? 

3. Which process parameters give the lowest amount of cobalt leaching? 

 

1.4 Objectives 

The aim and objectives of this research project will be as follows: 

1. to synthesize a cobalt composite catalyst using cobalt oxide and titanium dioxide (as 

support material) to decrease cobalt leaching in a heterogeneous PMS activation 

reaction; 

2. to investigate the effects of cobalt loading and calcination temperatures on the 

Co3O4/TiO2 catalytic effectiveness for the degradation of dyes in water; and 

3. To evaluate the catalytic properties of the synthesized Co3O4/TiO2 heterojunction 

catalyst. 

 

 

1.5 Significance  

This study will improve the catalytic activities of Co3O4 in PMS activation processes, while 

reducing cobalt leaching. This is significant advancement in wastewater treatment since cobalt 

ions released in the water result in detrimental health and environmental issues. 
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1.6 Delineation  

1. The degradation pathway of the dyes during the reaction will not be studied in this 

research. 

2. A scale up of the reactor to larger volumes will not be investigated. 

 

1.7 Organisation of dissertation  

This work is subdivided into five chapters: 

Chapter 1: Introduction  

This chapter presents an overview of this study starting with an introduction, a research problem 

and the different research questions, the significance of the research, the aims the objectives, 

and finally, the delineation. 

Chapter 2: Literature review  

This chapter’s focal point is on the detailed theoretical background of AOP using sulphate 

radicals and cobalt based catalyst. Different types of cobalt based catalyst in the application of 

AOP as well as heterojunction structures are accounted in the literature. 

Chapter 3: Experimental procedure  

This chapter presents details about the research facility, experiments and the trial setup, 

experimental conditions, the materials, including chemicals and equipment utilized. The 

experimental methods utilized, data collection and examination technique utilized through this 

research study are also discussed. 

Chapter 4: Experimental results and discussion  

This chapter covers all structure characterization and a catalytic activity assessment of the 

Co3O4/TiO2 heterojunction catalyst. Furthermore, it explains the analysis of important data and 

afterward discusses, point-by-point, the results from data interpretation. 

Chapter 5: Conclusion and recommendations  

This last section of the thesis provides a summary and draws conclusions from the results of the 

entire research venture. From that standpoint, additional suggestions are presented for 

consideration in this field.  
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References  

All resources referenced in this dissertation are presented in detail. 

Appendices  

This concluding section presents the raw experimental data, formulas and calculations used to 

investigate and discuss the results obtained. 
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CHAPTER 2: LITERATURE REVIEW AND THEORY 

2.1 Introduction  

This part introduces a brief literature review on the synthesis of Co3O4/TiO2 

heterojunction structure via an organic binder mediated route for the degradation of 

organic pollutants (dyes) using an advanced oxidation process utilizing 

peroxymonosulfate (PMS or Oxone). In view of the accessible studies and relevant 

literature, heterogeneous catalysis using cobalt oxide is discussed in depth as well as 

various support materials used to synthesise heterogeneous cobalt based catalysts, 

TiO2 in particular. Additionally, this chapter presents the fundamental synthesis and 

operating parameters in order to maintain a high catalytic performance and achieve low 

cobalt ion leaching.  

 

2.2 Conventional treatment processes 

Wastewater treatment in the dye and textile industry principally includes treatment of 

wastewater containing an assortment of colours in various concentrations. Preceding 

release into the environment, the wastewater should be dealt with by efficiently 

removing traces of dye colour to protect the environment, keeping in mind the end goal 

of ensuring that the conditions are adhered to according to statutory guidelines 

(Ashtekar et al., 2013). 

 

Numerous sorts of artificial composite dyes are employed in the textile and dyeing 

plants, releasing a large amount of extremely coloured wastewater. Prior to release into 

the environment, these wastes must be treated, keeping in mind the end goal of 

following the ecological protection laws for the receiving waters. Biological treatment 

processes are regularly used to treat textile effluents. These procedures are, for the 

most part, productive for biochemical oxygen demand (BOD) and suspended solids 

expulsion (TSS); however, they are, to a great extent, insufficient for removing colour 

from the waste (Aziz et al., 2007; Basava Rao & Maohan Rao, 2006).  
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Thus, treated waste effluents may still contain considerable amounts of colour when 

released. Presently, the treatment procedures are physio-chemical treatment 

processes, including adsorption, oxidation, and chemical precipitation. Each one of 

these methods has its benefits and confinements in application. 

 

Lately, significant research has focussed on the removal of colour from textile effluents. 

These studies have included utilization of inorganic coagulants, for example, lime, ferric 

or ferrous sulphate, alum and polyaluminum chloride (PAC) (Klimuik et al., 1999). In the 

majority of cases, coagulation has been successful in the removal of colour, particularly 

for wastewater containing dissolvable solids. Nevertheless, high chemical dosages are 

normally required and large quantities of sludge volume must be disposed of. The cost 

of sludge disposal is, unfortunately, generally quite high (Kim et al., 2004). 

 

The most well-known water treatment procedures utilized for treatment of wastewater 

from a surface source are rapid mixing, flocculation, sedimentation/clarification, 

filtration, disinfection, coagulation distillation, desalination, activated carbon, flotation 

and skimming (Ashtekar et al., 2013). 

 

It is reported that high operating expenses render conventional wastewater treatment 

procedures inadequate, as the wastes are transferred from one phase to another 

without accomplishing complete mineralization (Salari et al., 2005). 

 

2.3 Advanced oxidation process 

The shortage of water means that there is a definitive need to enhance the quality of 

wastewater that is released into the environment. Ordinary wastewater treatment can 

follow either physical, chemical, or biological processes, or now and again, a 

combination of these procedures (Slokar & Le Marechal, 1998). The fundamental 

motivation behind wastewater treatment is to remove supplements, organic compounds 

and solids from effluents. Existing wastewater treatment technologies are deemed 
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insufficient for the total removal of toxins, especially organic matters such as azo dyes, 

for example (Nawaz & Ahsan, 2014).  

 

Most of the time, these organic compounds are resilient to ordinary treatment 

techniques, thereby rendering tertiary treatment necessary. Advanced oxidation process 

(AOP) constitutes a promising treatment innovation for the management of wastewater. 

AOPs are characterized by a common chemical feature whereby the very reactive 

hydroxyl or sulphate radicals for accomplishing complete mineralization of the natural 

contaminants into carbon dioxide and water are used (Krishnan et al., 2017). 

. 

Lately, advanced oxidation processes (AOPs) such as catalytic wet air oxidation, 

catalytic wet peroxide oxidation, catalytic ozonation, and photo catalysis by means of 

various oxidants such as hydrogen peroxide, O2, O3, persulfate, and peroxymonosulfate 

are becoming increasingly imperative advancements for water disinfecting. By activation 

of different transitional metals in various structures (for example, Co (II) or Co oxides), 

these oxidants can create free radicals that are all the more capable of destroying 

natural contaminants in water than the parent oxidants (Yunjin Yao et al., 2013). 

 

In recent times, sulphate radicals as a promising alternative option to hydroxyl radicals 

have been examined. Numerous metal particles, such as cobalt for example, can initiate 

peroxymonosulfate (PMS, Oxone) to deliver sulphate radicals for oxidation of natural 

toxins (Anipsitakis & Dionysiou, 2003; Chan & Chu, 2009). In the field of ecological 

contamination control, persulfates and peroxymonosulfates (PMS) are optional green 

oxidizing agents for the oxidative deterioration of natural toxins (Sun et al., 2012). 

 

Sulphate radicals (SO4
•−) are progressively examined as an oxidizing operator for toxin 

debasement in water treatment. SO4
•− has some unique attributes; for example, it is an 

exceptionally solid electron acceptor empowering the degradation of stubborn mixes 

which are obstinate towards the strongest oxidant utilized as a part of wastewater 
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treatment, the hydroxyl radical (●OH) which is created in advanced oxidation processes 

(AOPs) (e.g., ozonation or photolysis of hydrogen peroxide (UV/H2O2) (Lutze, 2013). 

 

Hence, SO4
•− based oxidation is oftentimes regarded as a possible substitute oxidative 

treatment for toxin control in wastewater treatment. Because of the individual nature of 

●OH and SO4
•−, SO4

•−can potentially conquer restrictions of conventional AOPs. It has 

been found that SO4
•− is stronger than ●OH  

 

Hydroxyl radicals work through unselective multi-step pathways, limiting their 

effectiveness in complex natural lattices; for instance, waters containing elevated 

concentration of the fundamental hydroxyl radical scavengers in wastewater, e.g. 

carbonate/bicarbonate anions and dissolved organic matter (DOM) (Matta et al., 2011), 

increasing the general scavenging rate of waters needing treatment (Katsoyiannis et al., 

2011).  

 

To respond to this limitation, more specific and new strategies delivering responsive 

radicals were created. The utilization of sulphate radical (SO4
•−) technologies is an 

ongoing case. For example, Ahmed et al. (2012) detailed that sulphate radicals work 

using the one electron oxidation mechanism, restraining the scavenging effect of 

inorganic ions and DOM (Monteagudo et al., 2016).  

 

There is a dearth of literature detailing the comparison between hydroxyl radical (HR) 

and sulphate radical (SR) technologies. Table 2.1 compares the disadvantages and 

advantages of different AOPs, whereas Table 2.2 compares the reaction rates of SR 

and HR. Ahmed et al. (2014) studied various organic compounds and their kinetic rate 

using HR and SR oxidation. The SR technology was constantly 10 times faster than HR 

systems; Sulphate radicals (SO4
•−) are powerful oxidants having a standard redox 

potential of 2.6 V, which is higher than the standard potential of ●OH (2.8 V) (Gao et al., 

2016). SO4
•− can be produced in situ by the activation of the most common precursors, 

specifically peroxymonosulfate salt (PMS) or potassium persulfate (PS), by a range of 
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methods such as thermal activation, photolysis and radiation (Equations 2.1-2.8). 

Adding transitional metals is acknowledged as a practical way to enact the homogenous 

activation of peroxymonosulfate/persulfate (PMS/PS) between these methods (Liu et al., 

2016). 

 

    
      

  

        
     

    Eq 2.1 

    
                  

      
    Eq 2.2  

   
                  

    Eq 2.3 

      
            

      
     

       Eq 2.4 

   
          

       Eq 2.5 

 

Normally, peroxymonosulfate is activated to deliver the two radicals – hydroxyl and 

sulphate – when its peroxide bond (- O-O-) is homilitically severed, as shown in the 

accompanying equations (Equations 2.6-2.8) (Anipsitakis & Dionysiou, 2004).  

 

    
     

  
 

         
   

       Eq 2.6 

    
         

               Eq 2.7 

    
         

               Eq 2.8 
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              Table 2.1: Key advantages and disadvantages of different Advanced Oxidation processes 

 
 

 



CHAPTER 2: LITERATURE REVIEW AND THEORY 

 

 Page 12 
 

Table 2.2: Oxidation potential of commonly used oxidants 

Oxidant Oxidation potential (V) 

Fluorine (F) 3.0 

Sulphate radical     
     2.5-301 

Hydroxyl radical (   ) 2.8 

Ozone (  ) 2.1 

Persulfate      
   ) 2.1 

Peroxymonosulfate      
    1.82 

Hydrogen peroxide (    ) 1.8 
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        Table 2.3: Kinetic rates of HR and SR on different targeted compounds 
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2.3.1 Azo dyes treatment-using AOP 

Removal of toxic organic dyes from textile wastewater is a genuine concern. It is difficult 

to choose a single method or a combination of treatment methods between the various 

accessible options (Nawaz & Ahsan, 2014). 

 

Azo colorants can enter the earth from their own manufacturing processes; in any case, 

the most common ways include their utilization in subsequent industrial sectors, for 

example, the production of lacquers and paints or plastics, food, textile, paper, and 

medications colouring (Papić et al., 2006). About 66% of the dyestuff is directed to the 

textile sector, and it is assessed that around 12% of the utilized dyes are left in 

wastewaters (Pinheiro et al., 2004).  

 

Because of the growing concern about remaining colour that is connected with 

harmfulness and aesthetics of discharged effluent, colour removal has become a 

challenging part of colour wastewater treatment (Arslan-Alaton & Ferry, 2002). Azo 

colours have been known for some time to resist powerful bio-degradation in aerobic 

conditions, except for a couple of simple structured dyes (Baughman & Weber, 1994).  

 

The presence of sulfonate groups and azo bonds has been credited with the 

unmanageability of azo dyes, two features generally considered as xenobiotic. Then 

again, azo colours have exhibited vulnerability to azo-bond reduction through various 

mechanisms, bringing about the generation of aromatic amines of rather lethal and 

cancer-causing substances (Nillson et al., 1993). Along these lines, most of the 

attention concerning the conceivable dangers emerging from the utilization of azo dyes 

has been transferred to their reduction products. 

 

The advantage of advanced oxidation processes (AOPs) in contrast to conventional 

treatment procedures starts from the reactivity of the free radical species involved, that 

is, predominantly the hydroxyl radical and sulphate radical species with a high oxidative 

potential which can quickly and non-selectively oxidize a wide scope of natural toxins 
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from wastewater (Beltran, 2003; Neamtu et al., 2004) . Furthermore, these procedures 

are sludge-free (aside from the restricted amount formed in processes including iron 

salts) because of the total or fractional mineralization of organic carbon. The treatability 

of azo dyes and dye house effluents by utilizing diverse advanced chemical oxidation 

processes has been considered (Arslan & Balcioglu, 2001). 

 

2.4 Heterogeneous catalysis using cobalt oxide and TiO2 as support material 

Numerous studies concerning PMS performance have concentrated on cobalt particles 

and cobalt oxide catalyst because of their best activation effectiveness. On the other 

hand, Co (II), a profoundly poisonous particle, can draw out a few well-being issues for 

drinking water. In spite of some encouraging results on enhancing the catalytic action, it 

is still an incredible test to make the heterogeneous PMS activation innovation 

monetarily achievable (Yao et al., 2013). 

 

For sulphate radical production, the reaction between Co ions and peroxymonosulphate 

(PMS,    
 ) has been determined to be an effective method. The radical generation 

and organic degradation processes can be described as shown below (Anipsitakis & 

Dionysiou, 2003). 

 

         
          

       Eq 2.9 

         
          

      Eq 2.10 

   
          

                Eq 2.11 

   
                                      

    Eq 2.12 
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Figure 2.1: Sulphate based radical oxidation diagram 
 

(Hu & Long, 2016b) 

 

Homogeneous catalytic oxidation processes using PMS and cobalt particles have a few 

other issues. However, the real concern is that cobalt particles are lethal and will prompt 

genuine well-being issues (Shukla et al., 2010b). As a result, new sorts of 

heterogeneous cobalt based catalysts are requested to keep away from cobalt being 

released in water and to enhance the oxidative productivity through support materials. 

 

Even though Co nanoparticles could introduce high catalytic performance, they 

indicated poor chemical and thermal dependable qualities while also showing particle 

accumulation, prompting lower catalytic productivity in long haul application. The 

improvement of dynamic and stable heterogeneous Co-based catalyst for water 

treatment is essential, and different methodologies utilizing different supports (e.g., 

clays, carbon materials, zeolites) have been accounted for (Yao et al., 2013). 

 

In Ding's 2012 study, by using cobalt nitrate and bismuth nitrate as precursor salts and 

NaOH as a precipitation agent, Co3O4–Bi2O3 nanocomposite oxides (CBO) were 

prepared as a heterogeneous catalyst for the activation of peroxymonosulfate (PMS) by 

a conventional reverse co-precipitation method and post-calcination. 

 

Soofivand and Salavati-Niasari (2015) anchored Co3O4 nanostructures on top of 

graphene sheets and the Co3O4/graphene (Co3O4/GR) nanocomposite was prepared 
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using an effective pre-graphenization method. Photo oxidation of methyl orange (MO) 

was performed to study the catalytic properties of Co3O4/G nanocomposites.  

 

Ramakrishnan et al. (2016) used electrochemical deposition, followed by rapid thermal 

annealing under air and N2, to sensitized Cobalt oxide nanoparticles on hydrothermally 

grown TiO2 nanorods on FTO (fluorinedoped tin oxide). Electrodeposition time was 

found to have a direct association with the nanoparticle size of cobalt oxide formed on 

TiO2. They propose this strategy as a financially savvy, basic approach to create a 

hetero-junction system with enhanced PEC properties. 

 

Lately, with a specific end goal of minimizing cobalt leaching and expanding the 

catalytic surface area of Co3O4, scattered 10–15 nm nanocrystalline Co3O4 particles 

were immobilized onto 30–40 nm TiO2 support. TiO2 not only served as a decent 

support material for achieving well-dispersed Co3O4 but also significantly encouraged 

the development of surface Co–OH complexes, considered the rate-limiting step for 

PMS activation (Yang et al., 2008). 

 

2.5 Cobalt oxides 

Cobalt (II) oxide is a result of Co2O3 cobalt oxide decomposing at 900 °C. It happens as 

a natural mineral in ores with nickel, arsenic, sulphur and manganese in deposits in 

Canada, Morocco and Southern Africa. During the roasting procedure, harmful by-

products of arsenic and sulphur are produced (Manigandan et al., 2013). The related 

minerals may taint the Co3O4 to some degree (i.e. with Na2CO3). However, it can also 

be produced synthetically. One-dimensional Co3O4 nanomaterials have attracted 

special attention due to their promising application in rechargeable lithium ion battery 

materials as anode material (Hui et al., 2008; Tan et al., 2016). With the surge in usage 

of mobile and hand-held devices, large amounts of Co3O4 waste materials will certainly 

be produced in the future. 
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2.5.1 Application of cobalt oxide in lithium ion batteries 

Rechargeable lithium ion batteries (LIBs) have been turning into the fundamental power 

source of known customer hardware and up-and-coming electric vehicles (Bruce et al., 

2008; Winter et al., 1998). However, the present commercial LIBs with graphite as 

anode with a hypothetical capacity of 372 mAhg-1 cannot meet prerequisites for all the 

more demanding applications because of constraints in energy capacity and reliable 

operation. As of late, transitional metal oxides have been broadly contemplated as 

anode materials: for example, SnO2 (Guo et al., 2008; Yao et al., 2009), In2O3,(Ho et al., 

2008; Yang & Li, 2014), Fe2O3 (Zhu et al., 2011; Wu et al., 2006), MnxOy (Zhao et al., 

2008; Wang et al., 2010) and Co3O4, (Yao et al., 2014; Zhang et al., 2015) in view of 

their higher capacity and volumetric energy density. Among these metal oxides, Co3O4, 

a standout amongst the most encouraging materials for the cutting edge LIBs to 

supplant graphite anode, shows incredible reversible properties and high theoretical 

capacity (890mAg-1) contrasted with other transitional metal oxides. 

 

2.5.2 Recovery of lithium cobalt oxide from the cathode of spent lithium-ion 

batteries 

Lithium-ion batteries are used extensively as electrochemical power sources in personal 

computers, mobile telephones and other modern-life appliances (Lundblad & Bergman, 

1997; Plichta & Salomon, 1987). Billions of wasted batteries will be produced every 

year. For that reason, the recycling of LIBs is critical: even though spent LIBs in general 

are not classified as ‘dangerous waste’, disposing of them safely may become a serious 

problem because of the presence of various toxic and flammable compounds. 

Consequently, economic benefits could be achieved by recovering major components 

from LIBs (Kanamori et al., 2009; Catillo et al., 2002). Li-Co3O4 is a favoured material 

for LIBs cathodes due to its good performance; yet it needs large amounts of Co to 

meet the market demand. Recovery of cobalt and lithium is one of the most important 

objectives in the recycling of spent LIBs, in view of the fact that cobalt is a precious and 

rare metal and a comparatively expensive material in contrast to the other components 
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of LIBs. And lithium is extremely important in many industrial applications (Tarascon & 

Armand, 2001; Zhang et al., 1998). 

 

2.6 Titanium dioxide 

TiO2 occurs in three crystalline structures: anatase and rutile are the most widely 

recognized types (as the crystalline size of the rutile is constantly bigger than the 

anatase phase) and brookite as the third structural form (an orthorhombic structure, only 

occasionally used and of little interest for most applications) (D’Agata et al., 2014; Chen 

et al., 2014). Among the three stages, the rutile phase is the most thermally stable. 

Brookite and anatase crystalline, over 600∘C, encounter a phase transition and change 

over into the rutile stage (Guo et al., 2007; Xu et al., 2014). The anatase phase contains 

crisscross chains of octahedral particles connected to each other, while the rutile is 

comprised of straight chains of opposite edge-shared octahedral structure (Fujimoto et 

al., 2006; Grosso et al., 2003). Typically the anatase-to-rutile stage change happens 

between 600–700∘C, but for specific applications, it is necessary that TiO2 anatase be 

steady at 900∘C. In general, the addition of cations stabilizes the anatase TiO2 

nanoparticles (Grosso et al., 2003) . 

 

 

Figure 2.2: Crystal structures of rutile, anatase and brookite titanium dioxide 

(Woodley & Catlow, 2009; Austin & Lim, 2008) 
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2.7 Importance of heterogeneous catalyst 

Heterogeneous catalysts have emerged as a vital piece of numerous industrial 

activities, for example, organic synthesis, oil refining and pollution control (Wan & Davis, 

1994; Shibasaki-Kitakawa et al., 2007; Uysal & Oksal, 2013). Contemporary 

heterogeneous catalysts are comprised of several components in precise ratio (Liu et 

al., 2014). Presently, heterogeneous catalysts are improved for the best reaction rate, 

which in turn results in optimal selectivity (Leng et al., 2014). It is possible to enhance 

the heterogeneous catalyst activity by altering the support, by controlling the pore 

structure or by using approaches such as nanotechnology and nano-science (Cong et 

al., 1999; Yamaguchi et al., 2005).   

 

For heterogeneous catalysis, the issues of catalyst separation and recuperation from 

the reaction framework are tended to by utilizing different catalyst supports to 

immobilize the molecule (Uysal & Oksal, 2013). This then provides a sufficient surface 

area to the heterogeneous catalyst for it to avoid dissolving into the solution matrix 

(Yamaguchi et al., 2005). Consequently, heterogeneous catalyst with broad supports –

for example, Al2O3, TiO2, ZrO2, ZnO, and others – is applied in consideration of its 

accessibility and cost effective manufacturing processes.  

 

Heterogeneous catalysis (gas or liquid phase and solid catalyst) proceeds by means of 

adsorption of a single or a couple of reactant molecules on the solid surface, improving 

the reactant fixation on the surface and favouring its activation. The initial step of the 

reaction is henceforth the reactant adsorption, while the reaction energy includes the 

activation barrier energies of adsorbed reactants (Aads), or adsorbed intermediates 

(Iads) and of desorption of products (Pads) (Védrine, 2017).  

 

At the end of the day, the level of catalytic effectiveness gained in a given path is 

controlled by the ‘energetics’ of the various intermediates which envelop the adsorbed 

reactant, the activation energy necessary to convert the bound reactant into an 

intermediate surface and lastly to a product and its desorption (Bond, 1974). 
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There is consensus that 85-90% of modern industrial chemical procedures include no 

less than one catalytic step. The key objective of utilizing a catalyst is to generate high 

activity (i.e., high conversion of reactants) and in general, high selectivity to a wanted 

product. The last property is to avoid or limit separation and purification procedures 

which involve important steps for consideration, particularly economic and general 

ecological issues (Thomas & Thomas, 2014). 

 

Solid catalysts are classified as (1) conductors, (metals and alloys); (2) semiconductors 

(oxides and sulphides); and (3) insulators (metal oxides and solid acids or bases, 

comprising silica–alumina, zeolites, heteropolyacids and natural clays) (Ertl et al., 2008). 

 

The main fields of heterogeneous catalysis, applied industrially, are as follows: oil 

refining; energy and transport; bulk chemicals; polymers and materials and detergents 

and textiles; chemicals; pharmaceutical and medical chemicals; food and feed; plant 

design/engineering and realization; catalyst design; subsequent development of 

catalysts and of catalytic processes; commercial production of catalysts in sufficient 

quantities; monitoring and control of chemical reactions; and plant operations and other 

environmental issues (Védrine, 2017).  

 

2.7.1 Importance of heterogeneous catalyst support 

More recently, the significance of a suitable catalyst support material has been of 

gigantic interest. The thought is that the main catalyst ought to be scattered on an 

appropriate support to make the catalytic nano-particles stable, acquire optimal 

performance and minimize the amount of expensive metal used, which in turn will 

diminish the total catalyst costs (Boudart, 1969; Ziółkowski et al., 1993). 

 

Moreover, with porous qualities, support materials offer a high scattering of nano-

particle catalysts and improve electron transfer, both of which add to enhanced catalytic 

activities (Volta & Portefaix, 1985; Ostrovski, 2012). 
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In any case, the heterogeneous catalyst support may at some point apply a structural 

impact, achieved by textural and active phase linked impact (Haber, 1989). Thus, the 

selected support heterogeneous catalyst must keep its particular properties, for 

example, dispersion, selectivity, porosity, surface area, and activity (Balandin, 1958; 

Hinshelwood, 1940). The morphology and pore size of the chosen support materials are 

an essential part of improving the stability and performance of a heterogeneous catalyst 

(Ostrovski, 2012). 

 

According to the literature, the support of the heterogeneous catalyst can be zeolites 

(Hävecker et al., 2012), carbon nanofibers (Balandin, 1958), alumina (Védrine, 2014), 

active carbon (Volta & Portefaix, 1985), and metal oxides (Grasselli, 2014), such as 

La2O3, CeO2, MnO2, TiO2, and ZrO2. TiO2 is a renowned heterogeneous catalyst 

support due to its tuneable porous surface and distribution, high thermal stability and 

mechanical strength (Thomas, 2012). Being utilized in this way contributes to the ability 

of TiO2 to develop redox properties as well as Lewis acidity (Mehlomakulu et al., 2012). 

 

2.7.2 TiO2: as support in heterogeneous catalysis 

TiO2 based catalyst support materials are known to have brilliant properties among 

various material candidates (nitrites, perovskites and carbides, for example) 

(Bamwenda et al., 1997) because of TiO2 nano-particle high thermal and chemical 

stability. TiO2 based catalyst support has exceptional resistance towards corrosion in 

various electrolytic media. 

 

TiO2 can be viewed as a support for heterogeneous catalysts, ensuring stability in 

electrochemical condition and commercial availability (Tauster et al., 1981). Strong 

interaction between the catalytic particles and mesoporous TiO2 has been recorded 

which has escalated both enhanced catalytic stability and activity. TiO2 as a catalyst 

support material additionally demonstrating a certain degree of proton conductivity, 

which may possibly improve the regime of the triple phase boundary for catalytic 

reactions (Kim et al., 2003). 
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The absence of stability is a significant problem for the majority of heterogeneous 

catalysts. During applications, the agglomeration of particles may obstruct the active 

sites of the catalyst, believed to add to its instability. As of late, titanium oxide (TiO2) 

was presented as an alternative support material for heterogeneous catalysts because 

of the effects of its high surface area stabilizing the catalyst in its mesoporous structure 

(Bagheri et al., 2014).  

 

TiO2 supported metal catalysts have garnered interest because of TiO2 nano-particle 

high activity for different reduction and oxidation reactions at low temperatures and 

pressures. Moreover, TiO2 was observed as a good metal oxide catalyst support 

because of the strong metal support interaction, its acid-base and its chemical stability 

property. The previously mentioned properties demonstrate the high potential in photo 

catalyst related applications of heterogeneous TiO2 supported catalysts (Bagheri et al., 

2014). 

 

TiO2, because of its high efficiency, its non-toxicity and its long-term photo stability, has 

been used widely in mineralizing dangerous and non-biodegradable environmental 

contaminants. TiO2 has substantial mechanical resistance and stability in acidic and 

oxidative environments. These properties render TiO2 a primary candidate for 

heterogeneous catalyst support. 

 

Julkapli and colleagues  report the use of the mesoporous TiO2 of pure anatase phase 

with large surface area and sharp pore distribution synthesized to increase the degree 

of dispersion and homogeneity of immobilized catalyst (Nolan, 2013; Luo et al., 2013). 

Electronic effects and functional mechanisms of the heterogeneous catalysts are 

influenced by the impact of TiO2 support (Si et al., 2014). TiO2, as a catalyst support, 

implements an electronic effect where the hypo-electronic Ti3+ promotes electro catalytic 

features of hyper-electronic noble catalyst surface atoms (Julkapli et al., 2014).  
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This diminishes the adsorption energy of CO intermediates, while simultaneously 

improving the mobility of CO groups. In the meantime, the adsorption of OH species on 

TiO2 has a tendency to encourage the conversion of the chemically poisonous CO 

intermediates in CO2, thereby enhancing the durability of the heterogeneous catalyst 

(Sui et al., 2014).  

 

The two factors indirectly assist with the dispersion and anchor of the heterogeneous 

catalyst particle (Bamwenda et al., 1997). Additional enhancement in the catalytic 

stability and activity of the heterogeneous catalysts include altering the TiO2 support 

material with semiconductor metal oxides. 

 

2.7.3 TiO2: as support in metal heterogeneous catalysis 

The investigation of metal nanoparticle on TiO2 support is vital in heterogeneous 

catalysis because of the size and nature of the interaction of a metal nanoparticle with 

TiO2 support (Tauster et al., 1981). The determination of catalytic activity and selectivity 

of the metal heterogeneous catalyst is strongly influenced by this interaction (Kim et al., 

2003). Oxidation and reduction at high temperatures are mandatory steps in the 

preparation of metal supported TiO2 heterogeneous catalysts (Lietti et al., 1996; Lin et 

al., 1993). In any case, the two treatments caused morphological changes to the 

dispersed metal nano-particles from the sintering of TiO2. Therefore, it is essential that 

ideal conditions for the catalyst be maintained. 

 

Moreover, diverse morphological changes will result from metal-TiO2 support 

interaction, depending upon the specific metal heterogeneous catalyst (Yan et al., 

2005): alloy formation (Park & Seol, 2007) encapsulation and inter-diffusion (Ren et al., 

2007), for example. 

 

2.8 Hydrothermal process 

Various procedures have been employed to produce nanoparticles, including sol-gel, co 

precipitation, conventional solid-state reactions and hydrothermal methods (as shown in 
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Table 2.3) (De Miguel et al., 2002). Solid-state, sol-gel and co precipitation techniques 

are most frequently utilized and yet have serious disadvantages such as strong state in 

materials with low purity. Even though sol-gel methods allow for excellent control of 

composition and morphology, the costs are high.  

 

Extra calcination and processing steps are required in the co precipitation method, and 

in solid-state and sol-gel procedures. Hydrothermal techniques, on the other hand, allow 

morphological control and superior composition and do not necessitate calcinations and 

milling steps. Therefore, hydrothermal synthesis was chosen in this research for the 

preparation of nano-particles. 

 

Table 2.4: Advanced powder process comparison 

 Solid-state 

reactions 

Sol-gel Co-precipitation Hydrothermal 

Cost low-moderate high moderate moderate 

Composition 

control 

poor excellent good good-excellent 

Morphology 

control 

poor moderate moderate good 

Purity (%) < 99.5 >99.99 >99.5 >99.5 

Calcination 

step 

yes yes yes no 

Milling step yes yes yes no 

 

Hydrothermal electrochemical techniques, inspired by nature, have the potential to 

improve the morphology-controlled nanomaterials for an extensive variety of 

applications. From catalysis and biomaterials for implants to microelectronics and 

automotive, the main benefits originate from their low energy consumption (low 

temperatures in one-step process), lessened ecological effect and flexibility underway of 

numerous new materials in any shape and size (Piticescu et al., 2012). 
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Riman characterized hydrothermal synthesis as a procedure that uses single or 

heterogeneous phase reactions at elevated pressures > 100 kPa and temperatures > 

25°C, to crystallize ceramic materials straight from solutions (2002). The pressure is the 

vapour pressure above the solution at the hydrothermal parameters, namely 

concentration, composition and temperature of the precursor solutions. 

Some benefits of the hydrothermal synthesis are listed below: 

 Hydrothermal synthesis is an ecologically friendly method because it happens at 

lower temperatures and pressures, which are close to the living conditions on 

Earth. Different procedures necessitate higher temperatures and higher or lower 

pressures; consequently, they are considered environmentally stressed (see 

Figure 2.3) (Yoshimura & Suchanek, 1997). Low reactions temperatures reduce 

issues identified with the volatilization of components and stress induced 

defects. 

 The rate and uniformity of aging, growth and nucleation can be controlled. 

 Powders, coatings on metals, polymers, fibres, single crystals, monolithic bodies 

and ceramics can be prepared. 
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Figure 2.3: Pressure dependence on temperature for different processing routes 

(Yoshimura & Suchanek, 1997) 

 

The mechanism for the formation of metal oxide particles using metal nitrate solution 

adheres to the following steps: at first, hydrated metal particles are hydrolyzed to metal 

hydroxide. Then, metal hydroxides carry on by precipitating as metal oxides through 

dehydration (Adschiri et al., 2000; Adschiri et al., 2000a).  

 

Hydrolysis is an electrostatic reaction between hydroxyl ions and metal ions. Equation 

2.14 expressed the electrostatic contribution to the reaction rate, using ionic species 

between     and     in aqueous solution via activated complex {     } #.  

 

                        Eq 2.13 



CHAPTER 2: LITERATURE REVIEW AND THEORY 

 

 Page 28 
 

         
   

   
 
   
 

   
  

   
 

   
    

 

 
 

 

  
   Eq 2.14 

 

Where r and z symbolize radius and charge of ionic species; ε expresses the solvent 

effect with dielectric constant; and    is the reaction rate in the solvent with dielectric 

constant (Hayashi & Hakuta, 2010). 

 

Hydrothermal synthesis can be carried out using both batch and continuous systems. 

The batch system, basic and simple, enables control of the oxidation states of the 

components and allows preparation of systems with a wanted ratio of phases which 

contain one component in various oxidation states (Galkin et al., 2001). In the 

continuous system, high reaction rate at short residence time is possible. By 

independently varying the various process parameters, particle size, shape and size, 

distribution can be controlled to some degree.  

 

2.9 Effect of experimental conditions on heterogeneous catalytic degradation of 

organic pollutant 

2.9.1 Effect of pH 

Wastewater pH differs significantly and plays an important part in the catalytic 

degradation of natural contaminants; the surface charge of the catalyst and the extent of 

aggregates it forms are controlled by it (Bahnemann et al., 2007). 

 

The ionization and the surface charge of the catalyst (pKa) of a natural toxin can be 

significantly influenced by the pH.  

 

Electrostatic interaction between the charged radicals, the semiconductor surface, 

dissolvable particles, and substrate produced during catalytic oxidation strongly relies 

upon the solution pH. Hence, the pH of the solution plays a key part in the adsorption 

and catalytic oxidation of contaminants (Haque & Muneer, 2003).  
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The level of electrostatic attraction or repulsion between the catalyst surface and the 

ionic forms of organic molecules can fluctuate with a difference in pH, bringing 

improvement or inhibition of the degradation of natural toxins in the presence of the 

catalyst (Qamar & Muneer, 2005). 

 

The ionization state of the surface of the catalyst can likewise be protonated and 

deprotonated under acidic and alkaline conditions individually as appears in the 

reactions below: 

 

                       
   Eq 2.18 

                              Eq 2.19 

While under acidic conditions, as the pH diminishes, the positive charge of the TiO2 

surface increases (Eq. 2.17); above pH 6.25, with an increase in pH, the negative 

charge at the surface of the TiO2 increases. In addition, the pH of the solution influences 

the formation of hydroxyl radicals by the response between hydroxide ions and induced 

holes on the TiO2 surface (Mathews, 1986). The positive holes are considered as the 

significant oxidation steps at low pH, while at high or neutral pH levels, hydroxyl radicals 

are considered the predominant species (Shifu & Gengyu, 2005). 

 

It is expected that the generation of both ●OH and SO4
•− is higher because of the 

presence of more hydroxyl particles on the TiO2 surface in the Co3O4/TiO2 PMS 

activation systems. Therefore, the degradation efficiency of the procedure will be 

logically improved at high pH. To illustrate the impact of pH on the catalytic degradation 

of organic pollutants and adsorption on the surface of a heterogeneous catalyst, various 

studies (Singh et al., 2007a; Singh et al., 2007c; Singh et al., 2007b; Rahman & 

Muneer, 2005a; Rahman & Muneer, 2005b; Qamar & Muneer, 2005; Muneer & 

Bahnemann, 2002) have been carried out. 
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2.9.2 Effect of concentration (pollutants) 

Effective utilization of heterogeneous catalytic oxidation systems necessitates the study 

of the dependency of catalytic degradation rate on the substrate concentration (Co). 

Lathasree et al. (2004), using ZnO as the catalyst, studied the impact of initial 

concentration (40-100 ppm) on the catalytic degradation of phenol. The initial rates of 

catalytic degradation were high at the lower concentration range, diminishing as 

concentration increased. The degradation followed first-order kinetics.  

 

It has been demonstrated in a few studies that as the concentration of the targeted 

contaminants increases, an increasing number of molecules of the compound are 

adsorbed on the surface of the catalyst. Thus, the reactive species (SO4
•−) required for 

the degradation of the toxin increases as well (Ahmed et al., 2011).  

Nonetheless, the number of SO4
•−radicals formed on the catalyst surface stays steady 

for a certain catalyst amount and degradation time. The available SO4
•− radicals are 

insufficient for pollutant degradation at higher concentrations. Subsequently, the rate of 

degradation diminishes as the concentration of pollutants increases (Bahnemann et al., 

2007). 

 

What's more, the generation of intermediates can occur with an increase in substrate 

concentration. These can also be absorbed on the surface of the catalyst. 

 

Moderate diffusion of the created intermediates from the catalyst surface can result in 

the deactivation of active sites on the catalyst, which result in a decrease of the reaction 

rate. Interestingly, at low concentration, the number of catalytic sites will not be the 

restricting factor and the rate of degradation will correspond to the substrate 

concentration, as per evident first-order kinetic reaction (Ahmed et al., 2011).  

 

This is in agreement with the Langmuire-Hinshelwood (L-H) law. Several studies have 

portrayed the dependence of the concentration of different dyes and phenols on 

catalytic degradation rates utilizing the L-H kinetics model (Mathews, 1988; Mills & 
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Morris, 1993). The L-H model is used to describe the dependence of the reaction rate 

on the initial substrate concentrations (Turchi & Ollis, 1990). 

 

2.9.3 Effect of catalyst loading 

Various investigations have demonstrated that the catalytic degradation rate firstly 

increases with catalyst loading and after that, drops at high qualities. 

 

The inclination towards agglomeration (particle-particle interaction) rises at high solids 

concentration, resulting in a reduction in catalyst surface area accessible for absorption 

and henceforth a drop in the catalytic degradation rate. Despite the fact that the quantity 

of active sites in solution will rise with catalyst loading and offer more active sites for 

adsorption, at a certain point the degradation is compromised because of excessive 

particle concentration (Selvabharathi et al., 2016). 

 

The trade-off between these two opposing phenomena brings about the need for an 

optimum catalyst loading for the catalytic reaction (Adesina, 2004). An additional 

increase in catalyst loading above the optimum value will cause a non-uniform particle 

distribution; thus the reaction rate would definitely be lower with increased catalyst 

dosage (Ahmed et al., 2011). 

 

In addition, the aggregation of particles will decrease the interfacial area between the 

reaction solution and the catalyst at high Co3O4/TiO2 concentrations, subsequently 

decreasing the number of active sites on the catalyst surface (Selvabharathi et al., 

2016). 

 

The addition of a larger number of catalysts would increase adsorption sites and give 

additional catalyst sites to activate PMS, thereby substantially increasing in the reaction 

rate as long as it is within the optimum amount for catalyst loading. Over all, the high 

loading of metal will create the aggregation of Co particles, and will not improve Co 
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dispersion any further; the catalyst surface area will also be reduced with a larger 

loading of Co on the support material. 

 

2.9.4 Effect of operating temperature 

It is acknowledged that the reaction temperature is a basic operating parameter in 

AOPs, influencing the degradation rate of natural toxins significantly (Sun et al., 2012; 

Zhang et al., 2016). 

 

Studies demonstrate clearly that the reaction rate increases when the reaction 

temperature is increased, due to the huge dependence of the kinetic constants on the 

reaction temperature (Arrhenius law) (Yang et al., 2015). The activation energy (Ea), 

showing the ease at which a reaction occurs, can be calculated with the Arrhenius Eq 

(Eq 2.20). 

    
   
   Eq 2.20 

 

In heterogeneous catalytic oxidation, when the Ea value is significantly higher than that 

of diffusion-controlled reaction (10– 13 kJ mol-1), it demonstrates that the reaction rate 

of the oxidation process is more reliant on the rate of intrinsic chemical reactions on the 

surface of the heterogeneous catalyst as opposed to the rate of mass transfer (Xu & 

Wang, 2012). When the value of activation energy is higher than that, it indicates that 

the procedure is in the range of chemical reactions and not adsorption (Fan et al., 

2017). 

 

2.9.5 Effect of PMS concentration  

Guan et al. (2013) studied the effect of PMS concentration on the degradation of BA. 

BA degradation was enhanced considerably, with an increase in the initial PMS 

concentration. For instance, the degradation efficiency of BA increased from 47.7% at 

0.1mM PMS to 82.5% at 1.0 mM PMS. It is evident that increasing PMS concentration 
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would make more HSO5
- attach to the active sites of NiFe2O4, which encourages the 

generation of radical species. 

 

It has been demonstrated that the degradation efficiency of BA was additionally 

enhanced by increasing the NiFe2O4 dosage. Essentially, increasing the dosage of 

NiFe2O4 provided more active sites on the surface of NiFe2O4 for PMS to occupy; in this 

manner, more species that are reactive could be produced.  

 

Yet, with increasing PMS dosages, certain catalysts had a different catalytic behaviour, 

where contaminant degradation increased as the catalyst dose was increased from 100 

mg/L to 500 mg/L; however, it was ineffective at higher doses (Zhang et al., 2013). As 

indicated by past literature (Liang et al., 2012a), this phenomenon is likely due to the 

diffusion limitation in heterogeneous reactions. Especially when the dose of the catalyst 

surpassed the ideal or optimum value, the unsuccessful oxidant consumption on the 

surface of the catalyst would be quickened and dominant, prompting a decrease or a 

constant degradation efficiency (Wang et al., 2013). Similar cases have also been 

reported in the cases of some oxides and ferrites (Hou et al., 2013; Liang et al., 2012a; 

Zhang et al., 2013). 

 

PMS without the presence of a metal to activate the SO4
•− radicals has a slow 

degradation rate, indicating that the number of radicals released is smaller without the 

activation.  

 

2.10 Mode of application: suspended vs. immobilized system 

The effectiveness of suspended catalysts was observed to be better when contrasted 

with similar catalysts immobilized on a substrate (Parent et al., 1996). This can be 

credited to the improved mass transport in suspended form. In any case, the expenses 

brought about for catalyst recovery makes the slurry system unrealistic. 
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Interestingly, the immobilized catalyst would be simpler to deal with yet will likely be 

costlier because of fouling and deactivation of the catalyst. 

 

Deactivation happens, firstly, because the generation of reaction by products cause the 

loss of active sites on the surface, and fouling block the catalyst pores which change the 

catalyst surface (Ahmed et al., 2011). 

 

The number of hydroxyl or sulphate groups greatly affects the stability and reactivity of 

the catalyst. As the reaction proceeds in an immobilized system, the number of 

hydroxyl/sulphate groups on the catalyst surface decreases and, consequently, the 

activity of the catalyst drops.  

 

A study by Dutta and Ray (2004) showed that the loss of catalytic activity was due to 

strongly adsorbed intermediates that occupied the active sites of the catalyst surface. In 

this manner, more efforts should be centred on eliminating the intermediates that 

occupy the active sites of the catalyst and regenerate the hydroxyl/sulphate radicals. 

 

2.11 Material characterization techniques 

2.11.1 Transmission electron microscopy 

The transmission electron microscope is a very important tool for material science. A 

high-energy beam of electrons is bombed through a very thin sample, and the 

interactions between the atoms and electrons can be utilized to detect features such as 

the crystal structure, grain boundaries and dislocations. Moreover, a chemical analysis 

can be performed. The growth of layers, their composition and defects in 

semiconductors can be studied using TEM. High resolution can be used to study the 

shape, size, quality, and density of quantum wells, wires and dots (David & Carter, 

1996). 

 

The TEM functions on the same basic principles as the light microscope although it 

uses electrons instead of light. Because the wavelength light is much bigger than that of 
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electrons, the optimum resolution achievable for TEM images is much better than from 

a light microscope. Hence, TEMs are able to show the finest details of internal structure, 

even as small as individual atoms. 

The main application of a transmission electron microscope is to provide high 

magnification images of the internal structure of a sample. Being able to obtain an 

internal image of a sample opens new possibilities for what sort of information can be 

gathered from it. 

A TEM operator can investigate the crystalline structure of an object, see the stress or 

internal fractures of a sample, or even view contamination within a sample through the 

use of diffraction patterns, to name just a few kinds of studies. 

 

2.11.1.1 Specimen Preparation 

A TEM sample must be sufficiently thin to transmit adequate electrons to form a picture 

with least energy loss. In this manner, sample preparation is an essential part of the 

TEM analysis. Ultrasonic disk cutting, dimpling and particle milling is a typical sequence 

of preparation strategies for most electronic materials. Dimpling is a preparation 

technique that produces a specimen with an outer rim of appropriate thickness and a 

thinned central area that makes handling easier. Ion milling is generally the last form of 

sample preparation. In this procedure, charged argon ions are accelerated to the 

sample surface by the application of high voltage. The ion impingement upon the 

sample surface removes material as a result of momentum transfer (Hirsch, 1965). 

 

2.11.2 X-ray diffractometry 

X-ray diffraction (XRD analysis or XRPD analysis) is useful for the identification of 

different phases in poly crystalline aggregate solids, powder specimens and thin-film 

samples. The unique crystalline structure of materials is the key for identification by this 

method.  

 

X-rays are high-energy waves and short wavelengths of electromagnetic radiation, 

characterized by either photon energy or wavelength. Most X-rays have a wavelength in 
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the range of 0.01 to 10 nanometres; X-ray wavelengths are usually longer than gamma 

rays and shorter than those of UV rays (Oputu, 2016). 

 

X-rays are produced by high-speed electrons accelerated by a high voltage colliding 

with a metal target. The kinetic energy of electrons, converted to energy of X-ray 

radiation, is enabled by the rapid deceleration of electrons on target. The wavelength of 

x-ray radiation,  , is linked to the acceleration voltage of electrons (V) as shown in the 

equation below (Leng, 2013): 

 

   
          

 
    Eq 2.21 

Figure 2.6 illustrates a pair of X-ray incidents on a periodically aligned plane of atoms 

P0P0, P1P1 and P2P2. 

 

 

 

 

Figure 2.4: X-ray diffracted pair: X-ray 1, reinforced by X-ray 2 

 

For instance, X-ray 1 angle θ symbolizes the angle of diffraction on plane P0P0. An in-

phase X-ray 2 produces a diffracted X-ray, which intensifies X-ray 1. 
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Both rays are connected by the twofold triangle GBHE with an angle 2θ as shown in 

Figure 2. Bragg and Bragg (1913) suggested that diffraction could be viewed as 

irregular reflectance whose whole number of wavelengths are related to the surface line 

spacing in Equation 2.43, where n,  , d and θ are, respectively, integers, X-ray 

wavelength, distance between parallel atomic planes and angle of incident and 

diffraction (Atkins & De Paula, 2006).  

 

           Eq 2.22 

 

The X-ray mapping of atomic planes is utilized to categorize phases and determine 

structure in material science. X-ray diffraction patterns of various prepared materials 

can be matched in the database offered by the Joint Committee on Powder Diffraction 

Standards (JCPDS) (File, 1967). 

 

2.11.3 Fourier Transform-Infrared Spectroscopy (FTIR) 

In order to identify organic (and at times, inorganic) materials, Fourier Transform-

Infrared Spectroscopy (FTIR) is the analytical method used as this procedure measures 

the absorption of infrared radiation by the sample material versus wavelength. The 

infrared absorption bands detect molecular components and structures (Barth, 2007). 

 

When infrared radiation irradiates a material, absorbed IR radiation more often excites 

molecules into a higher vibrational state. The wavelength of light adsorbed by a specific 

molecule is a function of the energy difference between the molecule at rest and excited 

vibrational states. Molecular structure is characterized by the wavelengths that are 

absorbed by the sample. 

 

The FTIR spectrometer utilizes an interferometer to control the wavelength from a 

broadband infrared source. A detector measures the intensity of the reflected light as a 

function of its wavelength. A computer using Fourier transforms to obtain a single-beam 

infrared spectrum is used to analyze the signal obtained from the detector: that signal is 
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call an interferogram. The FTIR spectra are typically plots of intensity versus wave 

number (in cm-1). Wave number is the equal of the wavelength. The intensity is plotted 

as the absorbance at each wave number or percentage of light transmittance 

(Berthomieu & Hienerwadel, 2009). 

 

2.11.4 Energy Dispersive X-ray Spectrometry (EDS) 

In order to get a localized chemical analysis, EDS utilize the X-ray spectrum produced 

by a solid sample bombarded with a focused beam of electrons. All components from 

atomic number 4 (Be) to 92 (U) can be identified on a basic level; however not all 

instruments are prepared for 'light' components (Z < 10).  

 

Qualitative analysis is done by the identification of the lines in the spectrum, 

straightforward and attributed to the simplicity of X-ray spectra. By measuring the line 

intensities for each element in the sample and comparing it in the calibration standards 

of known composition for the same elements, the concentrations of the elements 

present in a sample (quantitative analysis) can be determined (Goldstein, 2003). 

 

Often Energy Dispersive X-Ray Spectroscopy (EDS or EDX) is a chemical 

microanalysis technique used in combination with scanning electron microscopy (SEM). 

The EDS method detects X-rays transmitted from the sample during bombardment by 

an electron beam to identify the elemental composition of the analyzed volume. Phases 

or features as small as 1 µm or less can be investigated. The EDS x-ray sensor 

measures the relative abundance of emitted X-rays versus their energy. The detector is 

usually lithium-drifted silicon, solid-state device.  

 

When an incident X-ray strikes the detector, a charge pulse proportional to the energy 

of the X-ray is formed. By using a charge-sensitive preamplifier, the charge pulse is 

transformed into a voltage pulse (corresponding to the X-ray energy).  
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The signal is then sent to a multichannel analyzer, which sorts the pulses, by voltage. 

The energy that is determined from the voltage measurement, for each incident X-ray, is 

sent to a computer for display and further information assessment. The evaluation of the 

spectrum of X-ray energy versus counts is needed to identify the elemental composition 

of the sampled volume. 

 

Figure 2.5: EDS Spectrum for the concentrations of chemicals on a carbon support film Cu grid 

 

2.11.5 Electron energy loss spectroscopy (EELS) 

EELS has an history of being an increasingly troublesome procedure however is on a 

fundamental level equipped for estimating chemical bonding, valence, atomic 

composition, and conduction band electronic properties, surface properties, and 

element-specific pair distance distribution functions (Ahn, 2004).  EELS will in general 

work best at moderately low atomic numbers, where the excitation edges will in general 

be sharp, well-defined, and at experimentally accessible energy losses. An EEL tends to 

work best at relatively low atomic numbers, where the excitation edges tend to be 

sharp, well-defined, and at experimentally accessible energy losses (the signal being 

extremely weak past around 3 keV energy losses). EELS are maybe best created for 

the components ranging from carbon through the 3d transition metals (from scandium to 

zinc) (Ahn, 2004). 
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In electron energy loss spectroscopy (EELS) a material is exposed to a beam of 

electrons with a known, narrow range of kinetic energies. 

A portion of the electrons will experience inelastic scattering, which implies that they 

lose and have their paths faintly and arbitrarily redirected. The amount of energy loss 

can be estimated by means of an electron spectrometer and translated in terms of what 

caused the energy loss. Inelastic interactions consist of phonon excitations, inner shell 

ionizations, inter- and intra-band transitions, Plasmon excitations, and Cherenkov 

radiation (Egerton, 2009). 

The inner-shell ionizations are especially valuable for identifying the elemental parts of a 

material. For instance, one may find that a bigger than-anticipated number of electrons 

get through the material with 285 eV less energy than they had when they entered the 

material. This is around the measure of energy expected to expel an inner-shell electron 

from a carbon atom, which can be taken as proof that there is a lot of carbon present in 

the sample. With some consideration, and taking into account wide range of energy 

losses, one can define the types of atoms, and the amounts of atoms of each type, 

being struck by the beam. 

The scattering angle (that is, the sum that the electron's path is redirected) can likewise 

be estimated, giving data about the dispersion relations of whatever material excitation 

caused the inelastic scattering (Egerton, 2009). 

 

2.12 Conclusion 

Essential for life, clean water is one of the most important natural resources on the 

planet. But wastewater, which is ‘used water’, is also a valuable resource, especially 

with recurring droughts and water shortages in many areas of the world. However, 

wastewater contains many harmful substances and cannot be released back into the 

environment until it is treated. Thus, the importance of wastewater treatment is twofold: 

to restore the water supply and to protect the planet from toxins. 

 

Treatment of wastewater containing dyes by conventional methods is often inadequate 

because of its resistance to biological and chemical degradation, thereby creating the 
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necessity for tertiary treatment. The advanced oxidation process (AOP) constitutes as a 

promising treatment technology for the management of wastewater containing refractory 

pollutants. 

 

So far, AOP using sulphate radicals is preferred over hydroxyl radicals because 

sulphate based radicals (SO4
•−) have recently been shown to be a promising alternative 

over hydroxyl radicals in light of the fact that SO4
•− has higher reduction potential as 

compared to •OH. PMS can be activated by various transitional metals, mainly cobalt. 

However, since cobalt ions are toxic, support materials must be used to inhibit cobalt 

leaching. This study focused on the combination of Co3O4 and TiO2 using an organic 

binder mediated route; the Co3O4/TiO2 heterojunction catalyst was used as a co based 

catalyst in PMS activation. 
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CHAPTER 3: EXPERIMENTAL PROCEDURE 

3.1 Introduction 

A detailed description of the processes and techniques used are presented in this 

chapter, as well as the chemicals, equipment and procedures used to prepare, 

characterize and evaluate the catalytic activity of the Co3O4/TiO2. 

 

3.2 Materials and methodology  

3.2.1 Materials 

Peroxymonosulfate, commercially known as Oxone (KHSO5), ethanol 99.9%, tert-

butanol as well as titanium (IV) oxide anatase (TiO2) were obtained from Sigma Aldrich. 

Heynes Mathew Ltd., Bree Street, Cape Town, South Africa, supplied methyl orange 

(MO), golden yellow (GY) and methyl red (MR). Urea was supplied from Merck. Minema 

provided cobalt chloride and maleic acid. All chemicals were received without any 

further purification. 

3.2.2 Hydrothermal preparation of cobalt oxide 

In detail, cobalt oxide nanoparticles were prepared by dissolving a specific quantity of 

cobalt chloride in 300ml of deionized water, stirring at room temperature for four hours 

until the solution was completely homogenous. Then a solution of urea was added drop 

wise to the solution while stirring; finally, the solution was transferred into a Teflon liner, 

sealed in a steel autoclave (batch reactor).  

 

The autoclave was maintained at 105ºC for six hours and afterward was permitted to 

cool at room temperature. The subsequent precipitates were separated by centrifuging, 

washing several times with distilled water and absolute ethanol, and lastly, dried in a 

vacuum oven at 60 ºC for 24 hours. 

3.2.3 Preparation of Co3O4/TiO2 heterojunction catalyst 

TiO2 was used as support material to synthesize the composite material and different 

Co3O4 loadings were used. 
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Chemically bonded interface between TiO2 and Co3O4 was created by using an organic 

linker, namely maleic acid. Seven different ratios (mol ratio) of Co3O4 /TiO2 composite – 

98/2, 95/5, 90/10, 85/15, 80/20, 70/30, 60/40 and 50/50 – were prepared. In a typical 

synthesis CoOOH (A) and TiO2 (B) were independently suspended in 30 ml of ethanol. 

Then 10 ml of 0.1 mol/L maleic acid was added to the ethanol - CoOOH solution; the 

two solutions were stirred at room temperature for about five hours. Solution A was then 

added to solution B and the mixture was left stirring for 16 to 18 h at room temperature.  

 

The resulting catalyst was collected by centrifuging and washing with distilled water and 

absolute ethanol a few times and afterward dried in a vacuum oven at 60ºC for 24 

hours. Finally, the sample was calcined at various temperatures – 350, 400, 500, 600, 

700, 800 and 900ºC – in air for four hours, and Co3O4/TiO2 composites were effectively 

created. Table 3.1 summarises the various processing conditions used in this study. 

The Co3O4-TiO2 nano-crystallite interface catalyst prepared was named as 

XCo3O4/TiO2-Y, where X symbolizes the Co/Ti molar ratio and Y the calcination 

temperature. Pictorial illustration of the synthesis procedure is presented in Figure 3.1 
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Figure 3.1: Materials and methodology of the synthesis of Co3O4/TiO2 heterojunction 

 

Table 3.1: Process variable for the synthesis of Co3O4/TiO2 heterojunction 

Reaction variables  Values Units  

Co3O4 loading 98 95 90 85 80 70 60 50 Mol% 

Calcinations temperature 350 400 500 600 700 800 900  ºC 

 

 

3.3 Catalyst performance  

Methyl orange degradation was carried out in a 250 mL glass vessel containing 200 mL 

of methyl orange (MO 40 mg/L). A specific amount of Oxone as the oxidant was added 

to the glass vessel simultaneously with certain amount of Co3O4/TiO2 catalyst (Figure 

3.2). Aqueous phase samples (2.0 mL) were withdrawn at different intervals, joined 

quickly with an equivalent volume of ethanol as a quencher and subsequently the 

samples collected were centrifuged to remove any trace of the catalyst. The 

concentration of methyl orange without catalyst was analyzed by UV–Vis 

spectrophotometry (SHIMADZU UV-2550) at the maximum absorption band (486 nm). 

A combination of three different dyes was used to prepare a synthetic dye bath effluent 

to evaluate the potential of the catalyst to treat real effluents, namely methyl orange 

(wavelength 486nm), golden yellow (wavelength 437.8nm) and methyl red (wavelength 

431nm) and the composite catalyst successfully degraded all the dyes.  

 

Co3O4/TiO2, Co3O4 and Oxone were utilized independently and evaluated on the 

degradation of methyl orange. According to literature, the pH plays a significant role in 

the cobalt ion leaching: the higher the pH, the lower the level of metal particles leaching 

into the solution. An atomic absorption spectroscopy (AAS) was utilized to measure and 

study the cobalt leaching in the solution. For reusability of the catalyst, it was gathered 

by centrifugation after each application and washed with distilled water and then reused 

immediately without any drying or calcination. Table 3.2 summarises the experimental 

matrix that was conducted in this study. 
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Figure 2.2: Catalyst performance in the degradation of MO 

 

Table 2.2: Optimization of the performance parameters 

Sample 

No 

RX Temp 

(ºC) 

pH Catalyst 

g/L 

Dye type Dye [con] 

mg/L 

Co3O4/TiO2 

ratio 

PMS 

g/L 

Effect of Co3O4 loading in the Co3O4/TiO2 heterojunction 

1 20 4 0.15 MO 40 98% 0.2 

2 20 4 0.15 MO 40 95% 0.2 

3 20 4 0.15 MO 40 90% 0.2 

4 20 4 0.15 MO 40 85% 0.2 

5 20 4 0.15 MO 40 80% 0.2 

6 20 4 0.15 MO 40 70% 0.2 

7 20 4 0.15 MO 40 60% 0.2 

8 20 4 0.15 MO 40 50% 0.2 

Effect of PMS loading 

9 20 4 0.15 MO 40 70 0.1 

10 20 4 0.15 MO 40 70 0.15 

11 20 4 0.15 MO 40 70 0.2 
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12 20 4 0.15 MO 40 70 0.5 

Effects of dye concentration 

13 20 4 0.15 MO 20 70 0.2 

14 20 4 0.15 MO 30 70 0.2 

15 20 4 0.15 MO 40 70 0.2 

16 20 4 0.15 MO 60 70 0.2 

17 20 4 0.15 MO 80 70 0.2 

18 20 4 0.15 MO 100 70 0.2 

19 20 4 0.15 MO 200 70 0.2 

Effects of catalyst loading 

20 20 4 0.05 MO 40 70 0.2 

21 20 4 0.1 MO 40 70 0.2 

22 20 4 0.15 MO 40 70 0.2 

23 20 4 0.25 MO 40 70 0.2 

24 20 4 0.4 MO 40 70 0.2 

Effects of reaction temperature 

25 20 4 0.15 MO 40 70 0.2 

26 25 4 0.15 MO 40 70 0.2 

27 30 4 0.15 MO 40 70 0.2 

28 40 4 0.15 MO 40 70 0.2 

Effects of mixed dyes 

 20 4 0.15 MO,MR,GY 40 70 0.2 
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3.4 Experimental techniques 

3.4.1 Batch synthesis 

The customary hydrothermal synthesis method usually occurs in an autoclave reactor 

(Tseng et al., 2003) where an aqueous solution is gradually warmed to a specific 

temperature and afterwards aged for a few hours or days (Machek et al., 1981). 

 

A vessel known as ‘autoclave’ is required for batch hydrothermal synthesis, suitable for 

dealing with exceptionally corrosive solvent, working under extreme temperature and 

pressure, as well as processing conditions with sufficient resistance. Autoclaves and 

pressure vessels are made from quartz cylinders or thick glass and high strength alloys, 

such as austenitic stainless steel, nickel, cobalt-based super alloys iron, or titanium and 

its alloys. Figure 2.7 illustrates a typical pressure vessel or autoclave for illustration 

purpose (Chowdhury, 2014).  

 
Figure 3.3: Pressure vessel or autoclave for batch hydrothermal reactions 

 

Batch hydrothermal synthesis, usually operated at around 373-473 K, is principally used 

to produce inorganic powders such as single and mixed metal oxides (Hao & Teja, 

2003). Through the heat-up period, the reactions below occur to produce nuclei and, 

ultimately, crystals.  

 

              ＝       +         Eq 2.15 
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       =       + 
 

 
          Eq 2.17 

 

Materials with the desired microstructure and properties are obtained during 

homogeneous nucleation and grain growth processes of hydrothermal reactions. 

Nonetheless, it is a long process to obtain crystals of equilibrium composition by this 

method (Machek et al., 1981).  

 

Hydrothermal synthesis is a standout among the most commonly used procedures for 

the preparation of fine powders with controlled shape, crystallinity, size and 

composition. It is compared with other broadly utilized systems (see Table 2.3) (Darr & 

Poliakoff, 1999; Otsua & Oshima, 2005).  

 

3.4.2 Metal oxide catalyst preparation 

The objective of this section is to discuss the broad subject of metal oxide synthesis for 

heterogeneous catalysis by keeping in mind the primary preparation procedures for 

supported metal oxide and bulk catalyst (Le Page, 1987; Perego & Villa, 1997; 

Regalbuto, 2007). The three main areas are as follows: 

  

1. production of bulk simple metal oxides;   

2. production of bulk mixed oxides; and  

3. Expansion of supported metal oxides.  

 

The preparation of supported metal oxide catalysts (Lambert & Che, 2000) depends on 

ambient, aqueous-phase techniques (impregnation, selective adsorption and 

deposition–precipitation) which prevail at the industrial scale for ecological and financial 

reasons. The impregnation and drying steps are imperative, as well as the physical-

chemical parameters that control the surface chemistry at the solid and liquid interface 

during active phase deposition, which in turn control the specification and distribution of 

the active phase in a porous support. 
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Surface specification of the active phase is dependent on the interfacial pH, 

predominantly controlled by the buffering impact of the support (density and nature of 

surface ionisable groups) yet weakly dependent on the initial impregnation pH 

(Hutchings & Védrine, 2004). By limiting the liquid convection toward the external 

surface, distribution of the active phase in a support material can be adjusted at both 

the drying and the impregnation step by using complexing or non-complexing additives. 

The support can also be chemically activated by attaching chemical groups such as 

acid or amino groups, able to bind easily with the salt to be attached (Védrine, 2017). 

 

An inert organic binder such as maleic acid or glucose can also be added to create a 

chemically bonded interface between the catalyst particles and the support material. 

This method is cost effective and easy comparable with methods like impregnation, co 

precipitation and ion exchange since all reagents (namely the catalyst, the catalyst 

support material and the organic binder) are simply mixed in a reactor at ambient 

temperature and pressure. 

3.5 Characterization of Co3O4/TiO2 heterojunction catalysts 

The morphology and microstructure of the interfaced Co3O4/TiO2 catalysts were 

analyzed by transmission electron microscope (TEM). The crystal structure of the 

catalyst was characterized by X-ray diffractometry (XRD).  UV–Visible diffuse 

reflectance spectra was collected using a Perkin Elmer lambda 35 spectrophotometer. 

An energy dispersive X-ray spectroscopy (EDS) was used to investigate chemical 

composition and the EDS spectral image (STEM-EDS SI) was collected at a pixel size 

of 3 x 3 nm2 using an electron beam with a nominal beam diameter of 0.3 nm. The 

changes in the surface chemical bonding and surface composition were characterized 

by Fourier transform infrared (FT-IR) spectroscopy carried out on a SHIMADZU FTIR-

8400S spectrometer in the range of 4000–350 cm−1 in a KBr matrix. A scanning electron 

microscope (SEM) was employed to obtain information about the sample's surface 

topography and composition.  

An EEL was used to measure the chemical bonding, valence and conduction band 

electronic properties, and element-specific pair distance distribution functions.
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter discusses in detail the results achieved during the experimental study of 

this research work, the structural analysis of the catalyst used to distinguish the 

difference between the pristine Co3O4, TiO2 and the Co3O4/TiO2 composite material. 

The methods used were X-ray diffraction (XRD), Fourier Transform Infrared 

Spectroscopy (FTIR) and transmission electron microscopy (TEM). 

 

A comparison between the created heterogeneous catalyst and the ones cited in the 

literature is presented in this section. The impacts of different preparing parameters – 

such as PMS loading, reaction temperature, dye concentration and catalyst loading –

were assessed and detailed in this section. 

 

Reusability and its application in the dye degradation sector was also assessed and 

discussed in this section. In conclusion, the improved catalyst leading to less cobalt 

leaching was determined and examined. 

4.2 Structural characterization of Co3O4/TiO2 heterojunction structure 

4.2.1 X-ray diffraction analysis  

XRD is an effective way to investigate the crystalline properties of the synthesized 

material. The XRD patterns of Co3O4/TiO2 composites after calcination at different 

temperatures, as well as the spectra of pristine Co3O4 and TiO2, were obtained to 

identify the changes that occur after Co3O4 physically bonded with TiO2 in the 

heterojunction catalyst. 

 

In XRD patterns of the pure Co3O4, demonstrated in Figure 4.1, the material matched 

the standard diffraction patterns of cubic Co3O4. The TiO2 patterns correspond with that 

of TiO2 anatase tetragonal. The Co3O4/TiO2 composite material exhibits patterns of both 

cubic Co3O4 and TiO2 anatase tetragonal as the composite material has narrow and 

high intensity XRD peaks as compared to that of pure Co3O4 hinting towards larger 
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particles size than that of the later. But a narrow peak can also be due to strain effects, 

crystallite size and instrumental effects.  

 

Studies reveal that the calcination temperature firmly affects the morphology of the 

prepared metal oxides and that results in a range of electrochemical performances. It 

was noticed that there was no morphology transformation between 350, 400 and 500 °C 

(data not shown); however, at 600 °C the morphology of the crystals change and these 

changes are better explained on the TEM images (Oh et al., 2007).  

 

Figure 4.1: XRD patterns of different materials at different calcinations temperature 

 

4.2.2 TEM results of TiO2, Co3O4 and Co3O4 /TiO2 heterojunction structure 

TEM images were used to further evaluate the morphology of the pristine materials and 

the composite materials. The images clearly show the difference between the 

composite material and the pristine ones, and it is revealed from literature that the 

bigger the surface area of the particles, the better the catalytic activity. 

= Co3O4

= TiO2
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Figure 4.2(a) shows bright-field TEM image of the TiO2:Co3O4 sample synthesized at 

350°C. As shown, the presence of TiO2 and Co3O4 structures are present in the product 

(highlighted by square box). The high-resolution micrograph of Figure 4.2(b) shows the 

difference in lattice spacing between the TiO2 and Co3O4 structures; whereas the EDS 

spectrum of Figure 4.2(c) confirms the elemental presence of Ti, Co and O in the 

specimen. The SAED pattern of Figure 4.2(d) shows that the specimen is 

polycrystalline, with the diffraction ring pattern of the cubic crystal structure of Co3O4 

and the tetragonal crystal phase of anatase TiO2 observed and indicated in the pattern. 

From the analysis of the SAED pattern of Figure 4.2(d), the average lattice constant of 

the face-centred cubic Co3O4 matrix is determined at a=0.820 nm, with the lattice 

constants of the tetragonal TiO2 nanostructured material determined as a=0.346 nm and 

c=0.943 nm.    
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Figure 4.2: (a) and (b) TEM bright-field micrographs of TiO2:Co3O4 at 350 °C showing the presence 

of both TiO2 and Co3O4 nanostructures; (c) EDS spectrum; and (d) SAED pattern  
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Figure 4.3: (a) HAADF STEM micrograph of the composite Co3O4/TiO2 material at 350 °C; (b) STEM-

EDS spectral image of the area indicated in (a); (c) overlaid EDS map, (d – f), Co, Ti and O maps, 

respectively, extracted from the STEM-EDS spectral image of (b).  

 

Figure 4.3(a) shows a high-angular annular dark-field (HAADF) image, collected in 

STEM mode of the TiO2:Co3O4 nanostructured material synthesized at 350°C. An EDS 

spectral image (STEM-EDS SI) was collected from the area indicated by the square in 

Figure 4.3(a) and is shown in Figure 4.3(b). The spectral image was collected at a pixel 

size of 3 x 3 nm2 using an electron beam with a nominal beam diameter of 0.3 nm. 

From this spectral image, the pixels representing Ti, O and Co were extracted and 

shown in Figures 4.3(d)–(f) respectively. These maps confirm the analysis of the bright- 

field and SAED results of Figure 4.2, where it was shown that the TiO2 and Co3O4 exist 

as two separate materials, suggesting no inter-diffusion of the TiO2 precursor material 

into the Co3O4 matrix.  

Figure 4.4(a) shows the bright-field TEM image of the TiO2:Co3O4 sample synthesized 

at 600°C. Unlike the case when synthesized at 350ºC, the TiO2 and Co3O4 do not exist 
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as separate materials, but instead as shown; the nanostructures form rods of individual 

nanoparticles. The high-resolution micrograph of Figure 4.4(b) shows a uniform lattice 

fringe size (d-spacing) for the individual nanoparticles constituting the nano-wires. The 

EDS spectrum of Figure 4.4(c), however, shows the elemental presence of Ti, Co and O 

in the nano-wires, suggesting that at 600ºC the TiO2 does not exist as individual 

nanoparticles, but rather as possible dopant in the Co3O4 matrix or forming a 

TiO2:Co3O4 ‘alloy’ or hybrid material. Formation of rod shaped Co3O4/TiO2 is illustrated 

in Scheme 1. 

 

Scheme 1: Illustration of rod shaped Co3O4/TiO2 formation 

 

The SAED pattern of Figure 4.4(d) suggests the latter, as the diffraction pattern once 

more exhibits both the cubic crystal structure of Co3O4 and the tetragonal crystal phase 

of anatase TiO2. From the analysis of this pattern, the lattice constant of Co3O4 matrix is 

determined as a=0.852 nm, with the lattice constants of the tetragonal TiO2 determined 

as a=0.292 nm and c=923 nm.  As can be seen, there is an increase in the lattice 

constant of the cubic Co3O4 matrix as compared to the case at 350 ºC, accompanied by 

a decrease in the a, b and c axes of the tetragonal TiO2 lattice. This implies that during 

the synthesis process at 600 ºC, the TiO2 lattice experiences a compressive stress in all 

three lattice axes, thereby inducing a smaller unit cell volume, which ultimately 

promotes the diffusion process.  
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Figure 4.4: (a) and (b) TEM bright-field micrographs of sample (c) EDS spectrum and (d) SAED 

pattern  
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Figure 4.5: (a) HAADF STEM micrograph of the composite Co3O4-TiO2 material; (b) STEM-EDS 

spectral image of the area indicated in (a); (c) overlaid EDS map, (d – f), Co, Ti and oxygen maps 

extracted from the STEM-EDS spectral image of (b)  

 

The HAADF-STEM coupled with EDS analysis of Figure 4.5 confirms the above 

argument. The STEM-EDS spectral image of Figure 4.5(b) was collected from the 

boxed area indicated in Figure 4.5(a); the spectral image was collected using image 

pixels of 20 x 20 nm2, with each pixel containing EDS information. Figures 4.5(d) to (f) 

show the Ti, Co and O maps extracted from Figure 4.5(b). From these maps it is 

becomes evident that the TiO2 and Co3O4 matrices are indeed inter-diffused, forming a 

hybrid material, as postulated above.  

Ti  O  

 

STEM – EDS SI   Overlay   
(a) (b) (c) 

(d) (e) (f) 
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Figure 4.6: Electron energy loss spectra comparing the energy loss near edge fine structures 

(ELNEFS) of the Co-L3,2 ionization edge of the structures grown at 350 and 600 
0
C to that of pure 

Co3O4 nanoparticles at 350 
0
C 

 

Figure 4.6 compares the energy loss near edge fine structure (ELNEFS) of the Co L3,2 

edges of a pristine Co3O4 specimen to that of the hybrid TiO2:Co3O4 materials 

synthesized at 350 and 600º C. The Co3O4 spectrum shows two sharp peaks at 789 (L3) 

and 804 eV (L2), which corresponds to the Co 2p3/2 and Co 2p1/2 spin–orbit peaks of the 

Co3O4 spinel structure (Hagelin-Weaver et al., 2004). The L3/L2 ratio is widely 

considered a fingerprint method for determining the Co valence state.  

From Figure 4.6, an L3/L2 ratio of 1.59, 1.46 and 1.49 is calculated for Co3O4, 

TiO2:Co3O4 at 350ºC and TiO2:Co3O4 at 600 ºC, respectively. From these values, it can 

be deduced that the pristine Co3O4 exists in the Co3+ oxidation state, typical of the 

Co3O4 electronic structure (Wang et al., 2000). Upon incorporation of the TiO2 into the 

Co3O4 matrix, it can be seen that the L3/L2 ratio decreases for both the structures 
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synthesized at 350 ºC and 600ºC. These suggest a re-coordination of the Co valency. In 

the case of 350 ºC sample, it was established in Figures 4.2 and 4.3 that the TiO2 does 

not diffuse into the Co3O4 matrix due to the lower temperature. Instead, as the EELS 

results of Figure 4.6 suggest, hybrid bonding occurs between the Co3O4 and TiO2 

lattice. In the case of the 600 ºC sample, the TiO2 diffuses into the Co3O4 matrix, 

causing the re-coordination of the Co valency by the introduction of the Ti4+ ion.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Electron energy loss spectra comparing the energy loss near edge fine structures 

(ELNEFS) of the Ti-L3,2 and O-K ionisation edges of the structures grown at 350 and 600 
0
C to that 

of pure TiO2 nanoparticles 

 

Figure 4.7 compares the ELNEFS of the Ti-L3,2 edges of pure anatase TiO2 to that of 

the TiO2:Co3O4 synthesized at 350ºC and 600ºC. Unlike the case of the Co-L3,2 

ionization edge the L3 and L2 edges are separated by ~ 2.5 eV, with the L2 edge more 

intense than L3. At closer inspection, it can be seen that both the L2 and L3 edges 

exhibit shoulders on the lower energy side of the peaks. This is typical of the anatase 

TiO2 crystal structure caused by crystal-field splitting of the unoccupied, anti-bonding t2g 
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and eg orbitals which contain mostly titanium d character (Brydson & Thomas, 1987). 

From these line shapes, it becomes obvious that the TiO2 structure undergoes no 

discernible change in lattice at either 350 or 600ºC and remains anatase. From the 

SAED results of Figure 4.4(d), it was shown that the TiO2 unit cell volume decreases, 

increasing favourability for diffusion into the Co3O4 lattice. The oxygen K-edge at 532 eV 

exhibit three peaks, at approximately 546, 552 and 566 eV. The first peak at 538–546 is 

indicative of lattice oxides (Abu-Zied et al., 2015) and hence the reshaping of this peak 

indicates a re-coordination in the lattice of the oxides. Figure 4.7 shows that the oxygen 

K-edge becomes more pronounced at 600ºC to the presence of the TiO2 in the Co3O4 

lattice, unlike the case at 300ºC. This confirms, once more, the analyses of the TEM and 

SAED results of Figures 4.2 to 4.5.  
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4.2.3 FTIR results for structural analysis of TiO2, Co3O4 and Co3O4 /TiO2 heterojunction 

structures 

 

 

Figure 4.8: FTIR results for structural analysis of TiO2, Co3O4 and Co3O4 /TiO2 heterojunction 

structures 

 

FTIR spectroscopy (Figure 4.8) were used to further evaluate the prepared Co3O4/TiO2 

composite. The FT-IR Spectrum of TiO2 and Co3O4 (Figures 4.8(a) and (c)) shows two 

strong characteristic absorptions at 661 and 564 cm-1 (highlighted in red) which are 

attributed to the formation of Co3O4 and the absorption bands observed at 3548 cm−1 

and 1621 cm−1 (Figure 4.8(c)) can be attributed to surface adsorbed water and hydroxyl 

groups. 
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In the FT-IR spectrum of Co3O4-TiO2 composites (Figure 4.8(b)), the corresponding 

absorption peaks were shown 655cm-1 and 548cm-1 (highlighted in red) and it can be 

noticed that the absorption bands were diminished in the composite material. This 

phenomenon indicates that the TiO2 not only covered the Co3O4 surface but also likely 

formed a strong interface with it, confirming that the composites were successfully 

produced. The results also indicate that the numbers of functional groups on the surface 

of the composite material are less than that of the pristine materials, namely Co3O4 and 

TiO2. 

 

4.3 Evaluation of catalytic activity and cobalt leaching of the Co3O4/TiO2 

heterojunction 

 

4.3.1 Effect of Co3O4 loading in the Co3O4/TiO2 heterojunction structure 

The catalytic activity of Co3O4/TiO2 was evaluated on MO using a dark oxidation 

method; 40 mg/L MO concentration was treated in the presence of 0.2 g/L of PMS and 

0.15 g/L of catalyst. 

 

Figure 4.9(a), demonstrates the kinetic curves of heterogeneous PMS activation for the 

degradation of methyl orange, while using different Co3O4 and TiO2 mole ratio: pristine 

Co3O4, 98:2Co3O4–TiO2–350, 95:5Co3O4–TiO2–350, 90:10Co3O4–TiO2–350, 

85:15Co3O4–TiO2–350, 70:30Co3O4–TiO2–350 and 60:40Co3O4–TiO2–350.  

 

The degradation of MO using PMS alone was also investigated to determine the extent 

that PMS contributes to the degradation of the dye. It is demonstrated that pure Co3O4 

has the highest degradation rate of (k=0.41min-1), and degrades 98% of the dye within 

two minutes of reaction, while PMS on its own was less effective with the lowest 

degradation rate (k=0.049min-1), only degrading 84% of the dye. This proves that the 

presence of the catalyst helps with the release of more sulphate radicals from PMS, 

leading to a faster degradation rate.  
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Among the composite materials, 60:40Co3O4/TiO2-350 had the highest rate constant for 

heterogeneous PMS activation in this experimental work. Nevertheless, the difference 

between the rate constants of the composites materials is not significant, varying 

between 0.11 and 0.19 (min-1). In any case, the amount of cobalt present in 

60:40Co3O4–TiO2–350 is 40% less than that of pristine Co3O4, proposing that by 

introducing TiO2 as support material, the quantity of cobalt utilized could be diminished 

while the catalytic activity could be maintained. 

 

 

Figure 4.9: Effect of Co3O4/TiO2 ratio on a) degradation kinetics of MO, b) Co leaching 
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Figure 4.10: Cobalt leaching vs time during PMS activation reaction 

 

The cobalt leaching was also highlighted in the experiments. As shown in Figure 4.9(b), 

the cobalt leaching for 70:30Co3O4–TiO2–350 and 80:20Co3O4–TiO2–350 were 1.909 

mg/L and 1.982 mg/L, respectively, less than that for pure Co3O4 (26.7 mg/L) and the 

lowest amount compared to the other composite catalysts in the same reaction system. 

The results further confirmed that the strong Co–O–Ti bonds caused by chemically 

bonding Co3O4 on the TiO2 surface active sites could significantly decrease the cobalt 

leaching and enhance the catalyst stability.  

 

Figure 4.10 shows how the cobalt leaches into the solution with time: it can be observed 

that the leaching increased in the first 10 minutes, meaning that many Co ions are 

leached into the solution but then decreased a bit, staying constant over time, indicating 

that most of the cobalt ions have been consumed for the reaction.  

 

 

Figure 4.11: Comparison between pristine Co3O4 and the prepared composite catalyst cobalt 

leaching 

 

The effectiveness of the composite material to inhibit cobalt ion leaching as compared 

to the pristine material can be noticeably identified in Figure 4.11 above where the 
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cobalt leaching of the pristine material is 26mg/L while that of the composite material is 

just over 0.9mg/L. 

 

From Figure 4.12(a) it can be seen that the reaction rate of composite material Co3O4 / 

TiO2 is lower than that of the pristine Co3O4 but much higher that of PMS self-oxidation. 

Figure 4.12(b) reveals that 57% of COD was removed following an hour of catalytic 

reaction as opposed to 49% of PMS self-oxidation, highlighting the potential of the 

prepared material in practical wastewater treatment application. Catalytic activity of the 

Co3O4 cubic particles are presented in Figure 4.12(c): control experiments were 

conducted to differentiate between adsorption of pristine Co3O4 and TiO2 as well as 

PMS/TiO2 and PMS self-oxidation. It is evident from Figure 4.12(c) that the degradation 

of MO due to adsorption of both Co3O4 and TiO2 is insignificant. Merely 1% MO was 

removed due to adsorption process. After 30 minutes of PMS/TiO2 and PMS self-

oxidation, 78% and 76% of MO was degraded, respectively, implying that in the 

absence of Co3O4 catalyst there was not enough reactive species produced for 

significant MO degradation. A significant 97% of MO was degraded in two minutes of 

reaction Figure 4.12(d) in the presence of the synthesized pristine Co3O4 cubic particles 

and 0.18g/L of Oxone. This fast degradation of MO highlights the great catalytic PMS 

activation property of the synthesized Co3O4 particles. The MO degradation followed a 

first order reaction kinetics.  

 

From the ecological perspective, conversion of any organic contaminant, for example, 

MO is only the initial phase in the ultimate objective, i.e. to accomplish the 

mineralization of the corresponding solutions. Figure 4.12(d) shows that the MO 

degradation rate constant for catalysis is significantly higher than the PMS self-

oxidation, showing that the catalyst helps in realizing more reactive species. To inhibit 

cobalt leaching, a composite material was used for the degradation of MO.  
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Figure 4.12: (a) MO degradation kinetics; (b) COD removal via catalysis and PMS self-oxidation; (c) 

MO degradation via various routes; (d) PMS self-oxidation VS catalytic activity kinetics 

 

4.3.2 Effect of calcinations temperature 

The 70:30Co3O4–TiO2 composite catalyst, which gave the lowest cobalt leaching among 

the other heterogeneous catalysts, was calcined at various temperatures to study the 

effect of calcination temperature on the catalytic activity as well as the cobalt leaching, 

as presented in Figures 4.13(c) and (d). 

 

It has been determined that with an increase of the calcination temperature, there is a 

decrease of the catalytic effectiveness of the materials (Figure 4.13(c)) while the cobalt 

leaching first decreased with the increase of temperature from 350-600ºC but increased 

for the catalyst calcined at 700 ºC. Hence, it can be assumed that there is a formation of 

strong Co-O-Ti bonds in the temperature range of 350-600ºC. This is due to the 
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substitution of Ti4+ ions into Co3O4 host lattice as was previously confirmed from the 

ELNEFS study. Hence, a reduction of cobalt leaching was observed for that 

temperature range. The calcination temperature affects the morphology, atomic 

composition and crystallite structure of the catalyst, as demonstrated and explained with 

the TEM images; an increase in calcination temperature also results in a decrease of 

Co-OH, a decline resulting in a weak catalytic reaction. However, when the calcination 

temperature is increased above 900ºC (data not shown), the CoO present in Co3O4 can 

be reduced to metallic cobalt, which releases Co2+, which can activate PMS directly. 

 

Likewise, high calcination temperature may increase the Co3O4 grain size, thereby 

reducing the contact zone to the surface of TiO2 support. Therefore, catalysts calcined 

at higher temperature are susceptible to leaching. Consequently, there was an increase 

of cobalt leaching when the catalyst was calcined at 700ºC. Catalysts (70:30 

Co3O4/TiO2) synthesized at 600ºC exhibited the lowest amount of leaching (0.9 mg/L) 

and are not used further in this study unless otherwise stated. 

 

Figure 4.13: Comparison of a) degradation kinetics and b) co leaching for 70:30 Co3O4/TiO2 

catalysts synthesized at various temperatures (0.03 g/l catalyst load, 0.03 g/l oxone, 40 mg/l MO 

and 298 K) 

a b 
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4.4 The effect of operational parameters on catalytic performance 

4.4.1 Effects of catalyst loading on MO 

Catalyst load is a factor that influences the degradation rate of MO; it also affects the 

number of radical generated and therefore affects the catalytic activity. 

 

Figure 4.14 shows the catalytic efficiency of different catalyst loading, namely, 0.05, 0.1, 

0.15, 0.25 and 0.4 g/L. It was observed that the catalytic performance increased with 

the catalyst loading. The increase in catalyst load from 0.05 to 0.4 g/L brought a 

substantial increase in the catalytic performance: almost 97% of the dye was degraded 

in 10 minutes of reaction using 0.4 g/L of catalyst. However, there was no significant 

change between the catalytic efficiency of 0.05 to 0.15 g/L. Anyway, in both cases 

within 15 minutes of reaction almost a complete degradation of MO was achieved. As 

the reaction rates get higher progressively for the catalyst load of 0.05 to 0.4 g/L, it can 

be deduced that by increasing the catalyst load, the reaction rate also increase.  

 

As stated in the literature, an increase in catalyst load has a positive effect on the 

degradation of MO: the addition of a larger number of catalysts would increase 

adsorption sites and provide additional catalyst sites to activate PMS, thereby resulting 

in a substantial increase in the reaction rate. However, too much catalyst load will result 

in particle aggregation leading to a reduction in catalyst surface area accessible for 

absorption and henceforth a drop in the catalytic degradation rate. 

 

Additionally, 0.4 g/L was found to be the optimum catalyst load showing the highest 

catalytic efficiency for MO degradation. It was used in this study for the evaluation of 

other process parameter. 
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Figure 4.14: Effect of catalyst loading on MO degradation 

 

4.4.2 Effects of PMS loading on MO degradation 

MO degradation was enhanced considerably, with an increase in the initial PMS 

concentration. PMS enhancement of the degradation goes hand to hand with catalyst 

load, the latter being the factor that encouraged the production of sulphate radicals 

needed for the degradation of pollutants. 

 

Figure 4.15 demonstrates the degradation performance of various PMS loading. 

Moreover, it can be seen that with an increase of PMS load from 0.1 to 0.5 g/L there is a 

significant increase in the catalytic performance and the degradation of MO. 

 

However, an increase in PMS load without the presence of a catalyst to activate the 

SO4
•− radical results in a slower degradation rate, indicating that the number of radicals 

released is smaller without the activation of a catalyst. 
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Figure 4.15: Effect of PMS loading on MO degradation 

 

4.4.3 Effect of reaction temperature on the catalytic performance 

To calculate the activation energy, the effect of reaction temperature was investigated. 

Reactions were carried at 20, 25, 30 and 40ºC. The degradation of MO increased with 

increasing reaction to the temperature, a phenomenon due to the rupture of O-O bond 

and generation of SO4
•− (Deng et al., 2017; Shi et al., 2012). 

 

A higher reaction temperature also translates to lower activation energy barrier. The 

activation energy (Ea), which indicates the ease at which a reaction occurs, can be 

calculated with the Arrhenius equation. According to the relationship between the 

pseudo constants and reaction temperature in Figure 4.16, the activation energy for MO 

degradation was found to be 54.645 KJ mol−1, which is in the range of chemical 

reactions and not adsorption. This value is not the same with the activation energy of 

diffusion-controlled reactions, which typically ranges from 10 to13 kJ mol−1. 

 

In heterogeneous catalytic oxidation, when the Ea value is significantly higher than that 

of diffusion-controlled reaction (10– 13 kJ mol-1), it is demonstrating that reaction rate of 
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the oxidation process is more reliant on the rate of intrinsic chemical reactions on the 

surface of the heterogeneous catalyst as opposed to the rate of mass transfer. 

 

Figure 4.16: Activation energy from reaction temperature study 

 

4.4.4 Effect of dye concentration on the degradation rate 

The effect of dye concentration on the catalytic activity of the catalyst was studied. 

Figure 4.17 reveals that the concentration was varied from 200ppm to 20ppm. Using the 

catalyst and PMS loading of 0.15 g/l and 0.18g/l, respectively, the rate constant is 

slower with an increase in dye concentration (Figure 4.17) which means that the dye 

concentration is a limiting step in the Co3O4/TiO2-PMS oxidation; the degradation was 

found to follow first-order kinetics. 

 

The decrease in catalytic activity at high dye concentrations is because as the 

concentration of the dye increases, the number of molecules of the dye to be adsorbed 

on the surface of the catalyst also increases. Consequently, the reactive species (SO4
•−)  

necessary for the degradation of the toxin increases as well.  While the number of SO4
•− 

radicals formed on the catalyst surface remains steady for a certain catalyst number 

and degradation time, if the dye concentration is increased for that given reaction, the 

available number of SO4
•−  radicals are insufficient for effective dye degradation. 
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Figure 4.17: Effect of dye concentration on the rate constant 

 

4.4.5 Comparison between Co3O4/TiO2 heterojunction and various studies 

 

Advantaged of the prepared catalyst 
 

 The catalyst was synthesised using, organic binder mediated route, which is cost 

effective, and green method compared to the methods used in the literature. 

 The cobalt leaching of the prepared catalyst was extensively studied providing 

more literature on the topic, which is a crucial element that is lacking in previous 

literature where studies mostly focused on improving the stability and the rate of 

reaction of the catalyst and not on the leaching. 

 The cobalt leaching was reduced by 97%  

 

 
 Table 4.1: Previous studies conducted on combined Co3O4 with various catalyst supports 
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Support 
material 

Preparation 
method 

Cobalt 
level,% 

Degradation of 
organics 

Performance References 

Al2O3, 
SiO2, 
TiO2 

Incipient 
wetness 
impregnation 

9.06 wt 2,4-DCP Interaction strength 
Co/TiO2>Co/Al2O3>Co/SiO2 . Co leaching not 
mentioned 

(Yang et al., 2008) 

Degussa 
P25-TiO2 

Incipient 
wetness 
impregnation 

9.06 wt 2,4-DCP 75% 2,4-DCP degradation in 2 h, with 36 
µgL

-1
 Co leaching 

(Yang et al., 2007) 

MgO As above 5 wt Methylene bleu (MB) Complete oxidation of MB in 7 min with 0.4 
mgL

-1
 cobalt leaching 

(Zhang et al., 2010) 

MgO As above 5 wt AO7 Complete degradation of 50 mgL
-1

 AO7 in 10 
min. Co leaching not mentioned 

(Stoyanova et al., 
2014) 

Al2O3, 
SiO2, 
TiO2 

Solution 
combustion 

0.4-0.5 wt phenol Complete degradation of phenol on Co/TiO2, 
Co/Al2O3 and Co/SiO2 in 50, 120 and 150 
min, respectively. Co leaching not mentioned 

 
(Liang et al., 2012b) 

α –MnO2 impregnation 3 wt Phenol Complete oxidation of phenol on 
Co3O4/MnO2, Co

2+
 and MnO2 in 20, 30 and 

60 min, respectively. Co leaching not 
mentioned 

(Liang et al., 2012a) 

TiO2 hydrolysis 0.1 mol% Red-3BS Complete degradation of Red-3BS in 60 min 
with (145.8 mg L

-1
) cobalt leaching 

(Zhu et al., 2013) 
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Bi2O3 Reverse co-
precipitation 

and post-
calcination 

1.08:1 molar 
ratio 

Methylene blue (MB), 
Rhodamine B, Phenol 
and 2,4-dichlorophenol 

Complete degradation of MB (20 mmol L
-1

) 
with 0.36 min

-1 
reaction rate and 43 μg L

-1 

cobalt leaching 
 

 
(Ding et al., 2012) 

Graphene 
sheets 

Not specified Not specified Orange II Complete degradation of Orange II, within 1 
hour. With 0.10 mg L

-1 
cobalt leaching  

 
(Yao et al., 2013) 

carbon 
microsphere
s 

one-pot 
hydrothermal 

method 

 phenol Complete degradation of phenol within 15 
min Co leaching not mentioned 

 
(Zhou et al., 2015) 

TiO2 anatase Organic 
binder 

70 mol% methyl orange Complete degradation of methyl orange 
within 15 min with 0.9 mg L

-1 
cobalt leaching 

 
Our study 
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4.5 Comparison between homogeneous and heterogeneous catalytic oxidation 

Homogeneous experiments using dissolved cobalt concentrations equal to that leached 

from Co3O4/TiO2 heterojunction were performed with the objective of comparing the 

homogeneous Co/Oxone reagent with the Co3O4 /TiO2/Oxone. Homogeneous activation 

of PMS for MO degradation was studied, using a Co concentration of 1.9 mg L-1, the 

same amount that was leached from the heterogeneous reaction in solution. It can be 

seen from Figure 4.18 that the heterogeneous catalysis is more effective than the 

homogeneous catalysis even though the amount of cobalt present into the solution was 

the same. This highlights the excellent catalytic properties of the prepared Cubic Co3O4 

material showing that it is not the cobalt present into the solution that aids the oxidation 

process but it is the catalyst itself that helps release more reactive species from Oxone. 

The TEM analysis earlier showed that the TiO2 does not exist as individual 

nanoparticles, but rather as possible dopant in the Co3O4 matrix or forming a 

TiO2:Co3O4 ‘alloy’ or hybrid material. Confirmation of Co–OH bonding was indicated in 

the FTIR analysis of the particles as discussed in previous section (Figure 4.8). 

Formation of surface hydroxyl groups, or Co–OH bonds, are critical for the catalytic 

activation of PMS, as the radical generation is dependent on the CoOH+ formation as 

shown in the Equations (3)–(5), thereby highlighting, once more, the potential of the 

composite catalyst:  

 

                    (3) 

          
            

        (4) 

                     (5) 
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Figure 4:18: Comparison between homogeneous and heterogeneous PMS activation 

 

4.6 Determination of reactive species (radical) 

It is widely accepted in the literature that alcohols with an alpha hydrogen such as 

ethanol readily react with both ●OH and SO4
•− radicals. Alcohols without an alpha 

hydrogen, such as tert-butyl alcohol (TBA), are also readily reactive toward ●OH, but 

their reaction with SO4
•− is over 1000-fold slower. Thus, ethanol and TBA were usually 

used to differentiate SO4
•− from ●OH.  

Therefore, in this study, ter-butanol (TBA) and ethanol (EtOH) were added as an SR 

and OH scavenger, individually, to check for the generation of both HR and SR radicals. 

Figure 4.19 demonstrates that the addition of TBA did not decrease the reaction rate 

constant significantly; on the other hand, the addition of EtOH reduced the rate constant 

significantly due to the quenching of generated SR. This is because TBA only quenches 

HR radicals and not SR, while EtOH quenches SR radicals. 

 

Therefore, it can be concluded that in Co3O4 catalyzed PMS activation reaction, the 

generation of sulphate radicals (SR) by catalytic decomposition of PMS in 
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heterogeneous systems was the main reactive species for oxidation of organic 

contaminants, meaning SR is the dominant reactive species produced. 

 

Figure 4.19: Effects of quenching reagents on MO degradation rate constants 

 

4.7 Application of Co3O4/TiO2 heterojunction for the treatment of commercial dyes 

A mixture of three different dyes was prepared as a synthetic dye bath, namely methyl 

orange, golden yellow and methyl red. This was done to assess the potential uses of 

the composite material in treating real industrial effluent.  

 

It can be seen from Figure 4.21 that the Co3O4/TiO2 heterojunction catalyst effectively 

degraded the commercial dyes. After 30 minutes of reaction, a degradation of 95% was 

achieved for MO, 89% for MR and 86% for GY (inset Figure 4.20), showing the different 

rates of reaction. This demonstrates that the degradation of commercial complex dyes 

followed the first order reaction and MO has the highest rate constant, followed by MR 

and GY, respectively. The synthetic dye bath became colourless after 60 minutes of 

reaction (Figure 4.21), exhibiting Co3O4/TiO2 material potential to be used as a 

heterogeneous catalyst for PMS activation to effectively treat industrial effluent. 



CHAPTER 4: RESULTS AND DISCUSSION 

 

 Page 79 
 

 

Figure 4.20: Mixed dyes study and degradation rate constant of each individual dye 

 

 
 

Figure 4.21: Visible degradation of the mixed dyes batch over time 

 

4.8 Catalyst recyclability and efficiency after four runs 

Recyclability of a catalyst is essential both from a practical and economical 

perspectives. The heterojunction catalyst was promptly recycled by centrifuging from 

the solution, and then used in another batch for experimentation without prior drying or 

calcination. Figure 4.22 shows that the Co3O4 /TiO2 catalyst maintains a high catalytic 
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performance for all recycling stages. The catalyst was recycled up to four times without 

any significant loss of catalytic efficiency (Figure 4.22). After the fourth cycle, 90% 

degradation was attained in contrast to 95% in the first cycle after 60 minutes of 

reaction time. This reduction in catalytic activity can be credited to the minor loss of the 

material during the sample centrifugation stage. 

 

Figure 4.22: Catalyst recyclability and efficiency after four runs 

 

4.9 Conclusion 

TiO2 nanoparticles were used as support material for Co3O4 to form a rod shaped 

Co3O4/TiO2 heterojunction catalyst using an organic binder mediated route instead of 

wet impregnation method. This was done in order to reduce the cobalt leaching that 

usually results for cobalt based catalyst since the toxicity of cobalt is a major concern in 

wastewater treatment. 

 

MO was utilized as a pollutant to evaluate the catalytic activity of the synthesized 

catalyst. Various ratios of Co3O4/TiO2 were used: the 70% Co3O4/TiO2 shows the lowest 

cobalt leaching, complete degradation just under 15 minutes of reaction of 40mg/L MO 
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was achieved in a solution of 200mL, containing 0.18g/l of PMS and 0.15g/L of 

Co3O4/TiO2 using a dark oxidation method at ambient temperature. 

 

As the COD removal was found to be 57% just after 60 minutes of catalytic reaction, the 

synthesize catalyst offers a significant reusability potential by centrifuging it back from 

the treated solution and using it in another experiment. For up to four recycling stages, 

the catalyst still showed a high catalytic performance, with only a minor decline in the 

fourth stage due to some particle loss during the centrifuging stage. 

 

As the synthesized catalyst reduced the cobalt leaching up to 97% as compare to the 

pristine material, it can be concluded that Co3O4 supported TiO2 catalyst successfully 

inhibited cobalt leaching while maintaining a good catalytic activity for the degradation of 

MO and other commercial dyes. 
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CHAPTER 5: SUMMARY OF RESULTS AND CONCLUSION 

5.1 Introduction 

This study presented a work on the degradation of an azo dye (MO) using an advanced 

oxidation process utilizing PMS and Co3O4/TiO2 heterojunction as a heterogeneous 

catalyst. Various researchers have reported the use of Co3O4 on various support 

materials for the degradation of recalcitrant and harmful organic contaminants with the 

aim of decreasing cobalt ions leaching (Anipsitakis et al., 2005; Chen et al., 2008; Yang 

et al., 2008; Wang et al., 2014; Muhammad et al., 2012; Liang et al., 2012). Regardless 

of some encouraging results on enhancing the catalytic activity and decreasing cobalt 

leaching, it is yet an incredible challenge to make the heterogeneous PMS activation 

innovation industrially practical (Hu et al., 2013). 

Therefore, an organic mediated route was used to synthesize the Co3O4/TiO2 

heterojunction, reducing the costs associated with the other production methods such 

as impregnation, hydrothermal processes and so on.  

The objectives of this study were to synthesize and evaluate the catalytic efficiency of a 

heterogeneous catalyst using cobalt oxide and TiO2 as a support, used for the 

degradation of azo dyes and potentially used in real textile wastewater effluent, with the 

end goal of minimizing cobalt leaching. This is a serious issue in catalysts of this nature. 

Moreover, there was a point-by-point study on the major operating parameters as well 

as the evaluation of catalyst reusability. 

5.2 Summary  

A Co3O4/TiO2 composite catalyst was successfully synthesized using Co3O4 nano-

particles anchored on TiO2 via an organic binder mediated route-using maleic acid as 

the organic binder. The results demonstrate that the composite catalyst has a rod-like 

structure composed of individual nanoparticles. The EDS results showed that at 600ºC 

the TiO2 does not exist as individual nanoparticles, but rather as possible dopant in the 

Co3O4 matrix or forming a TiO2:Co3O4 ‘alloy’ or hybrid material. 
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Different mol% ratio were produced – namely 98%, 95%, 90%, 85%, 80% and 70% 

Co3O4/TiO2 – with the catalytic activities evaluated on the degradation of MO as well as 

the degree of cobalt leaching. The results showed that chemically binding Co3O4 with 

TiO2 reduced cobalt leaching by 97% as compared to the pristine materials by ensuring 

strong Co-O-Ti bonds while maintaining a satisfactory catalytic activity. Moreover, 70:30 

Co3O4/TiO2 showed the lowest cobalt leaching than the rest of the composite materials 

prepared. In addition, Co3O4/TiO2 activated PMS and encouraged the development of 

surface Co–OH complexes, enhancing the formation of both sulphate and hydroxyl 

radical leading to higher catalytic efficiency. The addition of the composite catalyst to 

the PMS showed a degradation rate of 0.1257m-1, whereas the PMS has a degradation 

rate of 0.0487m-1 on its own without the addition of the composite catalyst for the same 

degradation time. 

 

Different operating parameters and their effect on the catalytic activity of the Co3O4/TiO2 

were discussed, namely initial dye concentration, PMS concentration, catalyst load, 

reaction temperature and the dye concentration. The optimum conditions (value) were 

chosen for the initial dye concentration and PMS concentration as well as catalyst load. 

An increase in temperature showed an increase in the catalytic efficiency. Complete 

degradation of MO was achieved within 10 minutes of adsorption time under these 

optimum operating parameters. 

 

The catalyst was also tested on a synthetic dye bath containing methyl red, methyl 

orange and golden yellow and was found to be effective in the degradation of these 

commercial dyes. In addition, complete colour removal and 95, 89 and 86% degradation 

for MO, MR and GY, respectively, were achieved. 

 

Since colour removal is a crucial step from an environmental point of view, the 

effectiveness of the catalyst to decolourized wastewater confirmed its feasibility in 

treating industrial wastewater. In addition, the novel heterojunction catalyst 
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demonstrated a high effectiveness for the mineralization of MO. It was found that 67% 

of the initial COD from the MO solution was removed within 30 minutes of reaction time.  

The centrifugation process achieved the recycling of Co3O4/TiO2 easily, with the 

material showing good recycling ability over four cycles without significant loss of its 

catalytic activity, suggesting that the catalyst is effective from both a practical and 

economic point of view.  

 

5.3 Conclusion 

A heterogeneous catalyst (Co3O4/TiO2 heterojunction structure) has been successfully 

synthesized. Its catalytic activity was evaluated by MO degradation. The prepared 

catalyst showed enhanced catalytic performance for the degradation of MO and 

commercial dye bath. 

 

5.4 Contribution 

This research produced a Co3O4/TiO2 heterojunction catalyst using a cost effective 

method (organic binder mediated route) as compared to the generally utilized method. 

Its catalytic efficiency, evaluated for various dyes, was found to be effective for 

complete colour removal, making it applicable in real textile wastewater treatment. The 

catalyst produced greatly inhibited cobalt leaching which is a great concern in PMS 

system using cobalt. Additionally, the study provided information on fundamental 

parameters for the treatment of wastewater. 

 

5.5 Recommendations  

This research focused on the development and catalytic performance of the Co3O4/TiO2 

heterojunction structure in PMS systems in order to inhibit cobalt leaching and increase 

the stability of Co3O4. However, it is clear that additional research work is necessary: 

 scaling up of the lab scale reactor to a larger volume; 

 toxicity studies of the produced material and products formed after the 

degradation of the dyes; and 

 usage of other organic binders, such as glucose.  
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APPENDICES 

Appendix A 

Table A.2: Experimental conditions for catalytic performance on MO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material MO (Ppm) PMS (g/L) Catalyst (g/L) 

Co3O4 40 0.2 0.15 

TiO2 40 0.2 0.15 

98% Co3O4/TiO2 40 0.2 0.15 

95% Co3O4/TiO2 40 0.2 0.15 

90% Co3O4/TiO2 40 0.2 0.15 

85% Co3O4/TiO2 40 0.2 0.15 

80% Co3O4/TiO2 40 0.2 0.15 

70% Co3O4/TiO2 40 0.2 0.15 

60 % Co3O4/TiO2 40 0.2 0.15 

50% Co3O4/TiO2 40 0.2 0.15 
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Table A.3: Raw data and real concentration calculation for catalytic performance of Co3O4 using various ratios on methyl orange 

 

concentrations 

Time 
(min) 

100% 
Co3O4 PMS 

98% 
Co3O4/TiO2 

95% 
Co3O4/TiO2 

90% 
Co3O4/TiO2 

85% 
Co3O4/TiO2 

80% 
Co3O4/TiO2 

70% 
Co3O4/TiO2 

60% 
Co3O4/TiO2 

50% 
Co3O4/TiO2 

0 40 40 40 40 40 40 40 40 40 40 

0.5 20.728 40 31.368 29.482 29.22 29.33 34.26 31.232 23.932 25.268 

1 11.06 40 29.672 28.178 26.698 26.876 30.928 28.28 21.182 24.907 

2 3.69 36.546 23.042 23.634 24.524 23.39 25.878 23.446 17.746 23.778 

5 2.956 31.994 16.072 15.608 16.016 12.578 18.022 14.554 10.332 9.7694 

10 2.83 24.106 8.75 8.882 7.696 5.386 10.038 8.14 4.912 5.3928 

15 2.754 19.112 6.376 5.812 5.546 5.352 7.714 5.73 4.67 4.2382 

30 2.68 9.578 4.534 4.414 4.598 3.98 5.888 4.158 3.298 3.273 

 

 

 
Ct/Co 

Time 

(min) 
100% Co3O4 PMS  

98% 
Co3O4/TiO2 

 95% 
Co3O4/TiO2 

 90% 
Co3O4/TiO2 

 85% 
Co3O4/TiO2 

 80% 
Co3O4/TiO2 

 70% 
Co3O4/TiO2 

60% 
Co3O4/TiO2 

50% 
Co3O4/TiO2 
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0 1 1 1 1 1 1 1 1 1 1 

0.5 0.5182 1 0.7842 0.73705 0.7305 0.8565 0.7464 0.7808 0.5983 0.6317 

1 0.2765 1 0.7418 0.70445 0.66745 0.773225 0.6719 0.707 0.52955 0.622674 

2 0.09225 0.91365 0.57605 0.59085 0.6131 0.64695 0.58475 0.58615 0.44365 0.59445 

5 0.0739 0.79985 0.4018 0.3902 0.4004 0.45055 0.380385 0.36385 0.2583 0.244235 

10 0.07075 0.60265 0.21875 0.22205 0.1924 0.25095 0.20642 0.2035 0.1228 0.13482 

15 0.06885 0.4778 0.1594 0.1453 0.13865 0.19285 0.1338 0.14325 0.11675 0.105955 

30 0.067 0.23945 0.11335 0.11035 0.11495 0.1472 0.0995 0.10395 0.08245 0.081825 

Ln (Co/Ct) 

Time 

(min) 
100% Co3O4 PMS  

98% 
Co3O4/TiO2 

 95% 
Co3O4/TiO2 

 90% 
Co3O4/TiO2 

 85% 
Co3O4/TiO2 

 80% 
Co3O4/TiO2 

 70% 
Co3O4/TiO2 

60% 
Co3O4/TiO2 

50% 
Co3O4/TiO2 

0 0 0 0 0 0 0 0 0 0 0 

0.5 0.657394011 0 0.243091189 0.305099546 0.314026048 0.154900961 0.292493629 0.247436244 0.513662979 0.459340681 

1 1.285544458 0 0.298675614 0.350337922 0.404290798 0.257185199 0.397645759 0.346724613 0.63572769 0.47373057 

2 2.383252996 0.090307713 0.551560816 0.526193101 0.489227224 0.435486267 0.536570874 0.534179549 0.812719316 0.52011867 

5 2.605042451 0.223331069 0.911800827 0.941095851 0.915291232 0.79728622 0.966571381 1.011013584 1.353633579 1.409624402 

10 2.648602742 0.506418682 1.519825754 1.504852697 1.648178741 1.382501563 1.577842351 1.592089274 2.097198263 2.003814724 

15 2.675825054 0.738563044 1.836338513 1.928954708 1.975802507 1.645842594 2.011409131 1.943163923 2.147720382 2.244740803 

30 2.70306266 1.429410652 2.177274902 2.204098146 2.163258028 1.915963073 2.307597635 2.263845265 2.49556323 2.503172459 

 Rate 1.1864 0.0487 0.1088 0.1213 0.1269 0.1095 0.1268 0.1257 0.1853 0.1888 
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constant 

(k) 

 

 

 

 

 
 

 

Table A.4: raw data of the catalytic performance of 70% at various calcinations temperatures 

 

Concentration at various calcinations temperatures 

time   350ºC 400ºC 500ºC 600ºC 700ºC 800ºC 900ºC 

0 40 40 40 40 40 40 40 

0.5 31.232 26.7554 34.1934 33.109 38.1966 32.1326 28.586 

1 28.28 24.3214 32.4636 31.9326 38.0072 31.3916 28.125 

2 23.446 20.0724 29.3104 27.8414 34.3812 28.3918 27.1656 

5 14.554 14.4222 20.2056 20.5394 28.6888 24.8874 21.9196 

10 8.14 7.3856 12.3252 13.4876 21.26 18.4674 15.9594 

15 5.73 4.3152 8.5798 9.0442 15.8726 14.4558 12.3918 

30 4.158 2.9558 4.3936 4.028 7.2692 6.5608 5.4578 

Ct/Co 

 
      

1 1 1 1 1 1 1 

0.7808 0.668885 0.854835 0.827725 0.954915 0.803315 0.71465 
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0.707 0.608035 0.81159 0.798315 0.95018 0.78479 0.703125 

0.58615 0.50181 0.73276 0.696035 0.85953 0.709795 0.67914 

0.36385 0.360555 0.50514 0.513485 0.71722 0.622185 0.54799 

0.2035 0.18464 0.30813 0.33719 0.5315 0.461685 0.398985 

0.14325 0.10788 0.214495 0.226105 0.396815 0.361395 0.309795 

0.10395 0.073895 0.10984 0.1007 0.18173 0.16402 0.136445 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ln Ct/Co 

0 0 0 0 0 0 0 

0.24743624 0.40214313 0.15684681 0.18907431 0.04613295 0.21900836 0.3359624 

0.34672461 0.49752283 0.20875999 0.22525202 0.05110384 0.24233911 0.3522206 

0.53417955 0.68953372 0.31093705 0.36235533 0.15136955 0.34277908 0.386928 

1.01101358 1.02011077 0.68291966 0.66653446 0.33237265 0.4745178 0.6014982 

1.59208927 1.6893473 1.17723351 1.08710871 0.63205208 0.77287244 0.9188315 

1.94316392 2.22673578 1.53946885 1.48675579 0.9242851 1.01778374 1.1718445 

2.26384526 2.60511011 2.20873052 2.29560948 1.70523321 1.80776691 1.9918337 
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Table A.5 : raw data cobalt leaching for various cobalt loading and effect of calcinations temperatures on cobalt ions leaching  

 
calcination 

temperature ºC 

cobalt leaching 

(mg/L) 

350 1.909 

500 1.0211 

600 0.978 

700 2.415 

800 4.048 

900 7.161 

 

Table A.6: Raw data and real concentration calculation for the effect of dye concentration on the degradation of MO of 70% 

Co3O4/TiO2 

Concentration Ln Ct/Co 

(40ppm) (60ppm) (80ppm) (100ppm) (200ppm) (40ppm) (60ppm) (80ppm) (100ppm) (200ppm) (40ppm) (60ppm) 

40 60 80 100 200 0 0 0 0 0 0 0 

cobalt ratio 

mol% 

cobalt leaching 

(mg/L) 

 100% 26.7 

98% 10.95 

95% 9.668 

90% 3.56 

85% 3.07 

80% 1.982 

70% 1.909 

 60% 6.446 

50% 6.862 
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29.22 48.766 51.421 80.28 158.849 0.231428 0.361161 0.314026 0.207311 0.44198 0.21965 0.230363 

26.698 37.524 49.033 78.096 152.087 0.451771 0.504071 0.404291 0.469364 0.489533 0.247231 0.273865 

24.524 33.789 44.76 75.685 144.884 0.69555 0.525826 0.489227 0.574209 0.580712 0.27859 0.322384 

16.016 25.092 35.745 66.419 120.591 1.260896 1.039212 0.915291 0.871795 0.805616 0.409187 0.505913 

7.696 18.147 27.799 53.475 103.431 1.779041 1.640241 1.648179 1.195839 1.057027 0.625956 0.659413 

5.546 13.679 22 43.806 89.3882 2.148149 2.023944 1.975803 1.478483 1.290984 0.825399 0.805329 

4.598 7.817 12.25 30.628 65.105 2.230264 2.328929 2.163258 2.038044 1.876501 1.183256 1.122316 

 

Table A.7: data and real concentration calculation for the effect of catalyst load on the degradation of MO of 70% Co3O4/TiO2 

 

Concentration (mg/L) Ln Ct/Co 

0.01 0.02 0.03 0.05 0.08 time  ln 0.01 ln 0.02 ln 0.03 ln 0.05 ln 0.08 

40 40 40 40 40 0 0 0 0 0 0 

29.172 29.234 29.482 26.674 20.902 0.5 0.31567 0.313547 0.3051 0.40519 0.649035 

27.854 27.058 28.178 24.152 18.942 1 0.361903 0.390897 0.350338 0.504512 0.747498 

26.332 24.38 23.634 19.658 17.166 2 0.418095 0.495116 0.526193 0.710395 0.845949 
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19.896 17.494 15.608 11.1558 7.954 5 0.698361 0.827021 0.941096 1.27692 1.615205 

13.638 11.342 8.882 5.416 4.914 10 1.076019 1.260367 1.504853 1.999522 2.096791 

9.556 6.63 5.812 4.446 4.262 15 1.43171 1.797275 1.928955 2.196875 2.239141 

4.166 4.066 4.414 3.656 3.49 30 2.261923 2.28622 2.204098 2.39251 2.438978 

 

Table A.8: data and real concentration calculation for the effect of PMS load on the degradation of MO of 70% Co3O4/TiO2 

 

Concentration (g/L) Ct/Co 

time  0.02 0.03 0.035 0.04 0.10 0.02 0.03 0.04 0.10 

0 40 40 40 40 40 1 1 1 1 

0.5 31.824 30.536 29.856 28.724 24.616 0.7956 0.7634 0.7181 0.6154 

1 29.594 27.766 26.876 26.742 21.802 0.73985 0.69415 0.66855 0.54505 

2 26.288 25.294 23.39 22.864 18.5 0.6572 0.63235 0.5716 0.4625 

5 19.75 17.474 15.2154 14.738 7.444 0.49375 0.43685 0.36845 0.1861 

10 13.624 10.536 8.2568 8.038 5.666 0.3406 0.2634 0.20095 0.14165 

15 10.046 6.492 5.352 5.66 4.448 0.25115 0.1623 0.1415 0.1112 

30 5.814 4.586 3.98 4.22 3.466 0.14535 0.11465 0.1055 0.08665 

 


