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Impact of high-frequency pumping on anomalous finite-size effects in three-dimensional
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Anastasiia A. Pervishko,1 Dmitry Yudin,1 and Ivan A. Shelykh1,2

1ITMO University, Saint Petersburg 197101, Russia
2Science Institute, University of Iceland, Dunhagi 3, Reykjavik IS-107, Iceland

(Received 29 September 2017; published 16 February 2018)

Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers
results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This
phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between
the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological
insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used
to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation
theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the
gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by
adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect
of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.
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I. INTRODUCTION

The use of topological ideas has become increasingly
ubiquitous in modern condensed-matter physics [1–5] since the
pioneering work on the quantum Hall effect [6]. Particularly,
the theory of phase transitions was dramatically revolutionized
with the advent of the concept of topological order: the forma-
tion of phases of matter is no longer associated with the emer-
gence of spontaneous symmetry breaking and corresponding
order parameter, but with the emergence of a topological
invariant in Hilbert space that is specified uniquely by the
properties of the occupied Bloch states [7,8]. Furthermore, the
subsequent observation of quantum spin Hall effect in certain
semiconducting structures with strong spin-orbit coupling
[9–12] has intensified the search for different topological
phases of matter. Among them is the recently predicted [13–
17] and experimentally realized [18–20] three-dimensional
topological insulator (TI): a system which behaves like an
insulator in the three-dimensional bulk but supports gapless
conducting electronic modes at the two-dimensional bound-
aries protected by time-reversal symmetry. The conduction is
attributed to the presence of extended edge or surface states
which possess a remarkable property of topological protection.
It is predicted that the electrons traveling along the surface are
immune against the backscattering and preserve their quantum
phase coherence over a long distance despite the presence of
impurities, interactions, and external fields [4,5,21]. Despite
enormous progress in the study of TIs they still remain an
extremely active area of research due to unique electronic
and optical properties allowing potential applications in the
emerging domain of quantum technologies [22,23].

Typically, Bi2Se3, representing a system of stacked quin-
tuple layers with rather weak coupling between them, is
considered a paradigmatic strong three-dimensional TI. The
formation of a single Dirac cone in this compound has

been clearly justified with angle-resolved photoemission spec-
troscopy (ARPES) [24] and scanning tunneling microscopy
(STM) [25] measurements. Being deposited in the form of
thin films the spectrum of surface states of this material was
shown to be gapful, if the thickness of a layer is below 10 nm
due to certain interference between top and bottom states
[26–29]. Further increase of the layer thickness results in the
gap collapse.

At the same time, using the coupling to an external
electromagnetic field opens up interesting opportunities to
study exotic states of hybrid light-matter nature [30–40].
For highly intense lasers light-matter coupling is sufficiently
strong to cause the breakdown of standard perturbative ex-
pansion. In such cases, the most suitable approach is based
on Floquet-Magnus-type expansion [41–43] allowing us to
map the time-dependent problem into an effective stationary
one. Topological classification has been further generalized
to the systems driven out of equilibrium with time-periodic
pumping [44], leading, in particular, to the concept of Floquet
TI [45–49]. In the latter case, a system exhibits a single pair
of helical edge modes in the gap of its quasienergy spectrum
due to the light-induced band inversion. It turns out that even
a conventional band insulator can be driven to a topologically
nontrivial phase with on-resonant field which gives rise to the
Floquet band reshuffling [45].

Furthermore, the idea of utilizing off-resonant pumping
to drive low-dimensional electronic systems to nontrivial
topological phases has also been pushed forward [50–54].
For high-frequency electromagnetic fields the real processes
of photon absorption or emission cannot occur because of
the constraints imposed by the energy conservation. However,
off-resonant light can affect the electron system via virtual
processes, leading thus to the pronounced band-structure renor-
malization [55–61]. Meanwhile, almost no attention was paid
to the idea of using high-frequency electromagnetic radiation
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FIG. 1. Geometry of the system discussed in the text: a slab
of three-dimensional TI of the thickness L is pumped with an
intense linearly polarized field propagating normally to its surface.
Throughout the calculations we assume L � λ, the wavelength of
the driving, which validates neglecting coordinate dependence of the
field.

to the finite-size systems despite its potential impact on the
realization of all-optical control in topological systems. In this
paper we show that light-matter coupling leads to substantial
renormalization of the bare Hamiltonian of a three-dimensional
TI. We develop a theoretical description of a thin slab of Bi2Se3

driven by intense high-frequency pumping within Brillouin-
Wigner perturbation-theory approach [53] to show that the
anomalous finite-size effects in the spectrum of surface states
are sensitive to the intensity of the driving. The rest of the
paper is organized as follows: In Sec. II we derive an effective
time-independent Hamiltonian, study dispersion relation of
corresponding surface states for a semi-infinite sample in
Sec. III A and a finite slab of TI in Sec. III B and demonstrate
that the values of the gap and the components of the group
velocity of the surface states can be manipulated by purely
optical means. We summarize our findings in Sec. IV.

II. EFFECTIVE TIME-INDEPENDENT HAMILTONIAN

We start our analysis with the four-band model of a three-
dimensional TI in the vicinity of the � point. The correspond-
ing Hamiltonian can be derived within k · p theory with a
proper account of corresponding crystalline symmetries,

H = Ek +
(

Mkτ̂z + A1kzτ̂x A2k−τ̂x

A2k+τ̂x Mkτ̂z − A1kzτ̂x

)
, (1)

where the three-dimensional wave vector k = (kx,ky,kz) speci-
fies the electron states, Ek = C + D1k

2
z + D2k

2
⊥ (without loss

of generality, in the following we put D2 = 0), Mk = B0 −
B1k

2
z − B2k

2
⊥, with k± = kx ± iky and k2

⊥ = k2
x + k2

y , while
the parameters A1, A2, B0, B1, B2, D1, and C have to be fit
to the results of ab initio simulations [19]. The Hamiltonian
(1) is written in the basis of hybridized p-orbital states of Bi
(P 1) and Se (P 2) with a given parity (±) and spin projection
{|P 1+

z , ↑〉,|P 2−
z , ↑〉,|P 1+

z , ↓〉,|P 2−
z , ↓〉}. The former expan-

sion is legitimate in a narrow region around the Fermi level. In
the expression (1) we defined a set of Pauli matrices τ̂x and τ̂z.

We work in the geometry schematically shown in Fig. 1.
Assume the TI is pumped with a time-periodic electromagnetic
field E = E0 sin ωt propagating along the z axis normal to the
surface of TI. With extremely high accuracy for an ultrathin
system L � λ, where L is the thickness of the layer of TI and
λ corresponds to the wavelength of the driving, one can neglect

the variation of the field in the z direction inside the bulk of
TI. The driving field is supposed to be linearly polarized along
y axis, E0 = E0 ŷ, with the amplitude E0 and the frequency
ω. Time dependence is induced to the Hamiltonian (1) via the
minimal coupling to the field k → k − γ ŷ cos ωt , where γ =
eE0/(h̄ω). In the high-frequency regime no real absorption or
emission of light quanta can happen—electrons cannot follow
rapid oscillations of the driving field. Meantime, one may write
down an effective time-independent Hamiltonian using the
high-frequency expansion in the form of the Brillouin-Wigner
perturbative approach that has been recently suggested for this
class of problems [53].

In order to obtain the renormalized parameters of the Hamil-
tonian (1) we proceed by estimating the terms proportional to
1/ω2 (see Appendix A for computational details). Similar to
[54] for a given field polarization the contribution due to 1/ω

vanishes, and we arrive at

Heff = Ek +
(

M̃kτ̂z + Ã1kzτ̂x (Ã2xkx − iÃ2yky)τ̂x

(Ã2xkx + iÃ2yky)τ̂x M̃kτ̂z − Ã1kzτ̂x

)
,

(2)
with Ã1 = A1(1 − a − b), Ã2x = A2(1 − a − b), Ã2y =
A2(1 − 2aB0B2/A

2
2 + 7b), and M̃k = M̃ − B̃1k

2
z −

B̃2k
2
⊥ − 2aB2k

2
y , on the condition that a = [A2γ /(h̄ω)]2,

b = [B2γ
2/(4h̄ω)]2, B̃i = (1 − a)Bi , and M̃ = B̃0 − (2 −

a)B2γ
2/4. Indeed, our calculations unambiguously determine

renormalization of the parameters of the Hamiltonian. The
comparison with the noninteracting case (1) shows that the
effect of renormalization is substantial. Noteworthy, we consi-
der the effect of high-frequency driving on low-energy bands
exclusively and suppose that optical processes that somehow
involve high-energy bands have no pronounced consequences
on low-energy states.

III. BAND STRUCTURE OF SURFACE STATES

In this section we discuss the dispersion relation of surface
states of a three-dimensional TI described by the Hamiltonian
(2). We consider two different geometries: semi-infinite TI and
finite slab of thickness L. It turns out that the former case
allows analytical treatment, whereas for the latter we provide
the results of the numerical simulations.

A. Semi-infinite geometry

Remarkably, for a certain geometry we can make use of
the Hamiltonian (2) to obtain analytically the spectrum of the
surface states. We consider a three-dimensional TI, occupying
the semispace z < 0 and contacting with a standard band
insulator (z > 0), so that at the boundary z = 0 surface states
are present, provided that the wave function ψ(x,y,z = 0) =
0. In the vicinity of the � point (k = 0) the Hamiltonian
allows a pair of doubly degenerate surface states. To gain
further analytical insight we put C = D1 = 0. Thanks to the
translational symmetry along x and y directions components
of quasimomentum kx and ky are the good quantum numbers,
whereas kz → −i∂z has to be replaced, leading thus to the
Schrödinger equation H̃ (−i∂z)ψ(z) = εψ(z) at the � point.
Two independent doubly degenerate solutions of this equation
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are ψi(z) = (e−κ+z − e−κ−z)|ψi〉 (i = 1,2) with

|ψ1〉 = 1√
2

⎛
⎜⎝

1
i

0
0

⎞
⎟⎠, |ψ2〉 = 1√

2

⎛
⎜⎝

0
0

−1
i

⎞
⎟⎠, (3)

where we defined

κ± = [f1 − f2 ±
√

f1(f1 − 2f2)]1/2, (4)

provided that the values of f1 = Ã2
1/(2B̃2

1 ) and f2 = M̃/B̃1 are
determined by the parameters of the renormalized Hamiltonian
(2). If we project the effective time-independent Hamiltonian
(2) to the subspace spanned by the surface states {ψ1(z),ψ2(z)},
and keep the terms linear in kx and ky we derive the standard
Hamiltonian of surface states with the velocities renormalized
by the electromagnetic field,

H = h̄(vykyσ̂x − vxkxσ̂y), (5)

where vx = Ã2x/h̄ and vy = Ã2y/h̄. The set of Pauli matrices
σ̂x and σ̂y act in spin space. The expression (5) reproduces
the celebrated result v0 = vx = vy = A2/h̄ in the absence of
external pumping. Meanwhile, the presence of the driving
makes the motion of electrons along x and y directions
inequivalent. To estimate how pronounced the predicted effect
is we make use of the following parameters: h̄ω = 1 eV

and eE0 = 0.1 eV Å
−1

, which can be achieved in up-to-date
experimental facilities. In particular, for Bi2Se3 this results in
the velocity vx = 0.94 v0 and vy = 1.06 v0 being anisotropic
and slightly bigger in the direction of field polarization.

Instructively, if one starts directly with the Hamiltonian of
the surface states h̄v0(σ̂ × k)z and develops high-frequency
expansion, one can clearly see that only vx is renormalized
[59]. The latter results from the fact that the only relevant
parameter in this model is the Fermi velocity at the Dirac
point which inherits the microscopic parameter A2 exclusively.
The results of our derivation in this case suggest that vx =
v0[1 − (v0γ /ω)2] and vy = v0 which is in line with Ref. [59].

B. Thin-film topological insulator

Consider an ultrathin TI of the thickness L in z direction
and infinite in x and y directions as schematically shown in
Fig. 1. To identify the spectrum of surface states we solve
the Schrödinger equation with the renormalized Hamilto-
nian upon imposing hard-wall, or surface, boundary condi-
tions [26,28,29,62,63], according to which the wave function
ψ(x,y; z = 0,L) = 0 at the surfaces where TI terminates. Note
that in our analysis we do not consider correcting surface
potentials as proposed in Ref. [64]. Working out the eigenvalue
problem with the Hamiltonian (2) leads to the dispersion
relation in the form (see Appendix B for derivation)

∑
±

[
tanh(λ±L/2)

tanh(λ∓L/2)
− λ±

λ∓

(
1 ± D2

1 − B2
1

D2
1 − B̃2

1

√
R

Ã2
1

)]
= 0, (6)

provided that

λ± =
[

F ± √
R

2
(
D2

1 − B̃2
1

)
]1/2

, (7)

FIG. 2. Dispersion relation of topologically protected surface
states of a three-dimensional TI of thickness L = 4 nm in the absence
of the field (marked with black solid lines) and for the field with
the amplitude E0 = 1.7 × 108 V/m and frequency ω = 600 THz
(marked with red dashed line at ky = 0 and blue dash-dotted line
at kx = 0). It is clear that the value of a gap in the spectrum can
be tuned by changing the parameters of the field. The value of the
field-renormalized gap �E is smaller than that of the bare one, �0.

where F = (l+ + l−)D1 + (l+ − l−)B̃1 − Ã2
1, R = F 2 − 4

(D2
1 − B̃2

1 )[l+l− − (Ã2xkx)2 − (Ã2yky)2], and l± = C ± M̃k
∓ B̃2k

2
⊥ − ε.

Equation (6) implicitly determines spectrum of the surface
states εk(L) of a thin-film TI depending on the thickness L of
a layer. In contrast to the case with no radiation present in the
system for which the energy dispersion is purely defined by k⊥,
the presence of light makes the system in question effectively
anisotropic in (kx,ky) space as shown in Fig. 2 (we discuss
the details of numerical simulations in Appendix B). When
the thickness of a layer decreases down to a few nanometers
a gap opens up at the � point and top and bottom surface
states become hybridized. The latter suggests a wide range of
potential applications of Bi2Se3 as such a structure preserves
its nice topological properties before finite-size effects come
into play at L � 10 nm, which is in marked contrast with its
two-dimensional counterparts [62]. It was recently shown that
the latter stems from the rather short localization length of the
topologically protected states which results from a very large
charge-excitation gap in the bulk. Noteworthy, in our numerical
simulations to model the properties of Bi2Se3 we utilize the
following parameters [19]: C = 6.8 × 10−3 eV, B0 = 0.28 eV,

A1 = 2.2 eV Å, A2 = 4.1 eV Å, B1 = 10 eV Å
2
, B2 = 56.6

eV Å
2
, D1 = 1.3 eV Å

2
, and D2 = 19.6 eV Å

2
.

For experimentally accessible field intensities the applica-
tion of an external driving allows us to reduce substantially the
value of a gap. The corresponding phase diagram revealing a
delicate interplay between the thickness of a thin-film three-
dimensional TI and parameters of the field on the value of the
gap is plotted in Fig. 3. An interesting observation is that the
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FIG. 3. Phase diagram representing how the value of the gap at the
� point (marked with colors) in the spectrum of surface states of TI
depends on parameters of the field. For a given layer thickness one can
apparently detect the tendency towards light-induced band inversion
(blue area in the right-hand side) upon increasing field intensity and
passing through gapless region denoted with a white solid line.

coupling of the system to an external electromagnetic radiation
not only leads to the suppression of anomalous finite-size
effects, but also may potentially be exploited to induce band
inversion in the spectrum of surface states for rather moderate
fields as demonstrated in Fig. 3. In particular, for a given
layer thickness, slightly below 7 nm, the system undergoes
topological phase transition along the white line in Fig. 3 where
the gap collapses from a topologically nontrivial phase (red
area) to a topologically trivial state (blue area).

IV. CONCLUSIONS

In summary, we have investigated anomalous finite-size
effects in three-dimensional TIs subjected to an intense off-
resonant linearly polarized electromagnetic radiation. The
high-frequency expansion reveals that the gap in the spectrum
of surface states is quite sensitive to the parameters of the field,
and can be suppressed with an increase of intensity within an
experimentally accessible range. Intensity of field also affects
the components of the Fermi velocity and can lead to the band
inversion. These effects may find interesting application in
optically controlled spintronics.
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APPENDIX A: HIGH-FREQUENCY EXPANSION

The Hamiltonian of a three-dimensional topological insu-
lator at the � point (in the following we focus on Bi2Se3) can
be written as

H = Ek +

⎛
⎜⎜⎝

Mk A1kz 0 A2k−
A1kz −Mk A2k− 0

0 A2k+ Mk −A1kz

A2k+ 0 −A1kz −Mk

⎞
⎟⎟⎠, (A1)

where we have defined Ek = C + D1k
2
z + D2k

2
⊥, Mk = B0 −

B1k
2
z − B2k

2
⊥, k2

⊥ = k2
x + k2

y , and k± = kx ± iky . Being placed
to the external field the Hamiltonian acquires time depen-
dence via Peierls substitution ky → ky − eE0 cos(ωt)/(h̄ω)
(as pointed out in the text we consider a linearly polarized
pump field along the y direction). Thus,

H (t) = h0 + 2h1 cos(ωt) + 2h2 cos(2ωt), (A2)

where

h0 = E ′
k +

⎛
⎜⎜⎝

M ′
k A1kz 0 A2k−

A1kz −M ′
k A2k

′
− 0

0 A2k
′
+ M ′

k −A1kz

A2k
′
+ 0 −A1kz −M ′

k

⎞
⎟⎟⎠, (A3)

h1 = −γD2ky + γ

2

⎛
⎜⎜⎝

2B2ky 0 0 iA2

0 −2B2ky iA2 0
0 −iA2 2B2ky 0

−iA2 0 0 −2B2ky

⎞
⎟⎟⎠,

(A4)

h2 = γ 2

4

⎛
⎜⎜⎝

D2 − B2 0 0 0
0 D2 + B2 0 0
0 0 D2 − B2 0
0 0 0 D2 + B2

⎞
⎟⎟⎠,

(A5)

provided that E ′
k = C + D2γ

2/2 + D1k
2
z + D2k

2
⊥, M ′

k =
B0 − B2γ

2/2 − B1k
2
z − B2k

2
⊥. Within the paradigm of high-

frequency expansion in the form of Brillouin-Wigner perturba-
tion theory the effective Hamiltonian up to terms proportional
to 1/ω2 can be written as follows:

Heff = h0 + 2

(h̄ω)2

∑
n=1,2

hn[h0,hn]

n2
+ [[h2,h1],h1]

(h̄ω)2
. (A6)

After some algebra we derive the expression (2) of the main
text. Note that upon doing high-frequency expansion we
project out the Floquet Hamiltonian (A2) to the zero-photon
subspace (see Ref. [53] for more details). To give a simple
quantitative estimation of validity of theoretical formalism
developed here we evaluate the maximum instantaneous en-
ergy of the time-dependent Hamiltonian (A2) averaged over
a period of the field 1

T

∫ T

0 max{spec||H (t)||} < h̄ω. Thus,
in the vicinity of the � point the field parameters have to
meet the condition γ

√
A2

2 + B2
2γ 2/(2h̄ω) < 1. Particularly,

in the high-frequency regime for an external pumping h̄ω �
0.25 eV one can estimate eE0 ∼ 0.2(h̄ω)3/2 (eV Å

−1
). While

for experimentally accessible parameters, discussed in the

main text, eE0 = 0.1 eV Å
−1

and h̄ω = 1 eV, one obtains
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γ = 0.1 Å
−1

which quantitatively validates the use of high-
frequency expansion.

APPENDIX B: DERIVATION OF
THE DISPERSION RELATION

To get the dispersion relation of surface states of a thin
slab of TI (infinite in both x and y directions) one must
solve the corresponding Schrödinger equation Heff (kx,ky, −
i∂z)ψ(z) = Eψ(z). The Eigenvalue problem with the trial
solution in the form ψ(z) ∼ eλz results in

ψ±α1(z) =

⎛
⎜⎜⎝

λD+ − L− + E

−iλÃ1

0
Ã2xkx + iÃ2yky

⎞
⎟⎟⎠e±λαz (B1)

and

ψ±α2(z) =

⎛
⎜⎜⎝

Ã2xkx − iÃ2yky

0
iλÃ1

λD− − L+ + E

⎞
⎟⎟⎠e±λαz, (B2)

where D± = D1 ± B1 and L± = C ± B0 + (D2 ∓ B2)k2
⊥,

while λα (α = 1,2) are two independent roots of the secular
equation det||Heff (kx,ky, − iλ)|| = 0. Switching to the basis
which links the states (kx,ky) with those of (−kx, − ky) by
inversion determined by

ψ̃±αβ = 1
2 (ψ±αβ ± (−1)βψ∓αβ ), (B3)

we search for the general solution in the form

ψ(z) =
∑
γ=±

∑
α,β=1,2

Cγαβψ̃γαβ(z), (B4)

which leads to the dispersion (6) upon imposing the boundary
conditions ψ(0) = ψ(L) = 0

To solve Eq. (6) of the main text numerically we look at
the points of (kx,ky) where (6) changes sign as a function
of E on the condition that the basis functions are linearly
independent at this points. The thus obtained solution is shown
in Fig. 2.
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