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Abstract

Influenza viruses are single-stranded RNA (ssRNA) viruses, which are divided into three
distinct genera: A,B and C. Their genome is divided into eight segments. Whilst the in-
fluenza types B and C evolve slowly, viruses of the type A evolve very fast, causing mild
to severe infections, and are a constant harm for the human race. Beside the usual ge-
netic mutations for altering the genetic information, the genomes content can randomly
be altered by reassortment events. In this case a host cell has to be co-infected by two
(or even more) influenza viruses, which emerge as a new virus containing segments of
both (all co-infecting) ancestors.
Beside this special case of reassortment events the influenza A virus already has a very
high mutation rate. The reason of the fast genetic alteration and the resulting evasion
of the host immune system, is a proofreading-lacking polymerase. Especially genetic
alterations in one of the two major surface glycoproteins - Haemagglutinin (HA) - can
have massive influence considering the ability of the virus to infect people. This protein
shows preferred amino acids that are under extreme selective pressure. Additionally HA
is of substantial importance for infecting host cells. Genetic alterations in this protein is
one reason influenza A viruses are constantly able to evade the host immune system,
because they are targeted by antibodies. Exogenous materials are specifically recog-
nized by the host immune system and is very specific for some surface amino acids or
their properties. Already little changes in sites known to be important for evading host
responses can cause the evasion of the virus, because the binding and therefore the
inactivation through antibodies is affected. The high mutation rate of the influenza A
virus, especially in the HA protein causes the need for almost annual vaccinations.
Changes in these preferred amino acids are involved in adaption to an increasingly im-
mune population and are of major interest, because they provide the ability to reinfect
the population.
We want to establish a fully automated framework for data download and determining
sites of proteins under selection, utilizing a user-friendly and user-individual input. Com-
bining existing tools into a user-friendly pipeline will make it more easy for biologists to
find sites under selection.
In this work we introduce such a pipeline, called IPoSuS (Identify Patches of Sites under
Selection) and use it for analysis of the influenza A virus protein HA. Furthermore, IPo-
SuS can be applied onto every single dataset and protein with given sequences and
according background data. Based on already existing datasets for evaluation we ad-
ditionally tested new statistical approaches to find sites under positive selection, which
makes it possible to not only use the gold standard, but also ω-values, including more
information than only counts of synonymous and non-synonymous mutations, to make
the results more convincing and more factful.
Using IPoSuS for the protein HA of different influenza A virus subtypes results into some
new findings regarding host and subtype specificities. The obtained results favor one of



the five approaches tested, namely the already established AdaPatch approach using a
newly introduced counting scheme. But the results also confirm the possible usage of
the approaches using ω-ratios and ω-values and the newly introduced statistical test.
The only downside of these new approaches are the fewer amount of results, compared
to the established and favored one.



Zusammenfassung

Influenza Viren sind einzelsträngige RNA Viren, welche in drei unterschiedliche Typen
unterteilt werden: A, B und C. Sie alle besitzen ein in acht Segmente unterteiltes Genom.
Während Viren vom Typ B und C eher langsam im Menschen evolvieren, evolvieren Vi-
ren vom Typ A sehr schnell und verursachen milde bis schwere Erkrankungen. Sie sind
daher eine ständige Gefahr für den Menschen. Neben den üblichen genetischen Mu-
tationen zur Veränderung des Erbguts hat Influenza die Fähigkeit zur Reassortierung.
In diesem Fall muss eine Wirtszelle gleichzeitig von zwei (oder mehr) unterschiedlichen
Influenza Viren befallen sein, welche als neuer Virus von der Wirtszelle hervorgebracht
werden und Segmente von beiden (allen) gleichzeitig infizierenden Vieren enthalten.
Neben diesem speziellen Fall von Reassortierungen haben Influenza A Viren bereits
eine hohe Mutationsrate. Ursache für die schnelle genetische Veränderung und die da-
mit verbundene Umgehung des Immunsystems des Wirts, ist eine Polymerase der eine
proofreading-Untereinheit fehlt. Speziell genetische Veränderungen in einem der beiden
Oberflächenglykoproteinen - Hämagglutinin (HA) - können massive Auswirkungen auf
die Fähigkeit des Virus haben, Menschen zu infizieren. Dieses Protein zeigt bevorzugte
Aminosäuren auf, welche unter extremen Selektionsdruck stehen. Genetische Verän-
derungen in diesem Proteinen ist einer der Hauptgründe dafür, dass Influenza A Viren
das Immunsystems des Wirts umgehen können, da dieses bevorzugt von Antikörpern
erkannt wird. Exogenes Material wird sehr spezifisch durch das Immunsystem erkannt
und ist sehr speziell auf die Oberläche einiger Aminosäuren und deren Eigenschaften
angepasst. Schon kleine Veränderungen an bekannten, wichtigen Stellen können zum
Umgehen der Immunantwort des Wirts führen, da die Bindung und damit die Markie-
rung durch Antikörper beeinträchtig ist. Die hohe Mutationsrate von Influenza A Viren,
speziell im HA protein, ist der Grund für die Notwendigkeit von jährlichen Impfungen.
Da Veränderungen in diesen bevorzugten Aminosäuren an der Adaption und Reinfek-
tion an die zunehmend immunisierten Gesellschaft beteiligt sind, sind sie von größtem
Interesse.
Wir wollen nun einen vollautomatischen Arbeitsablauf für den Datendownload und wei-
tere Analysen etablieren, welcher Bereiche des Proteins bestimmt, die sich unter Se-
lektionsdruck befinden und dabei eine benutzerfreundliche und individuelle Eingabe er-
möglicht. Die Kombination aus schon existierenden Tools und einem automatischen,
benutzerfreundlichen Arbeitsablauf, wird es jedem Biologen ermöglichen Bereiche un-
ter Selektionsdruck zu finden.
In dieser Arbeit führen wir genau einen solchen Arbeitabslauf ein, genannt IPoSuS
(Identify Patches of Sites under Selection), und verwenden ihn für Analysen des HA
Proteins des Influenza A Viruses. Daneben bietet IPoSuS auch die Möglichkeit für je-
den möglichen Datensatz und jedes Protein verwendet werden zu können, sofern die
Sequenzen gegeben und dazugehörende Hintergrunddaten vorhanden sind. Auf Grund-
lage von schon bestehenden Datensätzen zur Evaluation wurden zusätzlich neue sta-



tistische Ansätze zur Auffindung von Positionen unter selektiven Druck getestet, welche
es möglich machen, nicht die Standardmethode verwenden zu müssen, sondern auch
ω-Werte, welche mehr Informationen beinhalten als die Anzahl von synonymen und
nicht synonymen Mutationen, um das Ergebnis aussagekräftiger und überzeugender
zu machen.
Die Verwendung von IPoSuS für das HA protein von verschiedenen Subtypen des In-
fluenza A viruses resultierte in einigen neuen Erkenntnissen bezüglich der Wirts und
Subtypspezifität. Die erhaltenen Resultate bevorzugen einen der fünf getesteten Ansät-
ze, nämlich den bereits etablierten AdaPatch ansatz mit einer neu eingeführten Zähl-
methode. Aber die Ergebnisse bestätigt gleichzeitig die Verwendbarkeit der Ansätze,
die ω-ratios und ω-Werte und den neu eingeführten statistischen Test verwenden. Der
einzige Nachteil dieser neuen Ansätze ist die verhältnismäßig kleinere Anzahl an Er-
gebnissen, verglichen zum etablierten und favorisierten Ansatz.
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1 Introduction

This chapter serves the purpose of understanding of the following work and is needed
to understand the thesis as a whole, containing crucial information about the virus and
all used bioinformatic and mathematic tools or methods.

1.1 Motivation

Among diseases caused by viral infection one of the most important is caused by in-
fluenza A viruses. Causing a respiratory disease this virus gets transmitted by droplets
of body fluids, e.g. tears and salivary [56]. Infecting healthy individuals the influenza A
virus causes a mild to severe disease resulting in around 5 million infections each year.
Infections especially among the young and elderly can result in serious illness, causing
around 500.000 deaths per year [47]. By recommending a vaccine strain every year
the World Health Organization (WHO) reduces the health and the resulting worldwide
economical burden. The vaccine grants a temporary immunity, which humans could not
achieve in the last hundreds of years, or at least reduces the risk of getting infected by
the current dominant influenza A virus strain, resulting in fewer infected individuals.
The single-stranded RNA (ssRNA) genome of the influenza A virus is divided into eight
segments, which can be exchanged by reassortment. These reassortment events can
result in huge antigenic differences and therefore can lead to fitness advantages com-
pared to the previous dominant strain. In some cases the reassorted segments are from
different influenza A viruses, which occur when a host cell is co-infected by more than
one influenza A virus. Reassortment events are the main evolutionary mechanism be-
side the usual genetic mutations [47,48,56].
Reassortment events are quite rare compared to genetic mutations. The frequently
occurring genetic alterations in the coding sequences are caused by the proofreading-
lacking RNA-polymerase [44] of the influenza A viruses.
Proteins consist of two different main parts: A part that is highly conserved and plays
an important role in protein stability or function and a second part that is highly variable.
Genetic alterations in areas of the conserved part may significantly influence the stabil-
ity of the protein and could lead to a misfolded and malfunctioned protein, because of
altered binding sites or binding recognition sites. Minding this fact one may conclude
that mutations, especially mutations getting fixed or become predominant, are not ar-
bitrary. Furthermore it is noticeable that relevant mutations to influenza A viruses are
often occurring in predefined areas, proven by wet lab experiments and are often adja-
cent to highly conserved regions [34]. In terms of influenza A viruses HA is an example.
HA is one of the two major surface glycoproteins of influenza A viruses and plays a
pivotal role in host cell invasion, further explained in Section 1.2.2. Alterations in this
protein can lead to host immune system evasion and altered pathogenicity and mainly
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appear near the conserved receptor binding site of the protein. However, mutations in
other proteins or segments can yield altered pathogenicity too [70], but detecting the
amino acids that are altered more favored could yield better understanding of the evolu-
tion of influenza A viruses and ideally better vaccine-strain selection. This evolutionary
aspect becomes important considering the two parts - conserved and variable - of a pro-
tein, because the preferred changed amino acids are under constant selective pressure.
Detecting such sites under selection are of major interest, because they are responsible
for the constant evasion of the hosts immune system.
HA is not the only protein exposed on the outer surface of the membrane of the in-
fluenza virus and is therefore not the only protein of interest. Additionally to the factor of
exposure all proteins have to act jointly to yield optimal results and alterations in every
protein are therefore of interest. The knowledge about sites under selection in differ-
ent proteins of the virus could lead to new insights about the needed adaptive changes
for host switches and host adaption. Having detailed information about the sites pre-
dominantly involved in immune system evasion or host specific adaption could advance
treatment as much as further the general understanding of influenza A infections, be-
cause of better vaccine strain selection or the possibility for a longer lasting vaccine, but
also an improved understanding in cross species infections.
There are several approaches to determine sites under selection, most mentionable
are the ones of Nei and Gojoborj [55], Bush [9] and Suzuki [75]. All these approaches
have in common that there is no automated framework, usable for every biologist, which
makes it hard to use the approaches on own data.
Establishing an automated framework can be used as a quick and "easy-to-use" tool for
detecting sites under selection in every protein of influenza A viruses. It could be utilized
to gain a more detailed view on sites under selection, according to different years and
strains, but it could also improve the understanding of the diversification of sites under
selection. An automated framework would make it is easy to get comparable but also
a high amount of different results and data for further investigations and comparisons.
In general IPoSuS identifies patches of sites under selection for input sequences and
3D-structure, where a patch is a pooling of different amino acid positions. In this work
we focus on the HA protein of influenza A viruses of different subtypes to get a more
detailed view of the changes of this protein. Nevertheless the aim is to introduce a tool
that can be applied on every protein.

1.2 Influenza A Viruses

Influenza viruses belong to the family Orthomyxoviridae and can be divided into 3 dis-
tinct genera - A, B and C. All these viruses cause influenza, which is commonly known
as "the flu" [83]. Infections mainly affect the upper respiratory tract, but can also influ-
ence the bronchi, depending on the moieties recognized by the virus (see Chapter 1.3).
Symptoms can be either mild or severe [14] and commonly include high fever, a runny
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nose or headache. Many other symptoms can occur beside these mentioned. However,
33 percent of influenza infections show no symptoms at all [12].
Since influenza is a droplet infection, there are three main ways how influenza viruses
can be transmitted. The first way is by direct transmission, such that an infected person
directly sneezes into someone eyes, nose or mouth. The second way is the air borne
route, which means that the produced aerosol, that gets exhaled of an infected person
through coughing or sneezing, is inhaled. The third and last possible way of getting
infected is through hand-to-eye, hand-to-nose or hand-to-mouth contact with contami-
nated surfaces.
Influenza A viruses are able to infect humans, not only by direct contact, but also by
using the airborne route of infection. Because of this ability and their fast genetic alter-
ation, influenza A viruses are much more threatening to human health than influenza
viruses of type B and C. Nevertheless, humans are not the only species that can be in-
fected by influenza A viruses. The natural reservoir of influenza A viruses are birds and
waterfowls, but swines, cats, dogs and horses can be infected by influenza A viruses as
well [81].
Influenza A viruses can be of either spheric or of filamentous appearance [17, 39] and
are about 120 nm in diameter [15, 39]. The virus contains a negative-sense ssRNA
genome, which is divided into eight segments with a total genome length of around
14,000 nucleotides [5]. Each segment encodes for at least one protein. The segments
are numbered ascending and starting with the longest [46] due to the nomenclature
conventions. Some segments are encoding for more than one protein, due to splicing,
resulting in 14 different proteins for each influenza A virus. All proteins with their function
are combined in Table 1.1.

Table 1.1: Detailed view of the viral segments and their encoded proteins and their function.
Modified from [7] with added information from [48,53,85].

Segment Encoded protein(s) Protein function
1 Polymerase basic protein 2 (PB2) mRNA cap recognition

2
Polymerase basic protein 1 (PB1) RNA elongation, endonuclease activity
PB1-F2 Pro-apoptotic activity
PB1-N40 Unknown [53]

3
Polymerase acidic protein (PA) Protease activity
PA-X Modulates host response [53]

4 Haemagglutinin (HA) Major antigen, receptor binding and
fusion activities

5 Nucleoprotein (NP) Nuclear import regulation
6 Neuraminidase (NA) Sialidase activity, virus release

7
Matrix protein 1 (M1) vRNP interaction, RNA nuclear export,

viral budding
Matrix protein 2 (M2) Virus uncoating and assembly
M2-like protein (M42) Functional complementary to M2 [85]

8
Nonstructural protein 1 (NS1) Regulation of host gene expression
Nuclear export protein (NEP) Nuclear export of RNA
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Figure 1.1: Figure showing the whole influenza A virus including the ratio of HA (in blue) to NA
(in red) and the inner content (green) of the virus. The M2 ion-channel is shown in
purple. Picture taken from http://www.cdc.gov/flu/images.htm accessed: 16.08.2015
at 20:55.

The genome of influenza A viruses is inside of a viral envelope. This viral envelope
contains a lipid-bilayer obtained from the host and covers the capsid containing the virus
genome. On the surface of influenza A viruses there are two major surface glycoproteins
- HA and NA - encoded by segments 4 and 6, respectively. HA and NA are present in an
approximated ratio of four to one on the membrane of influenza A [7]. Figure 1.1 shows
the structure of an influenza A virus.

There are 18 known subtypes of HA and eleven of NA [48,74,77,80]. Important for indi-
vidual classification of each influenza A virus is the combination of HA and NA subtypes
it encodes for [49]. Generally an influenza A virus is classified as HxNy, where x and
y stand for the number of the subtype of HA and NA obtained of the virus. Viruses of
type H3N2, as an example, encode for subtype three of HA and subtype two of NA. The
whole nomenclature of isolated and sequenced viruses contains more information, than
just the subtypes of HA and NA, also considering the year and origin of isolation. The
whole annotation of a influenza A virus is described as: influenza virus strain / location
of isolation / consecutive number by the WHO / year of isolation (subtype classification).
As example: A / Sydney / 5 / 97 (H3N2). There are also strains that are categorized as
pandemic by the WHO and get classified with a "p" in front of the usual classification,
e.g. the previous pandemic pH1N1 strain.
Additionally HA and NA play important roles in the virus replication cycle (see Chapter
1.2.2).
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1.2.1 Evolutionary Mechanisms

HA and NA are, as already mentioned before, located on the outer surface of the virus
and can therefore be targeted by host antibodies and are both under extreme selective
pressure. The constant evasion of the host immune system is facilitated through two
mechanisms in influenza A viruses, namely genetic drift for minor changes and anti-
genic shift for greater changes [63].
The occurrence of minimal antigenic changes, due to mutations in HA and NA, is called
antigenic drift. This drift can refer to either genetic or antigenic drift and denotes muta-
tions in the RNA sequence of the virus. Influenza A viruses have a high mutation rate,
leading to a fast evolution of the virus. This rapid evolution is caused by the prone RNA
polymerase that misses a proofreading unit. Slight changes in the genes encoding for
HA and NA can already have a high impact for the virus, because it can change the in-
fectious capabilities. This evolution is occurring under the pressure of the host immune
system and its antibodies [48, 63]. Because of the high amount of different possibilities
to form new viral strains [58] that can be derived by drift, the virus is capable of infecting
humans that already received a vaccine [27] or have been infected previously.
Greater changes can be achieved by antigenic shift, which describes the reassort-
ment of segments between different and distinct influenza A subtypes, e.g. different
serotypes. Reassortments can occur when a host cell is co-infected by two, or more,
different and distinct influenza A viruses. Segments reassortments can also lead to
viruses with segments from different parental viruses [48, 58]. This event can lead to
viruses with mixed genes from strains that infect different species [63]. Influenza A
viruses generated by a reassortment event are often able for cross species infections
and host switches, which means the virus has the possibility to infect other hosts than
the foregone, due to the new combination of segments.

1.2.2 Replication Cycle

A host is mandatory for the replication of influenza A viruses. The first step for invad-
ing a host cell is the recognition of sialic acid (SA) moieties on the surface of host cell
membranes and the subsequent binding to it [7]. Responsible for this initial binding to
the host cell is the viral HA.
The main activity of HA is to bind sialic acids and to induce the fusion between virus and
host cell membrane. The initial binding is mediated by a subunit of HA. This subunit, the
head of HA, is also called HA1 and induces a change in conformation which triggers the
fusion of the virus membrane with the host membrane [33]. But before this fusion can
occur, the pH-value has to be lowered, to around 6.0. Because of the lowered pH-value
the HA1 subunit gets protonated, causing a positive charge. Ultimately, this results in
HA1 subunits repelling each other and detach from the stem. The stem is also called
HA2 and is the second subunit of HA. By detaching the HA1 subunits from the HA2 sub-
units, the HA2 subunits get activated [32] and triggers the fusion of the two membranes,
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by partially unfolding and releasing a hidden hydrophobic portion, which functions as
a hook. This activation is unique and the virus looses its pathogenicity after the first
activation.
The second step after the HA1 and HA2 mediated fusion is the entry into the host cell.
Through receptor-mediated endocytosis [48] the virus enters the host cell. After the
fusion of viral envelope and host membrane the content of the virus is released and
translocated to the nucleus of the host cell. The infiltrated virus’ segments and mRNA
are then translated and replicated by the host. Subsequently the newly produced pro-
teins are released into the cytoplasm. The trans-golgi secretory pathway then transports
the new translated proteins to the membrane. The formation of the new virus is induced,
after the mature HA, NA and M2 proteins arrive there, assisted by M1 [48]. The second
major surface glycoprotein -NA - is now required for releasing the progeny viruses from
the host cell [7]. Responsible for this release is the cleavage of the glycosidic linkages
of neuraminic acids [66] initially formed by HA. Before the NA activity cuts the sialic acid
binding and therefore releases the new virus, it gets newly arranged and packed into a
part of the host cell membrane. For illustration see Figure 1.2.

Figure 1.2: Figure showing the replication cycle from influenza A viruses. Starting from the
attachment onto the membrane through Haemagglutinin (HA), over the endocytosis
and the virus protein replication, ending with the release of new viruses. Taken
from [48]

1.2.3 Tropism

Furthermore HA is important for host tropism [7]. This means that every host has its
special fundamentals. This is of importance because, as already mentioned in Chapter
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1.2, influenza A viruses may infect a broad variety of different hosts. This variety can be
explained by the occurrence of special sialic acid moieties on the surface of host cells,
recognized by HA. There are two possible ways of linkage between galactose, located
on the outer surface of the membrane, and the sialic acid. It is either a α-2,3 or a α-2,6
linkage. A α-2,3 linkage refers to a linked carbon atom at position two in the sialic acid
and the carbon atom at position three in the hexose of galactose. The α-2,6 linkage
refers to a binding between the second carbon atom of SA and the sixth carbon atom of
galactose.
On the one hand there are waterfowl’s, which are the natural reservoirs for influenza
A viruses [72], but their respiratory tract does only contain α-2,3-SA receptors, which
is very specific. On the other hand, swines are mentioned as mixing vessels [28] for
influenza A viruses, because their respiratory tract contains another receptor beside the
α-2,3-SA aforementioned α-2,6-SA. Humans also have both receptors, but in different
areas. The α-2,6-SA receptor is located in nose and throat whereas the α-2,3-SA can
be found in the bronchi. Another interesting fact considering host tropism is the preva-
lent temperature in this mentioned areas. In waterfowl’s the temperature in the receptor
containing area is around 40◦C whereas the temperature in swines is around 39◦C - for
both receptors - and in humans they are around 33◦C for the α-2,6-SA receptor area
and around 37◦C for the α-2,3-SA receptor area, respectively (Figure 1.3) [48].
Because of these host dependencies the infections with influenza A viruses cause dif-
ferent symptoms. As already mentioned in Chapter 1.2 influenza A viruses have the
possibility to infect the upper respiratory tract and the bronchi of humans. The binding
of SA moieties could also play an important role in host switches and could therefore be
of further interest.

  

Figure 1.3: Figure showing the different host specific conditions for influenza A viruses. Also
showing the different receptor types the hosts got and the location of them. Taken
from [48].
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1.3 Sites Under Selection

1.3.1 Selection

Selection of traits, alleles or genes is a main part of the evolutionary process. In a popu-
lation an individual with advantages, and therefore the best adapted traits, is more likely
to be successful and to reproduce. Influenza A viruses are under a permanent selection
pressure, due to the constant evasion of the host immune system. Alterations that get
fixed in a certain population are denoted as evolution. The ones not getting fixed usually
get lost, because they were not of major advantage.
There are three possibilities of selection - neutral, purifying and positive selection.
In case of neutral selection there is no favored trait and therefore the alterations are not
caused by any selective pressure but by random genetic drift [31], which is completely
undirected.
Compared to this first case purifying and positive selection are driven by selective pres-
sure. A trait under purifying selection is prevented from being altered. This type of
natural selection is also called negative selection. This is because this type selectively
removes alleles, mainly deleterious ones [45]. Positive selection, also called directional
selection, terms the extreme favoring of a special trait over all others. An individual
with a trait under positive selection has a high fitness advantage over all other individu-
als. A trait under positive selection has the possibility to become fixed and therefore be
persistent in the resulting population [51].

1.3.2 Measures of Selection

The most commonly used method to evaluate the pressure of selection for proteins is
the counting of synonymous and non-synonymous mutations for each site (described
in detail in Chapter 2.5.1). There are two more possible methods, namely a maximum-
likelihood [90] and an approximative [90], which can be used instead of counting synony-
mous and non-synonymous mutations. In comparison, when the dataset is big enough,
all three methods tend to the same results [36] and it is more important which assump-
tions are implicit in the used method [90]. Possible in this coherence are assumptions
on the mutation rate, a correcting for multiple substitutions or the divergence between
the considered sequences. Because the method of counting synonymous and non-
synonymous mutations does not need any further assumptions, the ratio is therefore
the more powerful model of evolution compared to the other two [90]. All three methods
are based on a multiple sequence alignment (MSA) (see Chapter 2.2) and a preceding
ancestral state reconstruction (see Chapter 2.3.2) of protein-coding gene sequences.
In the end the ratio test, which are introduced in Section 2.5.1, results in counts of syn-
onymous and non-synonymous mutations, whose ratio constitute in a value called ω .
This omega-ratio can be used for interpreting the results, even without further assump-
tions [9] but gets more viable with additional assumptions, e.g. the codon-frequencies
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[75]. In this context three co-domains are of interest, which all three refer to one of the
in Section 1.3.1 introduced cases. The first case is represented by ω ≈ 1, similar to the
absence of selective pressure. In the second case, described by ω < 1 the site is un-
der purifying selection, meaning natural selection prevents the replacement with other
amino acids. The last case ω > 1 describes the favoring of amino acid changes, namely
positive selection. The procedure of calculating and using ω-values is also known as
Bayes prediction.

1.3.3 Known Sites under Selection

Some parts of a protein are under constant selective pressure. In case of influenza
A viruses HA has such fast evolving parts, compared to other parts or other proteins,
mostly located near the receptor binding site (RBS). With the fast evolution in this parts,
HA permanently avoids the host immune system, because already slight changes can
lead to the possibility to escape the immune system. The alterations usually happen
in the epitope parts of HA. Epitopes are part of the antigen that is recognized by the
antibodies and where the antibodies bind, which is the reason why changes in this part
can have such capital effects.
The epitopes for HA of influenza A viruses are known because of experimental studies.
The references [13] and [84] provide information on the already known epitopes. Table
1.2 summarizes them for the influenza A virus subtype H3.

Table 1.2: Table showing the known epitopes with residues under selection for the protein HA of
influenza A virus subtype H3. Values taken from [84].

Epitopes Residues
A 122, 124, 126, 130-133, 135, 137, 138, 140, 142-146, 150, 152, 168
B 128, 129, 155-160, 163-165, 186-190, 192-194, 196-198
C 44-48, 50, 51, 53, 54, 273, 275, 276, 278-280, 294, 297, 299, 300, 304,

305, 307-312
D 96, 102, 103, 117, 121, 167, 170-177, 179, 182, 201, 203, 207-209,

212-219, 226-230, 238, 240, 242, 244, 246-248
E 57, 59, 62, 63, 67, 75, 78, 80-83, 86-88, 91, 92, 94, 109, 260-262, 265
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The subtypes H3 and H1 of HA are the most important for humans, because the com-
binations H3N2 and H1N1 are the actual circulating subtypes in humans.
Table 1.3 shows the known epitopes for influenza A viruses from subtype H1.

Table 1.3: Table showing the known epitopes under selection with corresponding residues for
the protein HA of influenza A virus subtype H1. Values taken from [13].

Epitopes Residues
Sa 124, 125, 154, 156, 158, 159, 161-163
Sb 152, 155, 188, 189, 192, 194
Ca1 165, 169, 178, 203, 236, 269
Ca2 136, 139, 141, 220, 221
Cb 74, 75, 77-85, 118

This two tables, containing all the positions of amino acids in patches for subtypes H3
and H1, are furthermore used as main evaluation data and are both given in H3 num-
bering. Numbering in this case means, that the residue positions are matched from one
subtype to another, regarding to a Multiple Sequence Alignment (MSA). Some other
publications [11, 24, 26, 29, 41, 42, 60, 71] are added, such that there is a broad variety
additional to the patch data.

1.4 Goal

The first goal is to introduce an automated framework for detecting patches of sites un-
der selection,which has a broad range of possible appliance. Regarding this goal the
first aim is to complete an automated framework for the detection of sites under se-
lection comparable to [79] and make it usable for every interested person, not only for
those with a background in bioinformatics. Providing an automated tool including the
graph-cut algorithm (see Chapter 2.7) makes it easy for biologists to find sites under
selection in supported proteins using IPoSuS. The automated graphical output of the
results additionally makes it easy to understand and interpret them. Furthermore the
automated data download makes it comfortable in use because no data preprocessing
is needed to fit the programs need.
For a broader application range of the framework, the second main goal is to update
the used statistical test, since the current approach uses a test on the counts of synony-
mous and non-synonymous mutations the aim is to establish a statistical test working
on ω-values instead. Because ω-values contain more information than the pure counts
of synonymous and non-synonymous mutations. The hope is to get better and more
differentiated results, based on comparison with recent results [79].
The third goal is to evaluate the functionality of IPoSuS on the basis of the HA protein
for different influenza A subtypes. On basis of the obtained results it also should be
possible to decide which of the five tested approaches is the best, regarding the task.
Since the algorithm in [79] was only applied to the proteins HA of subtype H1N1, HA of
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subtype H3N2 and the protein PB2 one further goal is to make the algorithm applicable
for all possible proteins, not only of influenza A viruses, although the focus for this study
lies on the HA protein of different subtypes of influenza A viruses. Being able to ana-
lyze and compare results of every influenza A virus protein could ideally lead to further
understandings of host switches or adaption needed to maintain in a host. Beside this
special analysis the possibility to consider every single protein of an organism in case
of selection can lead to further understanding which proteins evolve at which rate.
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2 Methods

In this chapter of the work all used methods, which are needed for the algorithm to work,
are introduced and explained. Furthermore all needed basic methods are explained.

2.1 Database

The decision on the used database is of paramount importance. Since we want to cre-
ate and establish an automated workflow the database has to be machine accessible,
for example through File Transport Protocol (FTP). Even though the publication, on
which this thesis is based [79], uses data from the Global Initiative on Sharing Avian
Influenza Data (GISAID)(www.gisaid.org), it was not practicable for us to use the same
database, because it does not provide a needed machine accessibility. We decided to
use the Influenza Database hosted by the National Center for Biotechnology Informa-
tion (NCBI) [4]
(http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) for this thesis, because it provides
a FTP connection. We receive coding sequences from the database, which are needed
to perform a MSA. The received sequences can be assumed to be of high quality, be-
cause they are from the NIAID Influenza Genome Sequencing Project as well as from
GenBank.

2.2 Multiple Sequence Alignment (MSA)

In contrast to pairwise alignment algorithms such as Smith-Waterman [68] or Needleman-
Wunsch [54], a MSA uses more than two biological sequences as input. They should be
of similar length and should also consist of the same elements, therefore be composed
of either amino (protein) or nucleic acids (DNA/RNA). MSA’s are usually used to infer
homology from the input data, or at least the evolutionary relationship between the se-
quences. There are several different tools to complete this task, e.g. multiple sequence
comparison by log-expectation (MUSCLE) [19], ClustalOmega [67] or CLUSTALW2 [40].
We decided to use MUSCLE, because it outperforms the other applications.

2.2.1 MUSCLE

MUSCLE is a computer program for creating MSA’s using distance estimations, log-
expectation scores and tree-dependent restricted partitioning. As shown in [19] MUSCLE
outperforms other established MSA tools, such as T-Coffee and CLUSTALW in speed
and accuracy.
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MUSCLE makes use of two different distance measurements of a pair of sequences: the
kmer distance for unaligned pairs and the Kimura distance for aligned pairs. The kmer
distance is a contiguous subsequence with length k. Generating the distance matri-
ces MUSCLE uses unweighted pair group method with arithmetic mean(UPGMA) [69].
After this it computes a progressive alignment and refines the results with the Kimura
distance followed by another UPGMA generated tree. Further progressive alignments
and repeatedly computing subtree profiles with re-aligning and score determination fi-
nally result in an optimal tree for the given input sequences. The workflow of the multiple
sequence comparison by log-expectation (MUSCLE) algorithm is shown in Figure 2.1.

Figure 2.1: Diagram summarizing the MUSCLE algorithm with its three main steps. 1. draft
progressive, 2. improves progressive and 3. refinement. Taken from [19].

Since the intended automated process of the framework and the fact, that the down-
loaded sequences are not curated manually, there is need for an additional step, that
automatically curates the MSA. A tool that can perform this task is TrimAl.

2.2.2 TrimAl

Because of the possibility to self define the input parameters, it could be possible to
receive sequences that are not of equal length. Moreover it could be possible to get
false annotated sequences in the requested dataset. Thus we integrate TrimAl [10]
in the workflow. This tool allows the automated removal of spurious sequences or of
poorly aligned regions. Additionally to the web-server this tool provides a command
line application. Many parameters are adjustable, allowing the user to obtain the best
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results for their use. For example trimAl can be used to remove all gaps from a MSA or
columns that consists only of gaps. It can also be used to determine a minimum overlap
of a position with other positions in the column to be labeled as a good position. Based
on this labeling trimAl can be used to remove sequences below a minimum percentage
of good positions.
Furthermore this program is able to process different types of files and can save the
results in different types, e.g. phylip, nexus or fasta. The different output formats can be
used as input for different further steps.

2.3 Phylogenetic Inference

Phylogenetic inference methods are used to reconstruct a phylogenetic tree that dis-
plays the evolutionary relationship among a set of different species or entities such as
influenza viruses. Each individual entity or species is represented as taxa. In the phy-
logeny each taxa is represented by a given sequence. Taxa being evolutionarily closer
related to each other are arranged more close together in the phylogeny than distinct
ones. Using phylogenetic tree inference methods makes it possible to infer information
about the evolution of specific genes, or traits in general. For the purpose of reconstruct-
ing a phylogenetic tree a MSA is needed with sequences representing the leaf nodes of
the tree.

There are two different kinds of phylogenetic trees - rooted and unrooted. The unrooted
tree does not visualize the most common ancestor, whereas the rooted tree contains
this relation. Every unrooted tree can be converted to a rooted one by using a so called
outgroup, which either can be added to the dataset or can be included. An outgroup
is a species or entity that is far related to the remaining dataset. Figure 2.2 shows the
difference in presentation between a rooted and an unrooted tree.

Figure 2.2: Figure showing the difference between a rooted tree on the left and an unrooted phy-
logenetic tree on the right. The tree on the left got rooted by defining the sequence
A as an outgroup.

There are four widely used methods to solve the problem of finding the optimal tree -
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distance-matrix method [52], maximum parsimony [20], maximum likelihood [21] and
Bayesian inference [25]. All methods have their own specific strengths and weak-
nesses [91]. In this thesis we use FastTree to generate the phylogenetic tree, which
is a approximately-maximum-likelihood method, based on the input sequences and the
generated MSA (see Section 2.2) with MUSCLE (see Section 2.2.1), that got automati-
cally curated by TrimAl.

2.3.1 FastTree

In general it is a heuristic problem to generate a phylogenetic tree, based on a MSA.
This is due to the NP hardness of the task. Therefore every algorithm or heuristic has
its right to exist. Usually the differences are determined by speed or accuracy. In this
thesis we decided to use FastTree [61] for inferring phylogenetic trees, based on the
MSA output by MUSCLE and TrimAl. FastTree is based on an approximately-maximum-
likelihood approach and is used in this work because of its ability to handle millions of
sequences using a reasonable amount of time and memory. PhyML in comparison can
only handle up to 4,000 sequences (with default settings) and this would be insufficient
for the scope of this tool. Beside the fact that FastTree can handle more sequences
than PhyML it is also faster and more accurate than PhyML and RAxML 7, namely 100
to 1000 times faster. For comparison FastTree only needs 15 minutes for generating
a maximum likelihood tree from 8,362 sequences, whereas PhyML and RAxML would
need over 1,200 hours.
The FastTree algorithm is divided into four main parts: The first part contains of a heuris-
tic neighbor-joining to get a rough topology. For a better speed FastTree combines three
heuristics in this step - fast neighbor-joining, relaxed neighbor-joining and top hits heuris-
tic. Unlike other tree generating tools FastTree does not generate distance matrices but
profiles of internal nodes, reducing the required memory.
The second step reduces the length of the tree using nearest-neighbor interchanges
(NNI) and subtree-prune-regraft (SPR) moves, called balanced minimum evolution. This
step is much faster in FastTree because, as already mentioned, it is not based on dis-
tances but profiles. If the distances are not too noisy the NNI and SPR moves lead to
an optimal tree [17].
The third step is used to maximize the likelihood of the tree. This step includes the
improvement of both the topology and the lengths of the branches using a maximum-
likelihood rearrangement. FastTree can use four different evolution models - Jukes-
Cantor, generalized time-reversible models of nucleotide, Jones-Taylor-Thorton or Whe-
lan Goldman models of amino acid evolution. This step includes the setting of the most
likely category, out of 20, to each site, based on variable rates of evolution, using a
Bayesian approach with gamma prior. This also prevents over-fitting small alignments.
The last step is the bootstrapping step, which uses the Shimodaira-Hasegawa test on
three alternate topologies around the split. Despite using CAT approximation and not full
optimizing branch lengths the resulting support values are virtually identical compared
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to PhyML, which uses a SH-like local support approach. FastTree uses 1,000 resamples
and does not reoptimize the branch lengths.
After performing all these mentioned steps, the generated phylogenetic tree can be as-
sumed as optimal solution for the input data. Nevertheless it has to be noted, that the
worst case still has exponential runtime. Based on this tree it is possible to infer the
sequences of the mutual ancestors for a given set of sequence, up to the ancestor all
sequences have in common.
If the obtained tree is not binary the next step is always to convert it into a binary tree,
because the following steps only work for trees of this form. This means, that for exactly
two leaf nodes there is only one ancestor.

2.3.2 Ancestor State Reconstruction

As it will be described in detail in Section 2.5.1, it is necessary to know the relation
between all input sequences and their ancestor states. Therefore it is needed to perform
an ancestor state reconstruction on the generated tree, containing the sequences of the
MSA as leaf nodes. Considering the binary tree and the leaf nodes with their sequences,
an ancestor state is the reconstructed sequence of the internal node. Only with knowing
the ancestor states and their corresponding sequences it is possible to infer the ratio of
non-synonymous and synonymous mutations (dn/ds ratios) from the input data.
Ancestor reconstruction is based on a reconstructed phylogenetic tree. Assuming a
binary tree, each two sequences, represented as taxons in the tree, are linked by one
node, representing the ancestor state of this two nodes. Because of this assumption the
further processing gets more accurate and is faster. In this work we on the one hand
use the Fitch algorithm for this step, which is based on the known sequences, given by
the MSA for the leaf nodes, the rooted, binary tree and on the other hand we use an
adaption of the Fitch algorithm.
Furthermore there are two different possibilities in the step where the synonymous and
non-synonymous mutations are counted. Both parts will be explained in detail in the
following subsections.

2.3.3 The Fitch Algorithm

This algorithm [23] is working for binary trees and minimizes the unit costs (costs of a
change from one state,where a state is a amino acid in the sequence - to another) on
the tree. It is an example for a parsimony algorithm and works for known trees. Because
we construct the most likely phylogenetic tree with the given sequences, and therefore
know it, the Fitch algorithm is the used one in this work.
The Fitch algorithm assigns possible states of characters for each inner node with a min-
imal number of state changes. Further we have to assume a rooted tree or introduce
a root without altering the results. In dynamic programming fashion the algorithm per-
forms two main steps for each character. The first step is the bottom-up phase, followed
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by the top-down refinement. Figure 2.3 shows an example for one character, including
the bottom-up and top-down phase.

Bottom-up phase

Starting from the leaves we walk along the edges to the root, such that visiting a node
means the child nodes have already been visited. For each node we now collect the
possible states and store them in a candidate set. This candidate set contains either
both possibilities gained from the considered child nodes or when they share a common
candidate it contains only this shared one. Walking along the whole tree from the leaf
nodes to the root will result in candidate sets assigned to all internal nodes.

Top-down refinement

In this step the algorithm walks down the tree from the root and assigns a character from
the candidate set to the internal node. If the root candidate set only comprises one ele-
ment, it gets assigned, otherwise the character is randomly assigned. The assignments
for internal nodes while walking down the tree are based on the parental node for the
considered node. If the candidate set contains the character assigned to the parental
node, this one gets assigned, otherwise the state gets picked randomly again.
Although this algorithm, containing a backtracking phase, yields in an optimal solution
for the generated tree, it does not provide all co-optima.

Figure 2.3: Figure showing an one character example for the Fitch algorithm. The leave nodes
are labeled according to the data. Candidate sets are represented for each internal
node in curly brackets. The bar indicates a possible or best solution.

As mentioned above there is another used method to determine the assigned character
states for the internal nodes. This approach does not, in contrast to the usual Fitch al-
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gorithm, use random assignments, but defined ones. In order to get more reproducible
results this second approach always assigns the first candidate for the internal node
instead of a random one out of a set. This method will therefore always lead to the
same results for a dataset unless the tree gets altered in a previous step, because of
the possibility of more than one optimal solutions.
Because of the properties of the these two different counting schemes, they will be
named accordingly hereinafter. The first approach uses the Nei and Gobjobory algo-
rithm with the minimal way approach and also the randomness of Fitch’s algorithm and
will be called NG+RF (Nei Gojoborj + random Fitch) from here on. The second approach
also uses the Nei Gojoborj approach but does not use a the randomness of Fitch’s al-
gorithm but always chooses the first possibility if there is more than one. This approach
will be calles NG+NRF (Nei Gojoborj + nonrandom Fitch) from here on.

2.4 ACCTRAN and DELTRAN

ACCTRAN and DELTRAN, which are short forms for ACCelerates the evolutionary
TRANsformation of a character and DELays the TRANsformation of a character on a
tree, are two possibilities to alter results in the top down refinement phase and are
therefore two possibilities to alter the results.
Using acctran will push the evolutionary transformation down the tree as far as possible.
In this method reversals are favored over parallelism as long as the choice is equally
parsimonious.
Deltran on the other hand will push characters up the tree as far as possible. Because
it is the opposite of acctran it favors parallelism over reversals as long as the choice is
equally parsimonious.
When there is no ambiguity, both methods will yield the same results.
In this thesis we used the deltran method because we want to favor parallelism over
reversals. This is due to the fact that we want to find positions and/or patches under
selection.

2.5 Determining Sites under Selection

As already mentioned in Chapter 1.3.2 there are three mainly used methods for deter-
mining sites under selection. We use the widely used method of counting synonymous
and non-synonymous mutations, which will be introduced in the following.
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2.5.1 Non-synonymous and Synonymous Mutation (dn/ds) Ratios

The calculation of dn/ds ratios is based on an inferred phylogenetic tree with know an-
cestor states (see Chapter 2.3.2). With this reconstructed tree it is possible to determine
cS and cN , which are the total numbers of synonymous and non-synonymous mutations
for each site, and the average numbers sS and sN respectively. dS and dN , the total num-
ber of synonymous and non-synonymous mutations, are then determined with following
equations [9,75].

(2.1) dS =
cS

sS

dS : ratio of synonymous mutations
cS : total number of synonymous mutations
sS : average number of synonymous mutations

(2.2) dN =
cN

sN

dN : ratio of non-synonymous mutations
cN : total number of non-synonymous mutations
sN : average number of non-synonymous mutations

The corresponding ω-value is then defined by

(2.3) ω =
dN

dS

dS : ratio of synonymous mutations
dN : ratio of non-synonymous mutations
ω : ratio of non-synonymous to synonymous mutations

and describes the pressure of selection onto a single site.

2.6 Statistical Tests to Identify Sites under Selection

To evaluate whether a site in the considered protein mutates significantly more often
than others there is a need for a statistical test.

2.6.1 Fisher’s exact Test

One of the used tests is Fisher’s exact test. It it used to test if the observed count
of synonymous and non-synonymous mutations at a specific position are significantly
higher compared to the mean value of mutations in the whole protein. This test is the
most commonly used test for the determination of sites under selection.
Fisher’s exact test works on a contingency table and tests for independence. Compared
to the chi-square-test there is no minimal sample size needed and the results are also
reliable for small test samples. Originally the test was designed for 2x2 contingency
tables, but can be used for greater ones as well. Based on a general 2x2 contingency
table, see Table 2.1,
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Table 2.1: Table showing the general 2x2 contingency table with labels used for Fisher’s exact
test.

Count at Position Mean Count Row Total
whole Protein

synonymous mutations a b a+b
non-synonymous mutations c d c+d

Column total a+c b+d n=a+b+c+d

Fisher’s exact test generally calculates the probabilities as follows [22]:

(2.4) p =

(a+b
a

)(c+d
c

)( n
a+c

) =
(a+b)!(c+d)!(a+ c)!(b+d)!

a!b!c!d!n!

2.6.2 Z-Test

Additionally to Fisher’s test the introduced workflow uses another statistical test, which
is not based on the pure counts of synonymous and non-synonymous mutations of each
codon but on the corresponding ω-ratio or ω-value, based on the generated MSA and
phylogenetic reconstructed tree, as described in [9,75].
In contrast to pure counts of synonymous and non-synonymous mutation, or their cor-
responding ω-ratio, the ω-value includes further information, e.g. codon-frequencies.
This means, that the result is influenced by the frequency a codon appears and how
likely it mutates into the one observed.
Considering ω-values or ω-ratios rather than counts the statistical test that is used has
to be differed because Fisher’s exact test is not working for discrete values. A proper
way generate p-values based on the new considered omega values is the Z-test from
Gauss [38].
The Gaussian hypothesis test or Z-test is a statistical test we can apply on the ω-values
and ω-ratios.
Generally spoken this test exhibits a strong relationship to the t-test. The difference
between both tests is the input-data. In case of the Gaussian approach it is the known
standard deviation of the population. It is strongly recommended to use Gauss test and
not the t-test if the standard deviation is known, which is the case in our investigations.
Because of the central limit theorem (law of large numbers) we can neglect the usually
needed Gaussian distribution assumption, for sample sizes approximately greater than
30.

One Sample Z-Test

The one sample Gauss test uses the arithmetic mean of a spot check, whether the
expectation of the population is greater or lower compared to a given value.
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Every sample x1,x2, ...,xn shall have characteristics of independent random variable,
which is normally distributed, with unknown expectation µ and known standard deviation
σ . There are three possibilities of testing.
Two sided test:

(2.5) H0 : µ = µ0 against H1 : µ 6= µ0

Right sided test:

(2.6) H0 : µ ≤ µ0 against H1 : µ > µ0

Left sided test:

(2.7) H0 : µ ≥ µ0 against H1 : µ < µ0

In all cases the value for µ0 is predefined by the user.
Defining the arithmetic mean of the population as

(2.8) x̄ =
1
n

n

∑
i=1

xi

the test statistic is calculated as followed:

(2.9) z =
√

n∗ x̄−µ0

σ

Decision on the Hypotheses

For all three test the criteria for hypothesis testing and decision on whether to accept the
hypothesis or not are used. Because of the fact that Z is normally distributed under the
null-hypotheses, the following rules are obtained. Rejection of H1 at significance level α

if:
Two sided test:

(2.10) |z|> u(1− α

2
)

Right sided test:

(2.11) z > u(1−α)

Left sided test:

(2.12) z < u(α)

The decision also can be based on the distribution shown in Figure 2.4, in which the
significance-level is shown in correlation to the critical value or z-score.
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Figure 2.4: Figure showing the Gaussian distribution with additional informa-
tion on the significance-level and the corresponding critical values (z-
score). The colours indicate the different significance-level, on which
base a decision on the hypothesis can be made. Figure taken from
http://help.arcgis.com/de/arcgisdesktop/10.0/help/index.html#//005p00000006000000
accesed 18.02.2015 at 08:30.

2.7 Graph-Cut Algorithm

The graph-cut algorithm usually is employed for image smoothing, the stereo correspon-
dence problem, but also for energy minimizing problems [8].
The graph cut in general is the application of a minimum cut on a graph. This mini-
mum cut separates the graph in two disjoint subsets. Each of these two subsets consist
of at least one edge and therefore two nodes. With this approach it is not possible to
cut out single nodes. The graph cut algorithm, which was first used to smooth noisy
or corrupted binary images uses this minimum cut with the difference, that the graph
gets extended by two nodes, namely the source and sink node. In following source and
sink node get connected with each node of the existing graph, e.g. pixels of an image.
Each of the introduced edges, connecting the nodes of the initial graph with the sink
and source node, are then weighted. Applying the minimum cut on the newly obtained
graph will now find two disjoint graphs, of which one is minimal in a beforehand given
case, e.g. energy or distance.
Adapting this algorithm for purposes of predicting sites under selection some things are
different from the usual approach. The first step is to normalize the structural data re-
trieved by the 3D-structure of the protein and therefore the distance between individual
residues, comparable to pixels in an image. Each residue then gets represented by a
node. Edges get introduced for every pair of nodes, where the Euclidean distance is
below a specific threshold. These edges now get weighted with the spatial distance.
Therefore, close residue edges have higher weighting than distant ones. Then, compa-
rable to the sink and source node from the originally algorithm, a negative and a positive
selection node are introduced. Both are connected with each node introduced before,
weighted with corresponding p-values, obtained by the dn/ds ratios and the used sta-
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tistical test, for negative selection node and 1−P(n) for the positive one. The graph
cut then will divide the so obtained graph in two halves, one with the positive selection
node and one with the negative selection node, namely minimizing the sum of weights
connecting the two halves [79] (Figure 2.5).

Figure 2.5: Figure showing the adapted graph-cut algorithm with the positive and negative se-
lection node. Furthermore it shows the assigned p-values and the assigned spatial
distance. The dotted line symbolizes the graph cut, dividing the graph in two halves.
Picture taken from [79].

2.8 Tertiary Structure Data

Since we want to visually assign the computed patches of sites to the tertiary structure
of the corresponding protein, we have chosen default 3D-structures for every protein
for this purpose. The structures are chosen subtype specific to yield the best results.
Although the focus in this work is on the HA protein, other proteins are already im-
plemented for which the analysis could be done with subtype specific structures. For
proteins for which no subtype specific structure is known, the background data uses a
tertiary structure of another subtype. At the moment there are eleven of the fourteen
proteins of influenza A set as default structures and sequences, depending on the re-
quested job. For the proteins Pb1-N40, PA-X and M42 there are no available tertiary
structures at this moment. There can be no analyses on these proteins at the moment
with default background data. To run analyses for these proteins please check the pos-
sibilities in Chapter 3. Table 2.2 shows all used tertiary structures taken from the Protein
Data Bank (PDB) for structure analysis.
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Table 2.2: Table showing the in different subtypes used in this work with proteins that have sub-
type specific structures available with corresponding pdb identifier, which are imple-
mented in the introduced workflow and are used for structure analysis and the graph
cut algorithm.

Subtype Encoded Protein PDB Identifier

seasonal H1N1

HA 2WRG [43]
M1 4PUS [62]
NP 2IQH [92]

PA C-terminal 2ZNL [57]
PB1 3A1G [73]

middle domain PB2 4J2R [78]

H3N2

HA 3HMG [82]
M1 1EA3 [3]
NP 2WFS [16]

NS1 3O9T [30]
PB2 2VY6 [76]
NA2 4GZO [96]
NEP 1PD3 [1]
M2 2L0J [65]

H5N1

HA 2IBX [87]
M1 2Z16 Saijo et al. unpublished!

PA endonuclease 3HW3 [95]
NS1 3F5T [6]
PB2 3KC6 [88]

pandemic H1N1

HA 3AL4 [94]
M1 3MD2 Liu et al. unpublished!

Pa endonuclease 4AVQ [37]
NS1 3M5R Fremont et al. unpublished!
PB2 3KHW [88]

H7N7 HA 4DJ6 [89]

H7N9
HA 4N5J [86]

PA C-terminal 4P9A [50]
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2.9 Alignment of all different Subtypes

This alignment is necessary because of the different numbering schemes and the differ-
ent insertions/deletions the different subtypes have. Introducing this "master" alignment
makes it possible to have one numbering scheme for all subtypes, which makes the
results more comparable.

Figure 2.6: Alignment used to get a consistent numbering between all different investigated in-
fluenza A subtypes. The sequences used are the same as introduced in the meth-
ods. So it is sequence related to the pdb identifier 2WRG for the seasonal H1N1,
3AL4 fpr the pandemic H1N1, 3HMG for the H3N2 subtype and 2IBX for subtype
H5N1. Alignment was made using MUSCLE [19].
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2.10 Different Approaches

After introducing the different counting schemes as well as the different statistical tests,
we now introduce the different approaches IPoSuS uses.
First of all, the AdaPatch approach, which uses the graph-cut algorithm based on p-
values obtained by Fisher’s exact test. For this approach there are both different count-
ing schemes possible, resulting in the approaches AdaPatch (AP) with NG+RF and
AdaPatch with NG+NRF. This approach uses the pure count of synonymous and non-
synonymous mutations to calculate p-values on base of Fishers exact test.
The second approach uses ω-ratios, and is therefore named OmegaRatio (OR). This
approach again can be combined with both NG+RF and NG+NRF. This approach uses
the p-values obtained by conversion of the z-values received by the Gaussian Z-test.
This approach is the first one that uses the ratio of the counts of synonymous and non-
synonymous mutations.
The third and last approach uses ω-values, therefore is named OmegaValue (OV) and
is only be combined with the NG+NRF counting scheme. This approach uses the same
p-value calculation as the OR approaches. This approach also uses the ratio of syn-
onymous to non-synonymous mutations, but also adds additional information, such that
the content of information rises.

2.11 Implementation

The workflow is written in Python (www.python.org) and consists of several scripts, mod-
ularizing the application. There are many free available packages, which were used to
generate this application. All of those used packages that have not been mentioned in
separate chapters are listed in Table 2.3. The only part not implemented as a Python
script is the graph-cut algorithm, which is implemented in C++.

Table 2.3: Table showing the dependencies for correct python implementation.

Name Version Source Used Package
Python 2.7.8 https://www.python.org/ os, time, argparse, ftplib, subprocess,

sys, shutil
Scipy 0.15.1 http://www.scipy.org/ scipy.stats.*
Numpy 1.8.2 http://www.numpy.org/ numpy.std, numpy.array, numpy.sum
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3 Workflow

This chapter serves the understanding of the workflow and will introduce every sin-
gle step, one after another, that is needed for the whole workflow to work and detect
patches of sites under selection. Figure 3.1 additionally shows the whole process in
one diagram.
At first you have to choose, via input parameters, what kind of analysis you want to be
run, because there are several different possibilities. The first is to have the predefined
analysis with default settings by just using filters and a specific time span for the analy-
sis. While choosing the individual filtering parameter it is advisable to specify a subtype,
e.g. H3N2. For the timespan it could be useful to use the known seasons of influenza
A viruses. For this purpose either the timespan from April to September of a year for
the southern hemisphere or from October to March of the following year for the northern
hemisphere are useful. But every other imaginable timespan can be used and investi-
gated. Furthermore, in this step the user manually alters input parameters, which are
used to define the filters to generate the desired output, only containing the requested
coding sequences. This parameters can consist of strings for special cities, subtypes of
influenza A viruses or other specifications that the user wants to make.
After the input of the individual parameter the first step of the default working process
is the automated data-download via FTP from the Influenza Virus Resource database
(IVR), hosted by the NCBI (see Section 2.1).
The second step uses MUSCLE to calculate the MSA (see Section 2.2 and 2.2.1) based
on the filtered coding sequences from the previous step with followed editing by TrimAl
(see section 2.2.2). TrimAl in this default setting is used to filter for spurious sequences
which should not be retrieved by the database. But due to the filtering parameters and
the automated nature of the workflow it can happen that sequences of other proteins
get downloaded as well as the desired ones. This, for example, can happen when the
identifier of the sequence contains one of the filtering parameters, e.g. NS or PB. TrimAl
recognizes such sequences and deletes them from the MSA. The output then is given
in fasta format.
The subsequent third step contains the creating of a phyolgenetic tree reconstruction,
which is processed by FastTree (see Section 2.3.2), using the MSA file from the pre-
vious step. Furthermore the leafs of the tree are labeled according to the sequences
in the MSA and their phylogenetic relation to each other. Based on this output, given
as Newick-String, the ancestor state reconstruction is done by an implemented Fitch
algorithm (see Section 2.3.3). But before this step can be processed in the correct way,
the tree has to be binary. This means that two adjacent nodes always have exactly one
ancestor. If the generated tree does not fulfill this criteria, it automatically gets converted
into a binary tree.
Afterwards the synonymous and non-synonymous mutations are counted (see Section
2.5.1) on which basis the ω-values and the ω-ratios are calculated. For this step the
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two already in Section 2.5.1 introduced counting schemes are available to chose from.
Based on the counts of synonymous and non-synonymous mutations per codon Fisher’s
exact test calculates the statistical significance according to the mean value of corre-
sponding counts in the whole dataset. This statistical significance is represented by a
p-value and gets assigned to every codon for synonymous and non-synonymous muta-
tions. Furthermore there is a similar calculation based on the transformation of Z-values
into p-values for the ω-values and the ω-ratio approaches.
The second last step is the graph-cut algorithm for detection of patches of sites under
positive selection [79] (see Section 2.7), based on the p-values derived from the previ-
ous step combined with a calculated spatial distance between each amino acid in the
3D-structure of the considered protein. This step merges single amino acids to patches
of sites under selection if they fulfill the requirements.
The final step visualizes all detected patches on the protein structure using PyMol [64].
If there is need for a more individual analysis the workflow provides several parame-
ters which can be set to individualize the results. Thus another possibility is to choose
whether you want to have both introduced counting methods (see Chapter 2.5.1) or only
one of them. Next you can choose whether you only want human, only animal strains
or a mix of both. If choosing analysis for the subtype H1N1 there also is the possibility
to choose, whether the analysis shall be done for seasonal, pandemic or a mix of both
strains.
Usually the workflow uses predefined default background data for the analysis to be
done, but IPoSuS also offers the possibility to choose own background data just by
defining the paths to the location of the files. For this possibility to work four different pa-
rameters and therefore four different files have to be introduced. These four files contain
a reference sequence, the surface accessibility using netsurf [59], the fasta sequence
on which bases the accessibility has been calculated and the 3D-structure of the pro-
tein.
Furthermore you can choose if you really want the automated data download and there-
fore the use of an external database or if you want analysis for your own data to be done.
If analyzing own data, it can be chosen if the analysis should be run with default back-
ground data or some specified own data again consisting of the previous mentioned four
needed files. If the option for analysis of own data is chosen, the previous mentioned
second step is the first one that is performed, therefore IPoSuS starts with generating
the MSA. Combining the two options to use own background data and own sequences,
IPoSuS also provides another alternative, the one in which the analysis are completely
based on your own data, giving the chance to also analyze other proteins, e.g. of other
viruses. Here, again, the second step will be the first one that gets executed.
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Figure 3.1: Diagram showing the procedure of the used methods taken together as one algo-
rithm. Rectangles represent the used tools or processes. Parallelograms show the
results/outputs of each processing step. The blue arrows indicate possible steps
and therefore the different possible parameters.
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4 Results

In this chapter all obtained results using the in Chapter 3 introduced workflow, will be
gathered and shown. This includes the depiction of the seasonal results for the differ-
ent counting schemes, introduced in 2.5.1, and different subtypes as raw results and
therefore represent the identified patches. Furthermore the results will be shown in a
depatched way, which makes it possible to count the occurrence of single positions.
After all that there is also an evaluation of the obtained results.

4.1 Seasonal Patches for Human Host

In this section the results using the developed framework will be presented, divided by
the subtype. All results will be shown in tables showing all different approaches.

4.1.1 Subtype H1N1 - seasonal

AdaPatch Approaches

Table 4.1: Results for the seasonal H1N1 subtype comparing the two AdaPatch approaches,
differed by the counting method. For Seasons the introduced algorithm did not find
patches of sites under selection the entries are left empty and consecutive seasons
without found patches are taken together into one entry. The investigated seasons
still remain the same.

Approach
Season AP:NG+RF AP:NG+NRF

2000/04-2000/09

248+163+199+198+196 197+198+196+248
187+189+188+193 276+274+53
482+476+475+474 142+141+144

131+132+156
2000/10-2001/09

2001/10-2002/03
248+163+199+198+196 276+275+274+53
187+189+188+193 197+198+196+248
482+476+475+474 142+141+144

2002/04-2002/09
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2002/10-2003/03

248+163+199+198+196 279+276+275+274
197+192+158+156 193+196+199+198
187+189+188+193 219+189+188+187
279+276+275+274 158+156+132

142+141+77

2003/04-2003/09

248+163+199+198+196 279+276+275+274
248+163+199+198+196 193+196+199+198
279+276+275+274 219+189+188+187

131+156+132
271+91+93+65

2003/10-2004/03

248+163+199+198+196 279+276+275+274
187+189+188+193 193+196+199+198
279+276+275+274 219+189+188+187

271+91+93+65
142+141+77

2004/04-2004/09

2004/10-2005/03

248+163+199+198+196 271+91+269+93+65
187+189+188+193 219+188+187+189
279+276+275+274 279+276+275+274

193+196+199+198
244+212+210

2005/04-2005/09

248+163+199+198+196+192 248+163+199+198+196
187+189+188+219 279+276+275+274
279+276+275+274 219+188+187

158+132+131

2005/10-2006/03

198+196+189+188 188+189+198+196
279+53+276 279+53+276

101+104+103
275+274+273
80+78+77

2006/04-2006/09

248+163+199+198+196+197 197+196+192+199+198+163+248
187+189+188+192+193 142+141+144

193+189+190
275+274+273
219+188+187

2006/10-2007/03

248+199+198+197+196 196+193+158+156+248+199+198
285+274+273+50 279+53+275+276

285+274+273+50
187+192+190
271+91+93+65
219+189+188
142+141+77
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2007/04-2007/09

193+192+198+187+190 193+192+188+198+197+196
156+160+159+158 132+133+131
132+133+131 278+279+56+54

141+145+144

2007/10-2008/03

192+193+189+190+187 193+192+187+189+190
165+163+129+156 275+274+276+53+56
274+56+53+276 188+199+198+196+197
244+210+207+208 248+163+165

131+156+129
141+144+145
476+475+474
210+207+208

2008/04-2008/09
193+192+197+196+190+189 187+189+190+193+192+196

278+279+275+274+273
188+199+198

2008/10-2009/03

189+190+187 248+163+158+156+196
192+193+188+197 193+188+189+190+187
158+196+156 404+400+401
312+45+46
276+275+274

2009/04-2009/09

187+190+188+189 219+187+188+189+190
196+131+156 263+264+262+261
144+141+145 144+145+141

193+196+156
133+132+131
445+443+439

2009/10-2010/03

199+198+196+192+189+187+188 248+163+199+198+196+192
145+144+141+142 142+141+145+144
156+132+131 219+188+189+187

156+158+132
279+275+274

2010/04-2010/09

2010/10-2011/03
276+57+53+54
291+289+390

2011/04-2011/09
2011/10-2012/03 285+269+273

2012/04-2012/09
144+141+145
290+46+45

2012/10-2015/03
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1900/01-2015/12

188+187+189+190+192+193+196 197+199+198+188+189+
190+187+196+192+193

53+56+275+276+273 274+273+276+275
142+141+144+145 142+141+144+145
241+169+240+173 169+241+240+173
158+156+129 91+269+271+92
244+165+163 244+165+163
46+45+312 158+156+129
262+261+264 262+261+264
214+199+198 46+45+312

226+227+225
401+404+400

OmegaRatio Approaches

Table 4.2: Results for the seasonal H1N1 subtype comparing the two OmegaRatio approaches,
differed by the counting method. For Seasons the introduced algorithm did not find
patches of sites under selection the entries are left empty and consecutive seasons
without found patches are taken together into one entry. The investigated seasons
still remain the same.

Season OR:NG+RF OR:NG+NRF
2000/04-2000/09 240+172+173+171 240+172+173
2000/10-2001/09
2001/10-2002/03 172+173+171 240+172+173
2002/04-2002/09
2002/10-2003/03 240+172+173 240+172+173
2003/04-2003/09 240+172+173+171 240+172+173+171
2003/10-2004/03 240+172+173+171 240+172+173+171
2004/04-2004/09
2004/10-2005/03 240+172+173+171 240+172+173+171

2005/04-2005/09
240+172+173+171 240+172+173+171

143+144+136 143+144+136

2005/10-2006/03
143+141+73+135+136 172+173+171+169+240

172+173+171+240+169

2006/04-2006/09
240+239+172+173+171+169 240+239+171+169+172+173

143+142+141+73+136 143+142+141
2006/10-2007/03 172+173+171+240+169 172+173+240+171+169

2007/04-2007/09
240+169+172+173+171 172+171+173+169

136+141+144 225+186+227
225+227+186 136+141+144

2007/10-2008/03 143+141+144 143+141+144
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2008/04-2008/09 240+172+173+171+169 240+169+172+173+171

2008/10-2009/03
238+172+171+240+169 239+240+238+171+169

143+141+144 143+144+145+137

2009/04-2009/09

240+238+173+172+171+169 200+199+248
200+248+199 100+227+186+225
224+225+100 172+171+169

240+238+173
2009/10-2010/03 240+172+173+171 240+172+173
2010/04-2015/03

1900/01-2015/12
171+169+238+240 157+158+132

212+211+210 171+169+238
136+141+145

OmegaValue Approach

Table 4.3: Results for the seasonal H1N1 subtype using the OmegaValue approach. For Sea-
sons the introduced algorithm did not find patches of sites under selection the entries
are left empty and consecutive seasons without found patches are taken together into
one entry. The investigated seasons still remain the same.

Season OmegaValues
2000/04-2000/09 240+172+173
2000/10-2001/09
2001/10-2002/03 240+172+173
2002/04-2002/09
2002/10-2003/03 240+172+173
2003/04-2003/09 240+171+173
2003/10-2004/03 240+171+173
2004/04-2004/09
2004/10-2005/03 240+171+173

2005/04-2005/09
240+171+173
143+144+136

2005/10-2006/03 171+173+240+169
2006/04-2006/09 240+239+171+173+169
2006/10-2007/03 171+173+240+169
2007/04-2007/09
2007/10-2008/03 143+141+144
2008/04-2008/09 240+169+171+173

2008/10-2009/03
239+240+171+169
186+227+189

2009/04-2009/09
240+171+169+173
200+199+248
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2009/10-2010/03 240+172+173
2010/04-2015/03

1900/01-2015/12
167+171+169
239+238+240

4.1.2 Subtype H1N1 - pandemic

AdaPatch Approaches

Table 4.4: Results for the pandemic H1N1 subtype comparing the two AdaPatch approaches,
differed by the counting method. The tables start with the first occurrence of the
pandemic H1N1 subtype in 2009. For Seasons the introduced algorithm did not find
patches of sites under selection the entries are left empty and consecutive seasons
without found patches are taken together into one entry. The investigated seasons
still remain the same.

Season AP:NG+RF AP:NG+NRF

2009/04-2009/09
54+49+52 54+49+52
60+62+90 90+60+62

288+273+274
2009/10-2010/03 133+135+163+160

2010/04-2010/09
200+203+202 200+203+202

160+159+133

2010/10-2011/03
163+133+160 200+203+202+251

244+241+245+172 163+160+133

2011/04-2011/09
202+203+200
163+133+160

2011/10-2012/03
2012/04-2012/09 200+203+202

2012/10-2013/03
143+144+138
288+273+274
135+133+136

2013/04-2013/09
291+286+43+42 291+286+43+42

202+203+251

2013/10-2014/03
200+203+202+251 200+203+202

273+274+88 190+222+188
2014/04-2015/03

1900/01-2015/12

264+178+176+177 178+176+264+177
228+227+230+225 42+41+40

42+41+40 268+267+266
268+267+266 228+227+230
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OmegaRatio Approaches

Table 4.5: Results for the pandemic H1N1 subtype comparing the two OmegaRatios ap-
proaches, differed by the counting method. The tables start with the first occurrence
of the pandemic H1N1 subtype in 2009. For Seasons the introduced algorithm did
not find patches of sites under selection the entries are left empty and consecutive
seasons without found patches are taken together into one entry. The investigated
seasons still remain the same.

2009/04-2009/09
Season OR:NG+RF OR:NG+NRF

2009/10-2010/03
159+163+132+165 274+273+275

49+50+284+283
2010/04-2010/09
2010/10-2011/03
2011/04-2011/09 282+283+54 282+283+54

2011/10-2012/03
199+200+202 199+200+202
265+266+113 265+266+113

2012/04-2012/09 199+200+159 199+200+159
2012/10-2013/03 99+232+219 99+100+232
2013/04-2013/09

2013/10-2014/03
134+136+159 134+136+159

89+90+88
2014/04-2014/09
2014/10-2015/03
1900/01-2015/12
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OmegaValue Approach

Table 4.6: Results for the pandemic H1N1 OmegaValue approach. The table starts with the
first occurrence of the pandemic H1N1 subtype in 2009. For Seasons the introduced
algorithm did not find patches of sites under selection the entries are left empty and
consecutive seasons without found patches are taken together into one entry. The
investigated seasons still remain the same.

Season OmegaValues
2009/04-2009/09

2009/10-2010/03
274+273+275

49+50+284+283
2010/04-2011/09
2011/10-2012/03 199+200+202
2012/04-2012/09 199+200+159
2012/10-2013/03 99+100+232
2013/04-2013/09
2013/10-2014/03 134+136+159
2014/04-2015/03
1900/01-2015/12
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4.1.3 Subtype H3N2

AdaPatch Approaches

Table 4.7: Results for the H3N2 subtype comparing the two AdaPatch approaches, differed by
the counting method. For Seasons the introduced algorithm did not find patches
of sites under selection the entries are left empty and consecutive seasons without
found patches are taken together into one entry. The investigated seasons still remain
the same.

Season AP:NG+RF AP:NG+NRF
2000/04-2003/09
2003/10-2004/03 325+21+37+23
2004/04-2005/09
2005/10-2006/03 239+174+173
2006/04-2009/03
2009/04-2009/09 328+22+21 94+91+95
2009/10-2010/03

2010/04-2010/09
160+158+156 21+328+22

41+23+24

2010/10-2011/03
160+156+158
280+289+47

2011/04-2011/09
239+175+173+171

21+22+328

2011/10-2012/03
156+158+160

325+37+23+22

2012/04-2012/09
158+156+160 158+156+160

242+241+239

2012/10-2013/03

156+158+160 156+158+160
21+22+328 21+22+328

262+173+175 276+275+278
173+175+239

2013/04-2013/09

2013/10-2014/03
328+22+23 328+22+23

189+187+188
2014/04-2014/09
2014/10-2015/03 47+290+289
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1900/01-2015/12

37+23+24+22+21 326+325+328+22+21
239+238+175+169 239+238+175+169
295+296+307+293 295+296+307+293
189+186+185+196 197+200+198+199

198+199+200 322+37+23+24
264+263+266 190+185+186+227

62+63+92+271 262+264+263+266
322+25+35 289+280+287

328+326+325 188+189+196
58+82+57

OmegaRatio Approaches

Table 4.8: Results for the H3N2 subtype comparing the two OmegaRatio approaches, differed
by the counting method. For Seasons the introduced algorithm did not find patches
of sites under selection the entries are left empty and consecutive seasons without
found patches are taken together into one entry. The investigated seasons still remain
the same.

Season OR:NG+RF OR:NG+NRF
2000/04-2003/09
2003/10-2004/03 244+241+242 244+241+242
2004/04-2009/03
2009/04-2009/09 227+222+229 227+222+229
2009/10-2011/03
2011/04-2011/09 240+242+241 240+242+241
2011/10-2012/09
2012/10-2013/03 229+227+222 295+293+315
2013/04-2015/03
1900/01-2015/12

OmegaValue Approach

Table 4.9: Results for the H3N2 subtype for the OmegaValue approach. For Seasons the in-
troduced algorithm did not find patches of sites under selection the entries are left
empty and consecutive seasons without found patches are taken together into one
entry. The investigated seasons still remain the same.

Season OmegaValues
2000/04–2003/09
2003/10-2004/03 244+241+242
2004/04-2007/09
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2007/10-2008/03 321+322+37
2008/04-2011/03
2011/04-2011/09 240+242+241
2011/10-2012/09
2012/10-2013/03 240+238+241
2013/04-2015/03
1900/04-2015/12

4.1.4 Subtype H5N1

AdaPatch Approaches

Table 4.10: Results for the H5N1 subtype comparing the two AdaPatch approaches, differed by
the counting method. For Seasons the introduced algorithm did not find patches
of sites under selection the entries are left empty and consecutive seasons without
found patches are taken together into one entry. The investigated seasons still
remain the same.

Season AP:NG+RF AP:NG+NRF
2000/04-2005/03
2005/04-2005/09 145+142+144
2005/10-2006/03
2006/04-2006/09 142+145+144
2006/10-2007/03 158+131+130+133
2007/04-2009/03

2009/04-2009/09
216+189+185+188 216+189+185+188

280+50+278
2009/10-2010/03 189+185+188+186 216+188+186

2010/04-2010/09
280+50+278+53 280+50+278+53

188+189+185

2010/10-2011/03

158+159+160
269+88+285

227+187+188
145+71+144

127+128+124
2011/04-2011/09
2011/10-2012/03 159+158+131
2012/04-2013/09
2013/10-2014/03 269+87+88+91
2014/04-2015/03
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1900/01-2015/12

226+227+189+187 188+186+189+187
128+127+255 128+127+124
160+159+158 160+159+158
269+88+285 193+196+192

193+196+192 135+133+131

OmegaRatio Approaches

Table 4.11: Results for the H5N1 subtype comparing the two OmegaRatio approaches, differed
by the counting method. For Seasons left out of the table the introduced algorithm
did not find patches of sites under selection and consecutive seasons without found
patches are taken together into one entry. The investigated seasons still remain the
same.

Season OR:NG+RF OR:NG+NRF
2000/04-2015/03

1900/01-2015/12
141+144+142 59+43+285

279+278+280
141+142+144

OmegaValue Approach

Table 4.12: Results for the H5N1 subtype for the OmegaValue approach. For Seasons the
introduced algorithm did not find patches of sites under selection the entries are left
empty and consecutive seasons without found patches are taken together into one
entry. The investigated seasons still remain the same.

Season OmegaValues
2000/04-2015/03
1900/01-2015/12 279+278+280

4.1.5 Subtypes H7

For the Subtype H7N9, and also H7N7, no patches under selection have been detected
using IPoSuS.

4.2 Evaluation

In this section all results will be evaluated against literature known amino acids under
selectional pressure. Therefore the results of each subtype are put together so that there
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is a relative count of appearances in patches of this amino acid position. Furthermore all
results will get introduced to the H3N2 numbering. According to the resulting numbering
the results are evaluated, whether they are located in a known patch, are mentioned
in other literature or are newly found. Other literature in this case means that these
positions are not in patches, but are also have experimental proof to be under selection.
This differentiation is needed, because the positions of other literature are not used for
evaluation in other publications. For this reason the reported patches will be used as
well as all results based on other literature. The evaluation data for subtypes of H3 is
given in Table 1.2 and table 1.3 shows the data used for subtype H1.

4.2.1 Pandemic H1N1

Combining all resulting amino acids contained in patches, we get 64 different positions
which are found to be under selectional pressure as shown in Table 4.13.

Table 4.13: Results for the pandemic H1N1 subtype with dispatched patches. The first column
indicates the amino acids position of the patches found by the introduced algo-
rithm, the second column shows the according H3N2 numbering, the third column
shows how often this amino acid position was found in a patch and the fourth column
shows whether this specific amino acids position is located in a known patch - there-
fore characterized by a capital letter as denoted in Table 1.2 and Table 1.3- or was
reported in any other publication as position under selection. Furthermore, "new"
indicates that this position was newly found as position under selectional pressure.
Patches are assigned using the H3 numbering. Patches from the evaluation data
are labeled by Sa, Sb, Ca1, Ca2, Cb for H1 and A, B, C, D and e for H3 subtype.

Amino Acid Position H3 Numbering Count Reported
40 39 2 Li2011 [42] + Arunachalam2013 [2]
41 40 2 Arunachalam2013 [2]
42 41 4 Arunachalam2013 [2]
43 42 2 Arunachalam2013 [2]
49 48 3 Arunachalam2013 [2] + Ding2010 [18]
50 49 1 Arunachalam2013 [2]
52 51 2 Arunachalam2013 [2]
54 53 4 Arunachalam2013 [2]
60 58 2 Arunachalam2013 [2]
62 60 2 Arunachalam2013 [2]
88 85 2 new
89 86 1 Li2011 [42]
90 87 3 new
99 95 2 new

100 96 1 new
113 109 2 new
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132 125 1 new
133 126 6 new
134 127 3 new
135 128 2 new
136 129 4 new
138 131 1 new
143 135 1 new
144 136 1 new
159 151 8 new
160 152 5 new
163 155 5 new
165 157 1 new
172 164 1 new
176 168 2 new
177 169 2 Ca1
178 170 2 new
188 180 1 Lee2015 [41]
190 182 1 new
199 191 6 new
200 192 13 new
202 194 11 new
203 195 8 new
219 211 1 new
222 214 1 Zehender2012 [93] + Ding2010 [18]
225 217 1 new
227 219 2 new
228 220 2 Lee2015 [41]
230 222 2 Li2011 [42]
232 224 2 Li2011 [42]
241 233 1 new
243 235 1 new
244 236 2 new
245 237 2 Li2011 [42]
251 243 3 new
264 256 2 new
265 257 2 new
266 258 4 new
267 259 2 new
268 260 2 new
273 264 5 new
274 265 5 new
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275 266 2 new
282 273 2 new
283 274 3 new
284 275 1 new
286 277 2 new
288 279 2 new
291 282 2 Li2011 [42]

For the pandemic H1N1 subtype no patch data is available and therefore the results
have to be compared to only literature data.
Of the 64 found amino acid positions under selection 18 are reported in the publica-
tions [2, 18, 41, 42, 93]. According to the results 28.13% of the found 64 amino acid
positions are already known to be under selection. On the other hand there are 46
newly identified candidate positions found which equals 71.87% as shown in Figure 4.1.

Figure 4.1: Figure showing the results using subtype specific evaluation data. The blue area
corresponds to the amount of positions that are newly identified and the orange
area represents positions that already have been reported in literature.

Figure 4.2.1 shows all findings mapped onto the 3D-structure as well as all positions
which are exposed on the outer surface of the protein. Both combined show the dif-
ference between the found and exposed positions of the protein, giving a better under-
standing of the used algorithm.
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A

B C

Figure 4.2: Figure showing different amino acid positions on the 3D-structure of the HA protein
for the pandemic H1N1 subtype in orange. Picture on the top left (A) shows all
positions that are exposed on the outer surface in blue. Pictures on the bottom, left
(B) and right (C), show the found positions using IPoSuS as spheres in blue.
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4.2.2 Seasonal H1N1

Taking all results together there are 92 different positions which are found to be under
selectional pressure as shown in Table 4.14.

Table 4.14: Results for the seasonal H1N1 subtype with dispatched patches. The first column
indicates the amino acids position of the patches found by the introduced algorithm,
the second column shows the according H3N2 numbering, the third column shows
how often this amino acid position was found in a patch and the fourth column shows
whether this specific amino acids position is located in a known patch - therefore
characterized by a capital letter as denoted in Table 1.2 and Table 1.3 - or was
reported in any other publication as position under selection. Furthermore a "new"
indicates that this position was newly found as position under selectional pressure.
Patches are assigned using the H3 numbering. Patches from the evaluation data
are labeled by Sa, Sb, Ca1, Ca2, Cb for H1 and A, B, C, D and e for H3 subtype.

Amino Acid Position H3 Numbering Count Reported
45 51 4 new
46 52 4 new
50 56 1 Gianfrani2000 [24]
53 58 4 new
54 59 1 new
56 61 2 Gianfrani2000 [24]
57 62 1 new
65 70 1 new
73 78 2 Cb
78 82 1 Cb
80 84 1 Cb
91 94 1 new
92 95 1 new
93 96 1 new

100 103 2 new
101 104 1 new
103 106 1 new
104 107 1 new
129 129 3 Sa
131 131 5 new
132 132 4 new
135 134 1 new
136 135 8 new
137 136 1 Gianfrani2000 [24]
141 140 17 Ca2
142 141 6 new
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143 142 11 new
144 143 17 Ca2
145 144 9 new
156 155 10 new
157 156 1 Sb
158 157 7 new
159 158 1 Sa
160 159 1 Sb
163 162 11 Sa
165 164 3 new
167 166 1 Sa
169 168 25 new
171 170 37 new
172 171 33 new
173 172 43 new
186 185 4 new
187 186 16 new
188 187 15 new
189 188 18 new
190 189 8 new
192 191 11 new
193 192 13 Sb
196 195 16 new
197 196 6 Sb
198 197 14 new
199 198 15 Sb
200 199 3 new
207 206 1 new
208 207 1 Ca1
210 209 2 new
211 210 1 Ping2011 [60]
212 211 1 new
214 213 1 new
219 218 3 new
224 223 1 new
225 224 5 Ca2
226 225 1 Ca2
227 226 5 new
238 237 7 new
239 238 5 new
240 239 46 new
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241 240 2 Ca1
244 243 3 new
248 247 12 new
261 260 3 new
263 261 1 new
264 262 3 new
269 267 2 Jones1994 [29],Stern1994 [71]
271 269 1 Jones1994 [29],Stern1994 [71]
273 271 4 new
274 272 9 new
275 273 8 Ca1
276 274 10 new
278 276 10 new
279 277 6 new
285 283 2 new
289 287 1 new
290 288 1 new
291 289 1 new
312 310 3 new
390 390 1 new
400 400 1 new
401 401 1 new
404 404 1 new
439 439 1 Gianfrani2000 [24]
443 443 1 Gianfrani2000 [24]
445 445 1 Gianfrani2000 [24]
474 474 2 new
475 475 2 new
476 476 2 new
482 482 2 new
133 - 2 new
262 - 3 new
77 - 1 new

Of this 100 amino acids 19 are located patches of H1 subtype evaluation data, while nine
are reported in other publications. This means that a total of 28 amino acids known. On
the other hand this means that 72 positions are newly identified candidate positions.
According to the results 19.00% of the found 100 amino acid positions are located in
known patches of H1 evaluation data and 9.00% are are known by other literature,
which makes a total of 28.00% amino acid positions known. That makes a total of
72.00% newly identified candidate positions found as shown in Figure 4.3.
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Figure 4.3: Figure showing the results using subtype specific evaluation data. The blue area cor-
responds to the amount of positions in known patches, the orange part represents
the amount of newly identified positions and the yellow area represents positions
that already have been reported in other literature.

Figure 4.2.2 shows all findings mapped onto the 3D-structure of the used protein and
also shows all amino acid positions that are exposed on the outer surface of the protein.
Both combined show the difference between the found and exposed positions of the
protein, giving a better understanding of the used algorithm.
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A B

C D

Figure 4.4: Figure showing different amino acid positions on the 3D-structure of the HA protein
for the seasonal H1N1 subtype in orange. Picture on the top left (A) shows the posi-
tions that have to be found using H1 evaluation data in blue. Picture on the top right
(B) shows all positions that are exposed on the outer surface in blue. Pictures on
the bottom left (C) and right (D) show the found positions using IPoSuS as spheres
in blue.
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4.2.3 H3N2

Depatching all resulting patches IPoSuS has identified 69 different positions which are
under selectional pressure, as shown in Table 4.15.

Table 4.15: Results for the H3N2 subtype with dispatched patches. The first column indicates
the amino acids position in the patches found by the introduced algorithm, the sec-
ond column shows how often this amino acid position was found in a patch and
the third column shows whether this specific amino acids position is located in a
known patch - therefore characterized by a capital letter as denoted in Table 1.2
and Table 1.3 - or was reported in any other publication as position under selection.
Furthermore a "new" indicates that this position was newly found as position under
selectional pressure. Patches are assigned using the H3 numbering. Patches from
the evaluation data are labeled by Sa, Sb, Ca1, Ca2, Cb for H1 and A, B, C, D and
E for H3 subtype.

Amino Acid Position Count Reported
21 8 new
22 10 new
23 7 new
24 3 new
25 1 new
35 1 new
36 3 new
37 2 new
41 1 new
47 2 C
57 1 Gianfrani 2000 [24]
58 1 Gianfrani 2000 [24]
62 1 E
63 1 E
82 1 E
91 1 E
92 1 E
94 1 E
95 1 new
156 6 B
158 7 B
160 7 B
169 3 new
171 1 D
173 4 D
174 1 D
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175 5 D
185 2 new
186 2 B
187 1 B
188 2 B
189 2 B
190 1 B
196 1 B
197 1 B
198 2 B
199 2 new
200 2 new
222 3 new
227 4 D
229 3 D
238 3 D
239 6 new
240 4 D
241 8 new
242 7 D
244 3 D
262 2 E
263 2 Jones 1994 [29], Stern 1994 [71]
264 2 E
266 2 Jones 1994 [29], Stern 1994 [71]
271 1 new
275 1 C
276 1 C
278 1 C
280 2 C
287 1 new
289 3 new
290 1 new
293 3 new
295 3 new
296 2 new
307 2 C
315 1 Carmichael 1997 [11]
321 1 Carmichael 1997 [11]
322 3 Carmichael 1997 [11]
325 3 new
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326 2 new
328 9 new

Of this 69 amino acids 35 are located in known patches of H3 subtype evaluation data,
whereas 7 are reported in other publications. This means that a total of 27 amino acids
are newly found. These are 21, 22, 23, 24, 25, 35, 36, 37, 41, 95, 185, 199, 200, 222,
239, 241, 271, 287, 289, 290, 293, 295, 296, 325, 326 and 328
According to the results 50.72% of the found 69 amino acid positions are located in
known patches. Additionally 10.15% are known by other literature, which makes a total
of 60.87% amino acid positions known. Furthermore a total of 39.13% are newly found,
as shown in Figure 4.5.

Figure 4.5: Figure showing the results using subtype specific evaluation data. The blue area cor-
responds to the amount of positions in known patches, the orange part represents
the amount of newly identified positions and the yellow area represents positions
that already have been reported in other literature.

Figure 4.2.3 shows all amino acid positions that are exposed on the outer surface of the
protein, all amino acid positions that are in the H3 evaluation data and all findings using
IPoSuS. The figure combined shows the difference between the found and exposed
positions of the protein, giving a better understanding of the used algorithm.
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Figure 4.6: Figure showing different amino acid positions on the 3D-structure of the HA protein
for subtype H3N2 in orange. Picture on the top left shows the positions that are
exposed on the outer surface in blue. Picture on the top right shows the positions
that have to be found in using H3 evaluation data in blue. Pictures on the bottom,
left and right, show the found positions using IPoSuS as spheres in blue.
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4.2.4 H5N1

Considering all patches, we get 40 different positions which are found to be under se-
lectional pressure for this subtype, as shown in Table 4.16.

Table 4.16: Results for the H5N1 subtype with dispatched patches. The first column indicates
the amino acids position of the patches found by the introduced algorithm, the sec-
ond column shows the according H3N2 numbering, the third column shows how
often this amino acid position was found in a patch and the fourth column shows
whether this specific amino acids position is located in a known patch - therefore
characterized by a capital letter as denoted in Table 1.2 and Table 1.3 - or was re-
ported in any other publication as position under selection. Furthermore a "new"
indicates that this position was newly found as position under selectional pressure.
Patches are assigned using the H3 numbering. Patches from the evaluation data
are labeled by Sa, Sb, Ca1, Ca2, Cb for H1 and A, B, C, D and e for H3 subtype.

Amino Acid Position H3N2 numbering Count Reported
43 49 1 new
50 55 1 new
52 57 2 new
53 58 1 new
55 60 3 new
59 64 1 new
71 76 1 new
87 91 1 new
88 92 1 new
91 94 1 new
92 95 3 new

124 125 2 new
127 128 3 new
128 129 2 Kongchanagul2008 [35]
130 131 1 new
131 132 3 new
133 133 2 Kongchanagul2008 [35]
135 135 1 new
141 141 2 new
142 142 4 new
144 144 5 new
145 145 3 new
158 158 5 Kongchanagul2008 [35]
159 159 4 new
160 160 3 new
169 169 2 new
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185 185 4 new
186 186 3 Kongchanagul2008 [35]
187 187 3 new
188 188 7 new
189 189 6 new
192 192 2 new
193 193 2 new
196 196 2 new
216 216 3 new
226 226 1 new
227 227 2 Kongchanagul2008 [35]
255 255 1 new
269 268 1 new
278 277 4 new
279 278 2 new
280 279 5 new
285 284 3 new

For subtype H5N1 no individual patch data is available, therefore we evaluate the results
without the H1 and H3 evaluation data. Without using them, there are only five positions
of the 43 found, that are already reported to be under selection by Kongchanagul [35].
This means that the remaining 38 positions found are newly identified candidates. This
equals 11.63% known positions and 89.37% newly found ones, as shown in Figure ??.

Figure 4.7: Graphic showing the results of the evaluation of the results of subtype H5N1 only
using H5N1 relevant data. The blue area corresponds to the amount of newly iden-
tified positions, while the orange part represents the amount of found positions that
already have been reported.
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Figure 4.2.4 shows all findings mapped onto the 3D-structure of the used protein as well
as all exposed amino acids on the outer surface. Both combined show the difference
between the found and exposed positions of the protein, giving a better understanding
of the used algorithm.

Figure 4.8: Figure showing different amino acid positions on the 3D-structure of the HA protein
for subtype H5N1 in orange. Picture on the top left shows the positions that are
exposed on the outer surface of the protein in blue. Pictures on the bottom, left and
right, show the found positions using IPoSuS as spheres in blue.
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4.3 Approach Analysis

In this section the obtained results for each subtype and approach will be shown.

4.3.1 Seasonal H1N1

For the two different counting methods using the AdaPatch approach the differences in
the results for both approaches are only determined by the approach using the counting
NG+NRF. Therefore every single amino acid occurring in the AdaPatch approach using
NG+RF counting is present in the one using NG+NRF counting. There are 30 different
amino acid positions found, as shown in Table 4.17.

Table 4.17: Differences and similarities between the two different counting schemes used, con-
sidering the AdaPatch (AP) approach, which means that the test statistic used is the
exact Fisher test, for the subtype sH1N1. The used numbering is according to the
subtype, because a direct comparison is possible and needs no shifting to match
other subtypes.

AP:NG+RF Specific AP:NG+NRF Specific AP Similarities

Position -

54, 57, 65, 77, 78, 45, 46, 50, 53, 56,
80, 91, 92, 93,101, 129, 131, 132, 133, 141,

103, 104, 212, 225, 226, 142, 144, 145, 56, 158,
227, 263, 269, 271, 278, 159, 160, 163, 165, 169,
289, 290, 291, 390, 400, 173, 187, 188, 189, 190,
401, 404, 439, 443, 445 192, 193, 196, 197, 198,

199, 207, 208, 210, 214,
219, 240, 241, 244, 248,

261, 262, 264, 273,
274,275, 276, 279,285,
312, 474, 475, 476, 482

For the two different counting methods using the OmegaRatio approach there are dif-
ferences in both approaches. Unique for the approach using NG+RF counting are six
positions, while the approach using NG+NRF counting has five unique positions. Similar
are 19 positions, as shown in Table 4.18.

Table 4.18: Differences and similarities between the two different counting schemes used, con-
sidering the OmegaRatio (OR) approach, which means that the test statistic used
is the Gaussian Z-Test, for the subtype sH1N1. The used numbering is according
to the subtype, because a direct comparison is possible and needs no shifting to
match other subtypes.
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OR:NG+RF specific OR:NG+NRF Specific OR Similarities

Position

73, 135, 210, 211, 132, 137, 145, 157, 100, 136, 141, 142,
212, 224 158 143, 144,169, 171,

172, 173, 186, 199,
200, 225, 227, 238,

239, 240, 248

Considering these four approaches, together with the OmegaValue approach, all these
have an overlap in the amino acids 141, 144, 169, 173, 199, 240 and 248.

4.3.2 Pandemic H1N1

Using the AdaPatch approach with its two different counting schemes, we get differ-
ences in both approaches. For the approach using NG+RF counting there are six po-
sitions that are unique, while using NG+NRF counting results in ten unique positions.
Both approaches are similar in 32 positions, as shown in Table 4.19.

Table 4.19: Differences and similarities between the two different counting schemes used, con-
sidering the AdaPatch (AP) approach, which means that the test statistic used is the
exact Fisher test, for the subtype pH1N1. The used numbering is according to the
subtype, because a direct comparison is possible and needs no shifting to match
other subtypes.

AP:NG+RF Specific AP:NG+NRF Specific AP Similarities

Position

25, 88, 172, 241, 135, 136, 138, 143, 40, 41, 42, 43,
244, 245, 144, 159, 188, 190, 49, 52, 54, 59,

222, 288 60,62, 90, 133,
160, 163, 176, 177,
178, 200, 202, 203,
227, 228, 230, 251,
264, 266, 267, 268,
273, 274, 286, 291

For the two different counting methods using the OmegaRatio approach there are dif-
ferences in both approaches. Unique for the approach using NG+RF counting there are
six unique positions, while the NG+NRF counting results in nine unique positions. Both
approaches are similar in 12 positions, as shown in Table 4.20.
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Table 4.20: Differences and similarities between the two different counting schemes used, con-
sidering the OmegaRatio (OR) approach, which means that the test statistic used
is the Gaussian Z-Test, for the subtype pH1N1. The used numbering is according
to the subtype, because a direct comparison is possible and needs no shifting to
match other subtypes.

OR:NG+RF Specific OR:NG+NRF Specific OR Similarities

Position
99, 132, 163, 165, 49, 50, 88, 89, 54, 113, 134, 136,

219, 232 90, 273, 274, 275, 159, 199, 200, 202,
284 265,266, 282, 283

Considering these four approaches, together with the OmegaValue approach, all these
have an overlap in the amino acids 200 and 202.

4.3.3 H3N2

For the two different counting methods using the AdaPatch approach there are differ-
ences in both approaches. Unique for the approach using NG+RF counting are six,
while the approach using NG+NRF counting has 24 unique positions. Similar are 32.

Table 4.21: Differences and similarities between the two different counting schemes used, con-
sidering the AdaPatch (AP) approach, which means that the test statistic used is the
exact Fisher test, for the subtype H3N2. The used numbering is according to the
subtype, because a direct comparison is possible and needs no shifting to match
other subtypes.

AP:NG+RF Specific AP:NG+NRF Specific AP Similarities

Position

25, 35, 62, 63, 41, 47, 57, 58, 21, 22, 23, 24,
92, 271 82, 91, 94, 95, 37, 156, 158, 160,

171,174, 187, 188, 169, 173, 175, 185,
190, 197, 227, 241, 186, 189, 196, 198,
242, 275, 276, 278, 199, 200, 238, 239,
280,287, 289, 290 262, 263, 264, 266,

293, 295, 296, 307,
322, 325, 326, 328

For the two different counting methods using the OmegaRatio approach the differences
are only determined by the approach using the counting NG+NRF. Therefore every sin-
gle amino acid occurring in the AdaPatch approach using NG+RF counting is present
in the approach using NG+NRF counting. The different Amino acids are: 293, 295 and
315.
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Table 4.22: Differences and similarities between the two different counting schemes used, con-
sidering the OmegaRatio (OR) approach, which means that the test statistic used is
the Gaussian Z-Test, for the subtype H3N2. The used numbering is according to the
subtype, because a direct comparison is possible and needs no shifting to match
other subtypes.

OR:NG+RF Specific OR:NG+NRF Specific OR Similarities

Position -
293, 295, 315 222, 227, 229, 240,

241, 242, 244

Considering all five different approaches there is no overlap.

4.3.4 H5N1

For the two different counting methods using the AdaPatch approach there are differ-
ences in both approaches. Unique for the approach using NG+RF counting are the
positions 130, 226 and 255, while the positions 71, 87, 91, 124, 135, 142, 144 and 145
are unique for the approach using NG+NRF counting. Similar are the positions are 50,
53, 88, 127, 128, 131, 133, 158, 159, 160, 185, 186, 187, 188, 189, 192, 193, 196, 216,
227, 269, 278, 280 and 285.

Table 4.23: Differences and similarities between the two different counting schemes used, con-
sidering the AdaPatch (AP) approach, which means that the test statistic used is the
exact Fisher test, for the subtype H5N1. The used numbering is according to the
subtype, because a direct comparison is possible and needs no shifting to match
other subtypes.

AP:NG+RF Specific AP:NG+NRF Specific AP Similarities

Position

130, 226, 255 71, 87, 91, 124, 50, 53, 88, 127,
135, 142, 144, 145 128, 131, 133, 158,

159, 160, 185, 186,
187, 188, 189, 192,
193, 196, 216, 227,
269, 278, 280, 285

For the two different counting methods using the OmegaRatio approach the differences
are only determined by the approach using the counting NG+NRF. Therefore every sin-
gle amino acid occurring in the AdaPatch approach using NG+RF counting is present
in the approach using NG+NRF counting. The different Amino acids are: 43, 59, 278,
279, 280 and 285 using NG+NRF counting scheme.
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Table 4.24: Differences and similarities between the two different counting schemes used, con-
sidering the OmegaRatio (OR) approach, which means that the test statistic used is
the Gaussian Z-Test, for the subtype H5N1. The used numbering is according to the
subtype, because a direct comparison is possible and needs no shifting to match
other subtypes.

OR:NG+RF Specific OR:NG+NRF Specific OR Similarities

Position -
43, 59, 278, 279, 141, 142, 144

280, 285

Considering all five different approaches there is no overlap.

4.3.5 Overlap pH1N1 and sH1N1

Considering the two subtypes of H1N1 - pandemic and seasonal - we get 24 amino acid
positions that are similar over all approaches using the H3 numbering. These positions
are 51, 58, 95, 96, 129, 131, 135, 136, 155, 157, 164, 168, 170, 191, 192, 195, 211,
224, 237, 243, 260, 273, 274 and 277.

4.3.6 Overlap H3N2 and H5N1

Comparing the obtained results of the subtypes H3N2 and H5N1 there is an overlap in
17 positions. These positions are 57, 58, 91, 92, 94, 95, 158, 160, 169, 185, 186, 187,
188, 189, 196, 227 and 278.

4.3.7 Overlap H5N1 and seasonal H1N1

Comparing the obtained results of the subtypes H3N2 and H5N1 there is an overlap in
21 positions. These positions are 58, 94, 95, 129, 131, 132, 135, 141, 142, 144, 158,
159, 185, 186, 187, 188, 189, 192, 196, 226 and 277.

4.3.8 Overlap H5N1 and pandemic H1N1

Comparing the obtained results of the subtypes H3N2 and H5N1 there is an overlap in
13 positions. These positions are 49, 58, 60, 95, 125, 128, 129, 131, 135, 169, 192,
277 and 279.
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4.3.9 Overlap H3N2 and seasonal H1N1

Comparing the obtained results of the subtypes H3N2 and H5N1 there is an overlap in
25 positions. These positions are 58, 62, 82, 94, 95, 156, 158, 171, 185, 186, 187, 188,
189, 196, 197, 198, 199, 238, 239, 240, 262, 271, 276, 287 and 289.

4.3.10 Overlap H3N2 and pandemic H1N1

Comparing the obtained results of the subtypes H3N2 and H5N1 there is an overlap in
eight positions. These positions are 41, 58, 95, 169, 222, 264, 266 and 275.

4.3.11 Overlap pH1N1 and sH1N1 compared to other Subtypes

Considering only the overlap of the seasonal and the pandemic H1N1 subtype and
compare them to the results obtained for the other subtypes there is also an overlap.
Compared to the H3N2 subtype the overlap is two amino acid positions great. These
two positions are 58 and 95. Comparing the overlap to the H5N1 subtype there also
is an overlap, which is seven amino acids great. These amino acids positions are, all
numbered according to the introduced H3 numbering, 58, 95, 129, 131, 135, 192 and
277.

4.3.12All approaches of all proteins

According to the HA masteralignment of all different subtypes we have some shifts in
the results. Using the new results - H3N2 numbering - we get the following singularities
and similarities.

Similarities

Pooling the results of the different approaches for the different subtypes - five ap-
proaches for each subtype - lead to an overlap in two amino acid position, namely
positions 58 and 95. This result is based on the here used H3 numbering.

Differences

After pooling the results, every subtype has its own unique results when comparing
them to the other subtypes, based on the used H3 numbering. The pandemic H1N1
has 29, the seasonal H1N1 has 44, subtype H3N2 has 32 and subtype H5N1 has ten
unique results, as shown in table 4.25.
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Table 4.25: Table showing the subtype specificities after pooling the results of all 5 different
approaches for each subtype.

- pH1N1 Specific sH1N1 specific H3N2 specific H5N1 specific

Position

39, 40, 42, 52, 56, 59, 21, 22, 23, 55, 64, 76,
48, 53, 85, 61, 70, 78, 24, 25, 35, 133, 145, 193,

86, 87, 109, 84, 103, 104, 36, 37, 47, 216, 255, 268,
126, 127, 151, 106, 107, 134, 63, 173, 174, 284
152, 180, 182, 140, 143, 162, 175, 190, 200,
194, 214, 217, 166, 172, 206, 229, 241, 242,
219, 220, 233, 207, 209, 210, 244, 263, 280,
235, 236, 256, 213, 218, 223, 290, 293, 295,
257, 258, 259, 225, 247, 261, 296, 307, 315,

265, 282 267, 269, 272, 321, 322, 325,
390, 400, 401, 326, 328
404, 439, 443,
445, 474, 475,

476, 482

4.3.13Evaluation

The first of the amino acid positions overlap, which is present in every subtype, is not
located in a patch, but lies between position 94, which is part of patch E in the H3 eval-
uation data and position 96 which is part of patch D, also in H3 evaluation data. Using
the H1 evaluation data there is no result for this position, such that it can be classified
as new finding.
For position 58 the situation is equivalent, it is not located in a reported patch, but lies
between two positions - 57 and 59 - of patch E, using H3 evaluation data. Taking H1
evaluation data into account there is again no result, such that this position can also be
seen as new finding. Not using known patch data but also using literature data position
58 is a known position, because Gianfrani has already reported this position [24].
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5 Discussion

In this section all results are discussed. This includes the evaluation, as well as analysis
for the different approaches. Furthermore all new findings will be shown and the used
evaluation data will be discussed. In the end there also is a recommendation for the
usage of IPoSuS, such that it yields best results.

5.1 Evaluation

Because [79] already applied the graph-cut algorithm to data of the HA protein of in-
fluenza A, we expect results of at least the same quality with comparable resulting amino
acid positions. Furthermore [79] did not consider other publications, but only known
patch data. Considering the results they had 17 out of 35 positions in patch data for the
seasonal H1N1 and 33 of 35 for subtype H3N2. The results for the pandemic H1N1 have
never been evaluated because no patch data is available. This means that [79] obtained
48.57% known positions for the seasonal H1N1 and 94.29% for subtype H3N2. In this
thesis we obtained 28.00% of known positions for the seasonal H1N1, combining H1
evaluation data and other literature. For the subtype H3N2 we obtain a value of 60.87%
known positions, again combining literature and patch data. Comparing these results,
we obtained results of lower quality than [79] using the same graph-cut algorithm. The
main factor, leading to such a high difference between the quality of the results is prob-
ably the amount of considered data and approaches which lead to negative, or better,
new results. This is due to the algorithm, which finds also neighbors and, because a
patch consists of at least three amino acid positions, it is likely to have a high rate of
new positions found. Furthermore [79] only uses one single, specific, manually curated
dataset from another database, which could also lead to some shifting in the results.
Getting more into detail, IPoSuS works as intended. This can be seen by comparing the
obtained results with the ones published by [79]. The results obtained by using IPoSuS
are overlapping in 21 positions with the published results using the graph cut algorithm.
Ten of these positions are classified as new findings and are found in different datasets,
suggesting them as new findings and not as wrong findings. For subtype H3N2 the situ-
ation is similar, because 18 positions are overlapping in both results. Of these positions
17 are located in patches and one position is newly found. Considering the results of
the pandemic H1N1 subtype the overlap is six positions great.
Beside the overlap with already reported positions using the graph-cut algorithm the
main question is, how meaningful all newly identified positions are.
First of all, all identified positions are located on the outer surface of the protein, such
that every new identified position could be a possible target of antibodies. Second, tak-
ing the homologue nature of the different subtypes into account, it could be a possible
approximation for the meaningfulness of newly identified positions, when they are re-
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ported to be under selection in other subtypes. Taking this into account, the results for
the seasonal H1N1 subtype also contain 51 positions that are located in patches for the
H3N2 subtype and 37 of them are not overlapping with H1 evaluation data. For the pan-
demic H1N1 subtype eight positions are located in H1 patches and 31 in H3 patches.
Also for subtype H3N2 one position is reported in H1 evaluation data. For subtype H5N1
nine positions are in H1 evaluation data and 29 in H3. These mentioned positions are,
in another subtype, relevant for the virus evasion of the immune system of the host and
could possibly be of interest, when considering other subtypes, as well. Regarding all
these findings, most of the results are reasonable and could have been under selection
in the datasets they have been found for. Further this means that IPoSuS and the used
graph-cut algorithm are working as intended with good results.
But there are some things that should additionally be considered. At first it has to be
reconsidered how up to date all the used evaluation data is. This is due to the fact
that the H3 evaluation data is from 1981 and the H1 evaluation data from 1983. In this
study we used this data from 1983 for analysis of a pandemic H1N1 subtype, because
it is the best evaluation data we got. Without knowing of the generality of the obtained
results in 1983 there is no way to state the newly obtained results as wrong or right,
because it can be that there have been changes that did not occur before. Furthermore
the influenza A virus is a fast evolving virus, which is able to constantly evade the hosts
immune system. Because of this, it could be possible, that the data obtained in 1981
or 1983 does not have as much impact on todays evolution, because the hosts immune
system, and the virus as well, has adapted. It would be an interesting thing to see how
the obtained quality measurements change when we could use up to date data.
As a second point it should be mentioned that the applied tool does not look to find
single amino acids, but patches of amino acids. This means that an amino acid with
strong selective pressure can compensate for amino acids which are under only weak
selective pressure, probably resulting in a patch with an amino acid reported in patches
and additional amino acids not reported, probably leading to a higher false positive rate.
A third thing that should be considered is the amount of evaluation data for either H1
or H3. As shown in the results section (for example see Section 4.2.1) there are 31 re-
ported amino acid positions in H1 patches and 131 reported amino acids in H3 patches,
which makes 137 unique amino acid positions in patches in total.
The fourth thing to rethink is that this study investigates the different seasons and not a
whole dataset at all, such that it was likely to get new results compared to other publi-
cations using entire datasets without the differentiation of seasons.
Another issue is the used numbering, which is obtained by a MSA and the resulting
mapping of all subtypes to one specific numbering. This is done to get the possibility
to compare all results with one another. As shown in Figure 5.2 the HA proteins of
influenza A are very similar and structural they are nearly the same, but nevertheless
saying one amino acid position is the same as in another subtype, only because of a
MSA, is again more of an approximation than a real fact. This also could lead to small
shifts and therefore to false positives because the resulting amino acid position is slightly
not reported.



Chapter 5: Discussion 71

Another question is, how much sense it makes to use the standard evaluation process
for an approach which, first of all is likely to find surrounding amino acid positions and
not only the reported one and second wants to find new amino acid positions with this
help. keeping this in mind there probably should be something new to determine the
quality of a tool. This also makes sense in respect of the amount of the evaluation data
and will be discussed further in Section 5.3.

5.2 Approach Analysis

Now taking all results into account it should be possible to state which of the above in-
troduced approaches is the best one or if they should be run all together to achieve the
best results.
As shown in Chapter 4 all five approaches differ from one another. But there are also
some similarities to be mentioned. First of all the AdaPatch approaches with differ-
ing counting statistics are as similar to one another as the OmegaRatio approaches
are. This is due to the same test statistic used, but also shows that the difference
in the counting statistics is not of such a high influence. Second, the OmegaValue
approach, based on only one counting statistic, is most similar to the OmegaRatio ap-
proaches, which could be due to the same statistical test used. An example could be
either the season 2002/10-2003/03 for the OmegaRatios and OmegaValue approach
for the seasonal H1N1 subtype, all three resulting in a patch of the amino acid positions
172+173+240, or the season 2005/10-2006/03 for the AdaPatch approaches, resulting
in the same patches of 198+196+189+188 and 279+53+276, but differing in the other
patches found.
This last mentioned season also leads to another finding, such that the AdaPatch ap-
proach using NG+NRF counting statistics is more likely to lead to patches than NG+RF
counting is. Therefore there are way more found patches using NG+NRFs counting
than using NG+RF. It even leads to results where the other counting statistic is left with-
out any. As an example serves the season 2010/10-2011/03 of the seasonal H1N1
subtype. Considering the OmegaValue approaches the difference in the amount of re-
sulting patches is not that high, but with a slight advance to NG+NRF counting.
Comparing the amount of results of all three different approaches, neglecting the count-
ing method, there are way more resulting patches for the AdaPatch approaches than
there are for the OmegaRatio approaches. The OmegaValue approach only leads
to very few results. This difference can be explained with the test statistic that gets
used. While the AdaPatch approaches use the pure counts, and therefore has a low
amount of real zeros in the table, the OmegaRatio and OmegaValue approaches use
fractions of these counts, leading to zeros and not significant results in many cases.
The OmegaValue approach even uses two fractions and therefore the amount of zeros
is even higher than in the OmegaValue approach, leading to way fewer results.



72 Chapter 5: Discussion

5.2.1 OmegaValue Approach

The OmegaValue approach is, also it results in only a few findings, with rather good
quality depending on the investigated subtype, because many found amino acid posi-
tions are located in patches, regarding to the evaluation data. Also IPoSuS does not
tend to find single specific amino acid under selective pressure, but patches, making it
likely to have also structural neighbors, determined by the graph cut algorithm, which
gets introduced in Section 2.7, we only evaluate the real findings.
For the pandemic H1N1 subtype the OmegaValue approach leads to 16 different amino
acid positions of which 3 are reported, which makes 18.75%. Using the OmegaValue
approach for the seasonal H1N1 subtype we obtain 18 different positions of which 4 are
reported, that makes 22.22%. For subtype H3N2 the OmegaValue approach leads to
eight different positions of which six are reported, which makes 75.00%. Applying the
OmegaValue on the datasets of subtype H5N1, it results in three different amino acid
positions of which none is reported. This makes 0.00%. In average the OmegaValue
approach results in 28.99% reported positions.

5.2.2 OmegaRatio Approaches

For the OmegaRatio approach the two different counting schemes are available, which
additionally are compared.
The usage of the NG+RF counting scheme and the OmegaRatio approach for the
pandemic H1N1 subtype leads to 18 different amino acid positions of which two are
reported, which makes 11.11%. Using the NG+NRF counting scheme instead the
datasets result in 24 different amino acid positions of which five are reported, which
makes 20.83%.
Using the OmegaRatio approach for the seasonal H1N1 subtype, using NG+RF count-
ing scheme, we obtain 25 different positions of which six are reported, that makes
24.00%. Using the NG+NRF counting scheme instead the datasets result in 24 dif-
ferent amino acid positions of which six are reported, which makes 25.00%.
For subtype H3N2 the OmegaRatio approach leads to seven different positions of which
five are reported, which makes 71.43%. Using the NG+NRF counting scheme instead
the datasets result in ten different amino acid positions of which six are reported, which
makes 60.00%.
Applying the OmegaRatio on the datasets of subtype H5N1, it results in three different
amino acid positions of which none is reported. This makes 0.00%. Using the NG+NRF
counting scheme instead the datasets result in nine different amino acid positions of
which none is reported, which makes 0.00%.
In average the OmegaValue approach using NG+RF counting scheme results in 26.64%
reported positions, while using the NG+NRF counting scheme results in 26.46% re-
ported positions.
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5.2.3 AdaPatch Approaches

Using the AdaPatch approaches leads to all left open results and additionally to nearly
all introduced ones in Chapter 4. Furthermore, the different used counting schemes are
compared.
The usage of the NG+RF counting scheme and the AdaPatch approach for the pan-
demic H1N1 subtype leads to 37 different amino acid positions of which 14 are reported,
which makes 37.84%. Using the NG+NRF counting scheme instead the datasets result
in 41 different amino acid positions of which 15 are reported, which makes 36.59%.
Using the AdaPatch approach for the seasonal H1N1 subtype, using NG+RF counting
scheme, we obtain 54 different positions of which 15 are reported, that makes 27.78%.
Using the NG+NRF counting scheme instead the datasets result in 80 different amino
acid positions of which 22 are reported, which makes 27.50%.
For subtype H3N2 the AdaPatch approach, using NG+RF counting, leads to 39 different
positions of which 19 are reported, which makes 48.72%. Using the NG+NRF counting
scheme instead the datasets result in 55 different amino acid positions of which 34 are
reported, which makes 61.82%.
Applying the AdaPatch on the datasets of subtype H5N1, it results in 27 different amino
acid positions of which five are reported. This makes 18.52%. Using the NG+NRF
counting scheme instead the datasets result in 31 different amino acid positions of which
four are reported, which makes 12.90%.
In average the AdaPatch approach using NG+RF counting scheme results in 33.22% re-
ported positions, while using the NG+NRF counting scheme results in 34.70% reported
positions.

Considering all this result should make it easy to decide which approach is the best
one. Generally spoken the results using NG+RF counting scheme are slightly bet-
ter than the one using NG+NRF. For the AdaPatch approach applied on the subtype
H3N2 the NG+NRF counting scheme results in a way higher precision than the one of
NG+RF. Also the OmegaRatio approach seems to have results of quite high quality, al-
though they are a little bit worse than the mean of the OmegaValue approach. Overall
the OmegaRatio approach can be considered as better, because this approaches yield
more results. Nevertheless, the AdaPatch approach has the best quality regarding the
results. With the mean value of the obtained results, the default usage of IPoSuS should
be the AP:NG+NRF approach, because it yields the best and the most results combined
over all subtypes, as shown in Table 5.1.

On the other hand there are results that are, in this study, approach dependent and
do not occur in the other ones and are correct, applying the H3 evaluation data. For
example does the AdaPatch approach using NG+RF counting scheme have 6 specifici-
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Table 5.1: Table showing the results of the approaches for the different subtypes. The results
shown are the percentage (in %) of correct identified positions under selection for the
subtype and approach.

Subtype
pH1N1 sH1N1 H3N2 H5N1 Mean

Approach

AP:NG+RF 37.84 27.78 48.72 18.52 33.22
AP:NG+NRF 36.59 27.50 61.82 12.90 34.70
OR:NG+RF 11.11 24.00 71.43 0.00 26.64

OR:NG+NRF 20.83 25.00 60.00 0.00 26.46
OmegaValue 18.75 22.22 75.00 0.00 28.99

ties compared to the counting scheme NG+NRF. Of these six positions are 3 located in
patches and two of them - 62 and 63 - are only detected using this approach. The other
three positions are newly found.
Beside these specificities in and the amount of the resulting positions the seasonal
specificity has to be taken into account. This is a point regarding to the used dataset,
because for each season there has been the same dataset for all five approaches for
each subtype investigated. For example does the OmegaValue approach finds a patch
for the season 2007/10-2008/03 of the subtype H3N2, whereas the other 4 approaches
do not find anything in this season. On the other hand only the AdaPatch approach us-
ing NG+NRF counting scheme finds patches for subtype H3N2 for the season 2011/04-
2011/09. Using the counting scheme of NG+RF and the AdaPatch approach for the
same subtype (and also the same dataset as just before), it finds a unique patch for the
season 2011/10-2012/03. Only the OmegaRatio approach does always find patches in
the same seasons for each counting scheme and each subtype. Also they do not find
results if the AdaPatch approach does not find some.
In the end the recommendation is to use the AP:NG+NRF approach if new datasets are
investigated. If knowledge is existent, the OmegaValue approach could probably be of
more interest, because it yields yet less but perhaps more interesting and new results.
Furthermore, the usage of more approaches at once lead to a better understanding and
an instant comparability of the results and also a first analysis, because in the best case
all five approaches totally overlap.
Additionally it has to be reconsidered whether the data foundation is good enough or
not to make a statement like this. Especially for the subtype H5N1 there is very few data
regarding the evaluation as well as the sequence data. But without this subtype there
would be only three left of which two are H1N1, differed by seasonal and pandemic. Ex-
cluding subtype H5N1 from this analysis, because the data basis is not satisfiable, the
mean values would be a little different. The OmegaValue approach would reach mean
value of 38.66%, the OR:NG+RF a value of 35.51%, approach OR:NG+NRF reaches
a value of 35.28%, the mean value of approach AP:NG+RF equals 38.11% and the
AP:NG+NRF approach yields 41.97% of correct identified positions in the mean. Con-
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sidering this case, only investigating subtypes which have adequate evaluation data
available, the recommendation gets a little bit more clear. The approach AP:NG+NRF
yields the best results but also contains a high number of new identified positions. The
OmegaValue approach leads to only slightly worse results, but also yields in only a few
results, compared to the AP:NG+NRF approach.

5.3 Evaluation Data

First of all there is a huge overlap between the reported H1 and H3 positions, second
there is a huge difference in the amount of reported amino acids, because the H1N1
subtype has not been in the human for as long as the H3N2 subtype. Only considering
the H3 evaluation data now would mean that any tool or analysis of the H3N2 subtype
would have to find 131 amino acids of 324, which is the length of the protein. This is
a total of 40.43% of the protein reported to be in a patch. If we would now exclude the
first 40 amino acids, which are located in the membrane, and therefore should not have
any impact on the evasion of the immune system, a tool would have to find 46.13% of
the protein, which would make it nearly to throwing a coin to decide whether an amino
acid position is under selective pressure or not. Despite of that it could be that some
amino acid changes have been arisen before but have been of only temporary existence
meaning they disappeared again but can probably arise again. This even gets more to
a random process or even worse when there would be an inclusion of additional data
provided by other literature.
To this point we always evaluated everything we got against the H3 evaluation data,
because of the fact, that the results fit and lead to a good quality of IPoSuS. One thing
that should be reconsidered in this case is, how much can the difference between two
so similar proteins be and why are there 131 amino acid positions in patches for H3
and only 32 for H1. As already mentioned before, of these 32 positions, only six dif-
fer from the H1 evaluation data. This six different amino acid positions are probably
subtype specific differences. The main difference is still the amount of known positions
in patches. This could be either to real differences, meaning IPoSuS is only working
properly for the H3N2 subtype or because there have not been enough investigations
on the amino acid positions forming the patches of H1. Another possible explanation
could be that the positions for the H3 evaluation data is just not nuanced enough and
has way too much false positives in it, leading to such a high amount of positions. The
problem with this is that a tool does have to reach this high amount of positions to get
a high quality, but without having any false positives. But as already mentioned, when
leaving out the membrane parts of the protein, it is nearly by chance whether a position
is in a patch or not. Furthermore this leads to a point where nearly every finding is a
good or a positive one, because nearly half of the protein is a correct finding. This in the
end would lower the quality of every developed algorithm, because no one can be sure
what is correct and what is incorrect. Again considering the positive and good quality
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results as well as the high overlap in H1 and H3 evaluation data, it is more likely to be
the first possibility, that there has been not enough investigation about the H1 subtypes.
Especially thinking about the first real appearance of the pandemic H1N1 subtype, it is
reasonable that there is not such a high amount of known data for now. The situation
regarding the amount of evaluation data peaks for subtype H5N1. This is due to the
rare occurrence of H5N1 subtype viruses in humans and the therefore few amount of
investigations about the adaptations and the selectional pressure. This in the very end
leads again to the possibility to use the H3 evaluation data for every other subtype, at
least as an approach, leaving the subtype specific positions of the newly investigated
subtype open. The overlap between newly identified positions of the subtype H5N1 and
the pandemic H1N1 and the known patch data for H1 and H3 have been shown before
and highly suggest this method.

5.4 New Findings

Beside the in Section 5.1 presented concerns regarding the results, there are some
interesting new findings provided by this study.
First of all, there are two amino acid overlap in all four considered subtypes. Because
this study only used sequences of human hosts, this two amino acid positions can be
seen as relevant for the human adaption or the continuance in the human host.
A second very interesting thing that appeared because of the seasonal view is that it
seems that there are some amino acid positions which are mainly altered and therefore
have a high number of appearances in patches over the seasons, accompanied by
structural neighbors which seem to be exchangeable. Even so it is not surprising, that
there are surroundings found by the algorithm, but the amount of counts is interesting.
Taking them in to account this finding gets clearer. Figure 5.1 shows this findings as a
graphical plot.

Mathematically this even makes sense regarding to the main effort the virus has - evad-
ing the immune system of the host. Now thinking of an amino acid position, which is
mainly altered to evade the immune system of the host. The virus only has 20 different
possibilities to change this particular position and in the worst case it would only last
for 20 seasons before it extinct because the immune system would "know" all different
possibilities. But if the virus randomly would change the amino acid positions in an area
of round about±3 positions the virus would have 207 = 1280000000 possibilities to alter
this area. Having multiple of such areas highly increases the survivability of the virus,
regarding to the evasion of the hosts immune system, because the immune system can
not have such an high amount of different antibodies against every single possibility of
such a highly alterable area.
Another new finding is, that there is not such of a difference (see Section 5.2) in the
highly mutable sites as expected and that the evaluation data of H1 and H3 could and
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Figure 5.1: Figure exemplarily showing the results for the seasonal H1N1 and the H3N2 sub-
type. On the x-axis are the amino acid positions while on the y-axis is the count, how
often this position was found in a patch, showing that there are clearly favored amino
acid positions which get surrounded by less favored ones that are exchangeable.

should be combined. Furthermore the results show that the combination of H1 and H3
subtype evaluation data can be applied to evaluate the results of subtype H5. This find-
ing should make it also possible to analyze other subtypes.
Reconsidering the results and the fact that many of the resulting findings are one po-
sition beside a known patch-position shows that it is of major importance, if a MSA for
position comparison is used and if so, which sequences it contains. Using another MSA
or a MSA with different sequences could lead to another position shifting, matching them
to the subtype H3N2, and make therefore some mismatches to matching ones. On the
other hand this also could lead some findings to shift and be no findings at all. Another
point is the already mentioned H3 evaluation data, which seems to cover way too man
positions and makes it therefore very hard to make precise statements. But for this
particular problem the amount is only a small piece of the puzzle. The other main part
is, that most of the evaluation data is either consecutive, like 140 to 145, which makes
shifted results likely to be right, no matter the shifting, or they are like 100, 102, 104 etc.
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which makes a shifting either right or wrong. For comparability we therefore created our
own MSA.
Another new finding is the overlap between the seasonal and the pandemic H1N1 sub-
type, after withdrawing the positions this overlap has with the findings of the other two
subtypes. After doing so only the positions 51, 96, 136, 155, 157, 164, 168, 170, 191,
195, 211, 224, 237, 243, 260, 273 and 274 are left over. All of these positions can
be considered as subtype specific for the subtype H1N1. Evaluating them against the
evaluation data two are located in a patch using H1 evaluation data and additional one
position is reported in another publication for the seasonal H1N1 and two positions are
reported for the pandemic H1N1 subtype, which makes it in combination 12 newly found
amino acid positions - 51, 96, 155, 157, 164, 168, 170, 211, 237 and 260. Taking also
the amount of occurrences in patches into account the positions with high occurrences
should be analyzed further. The ones that should be considered further are occurring,
combining both subtypes, 15, 17, 24, 6 and 13 times for position 155, 191, 195, 243 and
274 respectively. The positions 168 and 170 on the other hand seem to be specific for
the seasonal H1N1 because they are found 25 and 37 times in a patch, whereas these
positions only been found to be in a patch 2 times each for the pandemic H1N1 subtype.
But there are not only new findings in pooling of all obtained results, but there are also
some matchless results for each subtype, shown in Table 4.3.12. Evaluating these
specificities to the H3 evaluation data, could yield some subtype specific adaptations.
For the pandemic H1N1, there are eleven positions not reported or close to reported
positions, and are therefore new findings - 40, 42, 99, 113, 232, 251, 267, 282, 283,
286, 288. For the seasonal H1N1 subtype there are 16 new findings - 65 73, 224, 269,
285, 390, 400, 401, 404, 439, 443, 445, 474, 475, 476, 482. For the subtype H3N2
there are 15 new findings - 21 22, 23, 24, 25, 35, 36, 37, 266, 287, 321, 322, 325, 326,
328. For the subtype H5N1 there is only one finding, position 255. Thinking of these
all as subtype specific positions there are huge differences in the host adaption or the
alterations to stay in the host between the different subtypes investigated in this study.
Furthermore it is also of interest, that for the subtype H3N2 there are findings in the
membrane part of the protein HA, which is usually thought of not being under selective
pressure, because it not located on the outer surface of the protein and therefore has no
direct contact with the immune system of the host. Because of the overall results, which
seem to be very good and of a quite good quality, this should probably be checked in
wet-lab experiments, if these positions located in the membrane do have an impact on
the virus, either in virulence or replication or even something else. Second, regarding to
the results of the seasonal H1N1 subtype, there should be some further analysis over
the second chain of the HA protein, because it seems that there quite some interesting
parts under selective pressure. Also there should be some analysis about the positions
282, 283, 285 and 287, because they could form a little patch closing the distance be-
tween position 280 and 294 of patch C in the H3 evaluation data. Additionally position
282 was already found by some other case studies by Li et. al in 2011 [42].
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5.4.1 Positions and Counts

Only until the last section we only looked at the fact that a position has been found by
the algorithm, neglecting the amount of findings, which already has been noted down
in Chapter 4. We now want to consider only amino acid positions that have been sig-
nificantly found more often over all approaches for one subtype. Therefore we calculate
the mean value for each subtype and the standard deviation and only choose positions
with counts higher than the sum of both because we are only interested in these.

Pandemic H1N1

For the pandemic H1N1 subtype we have 176 counts in total, with a mean value of 2.75
and a standard deviation of 2.34, which makes it 5.09 as a border. So we only consider
positions with a count value of 5 or higher. For this subtype there are only ten positions
fulfilling this criteria: 133, 159, 160, 163, 199, 200, 202, 203, 273 and 274 after their own
numbering or 126, 151, 152, 155, 191, 192, 194, 195, 264 and 265 after H3 numbering.
Of these ten positions, considering H1 numbering, all positions are new and are also not
reported elsewhere. All of these position have been found significantly often and have
not been reported yet to be under selective pressure, which would make it reasonable
to further analyze them.

Seasonal H1N1

For the seasonal H1N1 subtype we have 607 counts in total, with a mean value of 6.07
and a standard deviation of 8.60, which makes it 14.67 as a border. So we only consider
positions with a count value of 15 or higher. For this subtype there are only 12 positions
fulfilling this criteria: 141, 144, 169, 171, 172, 173, 187, 188, 189, 196, 199 and 240
after their own numbering or 140, 143, 168, 170, 171, 172, 186, 187, 188, 195, 198 and
239 after H3 numbering. Of these 12 positions, considering H3 numbering, positions -
168, 170, 171, 172, 186, 187, 188, 195 and 239 - are new, three positions are located
in a patch considering H1 evaluation data- 140, 143 and 198 - and no position has been
reported elsewhere. Because three of these position are fairly known to be under se-
lective pressure, the most interesting findings are the positions 168, 170, 171, 172, 186,
187, 188, 195 and 239 (H3 numbering). This positions have been found significantly
often and have not been reported yet to be under selective pressure, which would make
it reasonable to further analyze it. But furthermore there should be analysis of position
239 (H3 numbering) because it has been found 46 times and has the highest value of
all and is not stated as a position in a patch.
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H3N2

For the subtype H3N2 we have 188 counts in total, with a mean value of 2.72 and a
standard deviation of 2.23, which makes it 4.95 as a border. So we only consider po-
sitions with a count value of 5 or higher. For this subtype there are only 11 positions
fulfilling this criteria: 21, 22, 23, 156, 158, 160, 175, 239, 241, 242 and 328 after their
own numbering. Of these 11 positions, considering H3 numbering, five positions - 21,
22, 23, 239, 241 and 328 - are new, five positions are located in a patch of the H3 evalu-
ation data - 156, 158, 160, 175 and 242 - and no position has been reported elsewhere.
Because five of these position are fairly known to be under selective pressure, the most
interesting findings are positions 21, 22, 23, 239, 241 and 328 (H3 numbering). These
positions have been found significantly often and have not been reported yet to be under
selective pressure, which would make it reasonable to further analyze it. Again, there
should be further analysis of position 239 (H3 numbering). Interesting, considering the
new findings for this subtype, are that four of the five positions are located in the mem-
brane part and only positions 239 and 241 are not. This clearly shows that there have
to be more analysis about the membrane part of the HA protein because it seems to
have, at least for this subtype, more impact or at least is under more selective pressure
than thought. The reasons for that should be investigated.

H5N1

For the pandemic H1N1 subtype we have 176 counts in total, with a mean value of 2.53
and a standard deviation of 1.50, which makes it 4.03 as a border. So we only consider
positions with a count value of 4 or higher. For this subtype there are only nine posi-
tions fulfilling this criteria: 142, 144, 158, 159, 185, 188, 189 and 278 after their own
numbering or 142, 144, 158, 159, 185, 188, 189 and 277 after H3 numbering. Of these
nine positions, considering H3 numbering, only position 158 is reported to be under se-
lection. All other positions have not been reported to be so yet, but have been found
significantly often, which would make it reasonable to further analyze them.

5.5 Applicability for other Influenza A Proteins

As described in the work flow, see Figure 3.1, IPoSuS already has the possibility to be
used for other proteins. To do the analysis for all different proteins of the influenza A
virus it has to be mind, that there is not a solved protein for every subtype and therefore
the analysis cant be done properly. There is the possibility to use the homologue solved
proteins of other subtypes. Figure 5.2 shows an example of the differences which the
four subtypes H1N1, H3N2, H5N1 and H7N7 have for the HA protein.
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Figure 5.2: Figure showing the tertiary structure similarities and differences of the four subtypes
H1N1, H3N2, H5N1 and H7N7 with the corresponding pdb id’s 2WRG, 2HMG 2IBX
and 4DJ6 and the corresponding colours red, yellow, green and blue, on the bottom
of the figure. The top of the figure shows the run of the sequences of the different
structures. Areas with high similarities are shown in rectangles in addition with the
length of this segment and the RMSD value for it. Arrows combining these segments
have a higher difference or are insertions/deletions in other structures. Colors are
the same as in the bottom part of the figure.

As seen in the figure most of segments are very similar with a root-mean-square-
deviation (RMSD) value, a measure of the average distance between atoms, ranging
from 1.7 to a maximum of 3.1 and are only divided by the several inputs or deletions
some of the subtypes feature. This indicates, that the used structures are very similar
to each other, sometime even more similar than the resolutions of the proteins are. With
this knowledge the analysis for every other protein of influenza A can be done but are
not totally correct, but can be seen as a first approach.
This overlap in the 3D structure also supports the theory that the evaluation data should
be put together and at least the protein HA should be considered as a whole, as long as
analysis only investigate one specific host. To get knowledge about host dependencies
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there have to be more analysis.

5.6 Used Data

Regarding the quality of the data there is only one statement, that the quality is good,
because of the probity of the provider of the data and their reputation on this field of
work.
The second point is the amount of data which gets even more critical when using the
OmegaValue and the OmegaRatio approaches, because using them assumes at least
30 sequences to have generality for the Z-value calculation. Having less than 30 se-
quences can also result in findings but there is no certainty about them and the quality
of the obtained results. The amount of data is also the reason why there are no re-
sults represented in this work for the subtypes H7N7 and H7N9, because there was
not enough different data to obtain results. Also the amount of data is the reason why
there sometimes are no results at all for some seasons. The reason for that is not only
the pure amount of data but the amount of different data with different mutations. This
arises from the fact that these subtypes usually occur in birds and therefore do not have
a possibility to infect humans and the whole data is from one single outbreak in one
region in one season. Therefore all of the gathered sequences are nearly similar and
did not had enough time to evolve further. Furthermore the needed adaption to infect
humans would not mutate any further because the adaption already took place. For this
lack of information the only possible thing to do would be to consider both, animal hosts
and human hosts together, compared to only animal host, to see the differences which
occurred between these two approaches.

5.7 Positions Not Under Selective Pressure

In the previous sections the discussion was all about the findings of the developed algo-
rithm. Now, on the other hand there is need for a discussion of the positions that have
not been identified to be under selection. There are at least two imaginable possibilities
for these positions. The first possibility is the most easy one, these positions just do not
have any impact on the evasion of the hosts immune system. This could be either due
to the structural position they are at, because if they do not lie exposed they probably
do not have to alter or it is because they are necessary for the structure to be formed
correctly and may not alter or otherwise the protein will misfold. The second possibility
is the more speculative one. Assuming that there are special positions in the protein,
that enables the virus to infect other species if they are in the right combination or they
did alter in a specific way, these positions should not alter anymore, because otherwise
the virus could loose its ability to infect the host. With this assumption positions that are
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not altered could be the primary reason for host switches or adaption in a new host. Fur-
thermore these positions would only alter once and could therefore not been detected
by this, or even any other, algorithm, that is looking for amino acids under selection, be-
cause they would not be remarkable in terms of p-values or pure counts of alterations.
Beside these speculations these positions also provide another opportunity. The reason
why known vaccines do not work for much longer than a couple of seasons is because
of the previous mentioned alterations in the amino acids exposed to the outer surface.
Knowing the positions that do not alter over such a high amount of different seasons in
all the different subtypes could lead to a new vaccine that can be applied no matter the
season or the influenza A strain. Additionally these positions should have to be laid on
the outer surface of the protein, such that it can be targeted by for example a synthetic
molecule. A possible reason why the human immune system was not able to develop
such a molecule by its own could be the rarity of these positions or the structural loca-
tion of all those, such that they are just to far apart. Thinking about the H3N2 subtype
HA protein of 330 length, there are 156 positions that are not found by the introduced
algorithm, over all results and subtypes. Now thinking about the membrane parts that
are thought of not being altered, due to location, there are 99 positions left. Of these 99
residues are 32 located to the outer surface and are therefore exposed. These positions
are: 50, 54, 65, 73, 75, 77, 80, 81, 83, 100, 101, 110, 113, 114, 116, 117, 119, 120,
122, 123, 124, 137, 165, 167, 208, 212, 246, 248, 285, 291, 292 and 299. Additionally
it has to be factored in, that some of them are reported to be into patches and have just
not been found. Taking all this into account, the ones that are reasonable for further
analysis are: 65, 73, 77, 100, 101, 110, 113, 114, 116, 119, 120, 123, 285, 291 and
292, as shown in Figure 5.3
Many of these positions are directly located to a position in a reported patch, which
could be a reason why it cant be targeted as well as wanted by the host immune sys-
tem, because the surroundings are altering very heavily, which makes the binding to one
specific position very difficult. All of these positions could have impact in the adaption or
the continuance in the human as host. To further analyze this, IPoSuS needs to be used
for other datasets, not including human sequences to see, whether it is human specific
or HA specific. Both cases would be of appropriate interest.
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Figure 5.3: Picture showing the location of the amino acid positions that have not been found in
any approach and subtype and are additionally exposed on the outer surface (H3N2
subtype structure and numbering).
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6 Outlook

In this work IPoSuS was used for analysis of the protein HA of the influenza A virus,
using subtype specific structures. Furthermore, it should be used to analyze this protein
using structures of other subtypes, resulting in a use of a homologue protein structures
of the HA protein. In the end there could be a comparison of the results to find dif-
ferences and similarities in the subtypes. With this similarities and differences over all
subtypes and structures there can be a statement about the quality and reliability of the
usage of subtype unspecific structures. This could be used to investigate all of the other
proteins of the influenza A virus. Doing this with the seasonal differentiation as already
done in this work for the HA protein could provide a new insight into the dependencies of
adaptive mutations and the coherence of mutations of different proteins of an organism.
Further on there can be analysis about different hosts of different subtypes including
or excluding the information about the geographic location, because for now the only
analysis was for human infecting subtypes of the HA protein.
After using IPoSuS for a whole protein analysis of influenza A it can also be used to
investigate proteins of other fast evolving viruses like the Ebola or Marburg viruses. But
not only virus proteins can be investigated, but all proteins for which a tertiary structure
is known, or modeled, and for which enough coding sequences are given.
All this could lead to new insights into the evolution of proteins in viruses, or other
organisms, and also enlighten the field of depended mutations in different proteins. Fur-
thermore retrospective analysis could be done on the obtained results regarding the
different seasons to get even more insight into the development scheme and pattern of
the proteins.
As a next point IPoSuS is very easy to expend concerning the test- and counting statis-
tics. This means that whenever something new gets developed or found out, IPoSuS
can be extended as long as these new statistics can be converted or represented as p-
values. But it does not have to be new findings but can also be statistics, on which test
should be done. Because of the already implemented five different approaches there is
an instant feedback and comparability of the results.
Another good thing to do would be the introducing of an automated evaluation to directly
have a feedback about the data, for example own input data. Furthermore it would be
interesting to think about a new possibility to determine the quality of IPoSuS or a spe-
cific implemented test statistic because as already mentioned this tool is likely to find
non reported amino acid positions but surroundings. Using an exponential function with
different bases could perhaps be a good foundation to think about this.
As already mentioned in the discussion there is a problem with the underlying MSA,
because the whole results of any analysis can shift from good to bad or from bad to
good, dependent on the used MSA. All in all there should probably be a greater study
about different used sequences and MSA’s and the obtained results for this tool, such
that it perhaps is possible to denoise the results.
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Another thing, a combination of two mentioned, could be the automated evaluation and
different underlying MSA’s for obtaining this evaluation. In combination it should be pos-
sible to denoise the results or have the most likely results as best hits.
Also there should be further analysis taking different hosts into account, just like sug-
gested in Section 5.6 for subtypes H7N9 and H7N7. This procedure can also been
done for every other subtype as well. The differences could give new insights especially
into positions which do have to alter for an initial host switch and do not alter once it
happened.
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7 Summary

In this work we introduced a tool, based on an already existing graph-cut approach, to
detect patches of sites under selection with an automated framework. This automated
framework does include the data download for specific parameters set by the user, the
automated creation of a MSA, the proceedings with it and the further dn/ds counting
and graph-cut for patch identification.
Furthermore we introduced a new statistical test which enables us to not only use the
pure counts of synonymous and non synonymous mutations but the ratio and further
calculations of this value, to obtain OmegaRatios and OmegaValues.
Considering the results, the used algorithm has found many new positions under se-
lection which have not been reported before. Furthermore the results suggest to use a
combination of the evaluation data for the subtypes H1 and H3 and also a review of the
meaningfulness of this data. Beside of this, the work showed that the newly introduced
OmegaRatio and OmegaValue approach are usable and could also be used as default,
although the AdaPatch approach yields the best results, but plenty of them. Addition-
ally there should be a more detailed analysis about the positions that have not been
identified by IPoSuS in any subtype or approach, to specify their role for the protein and
organism, as shown in Section 5.7.
Another special thing was the consideration of many different seasons and the obtained
possibility to count the appearances of findings. The analyzes of these positions showed
only a couple of amino acid positions that should be of further interest.
All in all we introduced a tool which works as intended, with a quite good quality, when
taking into account that not reported findings are intentional. Furthermore, IPoSuS is
able to detect patches under selection for every protein, as long as there is enough data
and the needed 3D-structure. This includes not only proteins of influenza A viruses,
but all imaginable proteins of viruses and other organisms. This makes this tool very
powerful with a wide possible application range.
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