Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of some Toulouse researchers and makes it freely available over the web where possible.

This is an author's version published in: https://oatao.univ-toulouse.fr/23107

Official URL: https://doi.org/10.1055/s-0037-1605365

To cite this version:

Any correspondence concerning this service should be sent to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr
Neurotization of the Superficial Sensory Branch of Ulnar Nerve by the Distal Posterior Interosseous Nerve: Cadaveric Feasibility Study

P. Laumonerie, MD1,2 L. Decaestecker, MD1 S. Delclaux, MD1 C. Apredoaei, MD1 M. E. Tibbo, MD3 M. Courtade-Saïdi, MD, PhD4 P. Mansat, MD, PhD1

1 Department of Orthopaedic, Hôpital Pierre Paul Riquet, Toulouse, France
2 Anatomy Laboratory, Faculty of Medicine, Toulouse, France
3 Department of Orthopaedic, Mayo Clinic, Rochester, Minnesota
4 Histology and Embryology Laboratory, Rangueil Medical School, Toulouse University, Toulouse, France

Address for correspondence Pierre Laumonerie, MD, Hôpital Pierre Paul Riquet, Anatomy Laboratory, Faculty of Medicine, Toulouse 31062, France (e mail: laumonerie.pierre@hotmail.fr).

Ulnar nerve (UN) injuries are common, and the potential for motor and sensory recovery thereafter is minimal.1 5 Direct nerve repair is the reference gold standard.6 9 At the very least, neurotization and distal tendon transfers are alternative choices for ulnar lesions with poor sensorimotor recovery prognoses.10 13 Selective neurotization techniques for the motor branch of the UN have produced satisfactory results with respect to intrinsic muscle recovery at long-term follow-up.12,14,15 However, hypothenar anesthesia causes discomfort and cutaneous ulcerations of the ulnar aspect of the hand secondary to repetitive microtrauma. Successful restoration of ulnar motor and sensory function using neurotization techniques were described.16 18 However, these newer techniques require harvesting of a sensory branch, thereby risking palmar anesthesia for the palmar cutaneous branch of the median nerve, and dysesthesia or anesthesia for the common palmar digital nerve of the third web space.16 18

Keywords ► neurotization
► ulnar nerve
► nerve
► posterior interosseous nerve
► sensory
► deficit

Abstract

Background In 2014, Delclaux et al described a case wherein the Battiston and Lanzetta’s technique, modified by utilization of the posterior interosseus nerve (PIN), was used to perform double neurotization of the ulnar nerve (UN). This study evaluates the feasibility of transfer of proprioceptive fascicles of the PIN to the superficial sensory branch of the UN (SSBUN).

Methods The surgeries were performed on 16 fresh cadaveric wrist specimens. PIN transfer was performed through the interosseous membrane and sutured to the SSBUN. The diameter for each nerve, number of fascicles, and the percentage of fascicles without axons, under ×10, ×40, and ×100 magnifications were performed by two observers.

Results Neurotization of the SSBUN by the PIN was successful in all cases. The median diameter of the SSBUN and PIN was 3.5 (3–4) and 2.3 mm (1.6–3), respectively. The SSBUN contained 5.5 fascicles (4–7), while the PIN contained 2 fascicles (0–4). The 16 PIN had limited (10 cases) or no axonal reserve (6 cases).

Conclusion This study supports the surgical and anatomical feasibility of neurotization of the SSBUN by the PIN. However, the PIN’s limited axonal reserve may partially or totally compromise recovery.
In 2014, Delclaux et al reported rapid and successful sensorimotor recovery (M3/S2 at 18 months follow-up) using an innovative double neurotization technique of the UN by the anterior interosseous nerve (AIN) and the posterior interosseous nerve (PIN) without theoretical consequence for the donor site. However, selective neurotization techniques for the motor branch of the UN by AIN was previously supported by anatomical work. The objective of our study is to validate the feasibility of sensory neurotization via anatomic and histologic analyses.

Methods

Specimens

In this study, 16 fresh cadaveric upper extremities (8 left and 8 right) of 10 males and 6 females, with a median age of 77.5 years (67–88) were used. Exclusion criteria were antecedent trauma or surgical intervention at the level of the forearm (FA) or hand (fractures, wounds).

Technique

The procedure consisted of four phases: UN dissection, PIN dissection, transfer of the PIN to the superficial sensory branch of the UN (SSBUN), and histologic analysis of the sutured ends under the microscope.

Dissection of the PIN on the dorsal surface of the wrist and of the UN on the palmar aspect of the hand, in addition to nerve suturing, were performed in the anatomy laboratory by hand surgeons (P.L. and L.D.). Surgical loops and fine microsurgery instruments were used. A single observer (P.L.) measured the length of the dissected portion of the PIN using calipers. During a separate dissection, transverse sections of the PIN and SSBUN were also prepared to assess their diameter (i.e., the section of nerve with the greatest distance from edge to edge was recorded for each nerve), number of fascicles, and the percentage of fascicles without axons, under ×10, ×40, and ×100 magnifications. These analyses were performed by two observers (M.C.S. and P.L.).

Ulnar Nerve Dissection

The FA was positioned in abduction and supination. A 6-cm incision was made on the volar aspect of the FA, lateral to the tendon of the flexor carpi ulnaris and pisiform. The tendon of the flexor carpi ulnaris was identified at the proximal end of the incision and retracted medially. The ulnar artery was dissected from the lateral border of the UN and retracted laterally. Guyon’s canal was incised longitudinally. The superficial sensory and deep motor branches of the UN were dissected from distal to proximal. An interfascicular dissection of the UN was performed using surgical loupes, to separate the sensory and motor fascicles (Fig. 1).

Dissection of the Posterior Interosseous Nerve

The FA was positioned in abduction and pronation. A 6-cm longitudinal incision, centered on Lister’s tubercle, was made on the dorsal aspect of the FA. The extensor digitorum and extensor pollicis longus were retracted medially and radially, respectively, to expose the PIN. Dissection of the PIN was performed, using surgical loupes, from distal to proximal beginning from the articular capsule (Fig. 2).

Transfer of the Posterior Interosseous Nerve

Using surgical loupes, the PIN was sectioned at the most distal point possible at the level of the joint capsule. The PIN was transferred, without tension, through the interosseous membrane at the distalmost aspect of the pronator quadratus. The sensory fascicles of the fourth and fifth rays were connected to the fascicles of the PIN using 10–0 nonabsorbable monofilament epiperineural suture in an interrupted fashion (Figs. 3 and 4).

Histologic Examination

Three centimeter margins on either side of the sutured connections between the PIN and SSBUN were sampled. The samples were fixed in formalin and embedded in paraffin. Transverse sections were then stained with Masson’s trichrome to visualize the connective tissue envelope of the nerves. The samples were analyzed under ×10, ×40, and ×100 magnifications. The respective diameter of the PIN and...
SSBUN, as well as the number of fascicles with and without axons was thereby assessed (Fig. 5).

Statistical Analysis
The results were described according to their median, and their minimum and maximum values.

Results
Transfer of the PIN to the SSBUN was successful in all 16 cases. Due to the intraneural dissection of the UN, the SSBUN was systematically mobilized which allowed for quality, tension-free sutures in all 16 cases. Mobilization of the elbow and wrist did not place tension on any of the 16 nerve sutures.

The median length of dissection of the PIN was 40 mm (37–43) from the distal cut edge. At ×40 magnification, the median diameter of the SSBUN and PIN was 3.5 (3–4) and 2.3 mm (1.6–3), respectively. The SSBUN contained 5.5 fascicles (4–7), while the PIN contained 2 fascicles (0–4). Complete absence of fascicles was observed in six PIN samples.

Discussion
Sensation in the fourth and fifth digits is not essential for manipulation of objects and does not represent a functional...
loss. Double neurotization of the UN has two objectives: sensory recovery sufficient to prevent damage from microtrauma (S2 or higher) and minimal morbidity for the donor site.

With respect to neurotization of the SSBUN, the choice of donor nerve has successively transitioned from the palmar branch of the median nerve to the common palmar digital nerve (CPDN) of the third web space, allowing for satisfactory grade S3 sensation recovery but with the theoretical risk of palmar anesthesia or dysesthesia at the donor site. Due to the small sample size, absence of risk of deficit and/or neuroma to the third CPDN could not be demonstrated.

In 2014, Delclaux et al described a case of double neurotization of UN via transfer of the PIN to the SSBUN, permitting grade S2 sensory recovery without donor-site morbidity at 18 months postoperatively. The greatest strength of this operative technique is its negligible risk of neurological deficit for the donor site. The origin of the most distal motor branch of PIN nerve lies approximately 46.9 mm proximal to the ulnar head. Since the distal portion of the nerve contains exclusively proprioceptive sensory fibers destined to provide sensory innervation to the joint capsule, it can be transferred without risk of subsequent sensory or motor deficit.

With respect to the 16 wrists in the present series, anatomic localization of the PIN was consistent on the radial wall of the fourth extensor compartments (between the extensor digitorum and the extensor pollicis longus). The mean length of dissection of the PIN was 41 mm from the distal cut edge, quite a distance from the most distal motor branch. Passage through the interosseous membrane and endoneurial dissection of the UN over a mean distance of 40 mm ensured a reduction in the distance necessary for transfer of the PIN and allowed for terminal–terminal sutures from the PIN to the SSBUN without tension in 100% of cases. Despite the difference in caliber between the two nerves, no difficulties arose during suture placement.

However, this surgical technique requires a two-incision approach, both posterior and anterior with opening of Guyon’s canal to mobilize the SSBUN. The tension imparted on the PIN during its transfer, and on the suture, must be minimal to protect the nerve’s minimal axonal reserve. Histologic analysis elucidated the limits of this neurotization technique. Of the 16 PIN samples, 10 were found to have limited axonal reserve, while the remaining 6 had none. The absence of axons in six of the PIN samples (37.5% of cases) is a limitation of this technique. We speculate that the PIN could provide limited sensory recovery in 62.5% of cases, consistent with results reported by Delclaux et al. The traction necessary to pass the PIN through the interosseous membrane could have induced axonal loss; this would explain the absence of axons in the six PIN samples. Finally, it should be noted that care should be taken when operating on the elderly since diminished proprioceptive fascicle reserve within the PIN in this group of patients could result in poor corticalization and regional perception outcome.

In addition, microscopic data extracted from slide review were performed by a single operator (P.L.).

Conclusion
The present cadaveric study describes an alternative, novel strategy for the management of traumatic lesions of the proximal segment of the UN. The distal posterior interosseous nerve possesses the anatomic characteristics necessary to perform surgical transfer to the SSBUN. However, reinnervation potential may be limited by number of proprioceptive axons that the distal PIN possesses.

Disclosures
All the authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this article.

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Level of Evidence
The level of evidence is therapeutic IV.

Contribution of Authors
All the authors (P.L., L.D., S.D., C.A., M.E.T., M.C.S., and P.M.) certify that each author has participated in the content and design of the study, the preparation of the article and its revisions, and final approval.

Acknowledgment
The authors would like to thank Dina Da Mota (laboratory assistant, Rangueil Medical School, Toulouse University, France) for her technical support for histologic sections. We also would like to thank the persons who donated their bodies to the department of Laboratory of Applied Anatomy (Faculty of Medicine, Toulouse, France), without which this study would not have been possible.

References
5 Murovic JA. Upper extremity peripheral nerve injuries: a Louisiana State University Health Sciences Center literature review with comparison of the operative outcomes of 1837 Louisiana State University Health Sciences Center median, radial, and ulnar nerve lesions. Neurosurgery 2009;65(4, Suppl):A11–A17
8 Taha A, Taha J. Results of suture of the radial, median, and ulnar nerves after missile injury below the axilla. J Trauma 1998;45(02):335–339
15 Novak CB, Mackinnon SE. Distal anterior interosseous nerve transfer to the deep motor branch of the ulnar nerve for reconstruction of high ulnar nerve injuries. J Reconstr Microsurg 2002;18(06):459–464
16 Battiston B, Lanzetta M. Reconstruction of high ulnar nerve lesions by distal double median to ulnar nerve transfer. J Hand Surg Am 1999;24(06):1185–1191
17 Brown JM, Yee A, Mackinnon SE. Distal median to ulnar nerve transfers to restore ulnar motor and sensory function within the hand: technical nuances. Neurosurgery 2009;65(05):966–977, discussion 977–978
18 Flores LP. Distal anterior interosseous nerve transfer to the deep ulnar nerve end to side suture of the superficial ulnar nerve to the third common palmar digital nerve for treatment of high ulnar nerve injuries: experience in five cases. Arq Neuropsiquiatr 2011;69(03):519–524
23 Jacobs JM, Love S. Qualitative and quantitative morphology of human sural nerve at different ages. Brain 1985;108(Pt 4):897–924